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ABSTRACT
Quantum state preparation initializes the quantum registers and is

essential for running quantum algorithms. Designing state prepa-

ration circuits that entangle qubits efficiently with fewer two-qubit

gates enhances accuracy and alleviates coupling constraints on

devices. Existing methods synthesize an initial circuit and leverage

compilers to reduce the circuit’s gate count while preserving the

unitary equivalency. In this study, we identify numerous conditions

within the quantum circuit where breaking local unitary equiva-

lences does not alter the overall outcome of the state preparation

(i.e., don’t cares). We introduce a peephole optimization algorithm

that identifies such unitaries for replacement in the original circuit.

Exploiting these don’t care conditions, our algorithm achieves a

36% reduction in the number of two-qubit gates compared to prior

methods.

1 INTRODUCTION
Quantum states preparation (QSP) is indispensable in quantum com-

puting for initializing the state of quantum registers. The initial

state to prepare is determined by the specific quantum algorithm

and application. Examples of such states include GHZ states, which

are instrumental in entanglement experiments [1]; W states [2] and

Dicke states [3], which are useful in quantum metrology and act as

generators of complex symmetric states [4]; VBS states [5], valuable

for modeling interacting [6] quantum spin models. Additionally,

certain algorithms encode the problem inputs directly into the ini-

tial states [7]. Consequently, developing automated algorithms to

design the state preparation circuit is necessary.

Reducing the gate count, particularly the number of two-qubit

gates in the circuit, is essential for improving the performance

of noisy intermediate-scale quantum computing. To generate the

initial QSP circuit, Boolean methods are proposed utilizing decision

diagrams to prepare general 𝑛-qubit states employing O(2𝑛) two-
qubit gates [8–10]. Besides, specialized algorithms for sparse state

preparation are developed to prepare 𝑛-qubit states with𝑚 nonzero

amplitudes using O(𝑚𝑛) two-qubit gates [11–13]. These methods

efficiently search for a feasible circuit by decomposing the quantum

state using divide-and-conquer techniques.

To reduce the gate count and optimize the initial circuit, synthe-

sis algorithms partition the circuits into blocks with manageable

unitary matrix dimensions [14] and apply unitary synthesis ap-
proaches that search for replacement circuits with fewer gates to

implement the given unitary [15]. These unitary synthesis algo-

rithms can effectively simplify the unitary matrices of systems up

to six qubits [16–18]. Consequently, these algorithms are often

employed as peephole optimizations within larger workflows that

utilize iterative methods or design space exploration techniques to

enhance scalability [19, 20].

Due to the inherent complexity, existing quantum circuit opti-

mization algorithms assume the unitary is fixed for a given circuit,

which is not necessarily true in many quantum applications. In

the quantum state preparation problem, for instance, all qubits are

initialized to the ground state. As a result, only the first column of

the unitary matrix corresponding to the ground state affects the

circuit outcome, while the entries in all other columns are flexible.

Szasz et al. generalize the flexibilities in applications as a multi-

set preparation problem and point out various flexible unitaries

in Hamiltonian simulation circuits, preparation of general quan-

tum channels, and circuits with ancillary qubits [21]. Exploiting

these flexibilities can significantly improve the circuit performance,

as the algorithms are allowed to replace the unitary with a more

promising one with a smaller circuit size. However, encoding this

flexibility in the optimization algorithm results in an exponentially

growing complexity and, thus, does not apply to larger entangled

systems [22].

In this paper, we propose a novel scalable algorithm to opti-

mize quantum state preparation circuits. Our method formulates

the flexibility in modifying unitary operators as don’t cares and

allows for simpler circuit configurations. Given an initial QSP cir-

cuit, we first partition the circuit into single-target segments whose
functionality can be efficiently expressed. Then, we propagate and

derive the don’t-care conditions inside these segments. Finally, our

resynthesis algorithm identifies and utilizes don’t-cares to simplify

the segments’ implementation. Experimental results show that our

approach enhances the optimization of the QSP circuit and reduces

the CNOT count by 36% compared with existing algorithms without

employing don’t cares.

In the rest of the paper, we present background and related work

in Section 2. Then, we give an example of don’t care-based circuit

optimization in Section 3 to motivate our work. We illustrate our

methodology in Section 4. In Section 5, we demonstrate experimen-

tal results and evaluate our method.

2 BACKGROUND
In this section, we provide background for quantum states, gates,

and circuits. For clarity and space constraints, we refer readers

to established sources for formal definitions of notations [23] and

quantum gates [24].

2.1 Quantum States and Quantum Gates
We express the 𝑛-qubit quantum state as a linear combination of 2

𝑛

orthonormal basis vectors.

|𝜓 ⟩ =
∑︁

𝑥∈{0,1}𝑛
𝑐𝑥 |𝑥⟩ , and

∑︁
𝑥∈{0,1}𝑛

|𝑐𝑥 |2 = 1,

where |𝑥⟩ ∈ {0, 1}𝑛 are the basis states, 𝑐𝑥 ∈ C are amplitudes that
indicate the probability of observing |𝑥⟩ after a measurement.
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(a) Quantum circuit decomposed using conventional quantum compilation algorithms to prepare |𝜓 ⟩.
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(b) Quantum circuit optimized exploiting don’t-cares within the five
segments,W1, ...,W5 to prepare |𝜓 ⟩.
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��𝜓 ′
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〉
|𝜓5 ⟩
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𝑅𝑦
𝜋/4

(c) Quantum circuit optimized exploiting all don’t-cares to
prepare |𝜓 ⟩.

Figure 1: Three quantum circuits with different numbers of gates to prepare the same state |𝜓 ⟩ in Equation (1). This example establishes that
the gate counts can be reduced by using don’t cares in the quantum circuit.

Quantum gates, or operators, denoted by𝑈 , are unitary matrices

representing transitions between quantum states.U(2𝑛) stands for
the set of all 𝑛-qubit gates. Y rotations, 𝑅𝑦 , are single-qubit unitaries

𝑈 ∈ U(2) that redistribute the amplitude between |0⟩ and |1⟩. Z
rotations, 𝑅𝑧 , introduce the relative phase shift between |0⟩ and |1⟩.

𝑅𝑦 (𝜃 ) =
(
cos

𝜃
2
− sin 𝜃

2

sin
𝜃
2

cos
𝜃
2

)
, 𝑅𝑧 (𝜃 ) =

(
exp(− 𝑖𝜃

2
) 0

0 exp( 𝑖𝜃
2
)

)
,

where 𝜃 is the rotation angle.
Pauli-X, 𝜎𝑥 , is a single-qubit operator that maps 𝛼 |0⟩ + 𝛽 |1⟩

to 𝛽 |0⟩ + 𝛼 |1⟩. CNOT is a two-qubit gate that transitions 𝛼 |00⟩+
𝛽 |01⟩+𝛾 |10⟩+𝛿 |11⟩ to 𝛼 |00⟩+𝛽 |01⟩+𝛾 |11⟩+𝛿 |10⟩.

𝜎𝑥 =

(
0 1

1 0

)
, CNOT = 1 ⊕ 𝜎𝑥 =

©­­­«
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®®¬ .
All operators in U(2𝑛) can be decomposed into gates in the

set {CNOT, U(2)} [24]. A single-qubit gateU(2) can be further

decomposed into 𝑅𝑧 and 𝑅𝑦 deterministically [25].

Two operators, 𝑈1 and 𝑈2, commute if exchanging their order

does not affect the functionality, i.e., 𝑈1𝑈2 = 𝑈2𝑈1.

2.2 Quantum State Preparation
Given a state |𝜓 ⟩, the quantum state preparation (QSP) finds a

quantum circuit comprising 𝑙 gates 𝑈1,𝑈2, ...𝑈𝑙 such that these

gates transition the ground state |0⟩ to the target state |𝜓 ⟩, i.e.,
|𝜓 ⟩ = 𝑈𝑙 ...𝑈2𝑈1 |0⟩. For noisy intermediate-scale quantum (NISQ)

computers, CNOTs produce far more noise than single-qubit gates.

Besides, CNOTs require the two involved qubits to be coupled

and generate connectivity constraints in the layout synthesis [26].

Therefore, the objective of the QSP circuit optimization in this pa-

per is to minimize the number of CNOTs in the circuit after being

decomposed into gates in {CNOT,U(2)}.
Additionally, this paper studies states with real amplitudes due

to their predominance in quantum algorithms. To prepare arbitrary

states with complex amplitudes, our method adapts through the

controlled phase gates [27].

3 MOTIVATING EXAMPLE
In this section, we illustrate the limitations of applying conventional

quantum compilation algorithms to optimize the quantum state

preparation circuit. Then, we demonstrate the advantages of our

optimization approach, which leverages don’t-care conditions and

resynthesis subcircuits to achieve a significant reduction in the

CNOT count and the error rate.

Consider the target state |𝜓 ⟩. Each index encodes the value of

three qubits in the order of |𝑞0𝑞1𝑞2⟩.

|𝜓 ⟩ =
√︃

2

8
|000⟩ −

√︃
1

8
|100⟩ +

√︃
1

8
|010⟩ +√︃

1

8
|101⟩ +

√︃
1

8
|011⟩ +

√︃
2

8
|111⟩

(1)

Figure 1a depicts a feasible initial QSP circuit of |𝜓 ⟩. This initial
circuit comprises five segments,W1, ...,W5. These segments are

generated by decomposing unitary operators, including two single-

qubit Y rotations (W1 andW4), two single-controlled Y rotations

(W2 andW5), and one double-controlled Y rotation (W3). For a

rotation with 𝑛 control qubits, the configuration requires 2
𝑛
CNOTs

after mapping to {U(2),CNOT} [25]. Therefore, The final circuit
needs 10 single-qubit gates and 8 CNOT gates to prepare |𝜓 ⟩.

Existing optimization algorithms rigidly preserve the untary

equivalency of the quantum circuits [16, 18, 28]. Let 𝑈 and 𝑈 ′ be
the unitaries of the initial and optimized circuit. These algorithms

assert the optimized circuit must behave the same as the initial

circuit for all possible states in the three-qubit system, i.e.,

𝑈𝜑 = 𝑈 ′𝜑 , ∀𝜑 ∈ H⊗3 . (2)

This constraint is over-conservative for QSP circuit optimization

and hinders conventional algorithms from finding more effective

circuits with fewer gates. Figure 1b displays a smaller circuit that

prepares |𝜓 ⟩ using 5 CNOT gates. Let𝑈𝑤𝑖
and𝑈 ′𝑤𝑖

be the unitaries

of the 𝑖th initial and optimized segmentsW𝑖 , respectively. Although
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Table 1: Intermediate quantum states in the example.

|𝜓1⟩ =
√︃

1

2
|000⟩ +

√︃
1

2
|100⟩

|𝜓2⟩ =
√︃

2

4
|000⟩ +

√︃
1

4
|100⟩ +

√︃
1

4
|110⟩��𝜓 ′

2

〉
=

√︃
1

4
|000⟩ +

√︃
1

4
|010⟩ +

√︃
1

4
|100⟩ +

√︃
1

4
|110⟩

|𝜓3⟩ =
√︃

2

4
|000⟩ +

√︃
1

4
|101⟩ +

√︃
1

4
|110⟩

|𝜓4⟩ =
√︃

2

8
|000⟩ −

√︃
1

8
|100⟩ +

√︃
1

8
|111⟩ +

√︃
1

8
|101⟩ +√︃

1

8
|110⟩ +

√︃
2

8
|010⟩

|𝜓5⟩ =
√︃

2

8
|000⟩ −

√︃
1

8
|100⟩ +

√︃
1

8
|010⟩ +

√︃
1

8
|101⟩ +√︃

1

8
|011⟩ +

√︃
2

8
|111⟩

the unitaries of their subcircuits are different, e.g.,𝑈𝑤2
≠ 𝑈 ′𝑤2

, the

outcome states are the same, i.e.,𝑈𝑤2
|𝜓1⟩ = 𝑈 ′𝑤2

|𝜓1⟩ = |𝜓2⟩ . It can
be observed by expressing the matrix representation in terms of

the subspace generated by 𝑞0 and 𝑞1 (𝑞2 is separable inW2’s state

transition).

𝑈𝑤2
=

©­­­«
1 0 0 0

0 1 0 0

0 0 0.7 −0.7
0 0 0.7 0.7

ª®®®¬ , 𝑈
′
𝑤2

=

©­­­«
1 0 0 0

0 −1 0 0

0 0 0.7 −0.7
0 0 0.7 0.7

ª®®®¬ , |𝜓1⟩ =
©­­­«
0.7

0

0.7

0

ª®®®¬ .
The constraint in Equation (2) allows the optimization algorithm

to modify the functionality and simplify the circuit more aggres-

sively than Figure 1a, which reduces the gate count.

Nevertheless, the optimization in Figure 1b is again conservative

because preserving the equivalency of intermediate states is also

unnecessary. An even more aggressive optimization is revealed in

Figure 1c. Since a circuit𝑈 ′ is feasible if the outcome of the overall

circuit is the target state |𝜓 ⟩, i.e., 𝑈 |0⟩ = 𝑈 ′ |0⟩ = |𝜓 ⟩. Therefore,
this algorithm allows altering the intermediate state from |𝜓2⟩ to��𝜓 ′
2

〉
. This modification facilitates a significantly simplified circuit

configuration to prepare |𝜓 ⟩ employing only 2 CNOT gates.

Table 2 shows the performance on a real quantum computer

of the initial circuit in Figure 1a, circuit optimized by Qiskit [28],

and circuit in Figure 1c. Results show that employing don’t-care

conditions allows the optimized circuit to prepare the same state

Table 2: Error rate compared to the ideal value, i.e., |𝑐𝑥 |2, when
running on the quantum device ibm-osaka. We display the actual
probability and the absolute error (in parenthesis). Optimizing the
QSP circuit using don’t cares results in better state preparation fi-
delity1.

Ideal Initial Opt. w/o DC Opt. with DC

|000⟩ 0.250 0.233 (1.7%) 0.226 (2.4%) 0.265 (1.5%)

|001⟩ 0.125 0.115 (0.9%) 0.116 (0.8%) 0.119 (0.5%)

|010⟩ 0.125 0.093 (3.2%) 0.223 (9.8%) 0.105 (2.0%)

|011⟩ 0.000 0.039 (3.8%) 0.022 (2.2%) 0.007 (0.7%)

|100⟩ 0.000 0.023 (2.3%) 0.013 (1.3%) 0.004 (0.3%)

|101⟩ 0.125 0.230 (10.%) 0.074 (5.0%) 0.146 (2.0%)

|110⟩ 0.125 0.061 (6.4%) 0.167 (4.2%) 0.130 (0.4%)

|111⟩ 0.250 0.206 (4.4%) 0.158 (9.2%) 0.224 (2.5%)

Avg. error 4.18% 4.40% 1.29%

with higher fidelity and reduce the average error compared to the

ideal state from 4.18% to 1.29%.

4 METHODOLOGY
As established in Section 3, allowing modifications in the unitary

matrices significantly enhances the optimization flexibility of the

QSP circuit. However, this introduced flexibility also expands the

solution space, potentially increasing the complexity if not managed

properly. The main contribution of this paper is the development

of a scalable algorithm that exploits these don’t care conditions

effectively while keeping the complexity under control.

Our quantum circuit optimization workflow is based on the peep-

hole optimization, as presented in Algorithm 1. Starting with an

initial QSP circuit G, we sequentially traverse the gates and extract

segments that target the same qubit. For each extracted segment,

denoted asW, we perform resynthesis that searches for a replace-
ment circuitW′ that transitions the quantum states identically

while requiring fewer gates. The optimized circuit is then produced

by aggregating these improvements across all segments.

In the rest of this section, we will explain the three main compo-

nents of our algorithm: segment extraction, rotation table represen-

tation, don’t care condition propagation, and segment resynthesis.

4.1 Single-Target Segment Extraction
Segment extraction is a widely used technique to simplify the com-

plexity of circuit optimization. By focusing the optimization process

on a localized segment of the quantum circuit, we can represent

the unitary functions more efficiently and significantly reduce the

problem size. However, local optimization lacks the comprehensive

visibility of feasible solutions, resulting in missed optimization op-

portunities. Therefore, it is crucial for a partitioning algorithm to

strike a balance between efficiency and effectiveness.

Our algorithm extracts single-target segments. A segment is

single-target if all CNOTs and single-qubit gates in it target the

same qubit. Let 𝑈𝑤 be the unitary of the segmentW, thenW
is single-target if and only if 𝑈𝑤 can be represented as a multi-

controlled single-target operator

𝑈𝑤 =
∑︁

𝑥∈{0,1}𝑛−1
𝑈𝑤,𝑥 ⊗ |𝑥⟩ ⟨𝑥 | , (3)

where 𝑈𝑥 ∈ U(2) is unitary matrix that indicates the effectW
casts on the target qubit if the other 𝑛 − 1 qubits are in state |𝑥⟩.

To extract single-target segments, we first group adjacent gates

with common targets in the original circuit sequence and then

extend the boundary of each segment utilizing commute operators.

As shown in Algorithm 1 from lines 8 to 14, we traverse all the gates

𝑈 𝑗 sequentially after 𝑖 and collect as many gates with the common

target (𝑈𝑖 .target) toW as possible. To achieve this, we keep track

of the operator𝑈𝑒𝑥𝑡 , which represents the traversed unitaries with

different target qubits and excluded fromW. A gate 𝑈 𝑗 with the

same target qubit can be reordered before𝑈𝑒𝑥𝑡 and inserted into the

segmentW if 𝑈 𝑗 and 𝑈𝑒𝑥𝑡 commute. Therefore, by allowing the

reordering of commutable operators in the sequence, we can gather

1
We transpile all three circuits using qiskit with an optimization level of 3 and run

4096 shots for each experiment.
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Algorithm 1: QSP Circuit Resynthesis

input :An initial QSP circuit G comprises a sequence of

quantum gates, 𝑈1,𝑈2, ...,𝑈𝑙 , where

𝑈𝑖 ∈ {U(2),CNOT}.
output :An optimized circuit G′.

1 𝑊 ← ∅
2 |𝜑𝑡 ⟩ ← |0⟩
3 for 𝑖 = 1, 2, ..., 𝑙 do
4 |𝜑𝑠 ⟩ ← |𝜑𝑡 ⟩
5 𝑈𝑒𝑥𝑡 ← 1

6 W ← ∅
7 for 𝑗 = 𝑖, ..., 𝑙 do
8 if 𝑈 𝑗 .target = 𝑈𝑖 .target and isCommute(𝑈 𝑗 ,𝑈𝑒𝑥𝑡 )

then
9 W .push(𝑈 𝑗 )

10 |𝜑𝑡 ⟩ = 𝑈 𝑗 |𝜑𝑡 ⟩
11 else
12 if 𝑈 𝑗 .control = 𝑈𝑖 .target then
13 break
14 𝑈𝑒𝑥𝑡 ← 𝑈 𝑗𝑈𝑒𝑥𝑡

15 𝑊 .push(W)

16 propagateDontCares(𝑊 )

17 G′ ← ∅
18 forW ∈𝑊 do
19 W′ ← resynthesis(W, |𝜑𝑠 ⟩ , |𝜑𝑡 ⟩)
20 G′ ← G′ ∪W′
21 return G′.

more gates into each single-target segment, thereby increasing the

potential for optimizing gate count.

Observe that we can terminate the check for commute operators

if the target qubit 𝑡 = 𝑈𝑖 .𝑡𝑎𝑟𝑔𝑒𝑡 serves as a control qubit in 𝑈𝑒𝑥𝑡
(line 12). In this case, 𝑈𝑒𝑥𝑡 is not likely to commute with any 𝑈 𝑗
that targets 𝑡 , and we exit the loop to accelerate the algorithm.

4.2 Rotation Table Representation
The advantage of single-target segment partitioning is that the local

unitaries can be expressed efficiently. Instead of complex matrix

multiplications, the functionality can be represented using addi-

tions and subtraction of rotation angles. This simplification will

noticeably enhance the efficiency of simulating state transitions

in the segment and facilitates the implementation of resynthesis

algorithms.

Theorem 4.1. Given an arbitrary state 𝜓𝑠 with real amplitudes
and a single-target segmentW comprises real unitaries from {U(2),
CNOT}, there exists a unitary operator 𝑈 ′𝑤 ,

𝑈 ′𝑤 =
∑︁

𝑥∈{0,1}𝑛−1
𝑅𝑦 (𝜃𝑤,𝑥 ) ⊗ |𝑥⟩ ⟨𝑥 | , (4)

where −2𝜋 ≤ 𝜃𝑤,𝑥 < 2𝜋 , such that𝑈 ′𝑤 |𝜓𝑠 ⟩ = 𝑈𝑤 |𝜓𝑠 ⟩.

Proof. We give a proof based on induction. Assume this prop-

erty holds true for all segments with no more than 𝑘 gates, 𝑘 ≥ 1.

Consider a single-target segmentW with 𝑘 + 1 gates. We can parti-

tion it into two single-target segmentW1 andW2 with gate counts

𝑘1, 𝑘2 ≤ 𝑘 , such that there exists:

𝑈𝑤 |𝜓𝑠 ⟩ = 𝑈𝑤1
𝑈𝑤2
|𝜓𝑠 ⟩

= (∑𝑥 𝑅𝑦 (𝜃𝑤1,𝑥 ) ⊗ |𝑥⟩ ⟨𝑥 |) (
∑
𝑥 𝑅𝑦 (𝜃𝑤2,𝑥 ) ⊗ |𝑥⟩ ⟨𝑥 |) |𝜓𝑠 ⟩

= (∑𝑥 𝑅𝑦 (𝜃𝑤1,𝑥 + 𝜃𝑤2,𝑥 ) ⊗ |𝑥⟩ ⟨𝑥 |) |𝜓𝑠 ⟩ ,
(5)

which implies that the property also applies to segments with 𝑘 + 1
gates.

To complete the proof, it suffices to show that a singleU(2) or
CNOT can be replaced by an 𝑅𝑦 operator. It holds true because

the initial and final state, |𝜓𝑠 ⟩ and𝑈W |𝜓𝑠 ⟩ are given. Let 𝛼𝑠,𝑥 |0⟩ +
𝛽𝑠,𝑥 |1⟩ and 𝛼𝑡,𝑥 |0⟩ + 𝛽𝑡,𝑥 |1⟩ be the initial and final states of the

target qubit for a control state |𝑥⟩. Then this transition can be

accomplished by a Y rotation of 𝜃𝑥 ,

𝜃𝑥 = 2 · atan2(𝛽𝑡,𝑥 , 𝛼𝑡,𝑥 ) − 2 · atan2(𝛽𝑠,𝑥 , 𝛼𝑠,𝑥 ), (6)

where atan2 is applied instead of arctan to determine the correct

quadrant of the angle. Finally, we can find 𝜃𝑥 to replaceU(2) and
CNOTs given the initial state𝜓𝑠 . □

We use rotation tables to indicate the mapping between the con-

trol qubit states, |𝑥⟩, and the corresponding rotation angles, 𝜃𝑥 . This
mapping is formalized as a function 𝜑 : {0, 1}𝑛−1 → [−2𝜋, 2𝜋).
Table 3 displays the rotation table of states listed in Table 1 with

respect to qubit 𝑞2. The first column represents the states of the con-

trol qubits, and the entries are rotation angles ranging from −2𝜋 to

2𝜋 . For example, the angle of |10∗⟩ in |𝜓5⟩ corresponds to two terms,

|100⟩ and |101⟩, with coefficients 𝛼 = −
√︃

1

8
and 𝛽 =

√︃
1

8
. Therefore,

the corresponding rotation angle is 2 · atan2(
√︃

1

8
,−

√︃
1

8
) = 3𝜋

2
.

Table 3: Rotation tables of 𝑞2 correspond to the state transition from��𝜓 ′
2

〉
to |𝜓5 ⟩ in Figure 1c.

��𝜓 ′
2

〉
=

√︃
1

4
|000⟩+

√︃
1

4
|010⟩+

√︃
1

4
|100⟩+

√︃
1

4
|110⟩

and |𝜓5 ⟩=
√︃

2

8
|000⟩−

√︃
1

8
|100⟩+

√︃
1

8
|010⟩+

√︃
1

8
|101⟩+

√︃
1

8
|011⟩+

√︃
2

8
|111⟩.

Control |𝑥⟩
��𝜓 ′
2

〉
|𝜓5⟩ 𝜃𝑥

|00∗⟩ 0 0 0

|01∗⟩ 0 𝜋/2 𝜋/2
|10∗⟩ 0 3𝜋/2 3𝜋/2
|11∗⟩ 0 𝜋 𝜋

4.3 Don’t Care Condition Propagation
After partitioning the circuit into segments, line 16 in Algorithm 1

identifies the conditions within each segment where modifying its

functionality does not impact the final outcome. The derivation

and exploitation of these don’t-care conditions are well-established
in the field of logic synthesis, where they significantly contribute

to the simplification of Boolean logic circuits [29–31]. This paper

adheres to the established terminologies in logic synthesis, extends

the concept of don’t-cares, and applies Booleanmethods to optimize

quantum circuits.

All the don’t care conditions utilized in this paper originate

from the incompletely specified mappings between basis states. Let

𝑉 = {𝑣1, ..., 𝑣2𝑛 } and𝑊 = {𝑤1, ...,𝑤2
𝑛 } be two sets of orthonormal
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basis of H⊗𝑛 . Given 𝑚 specified mappings, 𝑚 ∈ {1, ..., 2𝑛}, the
circuit unitary can be expressed as:

𝑈 =
∑︁
𝑖≤𝑚
|𝑤𝑖 ⟩ ⟨𝑣𝑖 | +

∑︁
𝑖>𝑚

���𝑤 𝑓 (𝑖 ) 〉 ⟨𝑣𝑖 | , (7)

where 𝑓 randomly permutes the mappings of the rest 2
𝑛−𝑚 vectors

between 𝑉 and𝑊 . Szasz et al. demonstrate that this formulation

generalizes the flexibilities in various quantum applications, includ-

ing Hamiltonian simulation circuit synthesis and quantum channel

preparation [21].

We define external don’t cares of operator𝑈 as the set of vectors,

{𝑣𝑚+1, ..., 𝑣2𝑛 }, with unspecified final states after applying 𝑈 , and

we define the corresponding care set as the set 𝐶ext = {𝑣1, ..., 𝑣𝑚}.
Since the QSP circuit usually transitions the quantum states from

the ground state |0⟩ to the target state |𝜓 ⟩, the external care set
𝐶ext = {|0⟩} contains only the ground state. All other 2

𝑛 − 1 basis
vectors 𝑥 ∈ {0, 1}𝑛 \𝐶ext are considered external don’t cares.

To utilize don’t cares in our scalable workflow, we need to prop-

agate external don’t cares to the single-target segments. According

to their properties, we categorized the don’t-cares of a segment into

controllability don’t cares (CDC) and observability don’t cares (ODC).

4.3.1 Controllability Don’t Cares (CDC). Controllability don’t care

is the set of states that will not occur (i.e., have zero amplitude)

when entering a segmentW. Consequently, the behavior of the

target qubits corresponding to non-existent control states does not

affect the outcome. Let𝜓𝑠 represent the initial state of the segment

W, and 𝑈𝑠 be the unitary of the circuits prior toW, |𝜓𝑠 ⟩ = 𝑈𝑠 |0⟩.
Then, the care set of function 𝑈W is:

𝐶W =

{
|𝑥⟩ ⊗

(
cos

(𝜑𝑠,𝑥
2

)
|0⟩ + sin

(𝜑𝑠,𝑥
2

)
|1⟩

)
: 𝑥 ∈ 𝑆 (𝜓𝑠 )

}
, (8)

where 𝜑𝑠,𝑥 represents the rotation angle corresponds to control

state |𝑥⟩ and 𝑆 (𝜓𝑠 ) is the index set of𝜓𝑠 that consists of the basis
vectors with non-zero amplitudes.

CDC can be efficiently captured by simulating the state transi-

tions from the input ground state on the fly, as displayed in lines 4

and 10 in Algorithm 1. For instance, the segmentW2 in Figure 1a

targeting 𝑞1 transition the states from 𝜓1 to 𝜓2, whose rotation

tables can be derived during simulation. The control states |0∗1⟩
and |1∗1⟩ do not exist in both |𝜓1⟩ =

√︃
1

2
|000⟩ +

√︃
1

2
|100⟩ and

|𝜓2⟩ =
√︃

2

4
|000⟩ +

√︃
1

4
|100⟩ +

√︃
1

4
|110⟩, thus, are CDC. The care

set, according to Equation (8) is {|000⟩ , |100⟩} and has a cardinality
2 out of all 2

3 = 8 basis vectors, as shown in Table 4.

Note that the cardinality of the care set 𝐶W is upper-bounded:

|𝐶W | ≤ min(2𝑛−1, |𝑆 (𝜓𝑠 ) |),

Table 4: Rotation tables of 𝑞1 corresponds to the state transitions
from |𝜓1 ⟩ to |𝜓2 ⟩ and

��𝜓 ′
2

〉
in Table 1. “X” represents controllability

don’t cares and “𝑋 ∗” is the observability don’t care

Control state |𝜓1⟩ |𝜓2⟩
��𝜓 ′
2

〉
|0 ∗ 0⟩ 0 0 𝑋 ∗

|0 ∗ 1⟩ 𝑋 𝑋 𝑋

|1 ∗ 0⟩ 0 𝜋/2 𝜋/2
|1 ∗ 1⟩ 𝑋 𝑋 𝑋

where 𝑛 is the number of qubits and |𝑆 (𝜓𝑠 ) | represents the cardi-
nality of the input state. This is because we need to specify at most

one mapping for each control state |𝑥⟩, 𝑥 ≤ 2
𝑛−1

. If the control

state |𝑥⟩ does not exist in 𝑆 (𝜓𝑠 ), the outcome vector is in the don’t

care set.

4.3.2 Observability Don’t Cares (ODC). Observability don’t care is

the set of control states whose output state that does not affect the

final outcome of the QSP circuit. Let𝜓𝑖 be the final state of a segment

W𝑖 targets 𝑞𝑖 , 𝑈 𝑗 be the initial unitary of the next segmentW𝑗

targets 𝑞 𝑗 , 𝑗 ≠ 𝑖 . Then the rotation angle of a control state |𝑥⟩ ⊗ |∗⟩𝑖
is inW𝑖 ’s ODC if the projections of𝑈 𝑗 on |𝑥⟩ ⊗ |0⟩𝑖 and |𝑥⟩ ⊗ |1⟩𝑖
are the same, i.e.:

⟨0|𝑖 ⟨𝑥 |𝑈 𝑗 |𝑥⟩ |0⟩𝑖 = ⟨1|𝑖 ⟨𝑥 |𝑈 𝑗 |𝑥⟩ |1⟩𝑖 . (9)

Unlike CDC, which are derived from the predecessors of a seg-

ment, observability don’t cares are generated and propagated from

the opposite direction, from the successors. For example, the rota-

tion angle for the control state |0∗0⟩ in Table 4 is an observability

don’t care of𝑈𝑤2
generated byW3 from Figure 1a. Note that the

eight gates inW3 compose a controlled Y rotation that is activated

only when 𝑞0 is |1⟩ and 𝑞1 is |0⟩. Therefore, when 𝑞0 is |0⟩, 𝑈𝑤3

does not modify 𝑞2 regardless of the value of 𝑞1. In other words,

|000⟩ and |010⟩ are equivalent forW2. Consequently, although the

control state |0∗0⟩ has non-zero amplitude, its rotation angle does

not affect the feasibility of the circuit and, thus, is ODC.

Exploiting ODC can further simplify the circuits in the segment.

As illustrated in Table 4, after setting the angle in the first row

of

��𝜓 ′
2

〉
from 0 to

𝜋
2
, the original segment can be replaced by one

single 𝑅𝑦 gate. After traversing and optimizing the entire circuit,

we derive the circuit in Figure 1c from Figure 1a utilizing both CDC

and ODC.

It is worth mentioning that although the rotation of the segment

W3 is not affected in the previous example, changing the angle from

0 to
𝜋
2
in Table 4 produces unintended rotations on 𝑞1. To mitigate

the cost of reverting these rotations after W𝑗 , we only exploit

observability don’t care if the segmentW𝑗+1 afterW𝑗 targets the

same qubit asW𝑗−1, which introduced unintended rotation. In this

case, we can simply adjust the rotation table ofW𝑗+1 to completely

recover the functionality, which does not necessarily increase the

gate count ofW𝑗+1.

4.4 Segment Resynthesis
As displayed in line 19 in Algorithm 1, the segment resynthesis

is the final step of our method that finds the replacement of the

initial segment with fewer gates that accomplishes the same state

transition from𝜓𝑠 to𝜓𝑡 . This step serves as the core of our work-

flow, significantly decreasing gate count and optimizing the overall

circuit.

The workflow of the resynthesis algorithm is illustrated in Algo-

rithm 2. Given a target rotation table, our algorithm:

(1) defines a hyper-parameter 𝐾 as the number of CNOTs in the

template and initializes it to 𝐾 = 0.

(2) constructs an equality system to check if the rotation table

can be implemented if using 𝐾 CNOTs.
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Algorithm 2: Segment resynthesis

input :The initial and final rotation tables 𝜑𝑠 and 𝜑𝑡 with

𝑛 control qubits.

output :A sequence of quantum operators to prepare the

rotation table with 𝐾 CNOTs.

1 𝐾 ← 0

2 solution← ∅
3 while solution is ∅ and 𝐾 ≤ 𝐾max do
4 for {𝑆𝑘 } in Z⊗𝐾𝑛 do
5 𝑀 ← Construct equality system (𝜑𝑠 , 𝜑𝑡 , {𝑆𝑘 })
6 solution← Solve(𝑀)

7 𝐾 ← 𝐾 + 1
8 return solution.

(3) analyzes the result. If a set of solutions is found, we return

the circuit with 𝐾 CNOTs. Otherwise, we increase 𝐾 by one

and repeat step (2).

All utilized variables are listed in Table 5. In the rest of this

section, we will demonstrate the construction of the equality system

from line 5 in Algorithm 2.

4.4.1 Fixed-target CNOT template. Since all the CNOT gates in

the circuit target the same qubit, the control qubit alone suffices

to represent each CNOT gate. We define CNOT variables, 𝑆𝑘,𝑖 , as

binary values indicating whether 𝑞𝑖 serves as the control qubit

in 𝑘th CNOT. Given that each CNOT has only one control qubit,∑
𝑖∈Z𝑛 𝑆𝑘,𝑖 = 1 for all 𝑘 ∈ Z𝐾 , where 𝑛 represents the number of

candidate control qubits. Then, we define a set of variables 𝑅𝑘,𝑥 ,

where 𝑅𝑘,𝑥 = −1 if the rotation at index |𝑥⟩ is enabled by the 𝑘th

CNOT, and 𝑅𝑘,𝑥 = 1 otherwise. These 𝑅𝑘,𝑥 variables are derived

from the given 𝑆𝑘,𝑖 variables, as the control qubit 𝑖 and its phase

determines whether an index 𝑥 is affected by the CNOT gate.

𝑞0 •
𝑞1 •
𝑞2

𝑅𝑦
𝜃0

𝑅𝑦
𝜃1

𝑅𝑦
𝜃2

Figure 2: CNOT template with 𝐾 = 2, 𝑆1,1 = 1 and 𝑆2,0 = 1.

4.4.2 Rotation angle variables and constraints. We use 𝜑𝑘,𝑥 to rep-

resent the rotation angle corresponding to index |𝑥⟩ after the 𝑘th
CNOT gate. The values of the initial and final angles, 𝜑0,𝑥 = 𝜑𝑠,𝑥
and 𝜑𝐾,𝑥 = 𝜑𝑡,𝑥 , are given by the rotation tables. Then, we define

Table 5: Variable declaration for the segment resynthesis problem.

Input:
𝑆𝑘,𝑖 {0, 1} Whether 𝑞𝑖 is the control qubit in the 𝑘th CNOT.

𝑅𝑘,𝑥 {−1, 1} 𝑅𝑥,𝑘 =−1 if |𝑥 ⟩ is activated by the 𝑘th CNOT.

𝜑𝑠,𝑥 , 𝜑𝑡,𝑥 [−2𝜋, 2𝜋 ) Initial and final angles corresponds to |𝑥 ⟩.
Internal:
𝜑𝑘,𝑥 [−2𝜋, 2𝜋 ) The angle corresponds to |𝑥 ⟩ after the 𝑘th CNOT.

Output:
𝜃𝑘 [0, 4𝜋 ) The rotation angle of R𝑦 after the 𝑘th CNOT.

rotation angle constraints as shown in Equation (10).

𝜑𝑘+1,𝑥 =
𝜋

2

+ 𝜃𝑘 + 𝑅𝑘,𝑥 · (𝜑𝑘,𝑥 −
𝜋

2

) . (10)

This constraint describes the evolution of the rotation table before

and after the 𝑘th CNOT gate. If the index |𝑥⟩ is not enabled by the

CNOT, then 𝑅𝑘,𝑥 = 1, and 𝜑𝑘+1,𝑥 = 𝜑𝑘,𝑥 + 𝜃𝑘 because the 𝑅𝑦 gate

after CNOT introduces a rotation of 𝜃𝑘 . Otherwise, if |𝑥⟩ is enabled,
𝑅𝑘,𝑥 = −1, then 𝜑𝑘+1,𝑥 = 𝜋 − 𝜑𝑘,𝑥 + 𝜃𝑘 because the CNOT gate

“reflects” the previous angle 𝜑𝑘,𝑥 along 𝜑 = 𝜋
2
, as illustrated in the

proof of Theorem 4.1, before applying the rotation of 𝜃𝑘 .

Example 4.2. Consider the segment between
��𝜓 ′
2

〉
and |𝜓5⟩, whose

initial and final angles are provided in Table 3. Assume we are at the
iteration where 𝐾 = 2, then we can assign the boundary values to the
rotation angle variables:

𝜑
0, |00⟩ = 𝜑0, |01⟩ = 𝜑0, |10⟩ = 𝜑0, |11⟩ = 𝜃0 ,

𝜑
2, |00⟩ = 0, 𝜑

2, |01⟩ =
𝜋

2

, 𝜑
2, |10⟩ =

3𝜋

2

, 𝜑
2, |11⟩ = 𝜋,

where 𝜃0 is the offset introduced by the first 𝑅𝑦 gate.
The target is to find an assignment to 𝜃0, 𝜃1, 𝜃2, 𝑆1,𝑖 , and 𝑆𝑖,2,

such that the equality system is satisfied. For clarity, we assume
the control qubits of the two CNOTs are 𝑆1,1 = 1 and 𝑆2,0 = 1. This
corresponds to the template in Figure 2, where 𝑅

1, |00⟩ = 𝑅1, |01⟩ =
𝑅
2, |00⟩ = 𝑅2, |01⟩ = 1 and 𝑅

1, |10⟩ = 𝑅2, |01⟩ = 𝑅
1, |11⟩ = 𝑅

2, |11⟩ = −1.
We can streamline the equality system by plugging in the known
variables and canceling intermediate variables corresponding to the
same 𝑥 as shown in Equation (11).

𝜑
1, |00⟩ = 𝜑0, |00⟩ + 𝜃1
𝜑
1, |01⟩ = 𝜋 − 𝜑0, |01⟩ + 𝜃1
𝜑
1, |10⟩ = 𝜑0, |10⟩ + 𝜃1
𝜑
1, |11⟩ = 𝜋 − 𝜑0, |11⟩ + 𝜃1
𝜑
2, |00⟩ = 𝜑1, |00⟩ + 𝜃2
𝜑
2, |01⟩ = 𝜑1, |01⟩ + 𝜃2
𝜑
2, |10⟩ = 𝜋 − 𝜑1, |10⟩ + 𝜃2
𝜑
2, |11⟩ = 𝜋 − 𝜑1, |11⟩ + 𝜃2

→


0 = 𝜃0 + 𝜃1 + 𝜃2
𝜋
2
= (𝜋 − 𝜃0 + 𝜃1) + 𝜃2

3𝜋
2

= 𝜋 − (𝜃0 + 𝜃1) + 𝜃2
𝜋 = 𝜃0 − 𝜃1 + 𝜃2

. (11)

The solution 𝜃0 = 𝜃2 = 𝜋
4
, 𝜃1 = −𝜋

2
is feasible. Therefore, we can

find a circuit using 𝐾 = 2 CNOTs to implement this rotation table as
seen in Figure 1c.

We can verify 𝐾 = 1 has no feasible solution by watching the
corresponding equality system in Equation (12).

𝜑
1, |00⟩ = 𝜑0, |00⟩ + 𝜃1
𝜑
1, |01⟩ = 𝜑0, |01⟩ + 𝜃1
𝜑
1, |10⟩ = 𝜋 − 𝜑0, |10⟩ + 𝜃1
𝜑
1, |11⟩ = 𝜋 − 𝜑0, |11⟩ + 𝜃1

→


0 = 𝜃0 + 𝜃1
−𝜋

2
= 𝜃0 + 𝜃1

𝜋
2
= 𝜋 − 𝜃0 + 𝜃1

𝜋 = 𝜋 − 𝜃0 + 𝜃1

. (12)

Similarly, 𝐾 = 0 is also infeasible, and we return the 2-CNOT
circuit as the optimal solution for this segment synthesis problem.

4.5 Complexity Analysis
The overall resynthesis method is based on a peephole algorithm

and is therefore scalable and efficient, running in polynomial time.

(1) Window extraction in Algorithm 1. This step requires O(𝑁 2)
quantum operator simulations, where 𝑁 denotes the number

of gates in the initial circuit.
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(a) Random sparse uniform
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(c) Random dense uniform
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Figure 3: CNOT count comparison between three optimization algorithms.

(2) Resynthesis algorithm in Algorithm 2. For each segment, the

time complexity is O(𝑛𝐾max𝑚2𝐾max), where 𝑛 is the num-

ber of qubits and𝑚 is the cardinality of the care set in the

extracted segment. This is because we need to enumerate

𝑛𝐾max
CNOT templates, and each template has a linear sys-

tem with 𝐾max + 1 columns and𝑚 rows. We fix 𝐾max = 2 to

upper-bound the complexity to O(𝑛2𝑚2).
It is worth mentioning that we accelerate the quantum opera-

tor simulation to speed up our algorithm further. Although each

operator corresponds to a unitary matrix with a dimension of 2
𝑛
,

the complexity, in practice, is lower because the implementation

leverages sparsity and skips the multiplications of indices with zero

amplitudes. Furthermore, all operators in the segment target the

same qubits and do not affect the values of control qubits in the

basis vectors.

5 EXPERIMENTAL RESULTS
In this section, we present results to evaluate the effectiveness and

efficiency of the proposed algorithm.

5.1 Benchmarks and Workflow
The benchmark suite used in our experiments consists of various

states with different numbers of qubits, different levels of symmetry,

and different sparsity. For each category of quantum states, we

apply the most advantageous algorithm to generate the initial QSP

circuit [9, 11, 32].

(1)

���𝐵𝑘𝑛〉 are quantum states with uniform amplitudes on the

first 𝑘 + 1 basis states.
���𝐵𝑘𝑛〉 = 1√

𝑘+1
∑𝑘
𝑥=0 |𝑥⟩ .

(2) Dicke state

���𝐷𝑘𝑛〉 are highly symmetric 𝑛-qubit states. Indices

of Dicke states have exactly 𝑘 ones and 𝑛 − 𝑘 zeros [3].

(3) W state |𝑊𝑛⟩ is a special case of Dicke states when 𝑘 = 1 [2].

(4) Sparse random states have cardinality 𝑚 = 𝑛, and dense

random states have𝑚 = 2
𝑛−1

.

We implement the proposed method using Python and apply

one iteration of the resynthesis algorithm introduced in Section 4

to these initial QSP circuits. We compare the gate count reduction

of our method with two circuit optimization methods as baselines,

including the unitary synthesis pass in Qiskit (with an optimation

level of 3) [28] and a powerful circuit optimization tool based on

numerical methods [16].

We map the optimized circuit from ours and baseline methods

to {U(2),CNOT} and verify the correctness of the QSP circuits by

running qiskit simulation [28]. All experiments are conducted on

a computer equipped with a 3.7GHz AMD Ryzen 9 5900X processor

and 64GB RAM.

Although our algorithm only applies to real unitary synthesis

while baseline methods handle more general complex unitaries, we

could adapt through phase oracle to prepare states with complex

amplitudes. Besides, many interesting states, such as the bench-

marks above, are real. Therefore, their state preparation circuits

can be improved directly using our method.

5.2 CNOT Count Comparison
Figure 3 displays the CNOT count comparison on seven categories

of quantum states after running the three optimization algorithms.

The average CNOT count shown in Figure 3h demonstrates the

advantages of our method in quantum circuit optimization. Lever-

aging the don’t cares in the QSP circuit, we further lower the CNOT

count of the initial circuit by 36%. Meanwhile, the two baseline

algorithms do not significantly optimize the circuit because of the

constraints to completely preserve the circuit unitary.

In general, our algorithm is more effective on sparse states than

on dense ones. This is because the number of don’t cares decreases

as the cardinality of the index set𝑚 increases in our formulation.
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Figure 4: 4-qubit B state preparation using 14 single-qubit gates and 14 CNOTs.
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Figure 5: 4-qubit B state preparation utilizing 7 single-qubit gates
and 3 CNOTs.

Note that our method simplifies the circuit by identifying an alterna-

tive unitary allowed by the don’t-care conditions. Consequently, the

greater the circuit’s flexibility, the higher the likelihood of finding

a feasible replacement that minimizes the gate count.

A particularly interesting result is the optimization of

���𝐵2(𝑛−1)+1𝑛

〉
state preparation circuits. Figure 3f exhibits that our resynthesis

algorithm exponentially reduces the gate count required to prepare

these states. To illustrate the optimization, we display the initial

QSP circuit for

��𝐵9
4

〉
in Figure 4 and our optimized circuit in Figure 5.

Notice that although both circuits subsequently entangle qubits

into the system, the initial circuit in Figure 4 needs 2, 4, and 8 CNOTs
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(a) Dense states
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(b) Sparse states

Figure 6: Scalability analysis. We demonstrate the relationship be-
tween CPU time on the 𝑦-axis and the number of CNOTs in the
initial circuit on the 𝑥-axis.

to entangle 𝑞2, 𝑞3 and 𝑞4, respectively, while Figure 5 uses 1 CNOT

for each qubit. Since the segments to entangle these qubits are all

single-target, the result confirmed that our algorithm successfully

extracts the rotation tables of these segments and identifies the

most efficient CNOT configuration to accomplish these rotations.

5.3 Scalablity Analysis
The principal contribution of this paper is the introduction of a

scalable resynthesis algorithm. This algorithm partitions the quan-

tum circuit into single-target segments and uses the propagation

of don’t care conditions to derive a rotation table. By converting

the complex problem of unitary synthesis, which typically involves

matrix multiplications with high-order terms, into simpler linear

equalities, our approach not only simplifies the process but also

utilizes don’t care conditions more efficiently, enhancing practical

utility.

Figure 6 depicts the relationship between the CPU time required

by three optimization algorithms and the number of CNOTs in the

initial circuit. The runtime exhibits linear growth on a log-log plot,

suggesting that our algorithm operates with polynomial complexity

when limiting the value of 𝐾max, which is 2 in this paper. Further-

more, our resynthesis algorithm completes circuits encompassing

up to 10 qubits and several hundred CNOT gates within a few sec-

onds, thereby proving both the efficiency and practical utility of

our method.

6 CONCLUSION
In the noisy intermediate-scale quantum computing era, minimizing

the count of two-qubit gates within quantum circuits is crucial. Due

to the inherent complexity, existing algorithms typically assume a

fixed unitary to optimize the circuit. However, modifying the uni-

tary operator does not necessarily affect the functional correctness

of the circuit in several quantum applications, and leveraging the

flexibility can lead to significant circuit simplification. This paper

introduces a scalable workflow that employs don’t-care conditions

to encode such flexibilities within the unitary matrix and develops

an efficient resynthesis algorithm to optimize gate counts. Our ex-

perimental results demonstrate a significant reduction in CNOT

gate usage. By permitting adjustments to the unitary during the

optimization process, our method achieves an average decrease

of 36% in CNOT count when applied to the optimization of state

preparation circuits.
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