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ABSTRACT

Quantum state preparation initializes the quantum registers and is
essential for running quantum algorithms. Designing state prepa-
ration circuits that entangle qubits efficiently with fewer two-qubit
gates enhances accuracy and alleviates coupling constraints on
devices. Existing methods synthesize an initial circuit and leverage
compilers to reduce the circuit’s gate count while preserving the
unitary equivalency. In this study, we identify numerous conditions
within the quantum circuit where breaking local unitary equiva-
lences does not alter the overall outcome of the state preparation
(i.e., don’t cares). We introduce a peephole optimization algorithm
that identifies such unitaries for replacement in the original circuit.
Exploiting these don’t care conditions, our algorithm achieves a
36% reduction in the number of two-qubit gates compared to prior
methods.

1 INTRODUCTION

Quantum states preparation (QSP) is indispensable in quantum com-
puting for initializing the state of quantum registers. The initial
state to prepare is determined by the specific quantum algorithm
and application. Examples of such states include GHZ states, which
are instrumental in entanglement experiments [1]; W states [2] and
Dicke states [3], which are useful in quantum metrology and act as
generators of complex symmetric states [4]; VBS states [5], valuable
for modeling interacting [6] quantum spin models. Additionally,
certain algorithms encode the problem inputs directly into the ini-
tial states [7]. Consequently, developing automated algorithms to
design the state preparation circuit is necessary.

Reducing the gate count, particularly the number of two-qubit
gates in the circuit, is essential for improving the performance
of noisy intermediate-scale quantum computing. To generate the
initial QSP circuit, Boolean methods are proposed utilizing decision
diagrams to prepare general n-qubit states employing O(2") two-
qubit gates [8-10]. Besides, specialized algorithms for sparse state
preparation are developed to prepare n-qubit states with m nonzero
amplitudes using O(mn) two-qubit gates [11-13]. These methods
efficiently search for a feasible circuit by decomposing the quantum
state using divide-and-conquer techniques.

To reduce the gate count and optimize the initial circuit, synthe-
sis algorithms partition the circuits into blocks with manageable
unitary matrix dimensions [14] and apply unitary synthesis ap-
proaches that search for replacement circuits with fewer gates to
implement the given unitary [15]. These unitary synthesis algo-
rithms can effectively simplify the unitary matrices of systems up
to six qubits [16—18]. Consequently, these algorithms are often
employed as peephole optimizations within larger workflows that
utilize iterative methods or design space exploration techniques to
enhance scalability [19, 20].

Due to the inherent complexity, existing quantum circuit opti-
mization algorithms assume the unitary is fixed for a given circuit,
which is not necessarily true in many quantum applications. In
the quantum state preparation problem, for instance, all qubits are
initialized to the ground state. As a result, only the first column of
the unitary matrix corresponding to the ground state affects the
circuit outcome, while the entries in all other columns are flexible.
Szasz et al. generalize the flexibilities in applications as a multi-
set preparation problem and point out various flexible unitaries
in Hamiltonian simulation circuits, preparation of general quan-
tum channels, and circuits with ancillary qubits [21]. Exploiting
these flexibilities can significantly improve the circuit performance,
as the algorithms are allowed to replace the unitary with a more
promising one with a smaller circuit size. However, encoding this
flexibility in the optimization algorithm results in an exponentially
growing complexity and, thus, does not apply to larger entangled
systems [22].

In this paper, we propose a novel scalable algorithm to opti-
mize quantum state preparation circuits. Our method formulates
the flexibility in modifying unitary operators as don’t cares and
allows for simpler circuit configurations. Given an initial QSP cir-
cuit, we first partition the circuit into single-target segments whose
functionality can be efficiently expressed. Then, we propagate and
derive the don’t-care conditions inside these segments. Finally, our
resynthesis algorithm identifies and utilizes don’t-cares to simplify
the segments’ implementation. Experimental results show that our
approach enhances the optimization of the QSP circuit and reduces
the CNOT count by 36% compared with existing algorithms without
employing don’t cares.

In the rest of the paper, we present background and related work
in Section 2. Then, we give an example of don’t care-based circuit
optimization in Section 3 to motivate our work. We illustrate our
methodology in Section 4. In Section 5, we demonstrate experimen-
tal results and evaluate our method.

2 BACKGROUND

In this section, we provide background for quantum states, gates,
and circuits. For clarity and space constraints, we refer readers
to established sources for formal definitions of notations [23] and
quantum gates [24].

2.1 Quantum States and Quantum Gates

We express the n-qubit quantum state as a linear combination of 2"
orthonormal basis vectors.

W= ). elo.and Y =1,
xe{0,1}" xe{0,1}"

where |x) € {0, 1}" are the basis states, cx € C are amplitudes that
indicate the probability of observing |x) after a measurement.
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(b) Quantum circuit optimized exploiting don’t-cares within the five
segments, ‘Wi, ..., Ws to prepare |¢/).

(c) Quantum circuit optimized exploiting all don’t-cares to
prepare [{/).

Figure 1: Three quantum circuits with different numbers of gates to prepare the same state |i/) in Equation (1). This example establishes that
the gate counts can be reduced by using don’t cares in the quantum circuit.

Quantum gates, or operators, denoted by U, are unitary matrices
representing transitions between quantum states. 4/ (2") stands for
the set of all n-qubit gates. Y rotations, Ry, are single-qubit unitaries
U € U(2) that redistribute the amplitude between |0) and |1). Z
rotations, Rz, introduce the relative phase shift between |0) and |1).

[ 0 i0
coss —sinZ exp(—%) 0
Ry(0) = 5 2], R,(0) = 2 o
y(0) (sing cosg) =(0) ( 0 eXP(%)

where 0 is the rotation angle.

Pauli-X, oy, is a single-qubit operator that maps « 0) + 1)
to f#10) + a |1). CNOT is a two-qubit gate that transitions « |00)+
B101)+y |10)+5 [11) to e [00)+ S [01)+y [11)+5|10).

1 0 0 O

0 1 0o 1 0 O
ax—(l 0),CNOT—1@O'X— o 0 o 1l

0O 0 1 0

All operators in U(2") can be decomposed into gates in the
set {CNOT, U(2)} [24]. A single-qubit gate U(2) can be further
decomposed into R, and Ry, deterministically [25].

Two operators, Uy and Uz, commute if exchanging their order
does not affect the functionality, i.e., UyU; = UpUj.

2.2  Quantum State Preparation

Given a state |), the quantum state preparation (QSP) finds a
quantum circuit comprising [ gates Uy, Uy, ...U; such that these
gates transition the ground state |0) to the target state |¢/), i.e.,
[¢) = U;...UpUq |0). For noisy intermediate-scale quantum (NISQ)
computers, CNOTs produce far more noise than single-qubit gates.
Besides, CNOTs require the two involved qubits to be coupled
and generate connectivity constraints in the layout synthesis [26].
Therefore, the objective of the QSP circuit optimization in this pa-
per is to minimize the number of CNOTs: in the circuit after being
decomposed into gates in {CNOT, U/(2)}.

Additionally, this paper studies states with real amplitudes due
to their predominance in quantum algorithms. To prepare arbitrary

states with complex amplitudes, our method adapts through the
controlled phase gates [27].

3 MOTIVATING EXAMPLE

In this section, we illustrate the limitations of applying conventional
quantum compilation algorithms to optimize the quantum state
preparation circuit. Then, we demonstrate the advantages of our
optimization approach, which leverages don’t-care conditions and
resynthesis subcircuits to achieve a significant reduction in the
CNOT count and the error rate.

Consider the target state [¢/). Each index encodes the value of
three qubits in the order of |goq1q2)-

W)= 2 1000) /%1100 + \/§|o1o>+
\/g|101>+\/§|011>+\/§|111>

Figure 1a depicts a feasible initial QSP circuit of |/). This initial
circuit comprises five segments, ‘W, ..., Ws. These segments are
generated by decomposing unitary operators, including two single-
qubit Y rotations (‘W and “Wy), two single-controlled Y rotations
(‘W and W), and one double-controlled Y rotation (‘W3). For a
rotation with n control qubits, the configuration requires 2" CNOTs
after mapping to {2/ (2), CNOT} [25]. Therefore, The final circuit
needs 10 single-qubit gates and 8 CNOT gates to prepare |).

Existing optimization algorithms rigidly preserve the untary
equivalency of the quantum circuits [16, 18, 28]. Let U and U’ be
the unitaries of the initial and optimized circuit. These algorithms
assert the optimized circuit must behave the same as the initial
circuit for all possible states in the three-qubit system, i.e.,

1)

Up=U'gp, Yo € H®. 2)

This constraint is over-conservative for QSP circuit optimization
and hinders conventional algorithms from finding more effective
circuits with fewer gates. Figure 1b displays a smaller circuit that
prepares |i/) using 5 CNOT gates. Let U,,, and Uy, be the unitaries
of the ith initial and optimized segments ‘W, respectively. Although
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Table 1: Intermediate quantum states in the example.

W)= /% 1000) + /31100

Y2) = \/g|ooo> +\/E|100>+\/g|110>

A \/g|ooo>+\/§|010>+\/g|100>+\/g|110>
lys5) = \/%000) +\/;|101> +\/§|110>

) = \/§|ooo)—\/g|1oo>+\/§|111>+\/§|101>+

JEino) +\/§|01o>

[s5) = \/g [000) — \/g [100) + \/g [010) + \/g [101) +

\g|on>+\/§|m>

the unitaries of their subcircuits are different, e.g., Us,, # U"W, the
outcome states are the same, i.e., Uy, /1) = U,’A,Z [1) = |¢2) . It can
be observed by expressing the matrix representation in terms of
the subspace generated by go and q; (g2 is separable in “W,’s state
transition).

10 0 0 10 0 0 0.7
o1 0 o0 , o1 0 o lo
Uy = 00 07 -0.7 > Usy 0 0 0.7 —0.7 ) = 0.7]"
00 07 07 0 0 07 0.7 0

The constraint in Equation (2) allows the optimization algorithm
to modify the functionality and simplify the circuit more aggres-
sively than Figure 1a, which reduces the gate count.

Nevertheless, the optimization in Figure 1b is again conservative
because preserving the equivalency of intermediate states is also
unnecessary. An even more aggressive optimization is revealed in
Figure 1c. Since a circuit U’ is feasible if the outcome of the overall
circuit is the target state |¢/), i.e., U |0) = U’ |0) = |i/). Therefore,
this algorithm allows altering the intermediate state from |i/2) to
|lﬁé> This modification facilitates a significantly simplified circuit
configuration to prepare |¢) employing only 2 CNOT gates.

Table 2 shows the performance on a real quantum computer
of the initial circuit in Figure 1a, circuit optimized by Qiskit [28],
and circuit in Figure 1c. Results show that employing don’t-care
conditions allows the optimized circuit to prepare the same state

Table 2: Error rate compared to the ideal value, i.e., |cx|?, when
running on the quantum device ibm-osaka. We display the actual
probability and the absolute error (in parenthesis). Optimizing the
QSP circuit using don’t cares results in better state preparation fi-
delity’.

Ideal Initial Opt. w/o DC | Opt. with DC
[000) | 0.250 | 0.233 (1.7%) | 0.226 (2.4%) | 0.265 (1.5%)
[001) | 0.125 | 0.115(0.9%) | 0.116 (0.8%) | 0.119 (0.5%)
[010) | 0.125 | 0.093 (3.2%) | 0.223 (9.8%) | 0.105 (2.0%)
[011) | 0.000 | 0.039 (3.8%) | 0.022 (2.2%) | 0.007 (0.7%)
[100) | 0.000 | 0.023 (2.3%) | 0.013 (1.3%) | 0.004 (0.3%)
[101) | 0.125 | 0.230 (10.%) | 0.074 (5.0%) | 0.146 (2.0%)
[110) | 0.125 | 0.061 (6.4%) | 0.167 (4.2%) | 0.130 (0.4%)
[111) | 0.250 | 0.206 (4.4%) | 0.158 (9.2%) | 0.224 (2.5%)
Avg. error 4.18% 4.40% 1.29%
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with higher fidelity and reduce the average error compared to the
ideal state from 4.18% to 1.29%.

4 METHODOLOGY

As established in Section 3, allowing modifications in the unitary
matrices significantly enhances the optimization flexibility of the
QSP circuit. However, this introduced flexibility also expands the
solution space, potentially increasing the complexity if not managed
properly. The main contribution of this paper is the development
of a scalable algorithm that exploits these don’t care conditions
effectively while keeping the complexity under control.

Our quantum circuit optimization workflow is based on the peep-
hole optimization, as presented in Algorithm 1. Starting with an
initial QSP circuit G, we sequentially traverse the gates and extract
segments that target the same qubit. For each extracted segment,
denoted as ‘W, we perform resynthesis that searches for a replace-
ment circuit ‘W’ that transitions the quantum states identically
while requiring fewer gates. The optimized circuit is then produced
by aggregating these improvements across all segments.

In the rest of this section, we will explain the three main compo-
nents of our algorithm: segment extraction, rotation table represen-
tation, don’t care condition propagation, and segment resynthesis.

4.1 Single-Target Segment Extraction

Segment extraction is a widely used technique to simplify the com-
plexity of circuit optimization. By focusing the optimization process
on a localized segment of the quantum circuit, we can represent
the unitary functions more efficiently and significantly reduce the
problem size. However, local optimization lacks the comprehensive
visibility of feasible solutions, resulting in missed optimization op-
portunities. Therefore, it is crucial for a partitioning algorithm to
strike a balance between efficiency and effectiveness.

Our algorithm extracts single-target segments. A segment is
single-target if all CNOTs and single-qubit gates in it target the
same qubit. Let U,, be the unitary of the segment W, then W
is single-target if and only if U,, can be represented as a multi-
controlled single-target operator

v 3

xe{0,1}n1

Usx ® |x) (x|, (3)

where Uy € U(2) is unitary matrix that indicates the effect ‘W
casts on the target qubit if the other n — 1 qubits are in state |x).
To extract single-target segments, we first group adjacent gates
with common targets in the original circuit sequence and then
extend the boundary of each segment utilizing commute operators.
As shown in Algorithm 1 from lines 8 to 14, we traverse all the gates
U; sequentially after i and collect as many gates with the common
target (U;.target) to ‘W as possible. To achieve this, we keep track
of the operator Uex;, which represents the traversed unitaries with
different target qubits and excluded from ‘W. A gate U; with the
same target qubit can be reordered before Uex; and inserted into the
segment W if U; and Uex; commute. Therefore, by allowing the
reordering of commutable operators in the sequence, we can gather

'We transpile all three circuits using qiskit with an optimization level of 3 and run
4096 shots for each experiment.
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Algorithm 1: QSP Circuit Resynthesis

input :An initial QSP circuit G comprises a sequence of
quantum gates, Uy, Uy, ..., Uj, where
U; € {U(2),CNOT}.

output: An optimized circuit G’.

1 W02

2 @) < |0)

3 fori=1,2,..,ldo

4 | lps) < lor)

5 Uext < 1

6 W — o

7 for j=i,..,ldo

8 if Uj.target = U;.target and isCommute(Uj, Uext)
then

9 W .push(U;)

10 lpe) = Uj lor)

1 else

12 if Uj.control = Uj.target then

13 ‘ break

14 Uext < UjUext

15 W .push(‘W)

16 propagateDontCares(W)

17 G — 0

18 for W € W do

19 W’ « resynthesis(‘W, |¢s), |¢:))
20 G —G uUWw

21 return G’.

more gates into each single-target segment, thereby increasing the
potential for optimizing gate count.

Observe that we can terminate the check for commute operators
if the target qubit t = Uj.target serves as a control qubit in Ueyt
(line 12). In this case, Uex; is not likely to commute with any U;
that targets ¢, and we exit the loop to accelerate the algorithm.

4.2 Rotation Table Representation

The advantage of single-target segment partitioning is that the local
unitaries can be expressed efficiently. Instead of complex matrix
multiplications, the functionality can be represented using addi-
tions and subtraction of rotation angles. This simplification will
noticeably enhance the efficiency of simulating state transitions
in the segment and facilitates the implementation of resynthesis
algorithms.

THEOREM 4.1. Given an arbitrary state s with real amplitudes
and a single-target segment ‘W comprises real unitaries from {U(2),
CNOT}, there exists a unitary operator U,

Uy= D> Ry(Ox) ® %) (xl, @
xef{0,1}n"1
where =27t < Oy x < 27, such that U, [{s) = Uy, |Ys).

Proor. We give a proof based on induction. Assume this prop-
erty holds true for all segments with no more than k gates, k > 1.

Hanyu Wang, Daniel Bochen Tan, Jason Cong

Consider a single-target segment ‘W with k + 1 gates. We can parti-
tion it into two single-target segment W; and W, with gate counts
k1, k2 < k, such that there exists:

Uw Ws) = leUwZ Ws)
= (Zx Ry(bvoy,x) ® |x) {x) (X Ry (O x) ® [x) (x]) [¥5)
= (Zx Ry(Ory x + Oy x) ® |) () 15)
(5)

which implies that the property also applies to segments with k + 1
gates.

To complete the proof, it suffices to show that a single ¢/ (2) or
CNOT can be replaced by an Ry operator. It holds true because
the initial and final state, |{/s) and Uqy |{s) are given. Let a5 x |0) +
Bsx 1) and asx [0) + Bt x |1) be the initial and final states of the
target qubit for a control state |x). Then this transition can be
accomplished by a Y rotation of 0y,

Ox = 2 - atan2(fs x, 0t x) — 2 - atan2(Ps x, ds x), (6)

where atan2 is applied instead of arctan to determine the correct
quadrant of the angle. Finally, we can find 0y to replace U/(2) and
CNOTs given the initial state /. O

We use rotation tables to indicate the mapping between the con-
trol qubit states, |x), and the corresponding rotation angles, . This
mapping is formalized as a function ¢ : {0,1}""' — [-27,27).
Table 3 displays the rotation table of states listed in Table 1 with
respect to qubit gy. The first column represents the states of the con-
trol qubits, and the entries are rotation angles ranging from —27 to
27. For example, the angle of |10%) in |/5) corresponds to two terms,

[100) and |101), with coefficients a = —\/g and f§ = \/g. Therefore,

the corresponding rotation angle is 2 - atan2(\/g, —\/g) = 37”

Table 3: Rotation tables of g, correspond to the state transition from
[¢2) to [ys) in Figure 1c. |y7) :\/E |000>+\/§ |01o>+\/§ | 1oo>+\/§ |110)
and |¢5>:\/%|000>—\/§|100>+\/%|010)+\/§|101>+\/§|011>+\/§|111>.

Control |x) ’lﬁé) [Y5) Ox
0

[00%) 0 0
[01x) 0 /2  7w/2
[10%) 0 37/2 3n/2
[11x) 0 T T

4.3 Don’t Care Condition Propagation

After partitioning the circuit into segments, line 16 in Algorithm 1
identifies the conditions within each segment where modifying its
functionality does not impact the final outcome. The derivation
and exploitation of these don’t-care conditions are well-established
in the field of logic synthesis, where they significantly contribute
to the simplification of Boolean logic circuits [29-31]. This paper
adheres to the established terminologies in logic synthesis, extends
the concept of don’t-cares, and applies Boolean methods to optimize
quantum circuits.

All the don’t care conditions utilized in this paper originate
from the incompletely specified mappings between basis states. Let
V ={o1,...,09n} and W = {wq, ..., wan } be two sets of orthonormal
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basis of H®". Given m specified mappings, m € {1, ..., 2"}, the
circuit unitary can be expressed as:

U= 3w il + Y fwra) @il 0

i<m i>m

where f randomly permutes the mappings of the rest 2" —m vectors
between V and W. Szasz et al. demonstrate that this formulation
generalizes the flexibilities in various quantum applications, includ-
ing Hamiltonian simulation circuit synthesis and quantum channel
preparation [21].

We define external don’t cares of operator U as the set of vectors,
{vm+1, ..., v2n }, with unspecified final states after applying U, and
we define the corresponding care set as the set Cexr = {01, ..., vm }-
Since the QSP circuit usually transitions the quantum states from
the ground state |0) to the target state |i/), the external care set
Cext = {|0)} contains only the ground state. All other 2" — 1 basis
vectors x € {0, 1}" \ Cex are considered external don’t cares.

To utilize don’t cares in our scalable workflow, we need to prop-
agate external don’t cares to the single-target segments. According
to their properties, we categorized the don’t-cares of a segment into
controllability don’t cares (CDC) and observability don’t cares (ODC).

4.3.1 Controllability Don’t Cares (CDC). Controllability don’t care
is the set of states that will not occur (i.e., have zero amplitude)
when entering a segment ‘W. Consequently, the behavior of the
target qubits corresponding to non-existent control states does not
affect the outcome. Let s represent the initial state of the segment
‘W, and Us be the unitary of the circuits prior to ‘W, |¢s) = Us |0).
Then, the care set of function Uqy is:
Ps,x

Cqy = {|x) ® (COS(T) |0) + sin(

Ps,x
2

JIn):xeswol. ®

where ¢s x represents the rotation angle corresponds to control
state |x) and S(¢s) is the index set of /s that consists of the basis
vectors with non-zero amplitudes.

CDC can be efficiently captured by simulating the state transi-
tions from the input ground state on the fly, as displayed in lines 4
and 10 in Algorithm 1. For instance, the segment ‘W, in Figure 1a
targeting ¢, transition the states from i1 to ¥, whose rotation
tables can be derived during simulation. The control states [0%1)

and |1x1) do not exist in both |¢1) = \/g|000) + \/g|100) and

192) = /2 1000) + /3 1100) + /1 110}, thus, are CDC. The care
set, according to Equation (8) is {|000), |100)} and has a cardinality
2 out of all 23 = 8 basis vectors, as shown in Table 4.

Note that the cardinality of the care set Cqy is upper-bounded:

Cay| < min(2"~%,1S(ys)]),

Table 4: Rotation tables of g; corresponds to the state transitions
from |1) to |¢2) and |¢é> in Table 1. “X” represents controllability
don’t cares and “X*” is the observability don’t care

Control state | [¢1) [¥2) |1//£>
|0 % 0) 0 0 X*
0% 1) X X X
[1%0) 0 /2 m/2
1% 1) X X X

ICCAD’24, October 27-31, 2024, New Jersey, USA

where n is the number of qubits and |S(i/s)| represents the cardi-
nality of the input state. This is because we need to specify at most
one mapping for each control state |x), x < 2”1, If the control
state |x) does not exist in S(s), the outcome vector is in the don’t
care set.

4.3.2  Observability Don’t Cares (ODC). Observability don’t care is
the set of control states whose output state that does not affect the
final outcome of the QSP circuit. Let i/; be the final state of a segment
Wi targets g;, U; be the initial unitary of the next segment W;
targets q;, j # i. Then the rotation angle of a control state |x) ® [+);
is in ‘W;’s ODC if the projections of U; on |x) ® |0); and |x) ® |1);
are the same, i.e.:

0f; (x| Uj |x) 10); = (1]; {x| Uj |x) [1); - %)

Unlike CDC, which are derived from the predecessors of a seg-
ment, observability don’t cares are generated and propagated from
the opposite direction, from the successors. For example, the rota-
tion angle for the control state [0+0) in Table 4 is an observability
don’t care of U,,, generated by W3 from Figure 1a. Note that the
eight gates in ‘W3 compose a controlled Y rotation that is activated
only when gy is |1) and q; is |0). Therefore, when qq is [0), Ui,
does not modify gz regardless of the value of q;. In other words,
|000) and |010) are equivalent for ‘W>. Consequently, although the
control state |0%0) has non-zero amplitude, its rotation angle does
not affect the feasibility of the circuit and, thus, is ODC.

Exploiting ODC can further simplify the circuits in the segment.
As illustrated in Table 4, after setting the angle in the first row
of |1ﬁé> from 0 to 7, the original segment can be replaced by one
single Ry gate. After traversing and optimizing the entire circuit,
we derive the circuit in Figure 1c from Figure 1a utilizing both CDC
and ODC.

It is worth mentioning that although the rotation of the segment
W3 is not affected in the previous example, changing the angle from
0 to % in Table 4 produces unintended rotations on g;. To mitigate
the cost of reverting these rotations after ‘W;, we only exploit
observability don’t care if the segment W, after ‘W; targets the
same qubit as ‘W;_1, which introduced unintended rotation. In this
case, we can simply adjust the rotation table of ‘W1 to completely
recover the functionality, which does not necessarily increase the
gate count of Wi,;.

4.4 Segment Resynthesis

As displayed in line 19 in Algorithm 1, the segment resynthesis
is the final step of our method that finds the replacement of the
initial segment with fewer gates that accomplishes the same state
transition from i to ;. This step serves as the core of our work-
flow, significantly decreasing gate count and optimizing the overall
circuit.

The workflow of the resynthesis algorithm is illustrated in Algo-
rithm 2. Given a target rotation table, our algorithm:

(1) defines a hyper-parameter K as the number of CNOTs in the
template and initializes it to K = 0.

(2) constructs an equality system to check if the rotation table
can be implemented if using K CNOTs.



ICCAD’24, October 27-31, 2024, New Jersey, USA

Algorithm 2: Segment resynthesis

input :The initial and final rotation tables ¢ and ¢; with
n control qubits.
output: A sequence of quantum operators to prepare the
rotation table with K CNOTs.
1 K0
2 solution < @
3 while solution is @ and K < Kyax do
4 for {S;.} in Z%K do
5 M « Construct equality system (¢s, ¢¢, {Sg})
6 solution « Solve(M)
7 K« K+1
8 return solution.

(3) analyzes the result. If a set of solutions is found, we return
the circuit with K CNOTs. Otherwise, we increase K by one
and repeat step (2).

All utilized variables are listed in Table 5. In the rest of this
section, we will demonstrate the construction of the equality system
from line 5 in Algorithm 2.

4.4.1  Fixed-target CNOT template. Since all the CNOT gates in
the circuit target the same qubit, the control qubit alone suffices
to represent each CNOT gate. We define CNOT variables, Sy ;, as
binary values indicating whether g; serves as the control qubit
in kth CNOT. Given that each CNOT has only one control qubit,
Yiez, Ski = 1forall k € Zg, where n represents the number of
candidate control qubits. Then, we define a set of variables Ry ,,
where Ry ,, = —1 if the rotation at index |x) is enabled by the kth
CNOT, and Ry, = 1 otherwise. These Ry, variables are derived
from the given Sy ; variables, as the control qubit i and its phase
determines whether an index x is affected by the CNOT gate.

q90
q1

Ry Loy Ry |4 Ry |
q2 0, \V% 0, Q 0,

Figure 2: CNOT template with K =2, S;; =1and Sy = 1.

4.4.2  Rotation angle variables and constraints. We use @y . to rep-
resent the rotation angle corresponding to index |x) after the kth
CNOT gate. The values of the initial and final angles, ¢ x = @5 x
and ¢k x = @1, are given by the rotation tables. Then, we define

Table 5: Variable declaration for the segment resynthesis problem.

Input:
Sk.i {0,1} Whether g; is the control qubit in the kth CNOT.
Rix {-1,1} Ry x=-1if|x) is activated by the kth CNOT.

@s.x>Ptx |—2m,2mr) Initial and final angles corresponds to |x).
Internal:

Phx [—2m,27) The angle corresponds to |x) after the kth CNOT.
Output:
Or [0, 47) The rotation angle of R, after the kth CNOT.

Hanyu Wang, Daniel Bochen Tan, Jason Cong

rotation angle constraints as shown in Equation (10).

T T
Pherix = 5+ Ok + Ricx  (0px = §)~ (10)

This constraint describes the evolution of the rotation table before
and after the kth CNOT gate. If the index |x) is not enabled by the
CNOT, then Ry = 1, and ¢p1 x = @k x + Ok because the Ry gate
after CNOT introduces a rotation of 6. Otherwise, if |x) is enabled,
Rpx = —1,then @iy = 7 — @ x + Oy because the CNOT gate
“reflects” the previous angle ¢ , along ¢ = 7, as illustrated in the
proof of Theorem 4.1, before applying the rotation of 0.

ExaMPpLE 4.2. Consider the segment between |!ﬁé> and |y5), whose
initial and final angles are provided in Table 3. Assume we are at the
iteration where K = 2, then we can assign the boundary values to the
rotation angle variables:

®0,00) = Po,j01) = Po,/10) = Po,[11) = bo
T 3r
®2,100) = 0, @2j01) = 30 #2]10) = 5 #211) =
where 0y is the offset introduced by the first Ry gate.

The target is to find an assignment to 6y, 61, 62, S1,;, and S; 2,
such that the equality system is satisfied. For clarity, we assume
the control qubits of the two CNOTs are S1,1 =1 and Sy, = 1. This
corresponds to the template in Figure 2, where Ry o9y = Ry jo1) =
Ry 00y = Ra o1y =1 and Ry |10y = Ry o1y = Ryj11y = Ryjy = —1.
We can streamline the equality system by plugging in the known
variables and canceling intermediate variables corresponding to the
same x as shown in Equation (11).

®1,00) = ©0,]00) *+ 01

®1,)01) = T — @o,jo1) + 1

®1,]10) = @o,|10) + 01 0=0p+0;+0,

@111y = T = @o |11y + 01 N Z=(r—00+01)+06; 1
®2,100) = 1,00y + 02 37”=7r—(90+91)+92 - (1)

®32,]01) = ¢1,jo1) + 02 T=00—01+6;
®32,]10) = 7T — ¢1,)10) *+ 02
2,111y = T = @1,)11) T+ )
The solution 6y = 05 = &, 01 = -7 is feasible. Therefore, we can

find a circuit using K = 2 CNOTs to implement this rotation table as
seen in Figure Ic.

We can verify K = 1 has no feasible solution by watching the
corresponding equality system in Equation (12).

?1,]00) = ®0,j00) + 01

®1,Jo1) = @o,jo1) + 01 N
®1,]10) = 7T = ¥o,10) + b1

@111y = T = @o|11) + 01

Similarly, K = 0 is also infeasible, and we return the 2-CNOT
circuit as the optimal solution for this segment synthesis problem.

4.5 Complexity Analysis

The overall resynthesis method is based on a peephole algorithm

and is therefore scalable and efficient, running in polynomial time.
(1) Window extraction in Algorithm 1. This step requires O(N?)

quantum operator simulations, where N denotes the number
of gates in the initial circuit.



Quantum State Preparation Circuit Optimization Exploiting Don’t Cares

ICCAD’24, October 27-31, 2024, New Jersey, USA

Initial

Qiskit Opt.
BQSKit Leap
Ours

35/ EEE Initial

mmm Qiskit Opt.
o B BQSKit Leap
% 25| mmm Ours
P

30

Number of CNOTs

6
Number of qubits

6
Number of qubits

(a) Random sparse uniform (b) Random sparse

Number of CNOTs

5001 mmm Initial

- Qiskit Opt.
4001 mmm BQSKit Leap
s Ours

BN Initial
B Qiskit Opt.
|
|

BQSKit Leap
Ours

Number of CNOTs
8
S
Number of CNOTs
w
S
S

100 100

: -

Number of qubits

6
Number of qubits

(e) Dicke states |DL"/Z1> (f) B states lBgl("’l)+1>

5001 mmm Initial 5001 mmm Initial
mmm Qiskit Opt. ” mmm Qiskit Opt.
4001 mmm BQSKit Leap 54001 mmm BQSKit Leap
mm Ours 5 B Ours
300 Z 300
1=
P
200 £ 200
E]
E
100 100
ol ol
6 6
Number of qubits Number of qubits
(c) Random dense uniform (d) Random dense
5] ™ Initial » 300 mmm Initial
” m=m Qiskit Opt. 2 250/ ™= Qiskit Opt.
S B BQSKit Leap 8 N BQSKit Leap
% 151 mmm Ours ; |
s 2
510 E
Q a
£ @
=] =
Z 5 g
g
<

o

3 6 9 30 6.0 9.0 Avg.
Number of qubits Number of qubits

(g) W states |W,,) (h) Average

Figure 3: CNOT count comparison between three optimization algorithms.

(2) Resynthesis algorithm in Algorithm 2. For each segment, the
time complexity is O(nKmxm?Kyn,y), where n is the num-
ber of qubits and m is the cardinality of the care set in the
extracted segment. This is because we need to enumerate
nKmax CNOT templates, and each template has a linear sys-
tem with Kyax + 1 columns and m rows. We fix Kiax = 2 to
upper-bound the complexity to O (n?m?).

It is worth mentioning that we accelerate the quantum opera-
tor simulation to speed up our algorithm further. Although each
operator corresponds to a unitary matrix with a dimension of 2",
the complexity, in practice, is lower because the implementation
leverages sparsity and skips the multiplications of indices with zero
amplitudes. Furthermore, all operators in the segment target the
same qubits and do not affect the values of control qubits in the
basis vectors.

5 EXPERIMENTAL RESULTS

In this section, we present results to evaluate the effectiveness and
efficiency of the proposed algorithm.

5.1 Benchmarks and Workflow

The benchmark suite used in our experiments consists of various
states with different numbers of qubits, different levels of symmetry,
and different sparsity. For each category of quantum states, we
apply the most advantageous algorithm to generate the initial QSP
circuit [9, 11, 32].

®

Bﬁ> are quantum states with uniform amplitudes on the

first k + 1 basis states.

K\ _ _1 vk
BE) = <= 55 1.
(2) Dicke state |D,’§ > are highly symmetric n-qubit states. Indices

of Dicke states have exactly k ones and n — k zeros [3].
(3) W state |W,) is a special case of Dicke states when k =1 [2].

(4) Sparse random states have cardinality m = n, and dense
random states have m = 2771,

We implement the proposed method using Python and apply
one iteration of the resynthesis algorithm introduced in Section 4
to these initial QSP circuits. We compare the gate count reduction
of our method with two circuit optimization methods as baselines,
including the unitary synthesis pass in Qiskit (with an optimation
level of 3) [28] and a powerful circuit optimization tool based on
numerical methods [16].

We map the optimized circuit from ours and baseline methods
to {2 (2), CNOT} and verify the correctness of the QSP circuits by
running qiskit simulation [28]. All experiments are conducted on
a computer equipped with a 3.7GHz AMD Ryzen 9 5900X processor
and 64GB RAM.

Although our algorithm only applies to real unitary synthesis
while baseline methods handle more general complex unitaries, we
could adapt through phase oracle to prepare states with complex
amplitudes. Besides, many interesting states, such as the bench-
marks above, are real. Therefore, their state preparation circuits
can be improved directly using our method.

5.2 CNOT Count Comparison

Figure 3 displays the CNOT count comparison on seven categories
of quantum states after running the three optimization algorithms.
The average CNOT count shown in Figure 3h demonstrates the
advantages of our method in quantum circuit optimization. Lever-
aging the don’t cares in the QSP circuit, we further lower the CNOT
count of the initial circuit by 36%. Meanwhile, the two baseline
algorithms do not significantly optimize the circuit because of the
constraints to completely preserve the circuit unitary.

In general, our algorithm is more effective on sparse states than
on dense ones. This is because the number of don’t cares decreases
as the cardinality of the index set m increases in our formulation.
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Figure 4: 4-qubit B state preparation using 14 single-qubit gates and 14 CNOTs.
9 Ry N Ry | to entangle g2, g3 and q4, respectively, while Figure 5 uses 1 CNOT
/4 —-/4 s s .
for each qubit. Since the segments to entangle these qubits are all

o /4 ‘T —/4
R
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q3 —— RU Ry
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Figure 5: 4-qubit B state preparation utilizing 7 single-qubit gates
and 3 CNOTs.

Note that our method simplifies the circuit by identifying an alterna-
tive unitary allowed by the don’t-care conditions. Consequently, the
greater the circuit’s flexibility, the higher the likelihood of finding
a feasible replacement that minimizes the gate count.

A particularly interesting result is the optimization of )Bfl(n71>+1>
state preparation circuits. Figure 3f exhibits that our resynthesis
algorithm exponentially reduces the gate count required to prepare
these states. To illustrate the optimization, we display the initial
QSP circuit for |BZ> in Figure 4 and our optimized circuit in Figure 5.

Notice that although both circuits subsequently entangle qubits
into the system, the initial circuit in Figure 4 needs 2, 4, and 8 CNOTs

Qiskit Opt. Qiskit Opt.
—— BQSKit Leap —— BQSK:it Leap

100 100
@ )
[} Q
E g
B B

E 107! E 10-1
&} (@]

1072 10-2

1073 10-3

10t 102 10t 10?

Number of CNOTs Number of CNOTs

(a) Dense states (b) Sparse states

Figure 6: Scalability analysis. We demonstrate the relationship be-
tween CPU time on the y-axis and the number of CNOTs in the
initial circuit on the x-axis.

single-target, the result confirmed that our algorithm successfully
extracts the rotation tables of these segments and identifies the
most efficient CNOT configuration to accomplish these rotations.

5.3 Scalablity Analysis

The principal contribution of this paper is the introduction of a
scalable resynthesis algorithm. This algorithm partitions the quan-
tum circuit into single-target segments and uses the propagation
of don’t care conditions to derive a rotation table. By converting
the complex problem of unitary synthesis, which typically involves
matrix multiplications with high-order terms, into simpler linear
equalities, our approach not only simplifies the process but also
utilizes don’t care conditions more efficiently, enhancing practical
utility.

Figure 6 depicts the relationship between the CPU time required
by three optimization algorithms and the number of CNOTs in the
initial circuit. The runtime exhibits linear growth on a log-log plot,
suggesting that our algorithm operates with polynomial complexity
when limiting the value of Kmax, which is 2 in this paper. Further-
more, our resynthesis algorithm completes circuits encompassing
up to 10 qubits and several hundred CNOT gates within a few sec-
onds, thereby proving both the efficiency and practical utility of
our method.

6 CONCLUSION

In the noisy intermediate-scale quantum computing era, minimizing
the count of two-qubit gates within quantum circuits is crucial. Due
to the inherent complexity, existing algorithms typically assume a
fixed unitary to optimize the circuit. However, modifying the uni-
tary operator does not necessarily affect the functional correctness
of the circuit in several quantum applications, and leveraging the
flexibility can lead to significant circuit simplification. This paper
introduces a scalable workflow that employs don’t-care conditions
to encode such flexibilities within the unitary matrix and develops
an efficient resynthesis algorithm to optimize gate counts. Our ex-
perimental results demonstrate a significant reduction in CNOT
gate usage. By permitting adjustments to the unitary during the
optimization process, our method achieves an average decrease
of 36% in CNOT count when applied to the optimization of state
preparation circuits.
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