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for clustering the embeddings can often be hard to justify on a well-

founded theoretical basis, and, therefore, researchers often resort

to handwavy design choices that are mostly based on intuition. In

light of this, we are presenting Multi-Graph Explorer, which is a

MATLAB software with the following core features:

• Arti�cial multi-graph generator: A tool that enables the

user to de�ne and generate arti�cial multi-graphs in a suc-

cinct yet �exible and comprehensive manner.

• E�cient large-scale Monte Carlo experiments with

non-standard parameter sweeps: Users can quickly and

intuitively de�ne value ranges for arbitrary value combi-

nations of parameters and their subparameters, which en-

ables the thorough and systematic study of the multi-graph

analysis work�ow. Also, note that calculating, storing and

accessing the relevant results can be quite computationally

expensive, and, therefore, considerable e�ort has been dedi-

cated to performance optimizations.

• High-quality method implementations and extensibil-

ity: Users can readily experiment with optimized implemen-

tations of existing multi-graph methods, while also being

able to augment any part of the work�ow with their own

method implementations.

• Powerful exploration of experimental results: We pro-

vide a modular graphical user interface consisting of a series

of diverse and interconnected graph visualizations which

may be further augmented or modi�ed by the user. This tool

also doubles as an interactive environment for e�ciently

adjusting the graph structure and the model parameters.

We make our software publicly available 1.

2 Proposed Framework

In this section, we discuss in detail the various components of our

software.

2.1 Arti�cial Graph Generator

An important aspect of designing graph methods is the ability to

generate arti�cial graphs that closely resemble real-world graphs.

This allows researchers to better analyze and understand the behav-

ior of their method, which could in turn enable them to improve its

design. Our generator aims to provide a �exible tool for creating

complex multi-view graphs with features such as:

• Distinct groups of views, each corresponding to a di�erent

clustering of nodes.

• Various types of node clusters such as clique, star etc.

• Directed and undirected edges.

• Edge sparsity and noise on various levels of resolution such

as per view cluster, per view and per node cluster.

For instance, in Listing 1 we see how we can de�ne and generate

an arti�cial multi-structure multi-view graph similar to the one

shown in Figure 1c. In this example, we de�ne 3 view clusters with

2 views each, and 3, 2 and 2 node clusters, respectively. Also, each

view cluster is assigned its own edge sparsity level. In the end, we

get the adjacency tensor X whose frontal slices correspond to the

adjacency matrices of the views of the graph.

1https://github.com/gtsitsik/multi-graph-explorer

size_all = { {60,40,20}, {100,20}, {20 ,100} };

sparsity_level_all = [0.94 0.93 0.92];

num_of_view_clusters = numel(size_all );

G = graph_tree_root;

for i = 1: num_of_view_clusters

G.Children(i) = graph_tree_node;

current_child = G.Children(i);

current_child.slices_num = 2;

current_child.noise_level = 0.01;

current_child.sparsity_level = sparsity_level_all(i);

num_of_node_clusters = numel(size_all{i});

for j = 1: num_of_node_clusters

current_child.Children(j).type = 'clique ';

current_child.Children(j).size = size_all{i}{j};

end

end

X = create_graph(G);

Listing 1: Example of arti�cial multi-view graph generation.

2.2 Advanced Parameter Sweeps

Due to the nature of various parameters potentially having arbitrary

subparameters, generating the various combinations of parameter

values is not as straightforward as a traditional grid search. For

instance, consider the scenario shown in Listing 2 which aims to

combine an embedding generation method having 2 parameters,

with 2 embedding clustering methods which have their own pa-

rameters too. In this case, all 6 possible combinations of parameter

values are stored in variable comb, whose structure is similar to

what someone would get by de�ning all individual combinations

manually as shown in Listing 3. Additionally, the exploration of

such complex parameter spaces is performed with high e�ciency

thanks to the tight integration with MATLAB’s Parallel Computing

Toolbox and our many optimizations around storing, retrieving and

manipulating the large volumes of data produced by experiments.

prm.embedding_method.comclus.beta = [0.7 0.8]

prm.embedding_method.comclus.rho = 0.4

prm.clustering_method.kmeans.clusters_num = "3 2 2"

prm.clustering_method.large_inner_prod.thres = [0.7 0.9]

comb = generate_combinations(prm)

Listing 2: Compact generation of combinations.

comb (1). embedding_method.comclus.beta = 0.7

comb (1). embedding_method.comclus.rho = 0.4

comb (1). clustering_method.kmeans.clusters_num = "3 2 2"

comb (2). embedding_method.comclus.beta = 0.8

comb (2). embedding_method.comclus.rho = 0.4

comb (2). clustering_method.kmeans.clusters_num = "3 2 2"

comb (3). embedding_method.comclus.beta = 0.7

comb (3). embedding_method.comclus.rho = 0.4

comb (3). clustering_method.large_inner_prod.thres = 0.7

comb (4). embedding_method.comclus.beta = 0.8

comb (4). embedding_method.comclus.rho = 0.4

comb (4). clustering_method.large_inner_prod.thres = 0.7

comb (5). embedding_method.comclus.beta = 0.7

comb (5). embedding_method.comclus.rho = 0.4

comb (5). clustering_method.large_inner_prod.thres = 0.9

comb (6). embedding_method.comclus.beta = 0.8

comb (6). embedding_method.comclus.rho = 0.4

comb (6). clustering_method.large_inner_prod.thres = 0.9

Listing 3: Explicit generation of combinations.
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Figure 2: Single-Combination Parameter Explorer.

2.3 Multi-Graph Explorer

Here we present a �exible tool consisting of interconnected visual

modules that allow the user to interactively generate and navigate

multi-graphs, and explore the outputs of multi-graph methods. We

separate this tool into two distinct parts: one focusing on detailed

qualitative overviews of embeddings and clusterings corresponding

to a particular combination of parameter values, and the other pro-

viding high-level quantitative performance comparisons between

di�erent combinations of parameter values.

2.3.1 Single-Combination Parameter Explorer. This tool provides

an interactive graphical user interface as shown in Figure 2. This

interface is split into the bottom part which allows the user to spec-

ify the desired parameters for the entire graph analysis work�ow,

and the upper part which contains the various interconnected vi-

sual modules. Our implemented graph analysis work�ow currently

provides interactive adjustment of the following features:

• Graph properties: E�ectively a graphical user interface for

the graph generator discussed in subsection 2.1.

• Graph preprocessing: Normalized Laplacian for both directed

and undirected graphs.

• Embedding generation: High-quality implementations for

ComClus [7], CMNC [1] and a customized Richcom [3].

• Embedding postprocessing: Various methods of modifying

the embeddings before clustering them.

• Embedding clustering: k-means, maximum likelihood, and

inner-product thresholding.

• Clustering quality measures: Normalized Mutual Informa-

tion (NMI), Adjusted Rand Index (ARI), Adjusted Mutual

Information (AMI), Macro Silhouette Coe�cient, Micro Sil-

houette Coe�cient.

As for the visual modules, the "Original Adjacency Matrix" and

"Original Graph" modules visualize a speci�c view of the graph,

where darker colors represent lower edge weights, and the dif-

ferent color hues represent di�erent ground-truth labels for the

corresponding nodes. Similarly, we have the "Clustered Adjacency

Matrix" and "Clustered Graph" modules. However, color hues here

represent the calculated labels of nodes instead of the ground-truth

ones, and the adjacency matrix is permuted so that nodes assigned

to the same calculated cluster are next to each other. Additionally,

since the permutations can make comparisons with the "Original

Adjacency Matrix" di�cult, the "Clustered Adjacency Matrix" also

includes a colored horizontal bar that indicates the ground-truth

labels of the nodes. Next, we have the two vertical colored bars,

with the one at the left indicating the ground-truth labels of the

views, and the one at the right showing their calculated labels. The

�rst view is located at the top and the last one at the bottom, and the

black line indicates the view that the user is currently inspecting.

Note that the color hue of each calculated node and view cluster is

selected to be the same as the color hue of the ground-truth clus-

ter that it is the most similar to. Then, the 2D multi-dimensional

scaled node embeddings of the selected calculated view cluster are

visualized for a more direct and intuitive analysis of their quality

and clustering structure. Also, we have the "Clustering quality"
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