

Symbol Definition

x,X Scalar
x Column vector

X Matrix

X Tensor
X Set

||·|| Frobenious norm

nnz (·) Number of non-zero elements
I Identity matrix

0 All zeros column vector/matrix/tensor

1 All ones column vector/matrix/tensor
diag (x) Diagonal matrix with x as its diagonal

diag (X) Vector consisting of the diagonal elements of X

D
(k)
X

diag (Xk:)

Tr (X) Trace of X
XT Transpose of X

x ⪰ y ∀i xi ≥ yi

JU,V,WK PARAFAC with factor matrices U, V and W

[U,V,W] Horizontal concatenation of U, V and W

⊙ Column-wise Khatri–Rao product
×n Mode-n product

X(n) Mode-n matricization of X

Table 1: Table of Symbols. See [7] for further details on
tensor notation and operations.

• Unifying Clustering Framework. We present
a framework encapsulating a series of existing clus-
tering methods able to model data as complex as
multi-view graphs with multiple view structures.

• A Principled Multi-View Graph Clustering
Method. We propose GenClus, a novel multi-
view clustering method for graphs with multiple
view structures, which can be seen as both a
special case of the aforementioned framework and a
generalization of the celebrated spectral clustering
family of methods. We also show that it is very
closely connected to k-means [10] as well.

• In-Depth Experimentation1. We design a se-
ries of experiments on both artificial and real-world
data to assess the performance of GenClus both
quantitatively and qualitatively. In-depth compar-
isons with other baselines are performed as well.

2 Proposed Unifying Framework.

Consider K adjacency matrices, {X(k)}Kk=1, where each
is of size I × I and corresponds to a different view of
a multi-view graph. Additionally, assume that these
views can be clustered into M groups, with each group
corresponding to a different clustering of nodes. For
convenience, we will refer to such a node clustering
structure as a view structure. Given these, in this

1An implementation of GenClus, along with the experiment
scripts, is available at https://github.com/gtsitsik/genclus

section we present an overview of existing methods
designed to model and extract such clusterings. Due
to space limitations, we will only discuss the embedding
generation stage of these methods, but a more thorough
discussion on obtaining the final clusterings is available
in Appendix A.1. Then, we demonstrate that all these
methods can be expressed as special cases of a unifying
framework, as illustrated in Figure 2. Specifically,
we show that they can be expressed as variants of
PARAFAC [1], [5], where the third factor matrix is
constrained to be the product of two matrices.

Please note that the goal of this unifying framework
is not necessarily to precisely encapsulate the exact op-
timization problems of these methods. Rather, its goal
is to abstract their essence. For example, we will as-
sume that a method is conceptually aiming to calculate
the same model, independent of whether it algorithmi-
cally imposes a constraint as a hard constraint or as a
soft constraint. Similarly, we will assume that it con-
ceptually remains the same, independent of whether it
imposes constraints like non-negativity or sparsity.

2.1 ComClus. ComClus [13] can be expressed as

(2.1)

inf
U,W,A,B≥0

K
∑

k=1

∣

∣

∣

∣

∣

∣
X(k) −O(k)UD

(k)
W

(O(k)U)T
∣

∣

∣

∣

∣

∣

2

+

r(U,W,A,B)

where r(U,W,A,B) := β||W − AB||2 + ρ(||U||1 +
||A||1 + ||B||1), each O(k) is a user-defined indicator
matrix, and β and ρ are user-defined penalty parame-
ters. By making the closed-world assumption [14], the
first term becomes equal to

K
∑

k=1

∣

∣

∣

∣

∣

∣
X(k) −UD

(k)
W

UT
∣

∣

∣

∣

∣

∣
= ||X − JU,U,WK||

where X ::k := X(k). Therefore, ComClus can be
interpreted as aiming to approximate X by JU,U,WK
such that W ≈ AB, where U,A,B are sparse and non-
negative, and W is non-negative.

2.2 Richcom. Richcom [4] can be expressed as

(2.2)

inf
U

(m),V(m),

a
(m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X −
M
∑

m=1

(

U(m)V(m)T
)

×3 a
(m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+

M
∑

m=1

r
(

U(m),V(m),a(m)
)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

where S ::k := S(k), A := a and B := 1T

(see Appendix A.2.1 for proof). Similarly, we can
show that MC-TR-I has the same optimal set as
infUTU=I ||S − JU,U,ABK|| where S ::k := S(k), A :=
1 and B := 1T . Lastly, note that due to the close con-
nection of (2.4) and its variant with MC-TR-I, one can
argue that the same reformulation captures the essence
of these problems as well.

3 Proposed Method.

In this section, we develop GenClus, a principled graph
clustering method which can be viewed as an instance of
this unifying framework. GenClus also generalizes spec-
tral clustering [20] to multi-view graphs with multiple
view structures, and, as we will show in Section 3.2, it
is closely associated with k-means as well.

Based on our discussion in Section 2.4, we will
consider the modified data tensor Y , where Y ::k :=

D(k)X ::kD
(k) and D(k) := diag

(

1/
√

∑I

i=1 X:ik

)

.

Then, we observe that in the special case of a single-view
graph, where K = M = 1 and R is the true number of
clusters, we can use properties of the best positive semi-
definite approximation of a matrix (see Appendix A.2.2
for details), along with the fact that we expect Y to
have R eigenvalues close to 1, to show that

(3.6) arg inf
UTU=I

(

inf
a≥0,b⪰0

∣

∣

∣

∣Y − aU diag (b)UT
∣

∣

∣

∣

)

=

arg inf
UTU=I

∣

∣

∣

∣Y −UUT
∣

∣

∣

∣ .

Notice that the constraints on a and b of the left-hand
side problem are more relaxed than the constraints on
the implicit a and b of the right-hand side problem.
Therefore, this result can be particularly useful in de-
signing solvers that are less prone to bad local optima.
Also, to understand why we opted for non-negativity
constraints, first note that allowing a to be negative
may make (3.6) to not hold for any arbitrary Y since
the left-hand side problem will select eigenvectors corre-
sponding to its largest negative eigenvalues if they are of
larger magnitude than its positive eigenvalues. This is
in contrast to the right-hand side problem which always
retrieves eigenvectors corresponding to the maximum
eigenvalues. Similarly, if we allow b to have negative
elements, then the left-hand side problem is a direct
application of the Eckart-Young theorem [3] and will,
therefore, select eigenvectors corresponding to the max-
imum magnitude eigenvalues instead.

To design a generalized version of this problem
for arbitrary values of K and M , first notice that
aU diag (b)UT = JU,U, abT K = JU,U,ABK, where
A := a and B := bT . Therefore, in the general

case where Y has multiple views with multiple view
structures, we propose formulating the problem as

(3.7) inf
U

(m)T
U

(m)=I

A,BT∈I

||Y − JU,U,ABK||
2

where I is the set of all matrices whose rows contain
only a single non-zero element each, and the columns
of U(m) are defined to be the subset of columns of
U that correspond to the positions of the non-zero
elements of Bm:. Note that the constraint A,BT ∈ I
is particularly important for two reasons. First, it leads

to a
{

U(m)
}M

m=1
that forms a partition of the columns

of U, which in turn implies that we get a distinct model
for each view structure. Second, as we will show next, it
enables U and B to be calculated simultaneously, which
can prove beneficial in terms of designing a solver that
is both faster and less prone to bad local optima.

Lastly, note that for completeness, in Section 3.1
where we will derive optimization steps for (3.7), we will
also derive optimization steps for further constrained
versions of it where the non-zero elements of A and B
can be either all-ones or non-negative. That said, we
still recommend using the non-negativity constraint for
both A and B as the default option. To understand
the reasoning behind this choice, first notice that (3.7)
can properly generalize the left-hand side and right-
hand side of (3.6), only when the non-negativity and
all-ones constraint is imposed, respectively. That is,
without these additional constraints, (3.7) does not
necessarily lead to generalization of spectral clustering.
Additionally, notice that the non-negativity constraint
may be preferable to the all-ones constraint because it
leads to an optimization problem that is more relaxed,
and, therefore, the resulting solver can be expected to
be less prone to bad local optima.

3.1 Optimization Steps. We propose solving (3.7)
in a block coordinate descent fashion by alternatingly
updating A, and then U and B simultaneously. Note
that, although in this work we do not provide arguments
regarding convergence, our optimization scheme is guar-
anteed to monotonically improve the objective function
after each update of A, B and U.

3.1.1 Steps for A. By observing that

||Y − JU,U,ABK|| =
∣

∣

∣

∣

∣

∣
Y(3) −AB (U⊙U)

T
∣

∣

∣

∣

∣

∣
, we

can see that for fixed B and U, the optimal A is given
by the solution of a constrained linear least squares
problem. Specifically, below we discuss three different
constraints for the non-zero elements of A:

All-ones A. Here we observe that the k-
th row of A is optimal when it is an indi-

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

cator vector with its i-th element equal to 1

where i = arg infi

∣

∣

∣

∣

∣

∣

[

Y(3)

]

k:
−
[

B (U⊙U)
T
]

i:

∣

∣

∣

∣

∣

∣
,

or equivalently by using tensor notation i =
arg infi

∣

∣

∣

∣Y ::k −U diag (Bi:)U
T
∣

∣

∣

∣.
Unconstrained A. Here, the only non-zero ele-

ment of Ak: will be at position m if, and only if, among
all lines defined by each row of B (U⊙U)

T
, the one de-

fined by the m-th row is the closest one to the k-th row

ofY(3). Thus, m = arg supm

∣

∣

∣

∑

i,j Y ijkQ
(m)
ij

∣

∣

∣
/
∣

∣

∣

∣Q(m)
∣

∣

∣

∣

where Q(m) := U diag (Bm:)U
T . In turn, we have

Akm = arg infα
∣

∣

∣

∣Y ::k − αQ(m)
∣

∣

∣

∣ which can be calcu-

lated in closed form as
∑

i,j Y ijkQ
(m)
ij /

∣

∣

∣

∣Q(m)
∣

∣

∣

∣

2
.

Non-negative A. Here, the only non-zero element
of Ak: can be Akm if, and only if,

[

Y(3)

]

k:
forms the

smallest angle with the m-th row of B (U⊙U)
T
. Thus,

we have m = arg supm
∑

i,j Y ijkQ
(m)
ij /

∣

∣

∣

∣Q(m)
∣

∣

∣

∣ where

Q(m) := U diag (Bm:)U
T . In turn, Akm is calculated

as in the unconstrained case, unless
∑

i,j Y ijkQ
(m)
ij is

negative, in which case Akm = 0. Note that Akm = 0
if, and only if, none of the rows of B (U⊙U)

T
forms

an acute angle with
[

Y(3)

]

k:
.

3.1.2 Steps for U and B. Here, first notice that
(3.7) can be reexpressed as
(3.8)

arg inf
U

(m)T
U

(m)=I

A,BT∈I

M
∑

m=1

K
∑

k=1

∣

∣

∣

∣

∣

∣
Y ::k −AkmU(m)D

(m)
B

U(m)T
∣

∣

∣

∣

∣

∣

2

where D
(m)
B

is defined to be a diagonal matrix contain-
ing only the non-zero elements of Bm:. We also define
Sm as the set of indices of the views assigned to view
cluster m. In turn, for a fixed A, we distinguish three
types of constraints for the non-zero elements of B:

All-ones B. In this case, we can show that for a
fixed A (3.8) can be reexpressed as

(3.9) arg sup
U

(m)T
U

(m)=I

B
T∈I

M
∑

m=1

Tr
(

U(m)TZ(m)U(m)
)

where Z(m) :=
∑K

k=1 2AkmY ::k − ||A:m||
2
I (see Ap-

pendix A.2.3 for detailed derivation). Therefore, we
can see that, for a fixed B and for all m, the optimal
U(m) has columns the eigenvectors of Z(m) correspond-
ing to its largest eigenvalues, which in turn implies that
the corresponding summand in the objective function of
(3.9) will be the sum of these eigenvalues. Thus, if we
define Em to be a set containing the eigenvalues of Z(m),
and Emax to be a set containing the largest R elements
of ∪M

m=1Em, then we can see that the optimal value of

the objective function in (3.9) cannot be greater than
the sum of the elements of Emax. In fact, we can achieve
this value if for all m we set U(m) to have columns the
eigenvectors of Z(m) corresponding to the eigenvalues in
Em ∩Emax. Then, the optimal pair (U,B) can be given
by setting U =

[

U(1),U(2), · · · ,U(M)
]

and then deriv-
ing the optimal B by noticing that Bmr is non-zero if,
and only if, any of the columns of U(m) was assigned as
the r-th column of U.

Unconstrained B. In this case, for a fixed A,
(3.8) can be reexpressed as
(3.10)

arg inf
U

(m)T
U

(m)=I

B
T∈I

M
∑

m=1

∣

∣

∣

∣

∣

∣
Z(m) − ||A:m||U(m)D

(m)
B

U(m)T
∣

∣

∣

∣

∣

∣

2

where Z(m) :=
∑K

k=1 AkmY ::k/ ||A:m|| (see Ap-
pendix A.2.4 for detailed derivation). We can now see
that if we leave the non-zero elements of B uncon-
strained, then, for all m, U(m) will have a fixed number
of columns which will be optimal when they consist of
the eigenvectors of Z(m) corresponding to the eigenval-
ues of largest magnitude. In turn, the non-zero elements
of the optimal Bm: are the same eigenvalues divided by
||A:m||. Also, notice that the corresponding summand
in the objective function of (3.10) will be the sum of
squares of all the remaining eigenvalues. Therefore, if
we define Em to be a set containing the eigenvalues of
Z(m), and Emax to be a set containing the R elements of
largest magnitude of ∪M

m=1Em, then we can see that the
optimal value of the objective function in (3.10) can-
not be lower than the sum of the squared elements of
∪M
m=1Em \ Emax. In fact, we can achieve this value by

setting the columns of U(m) to be the eigenvectors of
Z(m) corresponding to the eigenvalues in Em ∩ Emax.
Then, the optimal pair (U,B) can be given by setting
U =

[

U(1),U(2), · · · ,U(M)
]

and by assigning the ele-
ments of Em ∩ Emax divided by ||A:m|| as the non-zero
elements of Bm:.

Non-negative B. Here first notice that each of the
M summands in (3.10) is minimized via the best pos-
itive semi-definite approximation of the corresponding
Z(m). In other words, we can see that the same ar-
guments as in the unconstrained case apply, with the
difference that Em here is instead defined to contain the
largest eigenvalues of Z(m) after its negative eigenvalues
are set equal to zero.

3.2 Model Interpretation. By looking at the up-
dates for U, A and B we can see that there is a very
natural way of interpreting GenClus. First, from (3.9)
and (3.10) we can see that, for a fixed A, GenClus
computes the node clustering for each of the M view

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

clusters. Specifically, the m-th node clustering is cal-
culated, roughly speaking, by performing spectral clus-
tering based on Z(m) which is the weighted summation
of the Laplacians of all views that belong to the m-th
view cluster. Also, for fixed U and B, and by noticing
that JU,U,ABK = JU,U,BK ×3 A, we can see that
each row of A is calculated in exactly the same fashion
as the cluster assignment step of k-means or a k-lines
method, depending on the type of constraint. Specifi-
cally, we can think of the frontal slices of JU,U,BK as
the centroids representing the clusters, while the k-th
row of A can be seen as an indicator vector encoding
the cluster membership of the k-th data point, Y ::k.

This observation leads us to another interesting
finding. That is, if we constrain the non-zero elements of
A and B to be all-ones and unconstrained, respectively,
and we set R = M ·I, then GenClus becomes identical to
k-means. To see this, note that in this case, for a fixed
A, there will always exist U and B in (3.10) such that,

for all m, ||A:m||U(m)D
(m)
B

U(m)T will be identical to
Z(m). Therefore, the m-th frontal slice of the optimal
JU,U,BK will be Z(m)/ ||A:m||. In turn, this can be
simplified to

∑

k∈Sm
Y ::k/ |Sm|, with Sm being the set

of indices of the views assigned to the m-th view cluster.
In fact, this is exactly the centroid calculation step of
k-means. Also, notice that if we set R < M ·I, GenClus
can be seen as a version of k-means where instead of
using the usual centroids, we perform calculations based
on their denoised low-rank versions {JU,U,BK::m}

M

m=1.

3.3 Space & Time Complexity. Note that our
method can readily benefit from various optimizations
that leverage parallelization, sparsity, partial eigende-
compositions and more appropriate sorting techniques.
However, for simplicity, we have omitted such opti-
mizations from the implementation used in all our
experiments in Section 4. In this case, a straight-
forward implementation prioritizing time minimization
over memory usage can achieve a space complexity of
O
(

MI2 +RI +K
)

, and, for t iterations, a time com-

plexity of O
(

tMI3 + t(R+KM)I2 + tMI log(MI)
)

.
For more details, please refer to Appendix A.3.

4 Experiments.

In this section, we perform an in-depth experimental
exploration of the behavior of GenClus both quantita-
tively and qualitatively. First, in Section 4.1 we per-
form quantitative clustering quality comparisons with
other baseline methods on artificially generated multi-
view graphs with known ground truth labels. Then, in
Section 4.2 we present a qualitative case study which
demonstrates the ability of GenClus to generate mean-

ingful clusterings on real-world multi-structure multi-
view graphs. Lastly, in Section 4.3 we perform an exper-
imental comparison of the time complexity of all meth-
ods. These experiments were conducted using Multi-
Graph Explorer [18] whose code can be accessed at [19].

Lastly, note that in all methods discussed so far,
the clustering process can be divided into four segments:
data preprocessing, embedding calculation, embedding
postprocessing and embedding clustering. However, em-
bedding calculation is arguably the central novelty in
both the existing methods and our proposed method.
Therefore, we will consider both the clustering schemes
as proposed in the original papers and enhanced versions
where the best combination of the remaining segments is
selected. We will call these “original methods” and “en-
hanced methods”, respectively. For the precise details
of the experiment setup, please refer to Appendix A.4.

4.1 Clustering Quality on Artificial Data. We
generate a directed unweighted multi-view graph with
120 nodes and 9 views, which leads to a tensor of
size 120 × 120 × 9. The views form 3 clusters with
3 views each, and each view cluster corresponds to 3,
2 and 2 node clusters, respectively. Specifically, the
node clusters corresponding to the first view cluster
contain 60, 40 and 20 nodes, respectively, while in the
second view cluster they contain 100 and 20 nodes,
respectively, and in the third view cluster they contain
20 and 100 nodes, respectively. All node clusters are γ-
quasi-cliques [17] whose intra-community edge density,
γ, takes values in the set of the 8 equally spaced values
from 15% to 1%, inclusive. For a specific generated
graph, all quasi-cliques have identical value of γ. Then,
we randomly select 1% of all pairs of nodes, and, for
each pair, we remove their connecting edge if they are
connected, or introduce a new edge between them if
they are not connected. For more details, please refer
to Appendix A.4.3.

4.1.1 Results Analysis. First, we make compar-
isons of the original methods as shown in Figure 3a.
Here we see that GenClus offers superior performance
compared to all baselines, and, in fact, it is the only
method that manages, in the median, to perfectly recon-
struct the ground truth communities even with an intra-
community edge density, γ, as low as 11%. ComClus is
the next best method, and it also significantly outper-
forms CMNC and Symmetric Richcom. Also, although
ComClus slightly outperforms GenClus for very low val-
ues of γ, it performs significantly worse than GenClus
for higher values of γ. CMNC outperforms Symmetric
Richcom in the median, but due to its high variance we
cannot confidently declare it as the clear winner.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

References

[1] J. Douglas Carroll and Jih-Jie Chang, Analysis of in-

dividual differences in multidimensional scaling via an

N-way generalization of “Eckart-Young” decomposi-

tion, in Psychometrika 35.3 (1970), pp. 283–319.

[2] Zitai Chen et al., Tensor decomposition for multilayer

networks clustering, in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 01, 2019,
pp. 3371–3378.

[3] Carl Eckart and Gale Young, The approximation of

one matrix by another of lower rank, in Psychometrika
1.3 (1936), pp. 211–218.

[4] Ekta Gujral, Ravdeep Pasricha, and Evangelos Pa-
palexakis, Beyond rank-1: Discovering rich community

structure in multi-aspect graphs, in Proceedings of The
Web Conference 2020, 2020, pp. 452–462.

[5] Richard A. Harshman, Foundations of the PARAFAC

procedure: Models and conditions for an “explanatory”

multimodal factor analysis, tech. rep. 16, UCLA Work-
ing Papers in Phonetics, 1970, pp. 1–84.

[6] Stefan Klus and Natasa Djurdjevac Conrad,
Koopman-based spectral clustering of directed

and time-evolving graphs, in arXiv preprint
arXiv:2204.02951 (2022).

[7] Tamara Gibson Kolda, Multilinear operators for

higher-order decompositions. Tech. rep., Sandia Na-
tional Laboratories (SNL), Albuquerque, NM, and
Livermore, CA (United States), 2006.

[8] Abhishek Kumar, Piyush Rai, and Hal Daume, Co-
regularized multi-view spectral clustering, in Advances
in Neural Information Processing Systems, ed. by J.
Shawe-Taylor et al., vol. 24, Curran Associates, Inc.,
2011.

[9] Xinhai Liu et al., Multiview partitioning via tensor

methods, in IEEE Transactions on Knowledge and
Data Engineering 25.5 (2012), pp. 1056–1069.

[10] Stuart Lloyd, Least squares quantization in PCM, in
IEEE transactions on information theory 28.2 (1982),
pp. 129–137.

[11] Matteo Magnani et al., Community detection in mul-

tiplex networks, in ACM Computing Surveys (CSUR)
54.3 (2021), pp. 1–35.

[12] Andrew Ng, Michael Jordan, and Yair Weiss, On spec-

tral clustering: Analysis and an algorithm, in Advances
in neural information processing systems 14 (2001).

[13] Jingchao Ni et al., ComClus: A self-grouping frame-

work for multi-network clustering, in IEEE transac-
tions on knowledge and data engineering 30.3 (2017),
pp. 435–448.

[14] Maximilian Nickel et al., A Review of Relational Ma-

chine Learning for Knowledge Graphs, in Proceedings
of the IEEE 104.1 (2016), pp. 11–33.

[15] OpenFlights, OpenFlights Data, Accessed: May 16,
2024, url: https://openflights.org/data.

[16] Evangelos E Papalexakis, Leman Akoglu, and Dino
Ienco, Do more views of a graph help? community de-

tection and clustering in multi-graphs, in Proceedings
of the 16th International Conference on Information
Fusion, IEEE, 2013, pp. 899–905.

[17] Jeffrey Pattillo et al., On the maximum quasi-clique

problem, in Discrete Applied Mathematics 161.1-2
(2013), pp. 244–257.

[18] Yorgos Tsitsikas and Evangelos E. Papalexakis, Multi-

Graph Explorer: A framework for Advanced Multi-

Graph Analysis and Method Development, in Proceed-
ings of the 33rd ACM International Conference on In-
formation and Knowledge Management, 2024.

[19] Yorgos Tsitsikas and Evangelos E. Papalexakis, Multi-

Graph Explorer: A framework for Advanced Multi-

Graph Analysis and Method Development, https://
github . com / gtsitsik / multi - graph - explorer,
GitHub repository, 2024.

[20] Ulrike Von Luxburg, A tutorial on spectral clustering,
in Statistics and computing 17.4 (2007), pp. 395–416.

[21] Weiqiong Zhong et al., The evolution of communities

in the international oil trade network, in Physica A:
Statistical Mechanics and its Applications 413 (2014),
pp. 42–52.

[22] Dengyong Zhou and Christopher JC Burges, Spec-

tral clustering and transductive learning with multiple

views, in Proceedings of the 24th international con-
ference on Machine learning, 2007, pp. 1159–1166.

[23] Dengyong Zhou, Jiayuan Huang, and Bernhard
Schölkopf, Learning from labeled and unlabeled data on

a directed graph, in Proceedings of the 22nd interna-
tional conference on Machine learning, 2005, pp. 1036–
1043.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

A Appendix.

A.1 Related Work.

A.1.1 ComClus. ComClus [12] operates on ten-
sors whose frontal slices are symmetric adjacency
matrices with non-negative elements. Specifically,
it models the k-th view by approximating X(k) as

O(k)UD
(k)
W

(O(k)U)T , where U and W are factor ma-

trices of size I × R and K × R, respectively, and D
(k)
W

is defined as diag (Wk:). Also, each O(k) is a prede-
fined indicator matrix that accounts for the fact that
a node that is shared between different views may be
represented by different rows and columns in the cor-
responding adjacency matrices. ComClus additionally
defines factor matrices A and B of sizes K × M and
M × R, respectively, which are then used to model W
as AB, where A is constrained to be an indicator ma-
trix, and the rows of B are the latent representations
of the views clusters. Also, for computational tractabil-
ity reasons the authors relax the constraint of A and
impose sparsity and non-negativity on U, A and B,
while W is constrained to be non-negative. Then, the
authors calculate this model via the following optimiza-
tion problem:

(A.1)

inf
U,W,A,B≥0

K
∑

k=1

∣

∣

∣

∣

∣

∣
X(k) −O(k)UD

(k)
W

(O(k)U)T
∣

∣

∣

∣

∣

∣

2

+

r(U,W,A,B)

where r(U,W,A,B) := β||W − AB||2 + ρ(||U||1 +
||A||1 + ||B||1), and β and ρ are penalty parameters
that need to be defined by the user. Each factor matrix
is updated individually via multiplicative updates in a
block coordinate descent fashion [19], until the value
of the objective function stops improving. Lastly, the
authors assign the m-th view to the n-th cluster when
the n-th element of the m-th row of A has the largest
magnitude among all elements of that row. Then,
they consider the embeddings of the nodes of the n-th
calculated views cluster to be the rows of U diag (Bn:)
and cluster the nodes in the same way.

Note that the original formulation of ComClus
includes two additional terms. Specifically, one term
forces the latent representations of two views to be
more orthogonal to each other as the number of their
mutual nodes decreases, while the other term enables
the user to perform semi-supervised learning when
there is additional available information about how the
various views relate to each other. While in this work
we omit these terms, note that the effect of the term
that imposes orthogonality can be achieved implicitly

in a different way. That is, instead of considering an
edge between two unshared nodes as unknown, we can
consider it as known with weight zero. In this way,
the larger the number of unshared nodes between two
views is, the larger the number of elements which are
non-zero in only one of the corresponding adjacency
matrices of the networks will be. This implies that these
adjacency matrices will tend to be orthogonal to each
other, a property which will tend to hold for their latent
representations as well. In fact, the original ComClus
formulation can be interpreted as operating under the
open world assumption [13], while our modification can
be seen as operating under the closed world assumption.

A.1.2 Methods Based on Block Term Decom-
position.

Richcom. Richcom [6] applies a rank-(Lm, Lm, 1)
terms decomposition [3] on the data tensor and operates
on tensors whose frontal slices can be arbitrary adja-
cency matrices with non-negative elements. Specifically,
it considers a tensor X of size I×J×K and models the

graph by approximating X as
∑M

m=1

(

U(m)V(m)T
)

×3

a(m), where U(m), V(m) and a(m) are factors of sizes
I × Rm, J × Rm and K, respectively. The authors im-
plicitly assume that the ordering of the nodes is iden-
tical for all views, and, therefore, no permutations sim-
ilar to these of ComClus are required. Also, note that
all adjacency matrices need to be of size I × J , which
can be interepreted as either that Richcom only works
when all nodes exist in all views, or that it makes the
closed world assumption. Note that all factor matrices
are constrained to be sparse and non-negative. Then,
the authors calculate their model via the following op-
timization problem:

(A.2)

inf
U

(m),V(m),

a
(m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X −

M
∑

m=1

(

U(m)V(m)T
)

×3 a
(m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+

M
∑

m=1

r
(

U(m),V(m),a(m)
)

where r
(

U(m),V(m),a(m)
)

encodes the sparsity and
non-negativity constraints. They solve (A.2) using the
AO-ADMM framework [7] which solves for all U(m),
V(m) and a(m) individually in an alternating fashion
via the alternating direction method of multipliers [1].
Lastly, the authors assign the k-th view to the m-th
views cluster if amk ≥ ank for all n, and then consider

U(m)V(m)T as an adjacency matrix representing the
m-th views structure and obtain the corresponding
nodes clustering by extracting its weakly connected

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

components after proper thresholding.
Centroid-based Multilayer Network Clus-

tering (CMNC). CMNC [2] also applies a rank-
(Lm, Lm, 1) terms decomposition and its model is very
similar to that of Richcom with their only differ-
ences being that for CMNC U(m) = V(m) for all m,
∑M

m=1 a
(m)
i = 1 for all i, and no sparsity is imposed. It

is also different in the way the optimization problem was
solved which was reformulated into an unconstrained
one by introducing two differentiable operators, and
then a trust region optimization method was applied
[14]. Another difference is that CMNC preprocesses

each view of the data tensor as D(k)−
1
2X(k)D(k)−

1
2

where D(k) := diag
(

∑I

i=1 X
(k)
:i

)

inspired by the spec-

tral clustering paradigm [18]. Lastly, another difference
is that the nodes clusters of the m-th view structure are
formed by assigning the i-th node to the cluster corre-
sponding to the largest element of the i-th row of U(m).

A.1.3 Spectral Clustering. Spectral clustering
[11], [18], [21], [8] has seen great success and devel-
opments in the past decades thanks to its strong
theoretical foundations and its ability to discover
clusters of arbitrary shape. In fact, these developments
have led to generalized versions for multi-view graphs
[10], [20].

Consider an adjacency matrix X of an arbitrary
undirected graph with non-negative weights. If we de-

fine D := diag
(

∑I

i=1 X:i

)

then L := D − X is called

the Laplacian of X. It can be shown [18] that L is
positive semi-definite and that the number of connected
components of the graph is equal to the multiplicity
of the smallest eigenvalue of L, which is always 0. It
can also be shown [11] that if U is a matrix whose
columns form a basis for the eigenspace correspond-
ing to the smallest eigenvalue of L, then two rows of
U are collinear if the corresponding nodes belong to
the same connected component, and orthogonal to each
other if the corresponding nodes belong to different com-
ponents. Spectral clustering algorithms then use these
properties to cluster the rows of U and identify the
communities of a graph in a principled manner. Ad-
ditionally, Lsym := D− 1

2LD− 1
2 is called the normalized

Laplacian and inherits all the aforementioned nice prop-
erties of L. The usefulness of Lsym is usually justified
in the literature by associating it to a relaxation of the
n-cut problem [18]. Lastly, note that the eigenspace of
Lsym corresponding to an eigenvalue of 0 is identical to

the eigenspace of S := I − Lsym = D− 1
2XD− 1

2 corre-
sponding to its maximum eigenvalue which is 1.

Note there is a more direct and intuitive justifica-
tion for choosing Lsym over L. Specifically, notice that

since Lsym is positive semi-definite, the eigenvalues of

S := I − Lsym = D− 1
2XD− 1

2 will all be less than or
equal to 1, and since all elements of S are non-negative,
it can in turn be shown that its smallest eigenvalue will
also be greater than or equal to −1 . Therefore, the
eigenvalues of Lsym will be bounded between 0 and 2.
This property can be especially useful when the differ-
ent communities of the graph are not completely dis-
connected from each other, in which case we evaluate
the number of communities to be equal to the number
of eigenvalues of Lsym that are only approximately 0,
or the number of eigenvalues of S that are only approx-
imately 1. Another reason is that when communities
are completely disconnected from each other, then Lsym

can be expressed as a block-diagonal matrix where each
block corresponds to a different community. This im-
plies that the set of the eigenvalues of Lsym is the union
of the eigenvalues of its blocks, and, therefore, the max-
imum eigenvalue for all communities will be 2. In turn,
this implies that when communities are not entirely dis-
connected from each other, the decision of whether an
eigenvalue is close enough to 0 does not have to involve
the size of the corresponding community.

A.1.4 Multi-View Spectral Clustering. When a
graph has multiple views such that all views are assumed
to share a common underlying structure, i.e. M = 1,
then one of the multi-view spectral clustering models
proposed in [10], [20] can be applied. In our work, we
will be particularly interested in some of the models
proposed in [10]. Specifically, we will study the MC-
TR-I model,

(A.3) sup
UTU=I

K
∑

k=1

Tr
(

UTS(k)U
)

,

which aims to perform spectral clustering jointly on
all views in a way that the embeddings for all views
are identical to each other. We will also consider its
weighted variant,

(A.4) sup
U

T
U=I

a⪰0,||a||=1

K
∑

k=1

Tr
(

UTakS
(k)U

)

,

which assigns a different weight to each view. To calcu-
late these models, the authors proposed the MC-TR-I-
EVD and MC-TR-I-EVDIT algorithms, respectively.

Then, in [9] the authors propose two forms of
co-regularized spectral clustering with the first form
consisting of a pairwise co-regularization as

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

(A.5) sup
U(k)TU(k)=I

K
∑

k=1

Tr
(

U(k)TS(k)U(k)
)

+

λ
∑

i ̸=j

Tr
(

U(i)U(i)TU(j)U(j)T
)

and the second one consisting of a centroid-based co-
regularization as

(A.6) sup
U

(k)T
U

(k)=I

U
∗T

U
∗=I

K
∑

k=1

Tr
(

U(k)TS(k)U(k)
)

+

λk Tr
(

U(k)U(k)TU∗U∗T
)

.

Note that both of these formulations can be seen as re-
laxed versions of (A.3) where instead the embeddings
from different views are forced to only be similar to
each other instead of exactly equal. Specifically, the
regularization terms force the columnspaces of all U(k)

to become more similar with each other as λ and λk take
larger values. In the limit, their columnspaces become
identical and the rows of U(k) will be just orthogonally
rotated versions of the rows of any other U(i). There-
fore, applying k-means, which is the clustering method
suggested by the authors, on the rows of any U(k) will
lead to the same node clusters.

Now notice that we can show that (A.4) has the
same optimal set as

(A.7) arg inf
U

T
U=I

A⪰0,||A||=1

||S − JU,U,ABK||

where S ::k := S(k), A := a and B := 1T

(see Appendix A.2.1 for proof). Similarly, we
can show that (A.3) has the same optimal set as
infUTU=I ||S − JU,U,ABK|| where S ::k := S(k), A :=
1 and B := 1T . Lastly, note that due to the close
connection of (A.5) and (A.6) with (A.3) one can ar-
gue that the same reformulation captures the essence
of these problems as well, despite the fact that they
cannot be reformulated exactly like that from a strictly
mathematical point of view.

A.2 Proofs

A.2.1 Derivation of (2.5).

arg sup
U

T
U=I

a⪰0,||a||=1

Tr

(

UT

K
∑

k=1

akS
(k)U

)

=

arg inf
U

T
U=I

a⪰0,||a||=1

−2Tr

(

UT

K
∑

k=1

akS
(k)U

)

+R =

arg inf
U

T
U=I

a⪰0,||a||=1

K
∑

k=1

−2Tr
(

UTakS
(k)U

)

+ ak
2R =

arg inf
U

T
U=I

a⪰0,||a||=1

K
∑

k=1

Tr
(

−2akUUTS(k) +
(

akUUT
)2
)

=

arg inf
U

T
U=I

a⪰0,||a||=1

K
∑

k=1

∣

∣

∣

∣

∣

∣
S(k) − akUUT

∣

∣

∣

∣

∣

∣

2

=

arg inf
U

T
U=I

A⪰0,||A||=1

||S − JU,U,ABK||

where S ::k := S(k), A := a and B := 1T .

A.2.2 Best Positive Semi-Definite Approxima-
tion.

Theorem A.1. If Y ∈ R
I×I is a symmetric matrix,

then a positive semi-definite matrix, S ∈ R
I×I , that

minimizes ||Y − S|| such that rank (S) ≤ R has an

eigenvalue decomposition consisting of the largest R
non-negative eigenvalues of Y and their corresponding

eigenvectors.

Proof. If we denote the eigenvalue decompositions of Y
and S as UΛUT and VΣVT , respectively, such that
the eigenvalues are sorted in a descending order, then
we have

arg inf
S⪰0

rank(S)≤R

||Y − S|| = arg inf
S⪰0

rank(S)≤R

1

2
Tr
(

S2
)

− Tr
(

YTS
)

or equivalently

arg inf
V

T
V=I

rank(Σ)≤R
Σii≥0

∀i ̸=j,Σij=0

1

2

I
∑

i=1

Σ2
ii − Tr

(

UΛUTVΣVT
)

.

From [16] we know that Tr
(

UΛUTVΣVT
)

≤
∑I

i=1 ΛiiΣii, and notice that the equality can be
achieved if we set V = U. Then, we can find an op-

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Model Name Model Definition

Spectral Clustering [11] sup
UTU=I

Tr
(

UT
(

D− 1
2XD− 1

2

)

U
)

MC-TR-I-EVD [10] sup
UTU=I

K
∑

k=1

Tr

(

UT

(

D(k)−
1
2
X ::kD

(k)−
1
2

)

U

)

MC-TR-I-EVDIT [10] sup
U

T
U=I

a⪰0,||a||=1

K
∑

k=1

Tr

(

UT

(

akD
(k)−

1
2
X ::kD

(k)−
1
2

)

U

)

Co-regularized
Spectral Clustering

(pairwise
regularization)

[9]

sup
U(k)TU(k)=I

K
∑

k=1

Tr

(

U(k)T
(

D(k)−
1
2
X ::kD

(k)−
1
2

)

U(k)

)

+ λ
∑

i ̸=j

Tr
(

U(i)U(i)TU(j)U(j)T
)

Co-regularized
Spectral Clustering
(centroid-based
regularlization)

[9]
sup

U
(k)T

U
(k)=I

U
∗T

U
∗=I

K
∑

k=1

Tr

(

U(k)T
(

D(k)−
1
2
X ::kD

(k)−
1
2

)

U(k)

)

+ λk Tr
(

U(k)U(k)TU∗U∗T
)

ComClus [12]
inf

U,W,A,B≥0

K
∑

k=1

∣

∣

∣

∣X::k −U diag (Wk:)U
T
∣

∣

∣

∣

2

+ β||W −AB||2 + ρ(||U||1 + ||A||1 + ||B||1)

CMNC [2]

inf
U

(m),A≥0
A1=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Y −

M
∑

m=1

(

U(m)U(m)T
)

×3 A:m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

where

Y ::k := D(k)−
1
2
X ::kD

(k)−
1
2

Richcom [6]

inf
U

(m),V(m),

a
(m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X −

M
∑

m=1

(

U(m)V(m)T
)

×3 a
(m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+

M
∑

m=1

r
(

U(m),V(m),a(m)
)

where r
(

U(m),V(m),a(m)
)

encodes sparsity and non-negativity

Table 2: Mathematical formulations of various graph clustering methods.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

timal Σ by solving

arg inf
rank(Σ)≤R

Σii≥0
∀i ̸=j,Σij=0

I
∑

i=1

1

2
Σ2

ii −ΛiiΣii.

To this end, notice first that for any i we have

inf
Σii≥0

1

2
Σ2

ii −ΛiiΣii =

{

− 1
2Λ

2
ii if Λii ≥ 0

0 if Λii < 0

and, therefore, the optimal Σ is given by setting

Σii =

{

max {Λii, 0} if i ≤ R
0 if i > R

A.2.3 Derivation of (3.9).

arg inf
U

(m)T
U

(m)=I

B
T∈I

M
∑

m=1

K
∑

k=1

∣

∣

∣

∣

∣

∣
Y ::k −AkmU(m)U(m)T

∣

∣

∣

∣

∣

∣

2

=

arg inf
U

(m)T
U

(m)=I

B
T∈I

M
∑

m=1

K
∑

k=1

Tr

(

(

AkmU(m)U(m)T
)2
)

+

−2Tr
(

AkmU(m)U(m)TY ::k

)

=

arg inf
U

(m)T
U

(m)=I

B
T∈I

M
∑

m=1

K
∑

k=1

Tr
(

Akm
2U(m)TU(m)

)

+

−2Tr
(

U(m)TAkmY ::kU
(m)
)

=

arg sup
U

(m)T
U

(m)=I

B
T∈I

M
∑

m=1

Tr
(

U(m)TZ(m)U(m)
)

where Z(m) :=
∑K

k=1 2AkmY ::k − ||A:m||
2
I.

A.2.4 Derivation of (3.10).

arg inf
U

(m)T
U

(m)=I

B
T∈I

M
∑

m=1

K
∑

k=1

∣

∣

∣

∣

∣

∣
Y ::k −AkmU(m)D

(m)
B

U(m)T
∣

∣

∣

∣

∣

∣

2

=

arg inf
U

(m)T
U

(m)=I

B
T∈I

M
∑

m=1

K
∑

k=1

Tr
(

Akm
2D

(m)
B

2)

+

Tr
(

−2AkmU(m)D
(m)
B

U(m)TY ::k

)

=

arg inf
U

(m)T
U

(m)=I

B
T∈I

M
∑

m=1

Tr
(

||A:m||
2
D

(m)
B

2)

+

Tr

(

−2U(m)D
(m)
B

U(m)T
K
∑

k=1

AkmY ::k

)

=

arg inf
U

(m)T
U

(m)=I

B
T∈I

M
∑

m=1

Tr
(

||A:m||
2
D

(m)
B

2)

+

Tr
(

−2 ||A:m||U(m)D
(m)
B

U(m)TZ(m)
)

=

arg inf
U

(m)T
U

(m)=I

B
T∈I

M
∑

m=1

∣

∣

∣

∣

∣

∣
Z(m) − ||A:m||U(m)D

(m)
B

U(m)T
∣

∣

∣

∣

∣

∣

2

where Z(m) :=
∑K

k=1 AkmY ::k/ ||A:m||.

A.3 Derivation of Space & Time Complexity
Space complexity. First note that A requires

space O (K) since each of its rows has only one non-
zero element. Additionally, space O

(

I2
)

is required for

storing Z(m) which, given the sparsity of a wide range of
real-world graphs, can potentially be greatly reduced to
O (nnz (X)) if a coordinate list representation is used in-
stead. Then, note that using eigensolvers that calculate
full eigendecompositions makes U and B require space
O
(

I2
)

and O (I), respectively, but using an eigensolver
that only calculates the necessary eigenpairs can reduce
this to O (IR) and O (R), respectively. Lastly, we need
to store JU,U,BK which requires space O

(

MI2
)

. Note

that before calculating JU,U,BK any existing Z(m) can
be discarded and the memory it used can become avail-
able to JU,U,BK. Therefore, the total space complexity
of our method is O

(

K +MI2 + IR
)

.

Time complexity. First we see that forming Z(m)

requires O
(

nnz (A:m) I2
)

time, and, therefore, forming

all of them requires O
(

KI2
)

time. Alternatively, if we
again take advantage of graph sparsity and the coordi-
nate list representation, the time complexity of forming
Z(m) can be bounded above by O (nnz (A:m) nnz (X)),
and, therefore, the total time complexity of forming
all of them can be bounded above by O (K nnz (X)).
Then, we update U and B by calculating the necessary
eigenpairs from each Z(m) which in a naive implemen-
tation will have a total time complexity of O

(

MI3
)

.
Calculating the M eigendecompositions in parallel re-
duces this time complexity to O

(

I3
)

, and although it in-

creases the space complexity of {Z(m)}Mm=1 to O
(

MI2
)

since all of them now need to be accessed simultane-
ously, it does not increase the total space complexity
of our method. Additionally, the time complexity of
the eigendecompositions can be in practice further dra-
matically reduced if only R eigenpairs are computed for
each eigendecomposition and an eigensolver that can
take advantage of sparsity is used [5]. The next step
is to calculate JU,U,BK and note that JU,U,BK::m =
U diag (Bm:)U

T which costs O
(

nnz (Bm:) I
2
)

. There-
fore, the total time complexity for computing JU,U,BK

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

will be O
(

RI2
)

. The last step is to update A which

costs O
(

KMI2
)

for all three constraint types studied.
Therefore, for t iterations the total time complexity of
our method is O

(

tMI3 + t(R+KM)I2
)

.

A.4 Experiment Setup Details. Despite the fact
that the embedding calculation method is the main
novel algorithmic contribution in the original papers
where the baseline methods were proposed, their au-
thors have made algorithmic choices for the other seg-
ments as well. However, it is not clear whether and
why these choices would lead to optimal clustering per-
formance. Therefore, since we are mostly interested in
comparing the quality of the embeddings produced by
each method, we define enhanced versions for all meth-
ods by considering combinations of their embeddings
calculation method with various methods of data pre-
processing, embeddings postprocessing and embeddings
clustering. Then, the combination that produces the
best clustering performance is reported as the perfor-
mance of each enhanced method. Specifically, for data
preprocessing we consider both raw data and the nor-
malized Laplacians of the graph views. We use the nor-
malized Laplacians for directed graphs as defined in [21]
which is a direct extension of the normalized Laplacians
for undirected graphs we discussed in Appendix A.1.3.
Then, for the node embeddings of the n-th calculated
views cluster, we consider both their raw unnormalized
form and their normalization as either U diag (Bn:) or
U diag (Cn:) with Cij :=

√

|Bij |. After this, embed-
dings may optionally be further normalized to be unit
vectors. Finally, we consider k-means, maximum likeli-
hood and inner product thresholding for clustering the
embeddings.

Based on the theoretical arguments we made in
Section 3, we define original GenClus to use normal-
ized Laplacians for the preprocessing step, and a non-
negative constraint forA andB. However, we still allow
it to be paired with any embedding post-processing and
clustering method, in the same way that enhanced Gen-
Clus does. Note that, although this design choice may
seem that it could prove an unfair advantage of Gen-
Clus over the baselines, we believe that it still was the
right decision for two main reasons. First, as with the
other baselines, we have no robust theoretical justifica-
tion for choosing a specific combination of embedding
postprocessing and clustering method. Second, we no-
ticed in our experiments that the performance of our
method was not significantly affected by altering this
combination.

Lastly, we would also like to point out that due to
potential issues that we think we may have discovered
with the optimization steps proposed in the original pa-

per of Richcom, we decided to consider a slightly differ-
ent variant in our experiments. Specifically, we propose
Symmetric Richcom, which uses the same methods of
preprocessing, postprocessing and embeddings cluster-
ing as the original Richcom, but has V constrained to
be identical to U.

A.4.1 Software & Hardware Specifications. All
experiments related to clustering performance were run
on a machine with two Intel® Xeon® E5-2680 v3 pro-
cessors, 378GB of RAM and MATLAB 9.7.0.1190202
(R2019b). All timing experiments were run on MAT-
LAB 9.7.0.1737446 (R2019b) Update 9 on a machine
with an AMD Ryzen™ 5 5600 processor overclocked
at 4.75GHz paired with 16GB of DDR4 dual-channel
SDRAM and a 1600MHz memory clock. Lastly, in all
experiments the mtimex routine [17] was used for faster
matrix multiplications.

A.4.2 A Solver for Symmetric Richcom. We
propose updating U and A according to the solver
described in [15]. In fact, this is the solver used
by ComClus for its updates of U, A and B. This
provides further motivation for deriving the updates of
Symmetric Richcom in this manner in the sense that it
may help reduce the impact the solvers can have on the
differences in the performance of the two models. To
avoid a lengthy derivation of the updates, notice that
we can very easily deduce them by directly modifying
the solver of ComClus. Specifically, when solving for
U in symmetric Richcom we use the same update as in
ComClus but we substitute W with AB. Similarly,
when solving for A we use the same update as in
ComClus but we substitute W with Y(3) and B with
B(U⊙U)T . Also, note that such a solver is also capable
of imposing sparsity and involves the same parameter ρ
as ComClus.

A.4.3 Clustering Quality on Artificial Data.
Embeddings Calculation. Note that the follow-

ing parametrization applies to both the original and the
enhanced methods, unless stated otherwise. First, we
calculate 100 samples of U, A and B by modeling the
data tensor as JU,U,ABK, where for each sample we
consider a different random initialization for U, A and
B and a different instance of the same data tensor. R
can range from 6 to 10, M is set to 3, the convergence
criterion is always defined to be the relative change in
the value of the objective function of each model, the
convergence threshold for the outer loop can be either
1e − 3, 1e − 6 or 1e − 9, and the maximum number of
iterations for the outer loop is set to 1000. Note that
apart from ComClus the other models consist of only

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

one loop. Regarding enhanced GenClus, we allow all
nine possible combinations of constraints on A and B
discussed in Section 3.1, which is in contrast with origi-
nal GenClus which we defined to have only non-negative
constraints. Also, note we do not make use of any of the
optimizations discussed in Appendix A.3. For ComClus,
ρ can use values in the set of the 6 equally spaced val-
ues from 0 to 0.16, β can use values in the set of the
6 equally spaced values from 0.01 to 0.9145, while the
threshold of convergence criterion of its inner loop is set
to 1e − 6. For CMNC we set its delta to 1, while for
Symmetric Richcom ρ can take values in the set of the
6 equally spaced values from 0 to 0.2. Also note that
both CMNC and Symmetric Richcom require a fixed
user-specified B, which in our experiments we always
set it to reflect the ground truth structure as closely as
possible. Lastly, for both CMNC and Symmetric Rich-
com, and when bothM andR are larger than or equal to
their ground truth values, we begin by creating the B of
optimal dimensions and structure. Then, any remaining
rows are added as all-zeros, and in turn any remaining
columns are added as random indicator vectors. Also,
when M or R is less than the ground truth, then an
appropriate number of rows or columns, respectively, is
removed randomly.

Matching calculated and ground truth view
clusters. After the model is calculated, we assign the
m-th view to the n-th cluster when the n-th element
of the m-th row of A has the largest magnitude among
all elements of that row. The reason for this is that
JU,U,ABK = JU,U,BK ×3 A which implies that the
m-th view will be reconstructed mostly based on the
n-th frontal slice of JU,U,BK. Then, we are matching
the calculated views clusters to the ground truth views
clusters so that we can in turn compare the calculated
nodes clusters with the appropriate ground truth nodes
clusters. To this end, for each calculated views cluster
we create a membership vector containing either a 1 or
a 0 at the m-th position if the m-th view belongs or
does not belong, respectively, to that cluster, and then
we normalize it to have unit norm. Similarly, we also
create membership vectors for the ground truth views
clusters and we match each calculated views cluster to
the ground truth views cluster with which the inner
product of their corresponding membership vectors is
maximized.

Clustering Performance Evaluation. To assess
the performance of each method we will use the Ad-
justed Mutual Information (AMI). AMI is an adjusted
version of the Normalized Mutual Information (NMI)
designed to mitigate the flaw of NMI of getting larger
values as the number of clusters gets closer to the total
number of samples. Note that, although not reported

here, in our experiments NMI and the Adjusted Rand
Index (ARI) produced very similar results to AMI. The
only notable difference is that sometimes the original
Symmetric Richcom gives better ARI score than the
original CMNC, which is not the case with AMI. How-
ever, since, as we will also see next, Symmetric Rich-
com and CMNC have the worst performance among all
methods, the presentation of NMI and ARI scores is
omitted.

A.4.4 Real-World Case Study. We preprocess the
data by removing all airlines that offered less than 100
flights and then all airports corresponding to less than
30 flights, and we repeat this process until no further
airline or airport is removed. This leaves us with 235
airports and 61 airlines whose flight counts are then
organized into a tensor of size 235 × 235 × 61. Note
that since each of the 61 frontal slices of this tensor
corresponds to the flight network of a specific airline,
while the views clusters in this case will represent
clusters of airlines. Similarly, the 235 rows and columns
of each frontal slice correspond to the different airports
between which the corresponding airline has been flying.
Therefore, each node clustering will correspond to a
clustering of airports.

A.4.5 Execution Time on Artificial Data. The
quantities we will study are the number of nodes, I, the
number of views, K, the node embeddings dimension,
R, and view embeddings dimension, M . When varying
I, we set K, R and M to 9, 3 and 3, respectively. When
varyingK, we set I, R andM to 60, 3 and 3 respectively.
When varying R, we set I, K, and M to 240, 9 and 3,
respectively. When varyingM we set I, K and R to 120,
9 and 96, respectively. We also understand, that some
could argue that these numbers should have been larger
for a proper time complexity analysis. However, doing
so would force us to completely exclude CMNC from
the comparisons, since it would very quickly produce
out-of-memory errors. In fact, as we will see next, this
issue sometimes occurs even with the aforementioned
experiment setup.

The graph generation process is similar to the
one in Section 4.1, but here the intra-community edge
density, γ, is always fixed to 0.15. When altering the
number of nodes or views, the sizes of node clusters and
views clusters are scaled proportionally. Similarly, the
parameters of the embedding generation is parametrized
in the same way as in Appendix A.4.3, but with a few
modifications. First, we consider three equally spaced
values instead of six for ComClus for both its β and ρ.
Second, we consider a fixed threshold of 1e − 6 for all
methods. And third, we calculate 5 samples for each

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

parameter combination instead of 100.

A.5 Real-World Case Study 2. Here we study the
well known reality mining dataset [4] which documented
the interactions of a group of students and faculty from
the MIT Media Laboratory and MIT Sloan business
school via special software on their phones. In our
experiments, we aggregate all communications between
82 participants on an hourly basis and for a total of
15 days, which leads to a time-evolving graph with an
adjacency tensor of size 82× 82× 360.

Figure Figure 6a indicates that the communication
patterns of the participants during the day have a
slight but observable tendency to be different from the
communication patterns at night. Specifically, Figure
Figure 6c shows that during the day there exist two
major clusters consisting mostly of Media Lab Graduate
students and two clusters of Sloan Business School
students. On the other hand, from Figure Figure 6b
we observe that during the night the clusters of Media
Lab students shrink in size, while the clusters of Sloan
Business School students vanish altogether. This is in
accordance with our intuition that during the night the
intensity communications is expected to be lower.

References

[1] Stephen Boyd et al., Distributed optimization and sta-

tistical learning via the alternating direction method of

multipliers, in Foundations and Trends® in Machine
learning 3.1 (2011), pp. 1–122.

[2] Zitai Chen et al., Tensor decomposition for multilayer

networks clustering, in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 01, 2019,
pp. 3371–3378.

[3] Lieven De Lathauwer, Decompositions of a higher-

order tensor in block terms—Part II: Definitions and

uniqueness, in SIAM Journal on Matrix Analysis and
Applications 30.3 (2008), pp. 1033–1066.

[4] Nathan Eagle and Alex (Sandy) Pentland, Reality

mining: sensing complex social systems, in Personal
and ubiquitous computing 10.4 (2006), pp. 255–268.

[5] Roger G Grimes, John G Lewis, and Horst D Simon,
A shifted block Lanczos algorithm for solving sparse

symmetric generalized eigenproblems, in SIAM Journal
on Matrix Analysis and Applications 15.1 (1994),
pp. 228–272.

[6] Ekta Gujral, Ravdeep Pasricha, and Evangelos Pa-
palexakis, Beyond rank-1: Discovering rich community

structure in multi-aspect graphs, in Proceedings of The
Web Conference 2020, 2020, pp. 452–462.

[7] Kejun Huang, Nicholas D Sidiropoulos, and Athana-
sios P Liavas, A flexible and efficient algorithmic

framework for constrained matrix and tensor factor-

ization, in IEEE Transactions on Signal Processing
64.19 (2016), pp. 5052–5065.

[8] Stefan Klus and Natasa Djurdjevac Conrad,
Koopman-based spectral clustering of directed

and time-evolving graphs, in arXiv preprint
arXiv:2204.02951 (2022).

[9] Abhishek Kumar, Piyush Rai, and Hal Daume, Co-
regularized multi-view spectral clustering, in Advances
in Neural Information Processing Systems, ed. by J.
Shawe-Taylor et al., vol. 24, Curran Associates, Inc.,
2011.

[10] Xinhai Liu et al., Multiview partitioning via tensor

methods, in IEEE Transactions on Knowledge and
Data Engineering 25.5 (2012), pp. 1056–1069.

[11] Andrew Ng, Michael Jordan, and Yair Weiss, On spec-

tral clustering: Analysis and an algorithm, in Advances
in neural information processing systems 14 (2001).

[12] Jingchao Ni et al., ComClus: A self-grouping frame-

work for multi-network clustering, in IEEE transac-
tions on knowledge and data engineering 30.3 (2017),
pp. 435–448.

[13] Maximilian Nickel et al., A Review of Relational Ma-

chine Learning for Knowledge Graphs, in Proceedings
of the IEEE 104.1 (2016), pp. 11–33.

[14] J Nocedal and SJ Wright, Numerical optimization, in
Springer Series in Operations Research and Financial
Engineering (2006).

[15] D Seung and L Lee, Algorithms for non-negative ma-

trix factorization, in Advances in neural information
processing systems 13 (2001), pp. 556–562.

[16] CM Theobald, An inequality for the trace of the

product of two symmetric matrices, in Mathematical
Proceedings of the Cambridge Philosophical Society,
vol. 77, 2, Cambridge University Press, 1975, pp. 265–
267.

[17] James Tursa, MTIMESX - Fast Matrix Multiply

with Multi-Dimensional Support, https : / / www .

mathworks . com / matlabcentral / fileexchange /

25977 - mtimesx - fast - matrix - multiply - with -

multi-dimensional-support, MATLAB Central File
Exchange. Retrieved October 3, 2022, 2022.

[18] Ulrike Von Luxburg, A tutorial on spectral clustering,
in Statistics and computing 17.4 (2007), pp. 395–416.

[19] Stephen J Wright, Coordinate descent algorithms, in
Mathematical Programming 151.1 (2015), pp. 3–34.

[20] Dengyong Zhou and Christopher JC Burges, Spec-

tral clustering and transductive learning with multiple

views, in Proceedings of the 24th international con-
ference on Machine learning, 2007, pp. 1159–1166.

[21] Dengyong Zhou, Jiayuan Huang, and Bernhard
Schölkopf, Learning from labeled and unlabeled data on

a directed graph, in Proceedings of the 22nd interna-
tional conference on Machine learning, 2005, pp. 1036–
1043.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

 9 PM

 8 PM

 7 PM

 6 PM

 5 PM

 4 PM

 3 PM

 2 PM

 1 PM

 9 AM

 8 AM

 7 AM

 6 AM

 5 AM

 4 AM

 3 AM

 2 AM

 1 AM

12 AM

11 AM

12 PM

11 PM

10 AM

10 PM

(a) Hour clusters

Media Lab First Year Graduate Student

Media Lab First Year Undergraduate Student

Media Lab Graduate Student (not a first year)

Media Lab Professor

Media Lab Staff

Media Lab Undergraduate

Sloan Business School

(b) Clusters of people during the night

Media Lab First Year Graduate Student

Media Lab First Year Undergraduate Student

Media Lab Graduate Student (not a first year)

Media Lab Professor

Media Lab Staff

Media Lab Undergraduate

Sloan Business School

(c) Clusters of people during the day

Figure 6: Clustering of hours of day and people by GenClus for the reality mining dataset. The right colored
bar in (a) shows the hour clusters while (b)-(c) show the adjacency matrices of a selected hour from the day and
night clusters, respectively. The remaining color bars in (a)-(c) serve as ground truth labels.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction.
	Proposed Unifying Framework.
	ComClus.
	Richcom.
	Centroid-based Multilayer Network Clustering (CMNC).
	Spectral Clustering.
	Single-View Spectral Clustering.
	Multi-View Spectral Clustering.

	Proposed Method.
	Optimization Steps.
	Steps for A.
	Steps for U and B.

	Model Interpretation.
	Space & Time Complexity.

	Experiments.
	Clustering Quality on Artificial Data.
	Results Analysis.

	Real-World Case Study.
	Results Analysis.

	Execution Time on Artificial Data.
	Results Analysis.

	Conclusions.
	Appendix.
	Related Work.
	ComClus.
	Methods Based on Block Term Decomposition.
	Spectral Clustering.
	Multi-View Spectral Clustering.

	Proofs
	Derivation of (2.5).
	Best Positive Semi-Definite Approximation.
	Derivation of (3.9).
	Derivation of (3.10).

	Derivation of Space & Time Complexity
	Experiment Setup Details.
	Software & Hardware Specifications.
	A Solver for Symmetric Richcom.
	Clustering Quality on Artificial Data.
	Real-World Case Study.
	Execution Time on Artificial Data.

	Real-World Case Study 2.

