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Abstract—Consider learning the shared representations from
multiple unlabeled views. Previous work either projects different
views to the same space while enforcing the agreement among
the projected views such as multiview canonical correlation
analysis (MCCA), or factorizes different views while ensuring the
common latent components across the views such as PARAFAC2,
a tensor decomposition method. In this paper we first investigate
a fundamental question: “Do these two approaches learn different
representations?” Preliminary numerical results suggest that in
practice they do, which, in turn, begs the question of how we
can leverage this observation in order to compute a superior rep-
resentation. In this paper, we present a simple proof-of-concept
scheme which augments MCCA with PARAFAC?2 representations
and vice-versa, and we demonstrate on multiple real datasets
that such scheme can improve upon the baseline representation,
paving the way for future research on optimally combining the
strengths of projection and factorization methods for multiview
representation learning.

Index Terms—Canonical correlation analysis, PARAFAC2, ten-
sor methods, projection models, factorization models, multiview
machine learning.

I. INTRODUCTION

Learning data representations by analyzing multiple views
jointly is arguably rendering more promising performance and
having better generalization ability than single-view learning
[26]. Interesting applications of multiview learning (MVL)
have been found in information retrieval, clustering, and
classification/recognition [30].

Typical approaches are based on either projection models
such as Canonical Correlation Analysis (CCA) [13] or fac-
torization models including tensor decomposition. Both have
demonstrated promising results for downstream tasks [24].

Focusing on representation learning from multiview data,
projection models, on the one hand, transform different views
to new spaces and fuse them to learn a single representation,
which include CCA variants [6], [11], [13], multi-kernel
learning (MKL) based methods [8], [25], deep autoencoder
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variants [19], [29]. Multiview CCA (MCCA) searches for
shared lower-dimensional representations of multiple views by
minimizing the distance between the shared representations
and the projected data from each view. MKL algorithms
combine data-driven kernels for different views together to
improve learning performance. The objective of autoencoder
variants is to learn a lower-dimensional representation of mul-
tiple views by reconstructing one view from the other views.
On the other hand, factorization models such as tensor meth-
ods [4], [10], [16], [20], [24] and matrix factorization-based
methods [15], [17], [18], [31], [32], exploit latent subspace
shared by multiple views by assuming that different views
are generated from the same subspaces. Matrix factorization-
based approaches decompose multiple views layer by layer
to obtain complementary information. Tensor-based methods
model multi-modal interactions among multiple views as a
tensor structure and factorize it to extract meaningful and
hidden information.

Despite the abundance of both projection-based and
factorization-based MVL models, identifying the model that
fits a data better and how to leverage the advantages of both
types models are rarely studied and are challenging topics.
More specifically, for example, the fundamental question of
whether those two classes of methods ultimately compute the
similar or different representations has received surprisingly
little attention. In this paper, we make a first attempt at answer-
ing that question, providing numerical evidence that in practice
those two classes of MVL learn different representations.
Towards that end, we use the UCI dataset (the details about this
dataset can be found in Sec. III) to elaborate such difference
between two representative multiview learning models: MCCA
(a projection model) and PARAFAC?2 (a factorization model).
The five views of the UCI data with dimensions between 47
and 240 are fed into MCCA and PARAFAC?2 to extract two la-
tent representations, respectively. In Fig. 1, the singular values
of the concatenated matrix of the two latent representations are
depicted, where d is the dimension of the latent representation
from MCCA and PARAFAC2. Given that the covariance of
the latent representation from MCCA is an identity matrix,
the rank of the concatenated matrix should be at least d. We
make the following fascinating observations:

1) For different choices of d, the rank of each concatenated



matrix is higher than d. Thus, PARARAFC2 and MCCA
indeed learn different subspaces.

2) As d increases, there appears to be a point after which
we observe a few repeated singular values which may
indicate some mutual redundancy in the learnt repre-
sentations. However, even after the d-th position, the
singular values are non-negligible, pointing to useful
non-noisy signal captured in the stacked representation.

As a result, our preliminary results indicate that in practice
MCCA and PARAFAC?2 learn different representations.
Given our observation, for a certain multiview dataset,
whether a projection or factorization model is preferred for the
downstream task is unknown, and forcing the latent representa-
tions from both models to be close or identical may make both
models lose their unique advantages. Thus, in the remainder
of this paper, we will investigate a simple augmentation-based
proof-of-concept scheme that allows us to augment one model
using the representations of the other, and study the behavior
of this approach, towards understanding how to best blend the
best of both representations into a superior representation.

2
\ d =2 18 d - 4
127 ]
16
1 14
12
08 1
08
06
06
04
04+
02
02 0
1 15 2 25 3 35 4 1 2 3 4 5 6 7 8
2 T 25
y d=6
16+ = 2 d == 8
145
12 15
1
08 1
06
041 05
02
0 0
0 2 4 6 8 10 12 o 2 4 8 8 10 12 14 16
as 25
) d=10 | d=12
15 15
! 1
05 05

0 " L 0 . .
0 5 10 15 20 0 5 10 15 20 25

Fig. 1. MCCA and PARAFAC?2 learn different subspaces.

II. PROOF-OF-CONCEPT PROPOSED METHOD

First, we discuss the two baseline models used, MCCA and
PARAFAC2, and subsequently describe our simple proof-of-
concept proposed method.

A. Projection model: MCCA

Multiview Canonical Correlation Analysis (MCC) seeks to
find a shared latent representation of two or more datasets
by enforcing that the projected representations are maximally
correlated [12], [13].

Given N views of a dataset {X,, € R4 *M}N | where M
is the number of data samples per view and d,, is the dimention
of the n-th view, MCCA computes a latent representation V €
R¥>*M by solving

min
{U. N

N
To 2
v 2loX =V, (M)
n=1 n=1
subject to V'V = I, where X,, is the centered version of X,
and matrices {U,, € R%*4}N_ are projectors.

B. Factorization model: PARAFAC2

PARAFAC2 [14], [23] is known in the tensor literature
for computing a factorization of so-called “irregular” tensors,
i.e., datasets which form a multiset {X,,})_, but where one
of the dimensions is not consistent across view (thus the
“irregular” characterization). Given the irregular tensor or mul-
tiset {X,,}_,, PARAFAC?2 solves the following optimization

problem: e
N
{Un,sn,(r;zn:?{Ll,H,G nz::l X0~ TnSuGlle
s.to U, =Q,H,Q,Q, =L n 2)

where S,, € RF* is diagonal, U,, € R%*® is factorized
into an orthonormal matrix Q,, € R% X9 and a matrix H €
R <R and the latent representation G € R*M

C. Proposed Augmented Models

In order to leverage the best of both representations, we pro-
pose a very simple augmentation-based model which is meant
to measure the effect of combining MCCA and PARAFAC2
representations in a manner that does not force them to be
equal, which would run the risk of eliminating what is unique
with respect to those representations:

Given a multivew dataset {X,,}_,, we propose

e« MCCA with an auxiliary view: we compute
PARAFAC2 on {X,}_, and we use latent represen-
tation G as a new N 4+ 1 view of that dataset. Given
the new augmented dataset, we compute its MCCA
representation.

« PARAFAC2 with an auxiliary view: we compute
MCCA on {X,, })"_; and we use latent representation
V as a new N + 1 view of that dataset. Given the
new augmented dataset, we compute its PARAFAC2
representation.

For both of the above methods, the latent dimensionality d
and R for each step of MCCA and PARAFAC?2, respectively,
are user-defined parameters.



III. NUMERICAL TESTS the information available. This is done for simplicity and
compatibility with the vanilla MCCA and PARAFAC2
models. However, as previous work on such data has
shown [21], there is important structure that can be

The effectiveness of our proposed methods is tested on the
K-means clustering task using the following four real-world

datasets. captured among the pixels, and we reserve introducing
« Cora Dataset consisting of 2, 708 nodes, 5,429 edges, this into our investigation as future work.
and 7 labels is a citation network for scientific publica- In Figures 2, 3, 4, 5, 6, 7, 8, and 9 we report the average

tions [7]. As in [5], we generate five views from the give ~ K-means (with the true K) clustering accuracy as well as
graph embeddings of the binary Cora graph including the standard derivation of 10 Monte Carlo tests of MCCA,
Node2Vec embeddings with 32 and 64 dimensions [9], PARAFAC2, MCCA with an auxiliary view from PARAFAC2
DeepWalk embeddings with 32 and 64 dimensions [22], with the best R among a few candidates, PARAFAC2 with
and Line (Large-scale information network embedding) an auxiliary view from MCCA with the best d among a few
embedding with 32 dimensions [27]. candidates on the four datasets w.r.t. d or R. Clearly, adding

e UCI Dataset includes mfeat-fac, mfeat-fou, mfeat-kar, the shared representation of multiple views extracted from
mfeat-pix, mfeat-zer features of handwritten digit images PARAFAC2 to MCCA as an auxiliary view increases the clus-
with dimensions 216, 76, 64, 240, and 47, respectively tering accuracy of MCCA compared against the prformance
[3]. We use the seven clusters representing digits 1, 2, of MCCA on the raw views. Similary statement holds true for
3,4,7, 8, and 9 with randomly chosen 100 images’ five = MCCA to PARAFAC2.
features/views per cluster/digit.

« US Highway Rail Road Crossing Accident Dataset,
sourced from the Federal Railroad Administration of 062
the US Department of Transportation, records 239,487
railroad accidents spanning from 1975 to 2021, which is
available at Kaggle [2]. We randomly select 500 accidents 058
that occurred with death and 500 accidents without death
involved. We generate two views where one contains en-
vironmental features, such as temperature and train speed
and other one contains train features, such as the number
locomotive units and the number of train cars in the train 052
that is involved in the accident. There are two labels
(with and without death) used. Even though there are

0.64

T T
—&— MCCA
—&— MCCA with an auxiliary view

06

Clustering accuracy
o
&
2

05

numerous variables recorded during an accident report, 048

many of which can be predictive of an accident [28], we

opted for simplicity at first by including a small subset % E 4 5 6 7 8 0 10
of numerical variables, in order to be compatible with ‘

the standard formulations of MCCA and PARAFAC2, Fig. 2. Clustering performance on Cora dataset.

however, we reserve a more complete investigation of

accident features in the context of multiview learning for 06 ‘ ‘ ‘ ‘ ‘ ‘

future work. [ E——
o Hyperspectral Imaging Dataset: We use the

Salinas—A dataset from the widely used Hyperspectral

Remote Sensing Scenes data repository [1]. The original

format of the dataset is an 86 x 83 image over 204 osh

frequency bands, collected over the Salinas Valley,

California. Each pixel has a unique label belonging into

one of seven classes, depending on the type of vegetation.

For the purposes of creating a simple multiview dataset, %

we flatten the image into a set of pixels, which are our o4r __:-:i:‘ 1

data points, and we divide the 204 frequency bands into il

two views, the first one containing the first 102 bands 0.35)

and the second the subsequent 102. We randomly select

300 pixels per class and we generate our dataset (we o ‘ ‘ ‘ ‘ ‘ ‘

selected 300 due to limitations of the least represented 2 4 6 8 10 12 14 16

class). Note that in the current formulation, we ignore

any spatial information since the pixels are flattened, Fig. 3. Clustering performance on Cora dataset.

which understandably does not take full advantage of
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Clustering performance on Rail Road Crossing Accident dataset.



IV. CONCLUSIONS

In this work we study the following fundamental question:
Do projection-based MVL methods, such as MCCA, learn
different latent representations than their factorization-based
counterparts, such as PARAFAC2? Our preliminary results
indicate that in practice the two types of approaches learn
different representations. Subsequently, we pose the following
question: How can we best combine the projection-based and
factorization-based representations in a way that achieves su-
perior performance? We propose a simple augmentation-based
proof-of-concept scheme which demonstrates that in a number
of real multiview datasets even such simple means of combin-
ing representations can yield performance improvements. Even
though our results are encouraging, there are a lot of important
and interesting research questions that lie ahead. We, thus,
view this paper as small first step towards investigating the
best of both worlds, projection and factorization, in learning
multiview data representations.
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