
Project or Factorize? A case study of Multiview

CCA and PARAFAC2 tensor factorization

Jia Chen

Dept. of Electrical and Computer Engineering

University of California Riverside

jiac@ucr.edu

Evangelos E. Papalexakis

Dept. of Computer Science and Engineering

Uuniversity of Californiav Riverside

epapalex@cs.ucr.edu

Abstract—Consider learning the shared representations from
multiple unlabeled views. Previous work either projects different
views to the same space while enforcing the agreement among
the projected views such as multiview canonical correlation
analysis (MCCA), or factorizes different views while ensuring the
common latent components across the views such as PARAFAC2,
a tensor decomposition method. In this paper we first investigate
a fundamental question: “Do these two approaches learn different
representations?” Preliminary numerical results suggest that in
practice they do, which, in turn, begs the question of how we
can leverage this observation in order to compute a superior rep-
resentation. In this paper, we present a simple proof-of-concept
scheme which augments MCCA with PARAFAC2 representations
and vice-versa, and we demonstrate on multiple real datasets
that such scheme can improve upon the baseline representation,
paving the way for future research on optimally combining the
strengths of projection and factorization methods for multiview
representation learning.

Index Terms—Canonical correlation analysis, PARAFAC2, ten-
sor methods, projection models, factorization models, multiview
machine learning.

I. INTRODUCTION

Learning data representations by analyzing multiple views

jointly is arguably rendering more promising performance and

having better generalization ability than single-view learning

[26]. Interesting applications of multiview learning (MVL)

have been found in information retrieval, clustering, and

classification/recognition [30].

Typical approaches are based on either projection models

such as Canonical Correlation Analysis (CCA) [13] or fac-

torization models including tensor decomposition. Both have

demonstrated promising results for downstream tasks [24].

Focusing on representation learning from multiview data,

projection models, on the one hand, transform different views

to new spaces and fuse them to learn a single representation,

which include CCA variants [6], [11], [13], multi-kernel

learning (MKL) based methods [8], [25], deep autoencoder
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variants [19], [29]. Multiview CCA (MCCA) searches for

shared lower-dimensional representations of multiple views by

minimizing the distance between the shared representations

and the projected data from each view. MKL algorithms

combine data-driven kernels for different views together to

improve learning performance. The objective of autoencoder

variants is to learn a lower-dimensional representation of mul-

tiple views by reconstructing one view from the other views.

On the other hand, factorization models such as tensor meth-

ods [4], [10], [16], [20], [24] and matrix factorization-based

methods [15], [17], [18], [31], [32], exploit latent subspace

shared by multiple views by assuming that different views

are generated from the same subspaces. Matrix factorization-

based approaches decompose multiple views layer by layer

to obtain complementary information. Tensor-based methods

model multi-modal interactions among multiple views as a

tensor structure and factorize it to extract meaningful and

hidden information.

Despite the abundance of both projection-based and

factorization-based MVL models, identifying the model that

fits a data better and how to leverage the advantages of both

types models are rarely studied and are challenging topics.

More specifically, for example, the fundamental question of

whether those two classes of methods ultimately compute the

similar or different representations has received surprisingly

little attention. In this paper, we make a first attempt at answer-

ing that question, providing numerical evidence that in practice

those two classes of MVL learn different representations.

Towards that end, we use the UCI dataset (the details about this

dataset can be found in Sec. III) to elaborate such difference

between two representative multiview learning models: MCCA

(a projection model) and PARAFAC2 (a factorization model).

The five views of the UCI data with dimensions between 47

and 240 are fed into MCCA and PARAFAC2 to extract two la-

tent representations, respectively. In Fig. 1, the singular values

of the concatenated matrix of the two latent representations are

depicted, where d is the dimension of the latent representation

from MCCA and PARAFAC2. Given that the covariance of

the latent representation from MCCA is an identity matrix,

the rank of the concatenated matrix should be at least d. We

make the following fascinating observations:

1) For different choices of d, the rank of each concatenated



matrix is higher than d. Thus, PARARAFC2 and MCCA

indeed learn different subspaces.

2) As d increases, there appears to be a point after which

we observe a few repeated singular values which may

indicate some mutual redundancy in the learnt repre-

sentations. However, even after the d-th position, the

singular values are non-negligible, pointing to useful

non-noisy signal captured in the stacked representation.

As a result, our preliminary results indicate that in practice

MCCA and PARAFAC2 learn different representations.

Given our observation, for a certain multiview dataset,

whether a projection or factorization model is preferred for the

downstream task is unknown, and forcing the latent representa-

tions from both models to be close or identical may make both

models lose their unique advantages. Thus, in the remainder

of this paper, we will investigate a simple augmentation-based

proof-of-concept scheme that allows us to augment one model

using the representations of the other, and study the behavior

of this approach, towards understanding how to best blend the

best of both representations into a superior representation.
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Fig. 1. MCCA and PARAFAC2 learn different subspaces.

II. PROOF-OF-CONCEPT PROPOSED METHOD

First, we discuss the two baseline models used, MCCA and

PARAFAC2, and subsequently describe our simple proof-of-

concept proposed method.

A. Projection model: MCCA

Multiview Canonical Correlation Analysis (MCC) seeks to

find a shared latent representation of two or more datasets

by enforcing that the projected representations are maximally

correlated [12], [13].

Given N views of a dataset {Xn ∈ R
dn×M}Nn=1

where M

is the number of data samples per view and dn is the dimention

of the n-th view, MCCA computes a latent representation V ∈
R

d×M by solving

min
{Un}N

n=1
,V

N
∑

n=1

∥

∥U⊤
n X̄n −V

∥

∥

2

F
(1)

subject to V⊤V = I, where X̄n is the centered version of X,

and matrices {Un ∈ R
dn×d}Nn=1

are projectors.

B. Factorization model: PARAFAC2

PARAFAC2 [14], [23] is known in the tensor literature

for computing a factorization of so-called “irregular” tensors,

i.e., datasets which form a multiset {Xn}
N
n=1

but where one

of the dimensions is not consistent across view (thus the

“irregular” characterization). Given the irregular tensor or mul-

tiset {Xn}
N
n=1

, PARAFAC2 solves the following optimization

problem:

min
{Un,Sn,Qn}N

n=1
,H,G

N
∑

n=1

∥Xn −UnSnG∥2F

s. to Un = QnH, Q⊤
nQn = I, ∀n (2)

where Sn ∈ R
R×R is diagonal, Un ∈ R

dn×R is factorized

into an orthonormal matrix Qn ∈ R
dn×dn and a matrix H ∈

R
dn×R, and the latent representation G ∈ R

R×M .

C. Proposed Augmented Models

In order to leverage the best of both representations, we pro-

pose a very simple augmentation-based model which is meant

to measure the effect of combining MCCA and PARAFAC2

representations in a manner that does not force them to be

equal, which would run the risk of eliminating what is unique

with respect to those representations:

Given a multivew dataset {Xn}
N
n=1

, we propose

• MCCA with an auxiliary view: we compute

PARAFAC2 on {Xn}
N
n=1

and we use latent represen-

tation G as a new N + 1 view of that dataset. Given

the new augmented dataset, we compute its MCCA

representation.

• PARAFAC2 with an auxiliary view: we compute

MCCA on {Xn}
N
n=1

and we use latent representation

V as a new N + 1 view of that dataset. Given the

new augmented dataset, we compute its PARAFAC2

representation.

For both of the above methods, the latent dimensionality d

and R for each step of MCCA and PARAFAC2, respectively,

are user-defined parameters.







IV. CONCLUSIONS

In this work we study the following fundamental question:

Do projection-based MVL methods, such as MCCA, learn

different latent representations than their factorization-based

counterparts, such as PARAFAC2? Our preliminary results

indicate that in practice the two types of approaches learn

different representations. Subsequently, we pose the following

question: How can we best combine the projection-based and

factorization-based representations in a way that achieves su-

perior performance? We propose a simple augmentation-based

proof-of-concept scheme which demonstrates that in a number

of real multiview datasets even such simple means of combin-

ing representations can yield performance improvements. Even

though our results are encouraging, there are a lot of important

and interesting research questions that lie ahead. We, thus,

view this paper as small first step towards investigating the

best of both worlds, projection and factorization, in learning

multiview data representations.
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