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Abstract—How can we accurately complete tensors by learning
relationships of dimensions along each mode? Tensor completion,
a widely studied problem, is to predict missing entries in incom-
plete tensors. Tensor decomposition methods, fundamental tensor
analysis tools, have been actively developed to solve tensor com-
pletion tasks. However, standard tensor decomposition models
have not been designed to learn relationships of dimensions along
each mode, which limits to accurate tensor completion. Also,
previously developed tensor decomposition models have required
prior knowledge between relations within dimensions to model
the relations, expensive to obtain. This paper proposes TGL
(Tensor Decomposition Learning Global and Local Structures) to
accurately predict missing entries in tensors. TGL reconstructs
a tensor with factor matrices which learn local structures
with GNN without prior knowledges. Extensive experiments are
conducted to evaluate TGL with baselines and datasets.

Index Terms—Tensor Decomposition, GNNs

I. INTRODUCTION

Given an incomplete tensor, how can we predict missing

values learning relations within dimensions?

A tensor is a natural way to represent multi-dimensional

data. For example, 3-mode tensor (user, movie, time) repre-

sents movie rating data where users give rates to movies at spe-

cific times. The goal of tensor completion is to impute missing

entries in incomplete tensors which are partially observed.

The tensor completion problems have been actively studied

across diverse domain of applications such as recommender

system [1]–[3], anomaly detection [4], computer vision [5],

and air quality analysis [6].

Tensor decomposition methods have played a key role

in tensor analysis such that they have significantly been

developed to solve the completion tasks. CP (CANDE-

COMP/PARAFAC) [7], [8] factorization is one of the most

widely used tensor factorization models due to its simplicity

and interpretability, which factorizes a tensor into a set of

factor matrices and a core tensor which is restricted to be

diagonal. However, the design of standard CP decomposition

model does not consider explicitly relations between dimen-

sions, which degrades the performance in missing entries

prediction.

Recently, various types of tensor decomposition methods

have been proposed to leverage prior knowledges, such as

temporal knowledge, correlations between dimensions, as a

regularization into loss function [6], [9]. However, prior

knowledges are expensive to obtain for general datasets.

In this paper, we propose TGL (Tensor Decomposition

Learning Global and Local Structures) to learn relationships

between dimensions without prior knowledges. We leverage

Graph Neural Networks (GNNs) to learn local structures. TGL

initially produces representations with a standard CP decom-

position and then generates relation matrices with the rep-

resentations. With representation and relation matrices, TGL

updates representations via GNNs for each mode. We show

TGL effectively learn relationships and achieve comparable

accuracy compared to existing baselines in tensor completion.

II. PROPOSED METHOD

In this study, we utilized both a CP decomposition method

and GNNs to learn relations within dimensions of each mode

for incomplete tensors without prior knowledges. In each

iteration of training, we generate K-nearest neighborhoods

(KNN) graphs with the current factor matrices for each mode.

Then we update factor matrices using KNN graphs and GNNs.

With these newly updated factor matrices, we reconstruct a

tensor to jointly train factor matrices and GNNs.

We generate graphs RA,RB and RC with factor matrices

A, B, and C by computing pairwise cosine similarity for each

mode. A graph G contains a set of nodes V (|V | = N), a set of

edges E, and an adjacency matrix R ∈ R
N×N as G = (V,E).

Given the number of layers l(1 ≤ l ≤ L), l + 1th hidden

convolutional layer of GNNs takes feature matrix of the lth

layer and the adjacency matrix

H
(l+1) = f(H(l),R) = σ(R̂H

(l)
W

(l))

where R̂ = D̃
−

1
2 R̃D̃

1
2 is a symmetric normalization of

the self-connections added adjacency matrix R̃ = R + I,

D̃ is the diagonal node degree matrix with d̃ii =
∑

j r̃ij ,

W
(l) ∈ R

dl×dl+1 is a trainable weight matrix. σ is a non-

linear activation function. Note that initial feature matrix H
(0)

is the factor matrix obtained.

Given factor matrices A,B, and C, relation matrices

RA,RB and RC , and GNN models {f1, f2, f3} for each
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