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Abstract— FlameFinder, a novel deep metric learning (DML)
framework, accurately detects RGB-obscured flames using
thermal images from firefighter drones during wildfire mon-
itoring. In contrast to RGB, thermal cameras can capture
smoke-obscured flame features but they lack absolute thermal
reference points, detecting many nonflame hot spots as false
positives. This issue suggests that extracting features from both
modalities in unobscured cases can reduce the model’s bias to
relative thermal gradients. Following this idea, our proposed
model utilizes paired thermal-RGB images captured onboard
drones for training, learning latent flame features from smoke-
free samples. In testing, it identifies flames in smoky patches
based on their equivalent thermal-domain distribution, improv-
ing performance with supervised and distance-based clustering
metrics. The approach includes a flame segmentation method
and a DML-aided detection framework with center loss (CL),
triplet CL (TCL), and triplet cosine CL (TCCL), to find the
optimal cluster representatives for classification. Evaluation of
FLAME2 and FLAME3 datasets shows the method’s effectiveness
in diverse fire and no-fire scenarios. However, the CL dominates
the two other losses, resulting in the model missing features
that are sensitive to them. To overcome this issue, an attention
mechanism is proposed making nonuniform feature contribution
possible and amplifying the critical role of cosine and triplet loss
in the DML framework. Plus, the attentive DML shows improved
interpretability, class discrimination, and decreased intraclass
variance exploiting several other flame-related features. The
proposed model surpasses the baseline with a binary classifier by
4.4% in FLAME?2 and 7% in FLAME3 datasets for unobscured
flame detection accuracy. It also demonstrates enhanced class
separation in obscured scenarios compared to fine-tuned VGG19,
ResNet18, and three other backbone models tailored for flame
detection.

Index Terms— Attention, deep metric learning, flame detection.

I. INTRODUCTION
OREST fires cause property damage, injuries, and deaths,
harming people and the economy. Extreme wildfire events
pose greater risks and challenges. Therefore, efficient wildfire
detection and management are essential to mitigate these
impacts [1]. Existing technologies are not yet capable of
accurate and timely detection of wildfire noting the limited
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lifetime and sensing range of thermal/smoke sensors, delays,
and low spatial resolution associated with satellites’ observa-
tions [2]. In the context of wildfire detection, unmanned aerial
vehicles (UAVs) have emerged as a promising technology for
wildfire detection and management. UAVs offer high mobility,
flexibility [3], low deployment cost, and real-time data col-
lection capabilities, making them well-suited for monitoring
wildfires in remote and challenging terrains [4], [5]. Deploying
UAV systems for wildfire management has not been limited
to wildfire detection [6], [7]. The performance of UAVs in
other tasks such as active wildfire monitoring with decision-
making systems [8] and spread modeling of fire frontiers
rely on how accurate their input is provided by a flame
detection system [7]. While many improvements have been
made in terms of general flame detection, commercial UAVs
with visual cameras cannot yet accurately identify the flame
locations when smoke and water vapor block visible-light spot
fires, resulting in false negatives. It should be noted that while
smoke detected in RGB images can be an indicator of fire,
it cannot accurately pinpoint the fire location and intensity due
to the complex dynamics of smoke, wind fire, and several other
effective variables. As a result, utilizing thermal images was
hypothesized as a solution for drone-based flame mapping [9].

While some studies focus on thermal-domain fire detection
images by exploring sensor response and image-processing
techniques, flame detection for smoke-obscured samples is
understudied and remains a major gap in this area [10]. On the
other hand, the lack of absolute thermal reference points and
the existence of other thermal sources make models trained
solely in thermal domains inaccurate. Shortcomings of pure
RGB and pure thermal-domain methods pose the fact that the
problem of obscured flame detection naturally needs comple-
mentary modalities. Following this idea, to extract features
associated with flames and not just hotspots occurring in the
wildland (e.g., carried smoke), an idea would be to transfer
knowledge (using labels), from unobscured samples in the
RGB domain (as an indirect supervision) to the unannotated
target thermal domain. Deep neural networks (DNNs) have
shown potential for UAV-based flame detection by integrating
data from RGB and thermal cameras [11]. Such integration
provides complementary information, improving the discrimi-
nation of flames from other heat sources. Transfer learning and
fine-tuning on DNN architectures have demonstrated enhanced
flame detection accuracy in UAV-collected images [12]. This
process can be initiated by providing annotations with a seg-
mentation algorithm on the source domain. Next, to aggregate
the embedded information of the thermal domain, a model
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is trained to shape a compressed latent space with objectives
that capture various flames, rather than simply getting biased
toward the thermal domain intensity. Solving this challenge
is core to overcome the problem of relative thermal reference
points and nonflame hotspots appearing as false positives.

Among representation learning approaches proposed for
clustering, deep metric learning (DML) has shown major suc-
cess for learning similarity and distance metrics by combining
deep learning with distance metric learning [13]. Regarding
this idea, given the rich latent space constructed with DML
captures enough features from both classes on the thermal
domain, flames that are obscured by smoke in the RGB domain
will have corresponding thermal representations that fall in the
positive (flame) class of the discriminator. Moreover, samples
with no flames that have similar smoke patterns (local RGB
patterns) to occluded flames will not appear similar to flames
in the thermal domain.

Our proposed work uses bimodal data in RGB and thermal
domains such that one modality (RGB) is used for sample
annotation, while the other modality (thermal) offers latent
features associated with the sample’s classes, making inference
possible with merely the second modality (thermal), and
providing flame predictions for obscured areas. Such tasks fall
under the umbrella of domain adaptation, where knowledge is
transferred from one domain to the other [14]. Here, it should
be mentioned that discrepancies between the source and target
domain distributions can affect the performance of DML
models on multimodal data [15], [16].

This study employs deep metric learning (DML) to enhance
the model’s performance in separating class clusters within
the embedding space, specifically for detecting smoke-covered
flames using paired RGB—thermal images. To facilitate the
generation of data patches for fire spread modeling and
monitoring, we introduce a segmentation and annotation
framework (Section III-A). This framework labels a patch
as “flame” if it contains at least one flame-annotated pixel
and as “no-flame” otherwise. While many advanced domain
adaptation methods offer innovative solutions to align features
of the complementary domains, our simple indirect supervi-
sion approach benefits from the pairwise nature of patches
in the source and target domains to make the convergence
path smoother than unsupervised cases. After annotation is
provided, a DML method is utilized for the annotated data,
training a feature extractor to distinguish between flame and
nonflame patches. A classifier is then employed to predict
flames in smoke-obscured areas where no labels are available.
The framework incorporates three loss functions in the DML
framework to learn an optimal embedding function in the
latent space. Recognizing the dominance of center loss (CL),
particularly for magnitude-sensitive features, we propose an
attention mechanism to balance feature contributions across
the three DML loss gradients, harnessing the full potential
of the constructed embedding space. This feature-selective
loss smoothing enhances class discrimination in the latent
feature space, addressing the issue of loss domination in
multiobjective optimization. The main contributions of this
work are as follows.
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1) An improved thermal-based flame detection method
onboard aerial vehicles using a clustering-guided feature
representation learning over RGB and thermal images
and domain adaptation in training to improve perfor-
mance and reliability.

Proposing learnable class representatives optimized with
stochastic gradient descent (SGD), resulting in enhanced
discrimination of class-related latent features.
Proposing a novel attention mechanism to balance latent
feature contribution in DML loss functions, resulting in
diverse feature discovery.

2)

3)

II. RELATED WORKS

Supervised machine learning techniques are increasingly
applied in wildfire detection. In [17], an approach combines
local binary pattern (LBP) and SVM for smoke detection from
UAV-captured RGB images and a CNN for flame detection
with preprocessing steps such as histogram equalization and
low-pass filtering. XtinguishNet [18] trains a CNN on IoT
data for real-time wildfire detection, offering weather insights
and fire intensity estimates. Nguyen et al. [19] presented
a MobileNet-based single-shot detection (SSD) model for
real-time UAV-based wildfire monitoring. Some other works
employ heuristic masks such as using HSV domain filtering
for flame-sensitive features [20]. Some other works focus on
object-detection-based approaches with a simplified YOLO
model [21] or MobileNet combined with YOLO-v4 [22].
Notably, none of these works explore multimodal inputs for
obscured flame detection.

A. DML-Based Object Detection/Classification

DML-based object detection has become popular in com-
puter vision for learning distance metrics as a path to
learn rich feature representations [13]. In [23], the proposed
method tunes the backbone network parameters to find an
embedding function for multimodal data in a single train-
ing process. They use a subnet architecture for embedding
function training and a multimodal mixture distribution for
class posterior computation. In facial expression recognition,
Rajoli et al. [13] improved classification accuracy using DML
and triplet loss, with SGD optimizing class prototypes, back-
bone, and classifier parameters together. DML’s popularity
in few-shot learning is evident in [24], employing repre-
sentation generation, and distance estimation modules beside
DML for object representation, classification, and location
estimation. Lu et al. [25] discussed decoupled metric network
(DMNet) for single-object detection, introducing decoupled
representation transformation (DRT) and image-level distance
metric learning (IDML) to address representation disagree-
ment and enhance generalization. DML-based methods excel
in multimodal detection for capturing correlations and com-
plex features across modalities [26]. However, challenges arise
in handling high-dimensional feature spaces and maintaining
a balance between dimensionality size and the model per-
formance. The density of the embedding space influences
generalization in DML-based models [27], while significant
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dimension reduction may impact performance. Although var-
ious works contribute to enhancing DML-based approaches,
this work pioneers the use of DML in flame detection, intro-
ducing an aggregated loss including triplet and cosine losses
with CL to emphasize class discrimination aided by attention.

B. Attention in DML

Traditional DML models effectively learn embedding func-
tions but struggle with dynamic focus on different aspects of
the data and adapting to variable-length inputs [28]. Attention
mechanisms in DML, as highlighted by Kim et al. [29],
enhance feature embeddings and improve performance on
image retrieval tasks by allowing each learner to attend
to different parts of the input. Wang et al. [30] employed
attention for feature balancing and class representation
weighting, introducing class-aware attention (CAA) to identify
noisy images and improve convergence in DML. Addressing
DML challenges, Kotovenko et al. [31] introduced a cross-
attention mechanism between image embeddings, establishing
a hierarchy of conditional embeddings to enhance tuple
representations. Seidenschwarz et al. [32] went beyond pairs
and triplets in DML, proposing message-passing networks
with an attention mechanism to weigh the importance of each
neighbor in a mini-batch. Li et al. [33] introduced transformed
attention consistency and contrastive clustering loss for robust
similarity measures in DML. In several application domains,
attention shows significant improvement for compressed
feature embedding. In [34], mixed attention mechanisms aid
histopathological image retrieval. Dong et al. [35] addressed
the challenge of varying input sizes in DML with a hybrid
channel and spatial attention approach for pavement distress
classification. Coskun et al. [36] used an attentive RNN in
human motion analysis to measure the similarity between
motion patterns. Joint embedding of visual modalities, such as
optical flows and RGB, is explored in [30] for near-duplicate
video retrieval, employing attention modules to capture
different levels of granularity in video-level representation.
Specifically, for flame detection, the authors in [37] used a
dynamic attention strategy that focuses on scale-aware and
spatial-aware features. Recent works such as [38] integrate
Transformer encoder blocks with multihead attention to better
capture global and contextual feature information.

III. PROPOSED METHOD

This section describes our approach for flame detection and
classification (Fig. 1) in obscured cases. A detailed description
of the symbols used in the upcoming equations is available
in the Nomenclature section. The objective is to learn the
relationship between flame patterns in RGB and their corre-
sponding thermal representation. The process involves three
main steps.

1) Unobscured Flame Annotation: Annotating visible
flames in RGB images using Algorithm 1.

2) DML-Guided Learning: Training an autoencoder and
a classifier with DML on labeled thermal images
(Algorithm 2).

5007212

Algorithm 1 FlameSeg: RGB-Unobscured Flame Segmenta-
tion Using Image Processing

Inputs:

« Img(g g, p) (input images),
« R,, G, B, (red, green, blue channel means),
« Tg, Ty (green and blue channel value threshold),
« «, B (red-to-green low and high margin coefficients)
Output: Flame segmentation mask m.
1. filtering based on the distance to the mean:
i 0, Imgr — Ry < Imgp) — By,
mi(x,y) <— 10, Imgpg — Ry <Imgg —Gn
1, Otherwise
2. filtering based (;n the value:
[0, 1 mgrg) > Tg
my(x,y) <— 10, Imgp > 1
1, Otherwise
3. filtering based on the inter-channel distance:
[ 0, |Img[R] - Img[G]| < almgc
0, ’Img[R] —Z*Img[G]| > BImgr)
0, |1mg[G] —2*Img[B]| < dImgq)
| 1, Otherwise
4. applying the masks, removing single pixels, and smoothing

m3(x,y) <—

3) DML-Guided Inference: Using the trained model for
obscured thermal patches. An attention mechanism bal-
ances the role of loss functions across features of the
latent space.

A. Unobscured Flame Annotation

In response to the scarcity of annotated RGB-thermal
image pairs for wildfire segmentation, we propose a tailored
filtering approach for unobscured flame detection in top-
down UAV-captured RGB images. The RGB-unobscured flame
segmentation algorithm (Algorithm 1) creates a segmentation
mask based on heuristic channel value inequalities, which can
be later value. Next, smoothing and pixel-removal operations
are applied, and resulting patches are labeled as ‘“flame”
or “no-flame,” providing indirect supervision for learning to
detect flames in unannotated patches during the inference
phase. This strategy aims to overcome challenges associated
with the lack of absolute thermal reference points, mitigating
misclassification in thermal images due to relative temperature
gradients. It is worth highlighting the fact that this simple, yet
automated segmentation is prone to error, and as a result, label
noise may be limiting the performance of the model in terms of
classification accuracy. A comparative analysis of the effect of
segmentation noise is done in Section III-A3 to further justify
the automated segmentation.

1) RGB Mask Generation: In light of the approaches pro-
posed by Buza and Akagic [39] and Dzigal et al. [40] for
forest fire detection, we have developed a well-fit masking
method to cater to the specific type of fire encountered in
real-world situations, namely, spot flames captured with a
top-down perspective by UAVs. Algorithm 1 explains our
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(a) Training: simultaneously learning the encoder, decoder, embedding space, and classifier. The class’s prototype and the embedding function are

jointly trained, while each feature’s loss contribution is balanced with the attention module. Finally, the thermal patches are predicted as flame/no-flame.
(b) Inference: obscured thermal images are introduced to the detector, and based on the classifier’s output, the corresponding cluster (patch label) is predicted.

approach for detecting unobscured flames in RGB images.
This algorithm sets a criterion based on channel means, values,
and interchannel distances to generate a flame segmentation
mask. The combination of three masks representing RGB
criteria, reflecting scene-specific features such as the domi-
nant green background in forest fire images, facilitates the
identification of flames amidst the smoke. We calculate a
flame segmentation mask by combining three masks, each
representing an RGB criterion for candidate flames. The reason
for choosing such criteria lies in some scene-specific features,
such as the dominant green texture of the background in
forest fire images. In addition, the combination of green and
red channels creates orange and yellow tones that are the
dominant colors in the observed flames. Fig. 2 demonstrates
the segmentation results followed by smoothing and pixel-
removal operations.

2) Thermal Patch Labeling: Eventually, any patch con-
taining part of a detected flame in the output image will
be labeled positive as “flame,” and all other patches will
be labeled negative as “no-flame.” All equivalent thermal
patches of the pair thermal image will be annotated likewise.
To demonstrate the effectiveness of the algorithm, a set of
such patches is pixel-annotated by a human expert, and the
corresponding results are presented in Section IV-B. It should
be noted that the mask is not used as an annotation module
in the inference phase. We intend to classify smoky patches
as flame/no-flame where no reliable class is provided. Thus,
no labels are given or produced for the inference phase.
In other words, the mask provides indirect supervision for a
dataset of unannotated patches, in which the associated side-
by-side thermal features of flames are learned to detect flames
for classification on smoky patches in the inference phase. This
indirect thermal patch labeling aims to avoid using the relative
thermal spectrum captured in thermal images. This issue in

1 1
1 1
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Fig. 2. Unobscured flame segmentation. Sample images demonstrating
the performance of the proposed unobscured flame segmentation method in
identifying flame instances covered by smoke.

thermal imagery is rooted in the lack of absolute thermal ref-
erence points. As a result, thermal values indicate the relative
temperature of an area compared to its surroundings. It should
be noted that in the case of using thermal images directly,
any other local temperature gradient can lead the patch to be
misclassified as a flame. In conclusion, the joint usage of RGB
and thermal modalities in segmentation and classification,
respectively, surpasses the discussed issues raised in unimodal
RGB/thermal detection. It is noteworthy that for optimal
segmentation performance, the threshold values (z,, 1) and
parameters (¢, ), which are only empirical hyperparameters,
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need to be fine-tuned to accommodate for misty flames arising
due to smoke.

3) Comparative Annotation Analysis: For a set of
8640 patches, originating from 135 images, the proposed anno-
tation mechanism (Section III-A) was able to identify 81%
of the flames detected by an expert. One main concern would
be the effect of mislabeled patches on the final performance of
the model. To be more specific, when a model is trained with
noisy annotated data because the inference phase performance
will also be measured with noisy labels, the annotation noise
will be hindered by the good results, while the model may
not perform well in reality. To address this concern and
measure the annotation noise effect, a comparison between
the inference phase performance should be done between
the two cases of expert-annotated and automated annotated
data. As training is impractical with expert-annotated data due
to the large volume of required data, we have conducted a
simple experiment, where we tested the fine-tuned model (on
automated annotation) on the expert-labeled data. Details of
the performance are shown in the confusion matrix presented
in Table I. Class imbalance is due to the very few number
of flame patches extracted from no-flame images, whereas
many no-flame patches are present in flame-labeled images.
As expected, the accuracy decreases on expert-annotated data
as the model predicts several instances of flames (misannotated
due to annotation noise) as “no-flame” and vice versa.

Following the performance degradation on expert-annotated
data in terms of the classification accuracy (82.9% in Table I,
compared to 97.8% in Table 1V), the following facts should
be kept in mind when utilizing the automated annotation
algorithm proposed in Algorithm 1.

1) Some flames may be hindered by an opaque object such
as a tree branch. Despite there being limited to the
currently available datasets, future works may use con-
secutive frames of a video, multiview imaging, or other
techniques to reduce the chances of object obfuscation.

2) Although the expert annotation is more accurate, the
fact that manual annotation of the whole dataset is
time-consuming due to a large number of final patches
prevents us from a more comprehensive comparative
study between manual and automated annotation.

3) In some cases, the magnitude spatial correlation between
thermal and RGB patterns and also the correlation
between thermal patterns in obscured versus unobscured
patches may be reduced due to various reasons such
as smoke mobility, the proximity of smoke to the
camera, and so on. This label noise may increase the
misclassified instances, as seen in Fig. 8. However, most
such cases are unavoidable while training and should
be detected and controlled with equipment in the data
collection phase (e.g., utilizing more modalities in the
field can prevent the model learn noisy associations and
boost the inference accuracy.)

There may be algorithms with much higher accu-

racy than the proposed heuristic approach, but this

approach suits the real-time implementation limitations
for computational efficiency as it only serves as the
preprocessing (annotating) part of the design.

4)

5007212

TABLE I

CONFUSION MATRIX OF THE FlameSeg ALGORITHM. PREDICTIONS
MADE BY THE ALGORITHM, COMPARED TO EXPERT-LABELED
DATA (GROUND TRUTH)

Predicted
Flame No-Flame Total
Actual Flame 2093 739 2832
No-Flame 643 4625 5268
Total 2736 5364 8100
Precision (Flame) 76.5 %
Recall (Flame) 73.9 %
Accuracy (Flame) 82.9 %

B. DML Loss Derivatives

Here, the derivatives of the loss functions used in DML
losses are shown in the following equations:

oLy S att((enn,) + (o)) HEn) )
x(”elC Jj=1
e =\ 22 (1) = ()]

_H (e-ii)> - (C;(i)j) Hz + O‘) H( L) (2

where H(Lr.) represents the Heaviside step function.
It should be noted that in (1)—(6), a,T]L, ,CJL, ey) ,ch ;> and
¢ ; are scalars, whereas af>st e® ¢t and ¢, are vectors
w1th length c¢;. Plus, the “G)” and “-” symbols used in (1)—(3)
denote element-wise multiplication and inner product opera-

tions, respectively,

0 ECosL

_ CosL
de  2m lz_l:
e, (ea) )em
e et | ey
c,;m (eo) )em
ol e e
3)
@ .p
Iow, (¢')
R (T
(<) (¢30,)
S NEIVANG VAN )
e ()]
L 1 Gm i
L3>t ((¢") = (e0)) 5)
i=1 j=1
AL 1 o : 2
Bai— ZZH( ()) C’“”)Hz ©

i=1 j=1
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Algorithm 2 DML-Aided Training
Inputs:

. Batch of labeled cropped patches as training dataset,
D, ={(x®, yM)i=1,2,..., N},

. Initialized encoder-decoder network parameters (6,,, 64,
and Gcls)a

. Reconstruction loss, DML, and softmax loss parameters
(Qrea QDML’ 95)3

« Class (cluster) prototype, ¢ = {cklk = 1,2;cq) €
Rlxcd},
. Hyperparameters (A, A2, y1, @),
o t «— 0.
Qutput:

. Trained model and updated 8,,, 64., 6;., 05, 0.5, and C.
While not converged do:

1 Feed the input dataset minibatch B,
{(x®,yD)]i =0,1,...,m} into the network.
In feature space, compute the corresponding
embeddings e € RE/*1x1,
Compute the CE loss utilizing (7).
Compute the AE loss utilizing (8).
Compute the DML loss utilizing (10) to (13).
Compute loss function gradient using (1) to (6) and
chain rule.

7 Compute Ac using (14) to (16).

8 t«—1t+1.

9 C'*l «— C' —uaAc.
End while

[\

AN AW

C. DML-Guided Learning

During the training phase (Algorithm 2), it is crucial to
sample inputs from smoke-free images to ensure a compre-
hensive exploration of flame representations in the thermal
domain. We oversample the flame patches to address the class
imbalance in the dataset and weigh the loss accordingly. Our
final dataset comprises cropped patches from thermal images
labeled as either “flame” or “no-flame.”

The proposed framework comprises an encoder and a
decoder (based on the U-net autoencoder architecture [41]),
a classifier, and a DML module that work together to learn
features of the input data through a multitask loss function.
The loss function is a weighted sum of three terms: cross-
entropy (CE) classification loss, autoencoder reconstruction
loss, and the DML losses described afterward. Let D,, =
{(x@D,yD)]i = 1,2,...,m)} be a mini-batch of m samples,
where x) € X represents pairs of thermal patches and their
corresponding flame masks from the training set, and y ¢
{1,2} is the corresponding categorical label (flame or no-
flame). At the output of the encoder, the sample representation
is shown by x* € R *H#r>Wr where Cy, Hy, and Wy are
the number of channels, rows, and columns of the encoded
samples, respectively. A convolutional layer and a global
average pooling layer follow the encoder. The encoder maps
the encoded samples of the mini-batch to their feature space
representation, denoted by e € RE*1X!  where C; is the

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

number of channels (the length of the feature embedding
vector).

A fully connected (FC) layer in the classifier network maps
the embedding to logits of x* € R2. The Softmax function is
applied to obtain a probability distribution Pr(y = j|x®). The
discrepancy between the predicted label y and the true label
y® is calculated using the CE loss function, denoted by LpcE,
as follows:

1 IS : .
- @) @) — :],®
Lyce = m§j§ yPlogPr(y® = j|x®@). (7

i=1 j=1

By implying the reconstruction loss, we also ensure the
latent representation learned by the encoder, which is core
to classifying and clustering, contains the essential features of
the input domain, preserving the input information as much
as possible

1 m ] )
L= 3 |le = 7 () ®)
i=1

where m is the number of examples in the dataset, x) is
the ith input example, and g and f are the encoder and the
decoder, respectively.

1) Multitask Loss Function: The multitask loss function
aims to optimize multiple objectives simultaneously. This loss
function includes the direct CE (Lgcg) loss for classification,
the reconstruction loss for an autoencoder (L..), and
the distance loss for DML (Lpmy), which considers the
distance of each sample’s latent representation to the cluster
representatives

L = Lpcg + ALrec + LML &)

2) DML Metrics: Triplet loss optimizes anchor, positive,
and negative sample distances, along with emphasizing dis-
criminative features, while cosine similarity is based on feature
vector angle suiting high-dimensional spaces where vector
magnitude is less significant. Combining triplet loss and cosine
distance metrics can improve feature space representation
resulting in the model’s improved classification as well as
enhancing robustness to illumination variations and other
factors affecting flame appearance, leading to enhanced gen-
eralization to unseen joint distributions in modalities, and
increasing intraclass variance. Note that in (13), we define a
novel form of cosine distance (denoted by Lcos) inspired by
the concept of triplet loss (Lrp). It is computed based on the
average similarity between the sample embedding’s features
(eﬁ-’)) and the same feature of the sample’s corresponding class
prototype (c_f (,»)j) utilized by (11). In (11) and (13), the super-
scripts p and n denote the current samples’ corresponding
class prototype and the opposite class prototype, respectively.
At last, to force the representative to be close to the distribution
of the clusters’ embeddings, we apply another DML, called
CL [denoted by Lcp (attentive)]. However, our experiments
reveal that this unmodified version of Lcey is too dominant
and hinders the positive contribution of L1y and Lo in
the learning process. As a result, the model will focus on
discrimination in feature magnitudes, pushing representatives
out of the cluster space to increase their difference magnitude.
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To address this concern, we integrate the deep attentive CL
(LcL), as proposed by Zachariadis et al. [42]. It is noteworthy
that the adapted CL in (12) is employed to alleviate the
prevailing constraints of the vanilla CL (a;; represents feature
attention weights). The attention mechanism enables each of
the loss functions to scale features of the cluster representatives
in distance calculation and thus modifies the trajectory of the
representative in the latent space, maximizing interclass sepa-
ration and minimizing intraclass separation. The calculation of

all, a, ™" in (11)=(13) is shown in the attention module

in (Fig. 1). In these equations, the nonattentive (vanilla) imple-
mentation is equivalent to setting all attention coefficients to 1

(@ = ai = ai™ = 1). Moreover, all norms used are
Euclidian norms. It should be noted that &, aj*", af", e;'),

and c;’mj, c;(,)j [used in (11)—(13) and later in (14) and (16)]
are all scalars, whereas a"L, ¢®, ¢", , and c;’m [used in (15)]
are vectors with length c;, and the “®” and “-” symbols used
in (15) denote element-wise multiplication and inner product

operations, respectively,

LomL = yiLrL + v2Leost. + Y3 LcL (10)
L~ 0 » I
om0 L5 (1) ()1
i—0 j—I
Jery-@f)])
j Y05 )|,
Loy = i iiaCL (e(i)) _ (CP ) 2 (12)
CL — m ij j Y@ j 5
i—0 j—I

st.0<a;; <1 Vjljell,..., cq}

@ .p
CosL b
‘CCOSL = _27 Z -

e ()]
CRIC

SN A bA, B 3

e ()]

i=0 j=I

(13)

3) DML Metrics Derivatives: Our proposed method
(Algorithm 2) trains the integral parameters of the loss func-
tions, including the cluster representatives, in an end-to-end
manner during supervised training using SGD. In this regard,
(1)—-(4) demonstrate the required closed-form derivatives for
performing gradient descent. The closed-form derivatives
of (11) described in (1) and (2) is required as the cluster
representatives are getting updated every step and build the
foundation for the inference phase. An important fact is that
the computational graph cannot yield the derivatives of the
loss functions concerning the representative; thus, closed-
form derivatives are required for the moving-average centroid
updates described in (14), (15), and (16). Parameter k in (1) is
the number of samples that do not satisfy the margin defined
in (11), and so they contribute to learning, in other words,
k = card(K) where, K = {x|L.(x?) > 0}. Inspired by
Zachariadis et al. [42], we follow a moving average strategy
to update the class/cluster representatives, C. In this context,
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we divide the set /C into two subsets of flame samples XC; and
nonflame samples K, given that }C; U Ky = K. In the same
way, K' = {xD|Leose) (x?) > 0}, and K and K, are defined
as subsets of K’ that include flame and no-flame samples,
respectively. Following the same notation, CfL‘ denotes the
flame cluster representative, while Cfﬁ denotes the no-flame
cluster representative. It should be noted that both flame and
no-flame samples affect the cluster representative gradient

—1 cd .
- TL @Y\ _ P
Begr =7 | 2 e () = ()
xek; j=1
ca
TL (i) n 14
- Z Z“u € ) ~\&oj (14)
xiek, j=I
1 e
A o = — a.COSLQ B
S P A T
xWek; y@
iy P \.P
(e(l) . Cy<i))cy(i)
_.—1)3
He(z)HHcy(,.)

o)

_ Z aiCr)sLG

x(”eIC; He(i) H ch(,)
(e(i) . C;{(i))(:;l.(i)
He(i)H‘ o
(15)
A L a0 _ 6
ca == > af (") = (ey0)) (16)
i=1 j=1

where in (14) and (15); (I, q¢) € {(1, 2), (2, D}.

D. DML-Guided Inference

Once the autoencoder is trained, the decoder is removed,
leaving the classifier. The thermal-domain cluster prototypes
(Fig. 1) represent classes for “flame” and ‘“no-flame” in
the latent feature space. Back in training, the classifier had
received the latent feature vector of a sample, while DML
losses had made the embedding function generate more sepa-
rable clusters and better prototypes. The unsupervised metrics
used in supervised training exist to improve generalization for
obscured flames with thermal patterns (where no ground truth
is available). After training the optimal cluster representative
(Algorithm 2), the model predicts the class for obscured
samples. The cluster representatives trained by the proposed
DML approach set the prediction criteria (with fixed attention
weights) and test samples are compared to each representative
to make predictions. It should be noted that only thermal
patches are used in the inference phase and the predicted
labels for each thermal patch will eventually correspond to
the equivalent RGB patch, revealing possible flames hindered
by the smoke (Fig. 3).

As there are no patch labels to evaluate the model’s per-
formance on the test set, we use intraclass variability in the
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Fig. 3. Obscured fire detection during inference. Only thermal patches are
used for inference. The predicted labels correspond to the equivalent RGB
patches and reveal potentially obscured flames.

flame “class” as an unsupervised indicator to show how DML
and attention make clusters as separable as possible by moving
the prototypes and shaping the embedding function (Table III).
Higher separation suggests that RGB-domain labels are good
indicators of thermal-domain features, indicating successful
knowledge transfer. It should be noted that successful knowl-
edge transfer relies on the fact that obscured and unobscured
thermal-domain representations of flame samples are signifi-
cantly correlated. Fig. 4 shows two frames captured 7-s apart,
from FLAME?2, showing the same flame, but with different
smoke occlusion densities and patterns around the flame. RGB
representation looks very different due to smoke occlusion,
yet the IR domain greatly preserves the distribution, showing
class-specific feature transparency through the smoke. In addi-
tion, RGB representations of the obscured images look pretty
similar (low interclass variance), and class-specific features are
obscured by smoke. Thus, using RGB along IR for inference
acts as noise, making class separation more difficult. This is
the motivation behind using only thermal-domain patches for
inference.

E. Local Features Extraction (LFE) Mechanism

To capture distinctive features from specific subareas of an
image, both the thermal image, denoted as x©), and the masked
thermal image, represented as x\) = x@ © m® (where ©
signifies the Hadamard product (element-wise multiplication)
and m is the corresponding mask generated by Algorithm 1),
are fed into two U-Nets with shared parameters. Subsequently,
the local and global features are aggregated within the latent
space as illustrated in Fig. 1. This approach enables the model
to focus on masked subareas containing intricate patterns
and textures associated with flame spots. Given that wild-
fires’ early-stage flames typically manifest as dispersed spots,
this methodology facilitates a detailed understanding of such
regions through targeted analysis of the masked portions.

IV. PERFORMANCE EVALUATION

In this section, first, we will cover dataset partitioning,
preprocessing, and training. Next, we will discuss the results
obtained from training, validation, hyperparameter tuning, and
testing in terms of supervised and unsupervised metrics.
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Frame 1 - Captured at t, (s) Frame 2 — Captured at t, + 7 (s)

IR Domain RGB Domain IR Domain

RGB Domain

Low RGB Correlation

High IR Correlation

Fig. 4. Thermal-domain spatial distribution remains nearly unchanged after
smoke obscures a flame patch and its surroundings. RGB representations are,
however, very different due to different smoke patterns, even in frames with
small time separations.

TABLE 11

DATASET DETAILS AND EXPERIMENT SETTINGS (* FLAME 3 STATS ARE
NoT FINAL. ** A PORTION OF FLAME2 SAMPLES ARE UTILIZED
DURING TRAINING AND TESTING. *** THE SHOETANK’S FIRE
SAMPLES OF FLAME3 ARE USED)

Dataset Details FLAME 2 | FLAME 3*
# RGB/Thermal Img. Pairs 53k 20k
Experiment Settings FLAME 2 FLAME 3
# Total Samples (Train) 4700% % 880***
# Total Samples (Test) 1170 220
# Batches/Sample 64 64
# Original Sample Resolution | 256 X 256 512 x 640
# Input Resolution 256 x 256 | 256 x 256
# Batch Resolution 32 x 32 32 x 32

A. Dataset

The FLAME2 [43] and FLAME3! datasets have been used
for evaluation. FLAME2 includes seven side-by-side infrared
and visible spectrum video pairs captured by drones from
open-canopy fires in Northern Arizona in 2021. Derived from
the video pairs, a set labeled original resolution RGB/thermal
frame pairs and a set of 53000 labeled 254p x 254p
RGB/thermal frame pairs are provided. FLAME 2 provides
two labels of fire/no-fire and smoke/no-smoke for every image.
Experts have assigned fire labels based on visual fire indicators
in the RGB domain. Moreover, they have assigned ‘“‘smoke”
and “no-smoke” labels to every RGB image, resulting in
14760 smoke-free frames. The RGB frames are the source
of visual labeling, while thermal images are provided along
them to extract the thermal features of the supervised set.
The corresponding details for FLAME?2 and FLAME3 and the
experimental settings are shown in Table II.

B. Implementation

In our work, we used 4700 frames, or one-third of the
smoke-free samples of the labeled RGB/thermal image pairs
in FLAME2 and 1200 samples of FLAME3 to diversify the
dataset and avoid redundant frames. We start preprocessing by
upsampling frames to 256p x 256p resolution. Next, we divide
each image into 64 32p x 32p patches. This applies to RGB
and thermal images. After that, we segment fire-containing

'FLAMES3 dataset is collected by a team of universities, U.S. Forest
Services, and CALFIRE and is not publicly available.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 07,2025 at 18:24:45 UTC from IEEE Xplore. Restrictions apply.



RAJOLI et al.: FlameFinder: ILLUMINATING OBSCURED FIRE THROUGH SMOKE

TABLE III

PERFORMANCE COMPARISON AGAINST OTHER STUDIES. (ICV:
INTRACLASS VARIANCE, FNR: FALSE NEGATIVE RATE).
METRICS FOR FLAMES 2 AND 3 ARE REPORTED ON
THE LEFT AND RIGHT, RESPECTIVELY

Dataset Model Accuracy False Intra-Class

Negative Variance
ResNet18 93.70 17.00 48.70
VGG19 92.90 17.40 49.70
ShRe Xception [45] 93.50 18.60 50.30
Ensemble model [46] 94.20 14.10 46.60
Flame2 .
CT-Fire [47] 94.80 13.50 43.00
Ours 97.80 11.60 39.70
ResNet18 81.40 19.10 50.90
VGG19 80.50 18.80 49.20
ShRe Xception [45] 81.90 18.20 49.00
Ensemble model [46] 83.80 16.80 47.40
Flame3 CT-Fire [47] 85.10 16.90 45.10
Ours 88.90 14.30 41.20

RGB images using Algorithm 1. The segmentation parameters
were manually set to {¢ = 0.1, 8 = 047,56 = 0.14}. The
annotation accuracy on smoke-free patches is compared to
pixel-annotated patches labeled by an expert. The segmenta-
tion is compared to a human-expert perfect baseline performed
on 8640 patches originating from 135 images, through which
the segmentation algorithm was able to identify 81% of the
patches annotated as “flame” by the expert. The gap is assumed
to be mainly due to the presence of obscure and partially
ignited patches seen by the expert and rejected by the RGB
mask. While not achieving human expert-level performance,
Algorithm 1 offers an automated segmentation for large-scale
datasets. The comparative analysis between manual and auto-
mated labeling is present in Section III-A3 featuring Table I.
Next, annotated thermal patches are oversampled to create
a balanced dataset of “flame” and ‘“no-flame” patches. Data
augmentation is performed by random flipping vertically and
horizontally and normalizing. Our model’s encoder, decoder,
and classifier were trained using the procedure shown in Fig. 1.
The FLAME?2 dataset was used for 20 epochs of training
with an initial learning rate of 0.01 for both Lgcg and L.
The learning rate decreased by 0.1 at epochs 10 and 18 for
Lpcg and L., respectively. Each batch of thermal patches had
512 images to train the model. Empirical tuning yielded the
following training hyperparameter values: A = 1, y; = 0.01,
y» = 0.0001, and 3 = 0.01. In addition, we set DML learning
rates as follows: arcy = 0.5, ac = 0.5, and aco, = O.1.
Our models are trained using the PyTorch framework on an
NVIDIA 3080 GPU.

C. Latent Scattering Demonstration

This study reduces latent space representation dimensional-
ity using t-distributed stochastic neighbor embedding (t-SNE)
in Fig. 7. The model is guided to the optimal subspace by
the DML losses. The 2-D plots in Fig. 5 illustrate the effects
of the proposed modules. The DML-guided model subfigure
shows significant improvement over the non-DML baseline
model. Fig. 1 highlights misclassifications in some patches due
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Fig. 5. Visual performance comparison of the proposed method with baseline
models. The gradient magnitude of the last convolutional layer, based on the
Grad-CAM idea in [44] is upsampled to the image size and stacked on the
sample image. P and L denote prediction and label, respectively.

to challenges posed by the nonoptimal annotation mechanism
in Algorithm 1, making the discrimination between flame and
no-flame classes in RGB space challenging. Misclassifications
in flame patches arise from the lack of temperature calibration
in the FLAME?2 dataset, resulting in subclusters, the similarity
between smoke and flame thermal distributions, and temper-
ature gradient localized wind being generated and interacting
with smoke patterns, moving them to areas far from the flame.

D. Numerical Results

In this section, we present a thorough numerical analysis to:
1) compare our model with previously proposed models for
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TABLE IV

ABLATION STUDY, BINARY FLAME DETECTION ACC. FOR LFE AND ATTENTION, AND TRIPLET COSINE AND COSINE LOSSES. 1, BOTH ADDING DML
AND LFE SHOW ACCURACY IMPROVEMENT, 2. TRIPLET AND COSINE LOSSES IMPROVE DML AFTER ADDING ATTENTIVE CL

DML Ablation

Dataset Detection Method No DML
CL CL & TCL CL & TCL & CosL

Baseline 93.40 95.90 95.70 95.50
Flame2 Baseline + LFE 95.00 96.10 96.10 95.90
Baseline + LFE + Attention Not Applicable 97.20 97.50 97.80
Baseline 81.9 84.40 85.10 84.70
Flame3 baseline + LFE 83.80 86.00 85.90 85.80
baseline + LFE + attention Not Applicable 88.10 88.80 88.90

flame detection as well as VGG19 and ResNet18 backbones
adapted for flame detection and 2) evaluate how DML, LFE,
and attention aid in boosting the classification accuracy as well
as the impact of adding triplet and cosine losses to CL before
and after attention.

1) Comparative Analysis: As seen in Table III, our
model achieves higher accuracy, and less false negative rate
(miss) compared to all other backbones, including VGG-19,
ResNet-18, and three other works specified for flame detection.
Our model also achieves a lower intraclass variance showing
the compactness of the latent clusters as an unsupervised
metric.

2) Ablation Study: Table IV shows an ablation study for
DML, LFE, and attention as well as triplet and cosine losses.
Samples acquiring less than 90% confidence in one of the
two classes are omitted from the prediction. For the baseline,
the cluster representatives are calculated by averaging all
feature vectors in the latent space. According to Table IV,
DML improves the binary classification accuracy. After adding
the attention mechanism to overcome the CL domination
problem, each latent feature contribution toward the proposed
loss functions is balanced, demonstrating 1.9% and 3.1%
accuracy improvement compared to the nonattentive version,
for FLAME2 and FLAMES3, respectively. Lower accuracy on
the latter may be due to more diverse samples with variety in
flame type, illumination, vegetation, and so on.

E. Interpretability

With the aid of two main tools presented in this section,
the attentive classifier’s results are explainable, and the
contribution of all DML losses and global feature extraction
is showcased.

1) Grad-CAM: As seen in Fig. 5, in the baseline models,
according to the Grad-CAM [44], most of the learning is
focused on high-intensity regions in the thermal domain,
whereas most flame features in our model, especially
with attention, are nonintensity-based flame features,
covering around the flame. This aligns with global
feature discovery and acts as a solution to the lack
of absolute thermal reference points decreasing false
positives.

2) Attention Map: Fig. 6(a)—(c) depicts how each of the
64 features contributes to the aggregated loss gradient.

(c)

Fig. 6. Comparison of attention values of each loss across the 64-dimensional
latent feature vector. (a) Cosine-based loss attention, (b) triplet loss attention,
and (c) CL attention. Attention values are indicators for including and
excluding features’ contribution in the DML losses value, (11)-(12), and
in the backpropagation process, (1)—(4): The weight sparsity of the CL
(e.g., features 9, 36, 45, and 64) shows the attention mechanism adaptively
regularizes the contribution of every extracted latent feature in the loss
functions, guiding the model toward the optimum in the parameter space
(instead of scaling loss function derivatives uniformly with the hypertuning
parameters and causing center-loss domination.

Featurs o

Fig. 7. 2-D demonstration of the clustered latent feature space. (a) Baseline
latent scattering and (b) DML-guided latent scattering. Dimension reduction
via t-SNE approach.

The intensity of each band within the map corresponds
to the attention weight of the feature associated with that
band. The sparsity of features in the CL attention map
[lower weights—Fig. 6(c)] shows the attention mech-
anism successfully overcomes the domination problem
and refines the model toward capturing nonmagnitude
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Trained model

Fig. 8.

Classified and misclassified patches during validation.

features in the latent space, provoking the cosine and
triplet loss, which appear quite correlated [Fig. 6(a)
and (b)], in the learning process.

V. CONCLUSION AND FUTURE WORK

FlameFinder offers a comprehensive solution encompassing
segmentation, DML-guided classification, and aided attention,
leveraging the power of DML as a significant driving force
for detecting obscured flames. The results achieved from the
predictions of the DML-based model demonstrate favorable
performance in terms of separating flames in both unobscured
and obscured cases. Here, the attention mechanism used in
DML balances the utilization of features in separating latent
clusters. As the proposed DML-based model receives seg-
mentation masks as labels, it can be generalized to other
application domains. The proposed model can also be uti-
lized for other domain-adaptation tasks on multimodal data
by modifying the segmentation masks or proposing other
application-specific annotation mechanisms. Despite DML’s
significant role in constructing better cluster representatives
and compressing latent features around them, some samples
may still be misclassified. As seen in Fig. 8, false positives
are mostly cases with high thermal activity originating from
hot smoke, neighboring flames, and other thermal sources.
False negatives are mostly small flames (compared to the patch
size), corresponding to early thermal patterns with different
shapes than larger flames. In general, the leading causes of
misclassification are assumed to include the lack of thermal
reference points, similar thermal distributions in smoke and
flame, thermal noise originating from temperature gradients
of superimposed/interfered smoke layers in adjacent ignited
areas, and, lastly, the premature thermal distribution of early
flames resulting in outliers relative to larger flames. These lim-
itations open up new research directions in many fields, such
as multimodal detection, thermal imagery, and representation
learning, as well as the necessity of a more challenging dataset
suited for generalization to real-world scenarios.
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