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Abstract— FlameFinder, a novel deep metric learning (DML)
framework, accurately detects RGB-obscured flames using
thermal images from firefighter drones during wildfire mon-
itoring. In contrast to RGB, thermal cameras can capture
smoke-obscured flame features but they lack absolute thermal
reference points, detecting many nonflame hot spots as false
positives. This issue suggests that extracting features from both
modalities in unobscured cases can reduce the model’s bias to
relative thermal gradients. Following this idea, our proposed
model utilizes paired thermal–RGB images captured onboard
drones for training, learning latent flame features from smoke-
free samples. In testing, it identifies flames in smoky patches
based on their equivalent thermal-domain distribution, improv-
ing performance with supervised and distance-based clustering
metrics. The approach includes a flame segmentation method
and a DML-aided detection framework with center loss (CL),
triplet CL (TCL), and triplet cosine CL (TCCL), to find the
optimal cluster representatives for classification. Evaluation of
FLAME2 and FLAME3 datasets shows the method’s effectiveness
in diverse fire and no-fire scenarios. However, the CL dominates
the two other losses, resulting in the model missing features
that are sensitive to them. To overcome this issue, an attention
mechanism is proposed making nonuniform feature contribution
possible and amplifying the critical role of cosine and triplet loss
in the DML framework. Plus, the attentive DML shows improved
interpretability, class discrimination, and decreased intraclass
variance exploiting several other flame-related features. The
proposed model surpasses the baseline with a binary classifier by
4.4% in FLAME2 and 7% in FLAME3 datasets for unobscured
flame detection accuracy. It also demonstrates enhanced class
separation in obscured scenarios compared to fine-tuned VGG19,
ResNet18, and three other backbone models tailored for flame
detection.

Index Terms— Attention, deep metric learning, flame detection.

I. INTRODUCTION

F
OREST fires cause property damage, injuries, and deaths,

harming people and the economy. Extreme wildfire events

pose greater risks and challenges. Therefore, efficient wildfire

detection and management are essential to mitigate these

impacts [1]. Existing technologies are not yet capable of

accurate and timely detection of wildfire noting the limited
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lifetime and sensing range of thermal/smoke sensors, delays,

and low spatial resolution associated with satellites’ observa-

tions [2]. In the context of wildfire detection, unmanned aerial

vehicles (UAVs) have emerged as a promising technology for

wildfire detection and management. UAVs offer high mobility,

flexibility [3], low deployment cost, and real-time data col-

lection capabilities, making them well-suited for monitoring

wildfires in remote and challenging terrains [4], [5]. Deploying

UAV systems for wildfire management has not been limited

to wildfire detection [6], [7]. The performance of UAVs in

other tasks such as active wildfire monitoring with decision-

making systems [8] and spread modeling of fire frontiers

rely on how accurate their input is provided by a flame

detection system [7]. While many improvements have been

made in terms of general flame detection, commercial UAVs

with visual cameras cannot yet accurately identify the flame

locations when smoke and water vapor block visible-light spot

fires, resulting in false negatives. It should be noted that while

smoke detected in RGB images can be an indicator of fire,

it cannot accurately pinpoint the fire location and intensity due

to the complex dynamics of smoke, wind fire, and several other

effective variables. As a result, utilizing thermal images was

hypothesized as a solution for drone-based flame mapping [9].

While some studies focus on thermal-domain fire detection

images by exploring sensor response and image-processing

techniques, flame detection for smoke-obscured samples is

understudied and remains a major gap in this area [10]. On the

other hand, the lack of absolute thermal reference points and

the existence of other thermal sources make models trained

solely in thermal domains inaccurate. Shortcomings of pure

RGB and pure thermal-domain methods pose the fact that the

problem of obscured flame detection naturally needs comple-

mentary modalities. Following this idea, to extract features

associated with flames and not just hotspots occurring in the

wildland (e.g., carried smoke), an idea would be to transfer

knowledge (using labels), from unobscured samples in the

RGB domain (as an indirect supervision) to the unannotated

target thermal domain. Deep neural networks (DNNs) have

shown potential for UAV-based flame detection by integrating

data from RGB and thermal cameras [11]. Such integration

provides complementary information, improving the discrimi-

nation of flames from other heat sources. Transfer learning and

fine-tuning on DNN architectures have demonstrated enhanced

flame detection accuracy in UAV-collected images [12]. This

process can be initiated by providing annotations with a seg-

mentation algorithm on the source domain. Next, to aggregate

the embedded information of the thermal domain, a model
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is trained to shape a compressed latent space with objectives

that capture various flames, rather than simply getting biased

toward the thermal domain intensity. Solving this challenge

is core to overcome the problem of relative thermal reference

points and nonflame hotspots appearing as false positives.

Among representation learning approaches proposed for

clustering, deep metric learning (DML) has shown major suc-

cess for learning similarity and distance metrics by combining

deep learning with distance metric learning [13]. Regarding

this idea, given the rich latent space constructed with DML

captures enough features from both classes on the thermal

domain, flames that are obscured by smoke in the RGB domain

will have corresponding thermal representations that fall in the

positive (flame) class of the discriminator. Moreover, samples

with no flames that have similar smoke patterns (local RGB

patterns) to occluded flames will not appear similar to flames

in the thermal domain.

Our proposed work uses bimodal data in RGB and thermal

domains such that one modality (RGB) is used for sample

annotation, while the other modality (thermal) offers latent

features associated with the sample’s classes, making inference

possible with merely the second modality (thermal), and

providing flame predictions for obscured areas. Such tasks fall

under the umbrella of domain adaptation, where knowledge is

transferred from one domain to the other [14]. Here, it should

be mentioned that discrepancies between the source and target

domain distributions can affect the performance of DML

models on multimodal data [15], [16].

This study employs deep metric learning (DML) to enhance

the model’s performance in separating class clusters within

the embedding space, specifically for detecting smoke-covered

flames using paired RGB–thermal images. To facilitate the

generation of data patches for fire spread modeling and

monitoring, we introduce a segmentation and annotation

framework (Section III-A). This framework labels a patch

as “flame” if it contains at least one flame-annotated pixel

and as “no-flame” otherwise. While many advanced domain

adaptation methods offer innovative solutions to align features

of the complementary domains, our simple indirect supervi-

sion approach benefits from the pairwise nature of patches

in the source and target domains to make the convergence

path smoother than unsupervised cases. After annotation is

provided, a DML method is utilized for the annotated data,

training a feature extractor to distinguish between flame and

nonflame patches. A classifier is then employed to predict

flames in smoke-obscured areas where no labels are available.

The framework incorporates three loss functions in the DML

framework to learn an optimal embedding function in the

latent space. Recognizing the dominance of center loss (CL),

particularly for magnitude-sensitive features, we propose an

attention mechanism to balance feature contributions across

the three DML loss gradients, harnessing the full potential

of the constructed embedding space. This feature-selective

loss smoothing enhances class discrimination in the latent

feature space, addressing the issue of loss domination in

multiobjective optimization. The main contributions of this

work are as follows.

1) An improved thermal-based flame detection method

onboard aerial vehicles using a clustering-guided feature

representation learning over RGB and thermal images

and domain adaptation in training to improve perfor-

mance and reliability.

2) Proposing learnable class representatives optimized with

stochastic gradient descent (SGD), resulting in enhanced

discrimination of class-related latent features.

3) Proposing a novel attention mechanism to balance latent

feature contribution in DML loss functions, resulting in

diverse feature discovery.

II. RELATED WORKS

Supervised machine learning techniques are increasingly

applied in wildfire detection. In [17], an approach combines

local binary pattern (LBP) and SVM for smoke detection from

UAV-captured RGB images and a CNN for flame detection

with preprocessing steps such as histogram equalization and

low-pass filtering. XtinguishNet [18] trains a CNN on IoT

data for real-time wildfire detection, offering weather insights

and fire intensity estimates. Nguyen et al. [19] presented

a MobileNet-based single-shot detection (SSD) model for

real-time UAV-based wildfire monitoring. Some other works

employ heuristic masks such as using HSV domain filtering

for flame-sensitive features [20]. Some other works focus on

object-detection-based approaches with a simplified YOLO

model [21] or MobileNet combined with YOLO-v4 [22].

Notably, none of these works explore multimodal inputs for

obscured flame detection.

A. DML-Based Object Detection/Classification

DML-based object detection has become popular in com-

puter vision for learning distance metrics as a path to

learn rich feature representations [13]. In [23], the proposed

method tunes the backbone network parameters to find an

embedding function for multimodal data in a single train-

ing process. They use a subnet architecture for embedding

function training and a multimodal mixture distribution for

class posterior computation. In facial expression recognition,

Rajoli et al. [13] improved classification accuracy using DML

and triplet loss, with SGD optimizing class prototypes, back-

bone, and classifier parameters together. DML’s popularity

in few-shot learning is evident in [24], employing repre-

sentation generation, and distance estimation modules beside

DML for object representation, classification, and location

estimation. Lu et al. [25] discussed decoupled metric network

(DMNet) for single-object detection, introducing decoupled

representation transformation (DRT) and image-level distance

metric learning (IDML) to address representation disagree-

ment and enhance generalization. DML-based methods excel

in multimodal detection for capturing correlations and com-

plex features across modalities [26]. However, challenges arise

in handling high-dimensional feature spaces and maintaining

a balance between dimensionality size and the model per-

formance. The density of the embedding space influences

generalization in DML-based models [27], while significant
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dimension reduction may impact performance. Although var-

ious works contribute to enhancing DML-based approaches,

this work pioneers the use of DML in flame detection, intro-

ducing an aggregated loss including triplet and cosine losses

with CL to emphasize class discrimination aided by attention.

B. Attention in DML

Traditional DML models effectively learn embedding func-

tions but struggle with dynamic focus on different aspects of

the data and adapting to variable-length inputs [28]. Attention

mechanisms in DML, as highlighted by Kim et al. [29],

enhance feature embeddings and improve performance on

image retrieval tasks by allowing each learner to attend

to different parts of the input. Wang et al. [30] employed

attention for feature balancing and class representation

weighting, introducing class-aware attention (CAA) to identify

noisy images and improve convergence in DML. Addressing

DML challenges, Kotovenko et al. [31] introduced a cross-

attention mechanism between image embeddings, establishing

a hierarchy of conditional embeddings to enhance tuple

representations. Seidenschwarz et al. [32] went beyond pairs

and triplets in DML, proposing message-passing networks

with an attention mechanism to weigh the importance of each

neighbor in a mini-batch. Li et al. [33] introduced transformed

attention consistency and contrastive clustering loss for robust

similarity measures in DML. In several application domains,

attention shows significant improvement for compressed

feature embedding. In [34], mixed attention mechanisms aid

histopathological image retrieval. Dong et al. [35] addressed

the challenge of varying input sizes in DML with a hybrid

channel and spatial attention approach for pavement distress

classification. Coskun et al. [36] used an attentive RNN in

human motion analysis to measure the similarity between

motion patterns. Joint embedding of visual modalities, such as

optical flows and RGB, is explored in [30] for near-duplicate

video retrieval, employing attention modules to capture

different levels of granularity in video-level representation.

Specifically, for flame detection, the authors in [37] used a

dynamic attention strategy that focuses on scale-aware and

spatial-aware features. Recent works such as [38] integrate

Transformer encoder blocks with multihead attention to better

capture global and contextual feature information.

III. PROPOSED METHOD

This section describes our approach for flame detection and

classification (Fig. 1) in obscured cases. A detailed description

of the symbols used in the upcoming equations is available

in the Nomenclature section. The objective is to learn the

relationship between flame patterns in RGB and their corre-

sponding thermal representation. The process involves three

main steps.

1) Unobscured Flame Annotation: Annotating visible

flames in RGB images using Algorithm 1.

2) DML-Guided Learning: Training an autoencoder and

a classifier with DML on labeled thermal images

(Algorithm 2).

Algorithm 1 FlameSeg: RGB-Unobscured Flame Segmenta-

tion Using Image Processing

Inputs:

• I mg[R,G,B] (input images),

• Rm , Gm , Bm (red, green, blue channel means),

• Äg , Äb (green and blue channel value threshold),

• ³, ´ (red-to-green low and high margin coefficients)

Output: Flame segmentation mask m.

1. filtering based on the distance to the mean:

m1(x, y)←−











0, I mg[R] − Rm < I mg[B] − Bm

0, I mg[R] − Rm < I mg[G] − Gm

1, Otherwise

2. filtering based on the value:

m2(x, y)←−











0, I mg[G] > Äg

0, I mg[B] > Äb

1, Otherwise

3. filtering based on the inter-channel distance:

m3(x, y)←−



















0,
∣

∣I mg[R] − I mg[G]
∣

∣ f ³ I mg[G]

0,
∣

∣I mg[R] − 2 ∗ I mg[G]
∣

∣ g ´ I mg[R]

0,
∣

∣I mg[G] − 2 ∗ I mg[B]
∣

∣ f ¶ I mg[G]

1, Otherwise

4. applying the masks, removing single pixels, and smoothing

3) DML-Guided Inference: Using the trained model for

obscured thermal patches. An attention mechanism bal-

ances the role of loss functions across features of the

latent space.

A. Unobscured Flame Annotation

In response to the scarcity of annotated RGB–thermal

image pairs for wildfire segmentation, we propose a tailored

filtering approach for unobscured flame detection in top-

down UAV-captured RGB images. The RGB-unobscured flame

segmentation algorithm (Algorithm 1) creates a segmentation

mask based on heuristic channel value inequalities, which can

be later value. Next, smoothing and pixel-removal operations

are applied, and resulting patches are labeled as “flame”

or “no-flame,” providing indirect supervision for learning to

detect flames in unannotated patches during the inference

phase. This strategy aims to overcome challenges associated

with the lack of absolute thermal reference points, mitigating

misclassification in thermal images due to relative temperature

gradients. It is worth highlighting the fact that this simple, yet

automated segmentation is prone to error, and as a result, label

noise may be limiting the performance of the model in terms of

classification accuracy. A comparative analysis of the effect of

segmentation noise is done in Section III-A3 to further justify

the automated segmentation.

1) RGB Mask Generation: In light of the approaches pro-

posed by Buza and Akagic [39] and Dzigal et al. [40] for

forest fire detection, we have developed a well-fit masking

method to cater to the specific type of fire encountered in

real-world situations, namely, spot flames captured with a

top-down perspective by UAVs. Algorithm 1 explains our

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 07,2025 at 18:24:45 UTC from IEEE Xplore.  Restrictions apply. 



5007212 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 1. (a) Training: simultaneously learning the encoder, decoder, embedding space, and classifier. The class’s prototype and the embedding function are
jointly trained, while each feature’s loss contribution is balanced with the attention module. Finally, the thermal patches are predicted as flame/no-flame.
(b) Inference: obscured thermal images are introduced to the detector, and based on the classifier’s output, the corresponding cluster (patch label) is predicted.

approach for detecting unobscured flames in RGB images.

This algorithm sets a criterion based on channel means, values,

and interchannel distances to generate a flame segmentation

mask. The combination of three masks representing RGB

criteria, reflecting scene-specific features such as the domi-

nant green background in forest fire images, facilitates the

identification of flames amidst the smoke. We calculate a

flame segmentation mask by combining three masks, each

representing an RGB criterion for candidate flames. The reason

for choosing such criteria lies in some scene-specific features,

such as the dominant green texture of the background in

forest fire images. In addition, the combination of green and

red channels creates orange and yellow tones that are the

dominant colors in the observed flames. Fig. 2 demonstrates

the segmentation results followed by smoothing and pixel-

removal operations.

2) Thermal Patch Labeling: Eventually, any patch con-

taining part of a detected flame in the output image will

be labeled positive as “flame,” and all other patches will

be labeled negative as “no-flame.” All equivalent thermal

patches of the pair thermal image will be annotated likewise.

To demonstrate the effectiveness of the algorithm, a set of

such patches is pixel-annotated by a human expert, and the

corresponding results are presented in Section IV-B. It should

be noted that the mask is not used as an annotation module

in the inference phase. We intend to classify smoky patches

as flame/no-flame where no reliable class is provided. Thus,

no labels are given or produced for the inference phase.

In other words, the mask provides indirect supervision for a

dataset of unannotated patches, in which the associated side-

by-side thermal features of flames are learned to detect flames

for classification on smoky patches in the inference phase. This

indirect thermal patch labeling aims to avoid using the relative

thermal spectrum captured in thermal images. This issue in

Fig. 2. Unobscured flame segmentation. Sample images demonstrating
the performance of the proposed unobscured flame segmentation method in
identifying flame instances covered by smoke.

thermal imagery is rooted in the lack of absolute thermal ref-

erence points. As a result, thermal values indicate the relative

temperature of an area compared to its surroundings. It should

be noted that in the case of using thermal images directly,

any other local temperature gradient can lead the patch to be

misclassified as a flame. In conclusion, the joint usage of RGB

and thermal modalities in segmentation and classification,

respectively, surpasses the discussed issues raised in unimodal

RGB/thermal detection. It is noteworthy that for optimal

segmentation performance, the threshold values (Äg , Äb) and

parameters (³, ´), which are only empirical hyperparameters,
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 07,2025 at 18:24:45 UTC from IEEE Xplore.  Restrictions apply. 
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need to be fine-tuned to accommodate for misty flames arising

due to smoke.

3) Comparative Annotation Analysis: For a set of

8640 patches, originating from 135 images, the proposed anno-

tation mechanism (Section III-A) was able to identify 81%

of the flames detected by an expert. One main concern would

be the effect of mislabeled patches on the final performance of

the model. To be more specific, when a model is trained with

noisy annotated data because the inference phase performance

will also be measured with noisy labels, the annotation noise

will be hindered by the good results, while the model may

not perform well in reality. To address this concern and

measure the annotation noise effect, a comparison between

the inference phase performance should be done between

the two cases of expert-annotated and automated annotated

data. As training is impractical with expert-annotated data due

to the large volume of required data, we have conducted a

simple experiment, where we tested the fine-tuned model (on

automated annotation) on the expert-labeled data. Details of

the performance are shown in the confusion matrix presented

in Table I. Class imbalance is due to the very few number

of flame patches extracted from no-flame images, whereas

many no-flame patches are present in flame-labeled images.

As expected, the accuracy decreases on expert-annotated data

as the model predicts several instances of flames (misannotated

due to annotation noise) as “no-flame” and vice versa.

Following the performance degradation on expert-annotated

data in terms of the classification accuracy (82.9% in Table I,

compared to 97.8% in Table IV), the following facts should

be kept in mind when utilizing the automated annotation

algorithm proposed in Algorithm 1.

1) Some flames may be hindered by an opaque object such

as a tree branch. Despite there being limited to the

currently available datasets, future works may use con-

secutive frames of a video, multiview imaging, or other

techniques to reduce the chances of object obfuscation.

2) Although the expert annotation is more accurate, the

fact that manual annotation of the whole dataset is

time-consuming due to a large number of final patches

prevents us from a more comprehensive comparative

study between manual and automated annotation.

3) In some cases, the magnitude spatial correlation between

thermal and RGB patterns and also the correlation

between thermal patterns in obscured versus unobscured

patches may be reduced due to various reasons such

as smoke mobility, the proximity of smoke to the

camera, and so on. This label noise may increase the

misclassified instances, as seen in Fig. 8. However, most

such cases are unavoidable while training and should

be detected and controlled with equipment in the data

collection phase (e.g., utilizing more modalities in the

field can prevent the model learn noisy associations and

boost the inference accuracy.)

4) There may be algorithms with much higher accu-

racy than the proposed heuristic approach, but this

approach suits the real-time implementation limitations

for computational efficiency as it only serves as the

preprocessing (annotating) part of the design.

TABLE I

CONFUSION MATRIX OF THE FlameSeg ALGORITHM. PREDICTIONS

MADE BY THE ALGORITHM, COMPARED TO EXPERT-LABELED

DATA (GROUND TRUTH)

B. DML Loss Derivatives

Here, the derivatives of the loss functions used in DML

losses are shown in the following equations:

∂LTL

∂e
=

1

m

∑

x (i)∈K

cd
∑

j=1

aTL
i j

((

cn
y(i) j

)

+
(

c
p

y(i) j

))

H(LTL) (1)
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where H(LTL) represents the Heaviside step function.

It should be noted that in (1)–(6), aTL
i j , aCL

i j , e
(i)
j , c

p

y(i) j
, and

cn
y(i) j

are scalars, whereas aCosL
i , e(i), cn

y(i) , and c
p

y(i) are vectors

with length cd . Plus, the “»” and “·” symbols used in (1)–(3)

denote element-wise multiplication and inner product opera-

tions, respectively,

∂LCosL

∂e
=
−1

2m

m
∑

i=1

aCosL
i

»









c
p

y(i)

∥

∥e(i)
∥

∥

∥

∥

∥c
p

y(i)

∥

∥

∥

−

(

e(i) · c
p

y(i)

)

e(i)

∥

∥e(i)
∥

∥

3
∥

∥

∥c
p

y(i)

∥

∥

∥





−





cn
y(i)

∥

∥e(i)
∥

∥

∥

∥

∥
cn

y(i)

∥

∥

∥

−

(

e(i) · cn
y(i)

)

e(i)

∥

∥e(i)
∥

∥

3
∥

∥

∥
cn

y(i)

∥

∥

∥









(3)

∂LCosL

∂aCosL

= −
1

2m

m
∑

i=0

cd
∑

j=1





(

e
(i)
j c

p

y(i) j

)

∥

∥

(

e(i)
)∥

∥

∥

∥

∥

(

c
p

y(i)

)∥

∥

∥

−

(

e
(i)
j

)(

cn
y(i) j

)

∥

∥

(

e(i)
)∥

∥

∥

∥

∥

(

cn
y(i)

)∥

∥

∥



 (4)

∂LCL

∂e
=

1

m

m
∑

i=1

cd
∑

j=1

aCL
i j

((

e
(i)
j

)

−
(

cy(i) j

)

)

(5)

∂LCL

∂aCL

=
1

2m

m
∑

i=1

cd
∑

j=1

∥

∥

∥

(

e
(i)
j

)

−
(

cy(i) j

)

∥

∥

∥

2

2
. (6)
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Algorithm 2 DML-Aided Training

Inputs:

• Batch of labeled cropped patches as training dataset,

Dt = {(x (i), y(i))|i = 1, 2, . . . , Nt },

• Initialized encoder-decoder network parameters (¹en , ¹de,

and ¹cls),

• Reconstruction loss, DML, and softmax loss parameters

(¹re, ¹DM L , ¹s),

• Class (cluster) prototype, c = {ck |k = 1, 2; c(k) ∈

R
1×Cd },

• Hyperparameters (λ1, λ2, µ1, ³),

• t ←− 0.

Output:

• Trained model and updated ¹en , ¹de, ¹re, ¹s , ¹cls , and C .

While not converged do:

1 Feed the input dataset minibatch Bm =

{(x (i), y(i))|i = 0, 1, . . . , m} into the network.

2 In feature space, compute the corresponding

embeddings e ∈ R
C f×1×1.

3 Compute the CE loss utilizing (7).

4 Compute the AE loss utilizing (8).

5 Compute the DML loss utilizing (10) to (13).

6 Compute loss function gradient using (1) to (6) and

chain rule.

7 Compute 1C using (14) to (16).

8 t ←− t + 1.

9 C t+1 ←− C t − ³1C .

End while

C. DML-Guided Learning

During the training phase (Algorithm 2), it is crucial to

sample inputs from smoke-free images to ensure a compre-

hensive exploration of flame representations in the thermal

domain. We oversample the flame patches to address the class

imbalance in the dataset and weigh the loss accordingly. Our

final dataset comprises cropped patches from thermal images

labeled as either “flame” or “no-flame.”

The proposed framework comprises an encoder and a

decoder (based on the U-net autoencoder architecture [41]),

a classifier, and a DML module that work together to learn

features of the input data through a multitask loss function.

The loss function is a weighted sum of three terms: cross-

entropy (CE) classification loss, autoencoder reconstruction

loss, and the DML losses described afterward. Let Dm =

{(x (i), y(i))|i = 1, 2, . . . , m} be a mini-batch of m samples,

where x (i) ∈ X represents pairs of thermal patches and their

corresponding flame masks from the training set, and y(i) ∈

{1, 2} is the corresponding categorical label (flame or no-

flame). At the output of the encoder, the sample representation

is shown by x∗ ∈ R
C f×H f×W f , where C f , H f , and W f are

the number of channels, rows, and columns of the encoded

samples, respectively. A convolutional layer and a global

average pooling layer follow the encoder. The encoder maps

the encoded samples of the mini-batch to their feature space

representation, denoted by e ∈ R
Cd×1×1, where Cd is the

number of channels (the length of the feature embedding

vector).

A fully connected (FC) layer in the classifier network maps

the embedding to logits of x z ∈ R
2. The Softmax function is

applied to obtain a probability distribution Pr(y = j |x (i)). The

discrepancy between the predicted label ŷ and the true label

y(i) is calculated using the CE loss function, denoted by LBCE,

as follows:

LBCE = −
1

m

m
∑

i=1

2
∑

j=1

y(i) log Pr
(

y(i) = j
∣

∣x (i)
)

. (7)

By implying the reconstruction loss, we also ensure the

latent representation learned by the encoder, which is core

to classifying and clustering, contains the essential features of

the input domain, preserving the input information as much

as possible

Lrec =
1

m

m
∑

i=1

∥

∥x (i) − f
(

g
(

x (i)
))∥

∥

2
(8)

where m is the number of examples in the dataset, x (i) is

the i th input example, and g and f are the encoder and the

decoder, respectively.

1) Multitask Loss Function: The multitask loss function

aims to optimize multiple objectives simultaneously. This loss

function includes the direct CE (LBCE) loss for classification,

the reconstruction loss for an autoencoder (Lrec), and

the distance loss for DML (LDML), which considers the

distance of each sample’s latent representation to the cluster

representatives

L = LBCE + λLrec + LDML. (9)

2) DML Metrics: Triplet loss optimizes anchor, positive,

and negative sample distances, along with emphasizing dis-

criminative features, while cosine similarity is based on feature

vector angle suiting high-dimensional spaces where vector

magnitude is less significant. Combining triplet loss and cosine

distance metrics can improve feature space representation

resulting in the model’s improved classification as well as

enhancing robustness to illumination variations and other

factors affecting flame appearance, leading to enhanced gen-

eralization to unseen joint distributions in modalities, and

increasing intraclass variance. Note that in (13), we define a

novel form of cosine distance (denoted by LCosL) inspired by

the concept of triplet loss (LTL). It is computed based on the

average similarity between the sample embedding’s features

(e
(i)
j ) and the same feature of the sample’s corresponding class

prototype (c
p

y(i) j
) utilized by (11). In (11) and (13), the super-

scripts p and n denote the current samples’ corresponding

class prototype and the opposite class prototype, respectively.

At last, to force the representative to be close to the distribution

of the clusters’ embeddings, we apply another DML, called

CL [denoted by LCL (attentive)]. However, our experiments

reveal that this unmodified version of LcentL is too dominant

and hinders the positive contribution of LTL and LCosL in

the learning process. As a result, the model will focus on

discrimination in feature magnitudes, pushing representatives

out of the cluster space to increase their difference magnitude.
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To address this concern, we integrate the deep attentive CL

(LCL), as proposed by Zachariadis et al. [42]. It is noteworthy

that the adapted CL in (12) is employed to alleviate the

prevailing constraints of the vanilla CL (ai j represents feature

attention weights). The attention mechanism enables each of

the loss functions to scale features of the cluster representatives

in distance calculation and thus modifies the trajectory of the

representative in the latent space, maximizing interclass sepa-

ration and minimizing intraclass separation. The calculation of

aTL
i j , aCL

i j , aCosL
i j in (11)–(13) is shown in the attention module

in (Fig. 1). In these equations, the nonattentive (vanilla) imple-

mentation is equivalent to setting all attention coefficients to 1

(aTL
i j = aCL

i j = aCosL
i j = 1). Moreover, all norms used are

Euclidian norms. It should be noted that aTL
i j , aCosL

i j , aCL
i j , e

(i)
j ,

and c
p

y(i) j
, cn

y(i) j
[used in (11)–(13) and later in (14) and (16)]

are all scalars, whereas aCosL
i , e(i), cn

y(i) , and c
p

y(i) [used in (15)]

are vectors with length cd , and the “»” and “·” symbols used

in (15) denote element-wise multiplication and inner product

operations, respectively,

LDML = µ1LTL + µ2LCosL + µ3LCL (10)

LTL = max



0,
1

2m

m
∑

i=0

cd
∑

j=1

[

aTL
i j

(

∥

∥

∥

(

e
(i)
j

)

−
(

c
p

y(i) j

)∥

∥

∥

2

2

−

∥

∥

∥

(

e
(i)
j

)

−
(

cn
y(i) j

)∥

∥

∥

2

2
+ ³

)]



 (11)

LCL =
1

2m

m
∑

i=0

cd
∑

j=1

aCL
i j

∥

∥

∥(e
(i)
j )− (c

p

y(i) j
)

∥

∥

∥

2

2
(12)

s.t. 0 < ai j f 1 ∀ j | j ∈ {1, . . . , cd}

LCosL = −
1

2m

m
∑

i=0

cd
∑

j=1

aCosL
i j









(

e
(i)
j c

p

y(i) j

)

∥

∥

(

e(i)
)∥

∥

∥

∥

∥

(

c
p

y(i)

)∥

∥

∥

−

(

e
(i)
j

)(

cn
y(i) j

)

∥

∥

(

e(i)
)∥

∥

∥

∥

∥

(

cn
y(i)

)∥

∥

∥







+ 2.

(13)

3) DML Metrics Derivatives: Our proposed method

(Algorithm 2) trains the integral parameters of the loss func-

tions, including the cluster representatives, in an end-to-end

manner during supervised training using SGD. In this regard,

(1)–(4) demonstrate the required closed-form derivatives for

performing gradient descent. The closed-form derivatives

of (11) described in (1) and (2) is required as the cluster

representatives are getting updated every step and build the

foundation for the inference phase. An important fact is that

the computational graph cannot yield the derivatives of the

loss functions concerning the representative; thus, closed-

form derivatives are required for the moving-average centroid

updates described in (14), (15), and (16). Parameter k in (1) is

the number of samples that do not satisfy the margin defined

in (11), and so they contribute to learning, in other words,

k = card(K) where, K = {x (i)|LTL(x (i)) > 0}. Inspired by

Zachariadis et al. [42], we follow a moving average strategy

to update the class/cluster representatives, C . In this context,

we divide the set K into two subsets of flame samples K1 and

nonflame samples K2 given that K1 ∪ K2 = K. In the same

way, K′ = {x (i)|Lcos(¹)(x (i)) > 0}, and K
′
1 and K

′
2 are defined

as subsets of K′ that include flame and no-flame samples,

respectively. Following the same notation, C
K1

TL denotes the

flame cluster representative, while C
K2

TL denotes the no-flame

cluster representative. It should be noted that both flame and

no-flame samples affect the cluster representative gradient

1
C
Kl
TL

=
−1

k





∑

x (i)∈Kl

cd
∑

j=1

aTL
i j

((

e
(i)
j

)

−
(

c
p

y(i) j

))

−
∑

x (i)∈Kq

cd
∑

j=1

aTL
i j

((

e
(i)
j

)

−
(

cn
y(i) j

))



 (14)

1
C
K
′
1

CosL

=
−1

2k ′







∑

x (i)∈K′l

aCosL
i »







e(i)

∥

∥e(i)
∥

∥

∥

∥

∥c
p

y(i)

∥

∥

∥

−

(

e(i) · c
p

y(i)

)

c
p

y(i)

∥

∥e(i)
∥

∥

∥

∥

∥c
p

y(i)

∥

∥

∥

3







−
∑

x (i)∈K′q

aCosL
i »







e(i)

∥

∥e(i)
∥

∥

∥

∥

∥cn
y(i)

∥

∥

∥

−

(

e(i) · cn
y(i)

)

cn
y(i)

∥

∥e(i)
∥

∥

∥

∥

∥
cn

y(i)

∥

∥

∥

3













(15)

1CCL
=
−1

m

m
∑

i=1

cd
∑

j=1

aCL
i j

((

e
(i)
j

)

−
(

cy(i) j

)

)

(16)

where in (14) and (15); (l, q) ∈ {(1, 2), (2, 1)}.

D. DML-Guided Inference

Once the autoencoder is trained, the decoder is removed,

leaving the classifier. The thermal-domain cluster prototypes

(Fig. 1) represent classes for “flame” and “no-flame” in

the latent feature space. Back in training, the classifier had

received the latent feature vector of a sample, while DML

losses had made the embedding function generate more sepa-

rable clusters and better prototypes. The unsupervised metrics

used in supervised training exist to improve generalization for

obscured flames with thermal patterns (where no ground truth

is available). After training the optimal cluster representative

(Algorithm 2), the model predicts the class for obscured

samples. The cluster representatives trained by the proposed

DML approach set the prediction criteria (with fixed attention

weights) and test samples are compared to each representative

to make predictions. It should be noted that only thermal

patches are used in the inference phase and the predicted

labels for each thermal patch will eventually correspond to

the equivalent RGB patch, revealing possible flames hindered

by the smoke (Fig. 3).

As there are no patch labels to evaluate the model’s per-

formance on the test set, we use intraclass variability in the
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Fig. 3. Obscured fire detection during inference. Only thermal patches are
used for inference. The predicted labels correspond to the equivalent RGB
patches and reveal potentially obscured flames.

flame “class” as an unsupervised indicator to show how DML

and attention make clusters as separable as possible by moving

the prototypes and shaping the embedding function (Table III).

Higher separation suggests that RGB-domain labels are good

indicators of thermal-domain features, indicating successful

knowledge transfer. It should be noted that successful knowl-

edge transfer relies on the fact that obscured and unobscured

thermal-domain representations of flame samples are signifi-

cantly correlated. Fig. 4 shows two frames captured 7-s apart,

from FLAME2, showing the same flame, but with different

smoke occlusion densities and patterns around the flame. RGB

representation looks very different due to smoke occlusion,

yet the IR domain greatly preserves the distribution, showing

class-specific feature transparency through the smoke. In addi-

tion, RGB representations of the obscured images look pretty

similar (low interclass variance), and class-specific features are

obscured by smoke. Thus, using RGB along IR for inference

acts as noise, making class separation more difficult. This is

the motivation behind using only thermal-domain patches for

inference.

E. Local Features Extraction (LFE) Mechanism

To capture distinctive features from specific subareas of an

image, both the thermal image, denoted as x (i), and the masked

thermal image, represented as x (i)
m = x (i) » m(i) (where »

signifies the Hadamard product (element-wise multiplication)

and m(i) is the corresponding mask generated by Algorithm 1),

are fed into two U-Nets with shared parameters. Subsequently,

the local and global features are aggregated within the latent

space as illustrated in Fig. 1. This approach enables the model

to focus on masked subareas containing intricate patterns

and textures associated with flame spots. Given that wild-

fires’ early-stage flames typically manifest as dispersed spots,

this methodology facilitates a detailed understanding of such

regions through targeted analysis of the masked portions.

IV. PERFORMANCE EVALUATION

In this section, first, we will cover dataset partitioning,

preprocessing, and training. Next, we will discuss the results

obtained from training, validation, hyperparameter tuning, and

testing in terms of supervised and unsupervised metrics.

Fig. 4. Thermal-domain spatial distribution remains nearly unchanged after
smoke obscures a flame patch and its surroundings. RGB representations are,
however, very different due to different smoke patterns, even in frames with
small time separations.

TABLE II

DATASET DETAILS AND EXPERIMENT SETTINGS (* FLAME 3 STATS ARE

NOT FINAL. ** A PORTION OF FLAME2 SAMPLES ARE UTILIZED

DURING TRAINING AND TESTING. *** THE SHOETANK’S FIRE

SAMPLES OF FLAME3 ARE USED)

A. Dataset

The FLAME2 [43] and FLAME31 datasets have been used

for evaluation. FLAME2 includes seven side-by-side infrared

and visible spectrum video pairs captured by drones from

open-canopy fires in Northern Arizona in 2021. Derived from

the video pairs, a set labeled original resolution RGB/thermal

frame pairs and a set of 53 000 labeled 254p × 254p

RGB/thermal frame pairs are provided. FLAME 2 provides

two labels of fire/no-fire and smoke/no-smoke for every image.

Experts have assigned fire labels based on visual fire indicators

in the RGB domain. Moreover, they have assigned “smoke”

and “no-smoke” labels to every RGB image, resulting in

14 760 smoke-free frames. The RGB frames are the source

of visual labeling, while thermal images are provided along

them to extract the thermal features of the supervised set.

The corresponding details for FLAME2 and FLAME3 and the

experimental settings are shown in Table II.

B. Implementation

In our work, we used 4700 frames, or one-third of the

smoke-free samples of the labeled RGB/thermal image pairs

in FLAME2 and 1200 samples of FLAME3 to diversify the

dataset and avoid redundant frames. We start preprocessing by

upsampling frames to 256p × 256p resolution. Next, we divide

each image into 64 32p × 32p patches. This applies to RGB

and thermal images. After that, we segment fire-containing

1FLAME3 dataset is collected by a team of universities, U.S. Forest
Services, and CALFIRE and is not publicly available.
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TABLE III

PERFORMANCE COMPARISON AGAINST OTHER STUDIES. (ICV:
INTRACLASS VARIANCE, FNR: FALSE NEGATIVE RATE).

METRICS FOR FLAMES 2 AND 3 ARE REPORTED ON

THE LEFT AND RIGHT, RESPECTIVELY

RGB images using Algorithm 1. The segmentation parameters

were manually set to {³ = 0.1, ´ = 0.47, ¶ = 0.14}. The

annotation accuracy on smoke-free patches is compared to

pixel-annotated patches labeled by an expert. The segmenta-

tion is compared to a human-expert perfect baseline performed

on 8640 patches originating from 135 images, through which

the segmentation algorithm was able to identify 81% of the

patches annotated as “flame” by the expert. The gap is assumed

to be mainly due to the presence of obscure and partially

ignited patches seen by the expert and rejected by the RGB

mask. While not achieving human expert-level performance,

Algorithm 1 offers an automated segmentation for large-scale

datasets. The comparative analysis between manual and auto-

mated labeling is present in Section III-A3 featuring Table I.

Next, annotated thermal patches are oversampled to create

a balanced dataset of “flame” and “no-flame” patches. Data

augmentation is performed by random flipping vertically and

horizontally and normalizing. Our model’s encoder, decoder,

and classifier were trained using the procedure shown in Fig. 1.

The FLAME2 dataset was used for 20 epochs of training

with an initial learning rate of 0.01 for both LBCE and Lrec.

The learning rate decreased by 0.1 at epochs 10 and 18 for

LBCE and Lrec, respectively. Each batch of thermal patches had

512 images to train the model. Empirical tuning yielded the

following training hyperparameter values: λ = 1, µ1 = 0.01,

µ2 = 0.0001, and µ3 = 0.01. In addition, we set DML learning

rates as follows: ³TCL = 0.5, ³CL = 0.5, and ³CosL = 0.1.

Our models are trained using the PyTorch framework on an

NVIDIA 3080 GPU.

C. Latent Scattering Demonstration

This study reduces latent space representation dimensional-

ity using t-distributed stochastic neighbor embedding (t-SNE)

in Fig. 7. The model is guided to the optimal subspace by

the DML losses. The 2-D plots in Fig. 5 illustrate the effects

of the proposed modules. The DML-guided model subfigure

shows significant improvement over the non-DML baseline

model. Fig. 1 highlights misclassifications in some patches due

Fig. 5. Visual performance comparison of the proposed method with baseline
models. The gradient magnitude of the last convolutional layer, based on the

Grad-CAM idea in [44] is upsampled to the image size and stacked on the
sample image. P and L denote prediction and label, respectively.

to challenges posed by the nonoptimal annotation mechanism

in Algorithm 1, making the discrimination between flame and

no-flame classes in RGB space challenging. Misclassifications

in flame patches arise from the lack of temperature calibration

in the FLAME2 dataset, resulting in subclusters, the similarity

between smoke and flame thermal distributions, and temper-

ature gradient localized wind being generated and interacting

with smoke patterns, moving them to areas far from the flame.

D. Numerical Results

In this section, we present a thorough numerical analysis to:

1) compare our model with previously proposed models for
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TABLE IV

ABLATION STUDY, BINARY FLAME DETECTION ACC. FOR LFE AND ATTENTION, AND TRIPLET COSINE AND COSINE LOSSES. 1, BOTH ADDING DML
AND LFE SHOW ACCURACY IMPROVEMENT, 2. TRIPLET AND COSINE LOSSES IMPROVE DML AFTER ADDING ATTENTIVE CL

flame detection as well as VGG19 and ResNet18 backbones

adapted for flame detection and 2) evaluate how DML, LFE,

and attention aid in boosting the classification accuracy as well

as the impact of adding triplet and cosine losses to CL before

and after attention.

1) Comparative Analysis: As seen in Table III, our

model achieves higher accuracy, and less false negative rate

(miss) compared to all other backbones, including VGG-19,

ResNet-18, and three other works specified for flame detection.

Our model also achieves a lower intraclass variance showing

the compactness of the latent clusters as an unsupervised

metric.

2) Ablation Study: Table IV shows an ablation study for

DML, LFE, and attention as well as triplet and cosine losses.

Samples acquiring less than 90% confidence in one of the

two classes are omitted from the prediction. For the baseline,

the cluster representatives are calculated by averaging all

feature vectors in the latent space. According to Table IV,

DML improves the binary classification accuracy. After adding

the attention mechanism to overcome the CL domination

problem, each latent feature contribution toward the proposed

loss functions is balanced, demonstrating 1.9% and 3.1%

accuracy improvement compared to the nonattentive version,

for FLAME2 and FLAME3, respectively. Lower accuracy on

the latter may be due to more diverse samples with variety in

flame type, illumination, vegetation, and so on.

E. Interpretability

With the aid of two main tools presented in this section,

the attentive classifier’s results are explainable, and the

contribution of all DML losses and global feature extraction

is showcased.

1) Grad-CAM: As seen in Fig. 5, in the baseline models,

according to the Grad-CAM [44], most of the learning is

focused on high-intensity regions in the thermal domain,

whereas most flame features in our model, especially

with attention, are nonintensity-based flame features,

covering around the flame. This aligns with global

feature discovery and acts as a solution to the lack

of absolute thermal reference points decreasing false

positives.

2) Attention Map: Fig. 6(a)–(c) depicts how each of the

64 features contributes to the aggregated loss gradient.

Fig. 6. Comparison of attention values of each loss across the 64-dimensional
latent feature vector. (a) Cosine-based loss attention, (b) triplet loss attention,
and (c) CL attention. Attention values are indicators for including and
excluding features’ contribution in the DML losses value, (11)–(12), and
in the backpropagation process, (1)–(4): The weight sparsity of the CL
(e.g., features 9, 36, 45, and 64) shows the attention mechanism adaptively
regularizes the contribution of every extracted latent feature in the loss
functions, guiding the model toward the optimum in the parameter space
(instead of scaling loss function derivatives uniformly with the hypertuning
parameters and causing center-loss domination.

Fig. 7. 2-D demonstration of the clustered latent feature space. (a) Baseline
latent scattering and (b) DML-guided latent scattering. Dimension reduction
via t-SNE approach.

The intensity of each band within the map corresponds

to the attention weight of the feature associated with that

band. The sparsity of features in the CL attention map

[lower weights—Fig. 6(c)] shows the attention mech-

anism successfully overcomes the domination problem

and refines the model toward capturing nonmagnitude
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Fig. 8. Classified and misclassified patches during validation.

features in the latent space, provoking the cosine and

triplet loss, which appear quite correlated [Fig. 6(a)

and (b)], in the learning process.

V. CONCLUSION AND FUTURE WORK

FlameFinder offers a comprehensive solution encompassing

segmentation, DML-guided classification, and aided attention,

leveraging the power of DML as a significant driving force

for detecting obscured flames. The results achieved from the

predictions of the DML-based model demonstrate favorable

performance in terms of separating flames in both unobscured

and obscured cases. Here, the attention mechanism used in

DML balances the utilization of features in separating latent

clusters. As the proposed DML-based model receives seg-

mentation masks as labels, it can be generalized to other

application domains. The proposed model can also be uti-

lized for other domain-adaptation tasks on multimodal data

by modifying the segmentation masks or proposing other

application-specific annotation mechanisms. Despite DML’s

significant role in constructing better cluster representatives

and compressing latent features around them, some samples

may still be misclassified. As seen in Fig. 8, false positives

are mostly cases with high thermal activity originating from

hot smoke, neighboring flames, and other thermal sources.

False negatives are mostly small flames (compared to the patch

size), corresponding to early thermal patterns with different

shapes than larger flames. In general, the leading causes of

misclassification are assumed to include the lack of thermal

reference points, similar thermal distributions in smoke and

flame, thermal noise originating from temperature gradients

of superimposed/interfered smoke layers in adjacent ignited

areas, and, lastly, the premature thermal distribution of early

flames resulting in outliers relative to larger flames. These lim-

itations open up new research directions in many fields, such

as multimodal detection, thermal imagery, and representation

learning, as well as the necessity of a more challenging dataset

suited for generalization to real-world scenarios.
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