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Highlights:

e Tensor decomposition analytics and graph-based computational models revealed
prefrontal multistimulus integration within a newly discovered prelimbic (PL) cortex
disambiguation circuit, triggered by initial fear acquisition, guides interleaving

5 contingency judgment learning (CJL).

e The prefrontal disambiguation circuit manages spurious and predictive relationships
during cue—danger, cue—safety, and cue—neutrality contingencies.

¢ Animals with memory deficiencies in the PL cortex exhibit impaired CJL and the PL
cortex disambiguation circuit function.
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SUMMARY: Understanding how cortical network dynamics support learning is a challenge.
This study investigates the role of local neural mechanisms in the prefrontal cortex during
contingency judgment learning (CJL). To better understand brain network mechanisms
underlying CJL, we introduce ambiguity into associative learning after fear acquisition, inducing
a generalized fear response to an ambiguous stimulus sharing nontrivial similarities with the
conditioned stimulus. Real-time recordings at single-neuron resolution from the prelimbic (PL)
cortex show distinct PL network dynamics across CJL phases. Fear acquisition triggers PL
network reorganization, led by a disambiguation circuit managing spurious and predictive
relationships during cue—danger, cue—safety, and cue—neutrality contingencies. Subjects with PL-
targeted memory deficiency show malfunctioning disambiguation circuit function, while naive
subjects lacking unconditioned stimulus exposure lack the disambiguation circuit. This study
shows that fear conditioning induces prefrontal cortex cognitive map reorganization, and
subsequent CJL relies on the disambiguation circuit's ability to learn predictive relationships.

INTRODUCTION

Contingency judgment is widely studied in human social, legal, political, and psychological
research, as it enables an effective and accurate prediction of events by inferring causal
relationships. Both humans ! and animals #° can accurately detect contingency alongside
contingency variations. However, contingency detections may be inaccurate when conflicting
cues or causal illusions abound. The neural mechanism underlying contingency judgment
learning (CJL), which involves the disambiguation of contextual cues followed by conversion
from spurious to predictable cue-outcome relationships, is unknown. Learning to control fear is a
complex behavior ¢ that relies on CJL and has been of interest to basic and clinical researchers.
Distinguishing between threats and closely related but not identical safe stimuli is vital for
survival. Overcoming generalized fear is equally crucial for achieving successful behavioral
performance. People with posttraumatic stress disorder (PTSD) find it difficult to subdue fear,
even in safe conditions °.

PTSD presents with impaired contextual fear processing across the hippocampus (Hip)-the
basolateral amygdala (BLA)-medial prefrontal cortex (mPFC) circuit resulting in misjudgment of
cue-safety vs. cue-danger relationships. Impaired contextual fear inhibition and overgeneralized
fear are postulated to be markers for PTSD risk and treatment outcome as individuals with PTSD
feel acutely threatened by generalized cues!®-!3. The hippocampus 415, the basolateral amygdala
16 the ventromedial prefrontal cortex, and the dorsal anterior cingulate cortex !> have been
implicated in contextual fear inhibition and PTSD risk !3. Fear-related behavior is controlled by
discrimination, generalization, and extinction®”!7-!8, Both rodent and human studies implicated
prefrontal regions in contextual fear acquisition, expression, generalization, inhibition, and
discrimination (extensively reviewed in !1-13:19-21) "While the hippocampus-amygdala-prefrontal
circuit function underlying fear modulation is one of the best-understood circuit mechanisms in
neuroscience, the complete understanding of mechanisms involving distinctive prefrontal regions
in contextual fear modulation remains to be elucidated, and translational considerations pose
concerns due to anatomical and functional differences.
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Despite widespread interest in understanding the mechanisms of cortical network dynamics at a
cellular resolution that underlie complex behaviors, these mechanisms remain elusive, primarily
due to technological and analytical constraints. Specifically, how neurons cluster into functional
groups to drive network activity and how neural network dynamic codes trigger behavioral
responses remain unclear. Studies on the molecular and circuit mechanisms of how the mPFC
controls fear behavior abound 571317182233 The prelimbic (PL) and infralimbic (IL) subdivisions
of mPFC and their long-distance interaction can differentially regulate fear behavior**37, the
result of distinct connectivity with the amygdala®®*° and the central nucleus of the amygdala
output via BLA excitatory pathways*® or the amygdala intercalated neurons relay*' providing an
alternative mechanism for extinction?***43, Prefrontal circuitry has been strongly implicated in
safety learning, the general learning process of associating a cue/stimulus with safety (e.g., PL
projections to ventrolateral periaqueductal gray * or PL projections to BLA3%*3, PL projections
to IL %, long-range cortical interaction 4, cortical-subcortical interactions** and BLA projections
to PL??). Studies have also explored prefrontal top-down control of behavior 43-!,

Considerable evidence indicates that mPFC, BLA, and Hip neurons are functionally coupled at
the theta range (4-12 Hz oscillations) during fear conditioning 2°3and discriminative fear
learning>*>°, Prior studies suggested that the PL subdivision of the mPFC monitors context—
danger and context-safety relationships 246, Neural correlates of fear discrimination were
reported in the BLA, while abnormalities in BLA function may result in generalization >7->.
Furthermore, PL input to the BLA is likely to drive fear specificity, while disruption of PL
function during fear discrimination results in abnormal generalization ®°, Nonetheless, a
fundamental question that has remained unresolved pertains to whether the prefrontal network
dynamics’ role in CJL and/or its dependence on the acquisition of properties within the PL
network constitute essential components of a global brain mechanism that guides behavioral
responses, particularly in the CJL context to choose appropriate responses to threat, safety, and
neutral environmental cues.

Using head-mounted miniature microscopes (HMMs) in freely behaving mice®!%2, we studied
prefrontal network dynamics at a single-cell resolution by tracking network responses to
unambiguous threat-conditioned, ambiguous safety-conditioned, and unambiguous neutral
stimuli across CJL learning task. Real-time recordings at a single-neuron resolution in control vs.
genetically targeted PL hypofunction acquired from the PL cortex using HMM showed distinct
PL network dynamics that manage learning on a CJL task. We used tensor decomposition
analytics empowered with a graph-based computational model to demonstrate that prefrontal
multistimulus integration within a dedicated disambiguation circuit, triggered by initial fear
acquisition, guides interleaving CJL. Mutant animals with dysfunction limiting the PL network’s
ability to consolidate memories displayed an inability to learn cue-safety and cue-danger
relationships associated with severe impairments of the disambiguation circuit function.

RESULTS

CJL’s reliance on PL network integrity

Understanding the psychological and underlying circuit mechanisms of CJL poses theoretical
and technical challenges. How brain networks manage the recognition of predictive and spurious
cue-outcome relationships in response to threat and safety contingency learning remains unclear.
To better understand the brain network mechanisms underlying contingency learning, we added
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ambiguity to associative learning after fear acquisition in the well-studied temporal contiguity
model of Pavlovian conditioning !” by triggering a generalized fear response to an ambiguous
stimulus sharing nontrivial similarity with the conditioned stimulus 2663, Figure 1A shows the
CJL behavior paradigm used to systematically evaluate behavioral responses to the unambiguous
threat-conditioned stimulus (CS+), ambiguous safety-conditioned stimulus (CS-), and
unambiguous neutral stimulus (NS) across 33 trials of habituation preceding fear conditioning
and differential fear conditioning. This interleaving learning strategy involving a deliberate
alteration in stimulus presentations represents a learning in which cognitive schemas develop
progressively through exposure, experience, and gradual integration. While CS- and NS are
frequently used in contemporary research as non-reinforced control stimuli associated with “no
outcome” (i.e., no US, unconditioned stimulus), a substantial theoretical and technical distinction
exists between both stimuli in the current design, which demonstrates active learning of safety
information. Encounters with a safety signal were treated as a significant reinforcing episode
rather than an unambiguous emotionally neutral event. Notably, CS- shares nontrivial similarity
with CS+, yielding an ambiguity-triggered generalization that we consider a spurious
relationship as opposed to predictable cue-outcome relationships represented by CS+ (that is
always reinforced with US) or predictable cue-no outcome relationships represented by NS (not
associated with positive or negative valence due to a lack of meaningful similarity with CS+ or
CS- and always presented with “no outcome”).

To determine the function of the PL cortical network in the adult brain and specifically the role
of CBP-mediated histone acetyltransferase (HAT) activity in network dynamics, we generated
transgenic mice carrying a dominant negative CBP transgene (PL-CBPAHAT) that specifically
blocks HAT activity in PL cells (Fig. SIA-B). Under normal conditions, CREB phosphorylation,
which depends on CBP recruitment to critical promoters, and CBP-HAT enzymatic activity are
both required for memory consolidation (Fig. 1D-E) 286473, However, CBP is not considered a
limiting factor due to its inherent abundance. Notably, any decrease in CBP-HAT activity
selectively and dramatically lowers the probability of successful memory consolidation (i.e.,
conversion from short-term to long-term memory). For example, a two-amino-acid substitution
mutation (Y P4/F13H >Y1540/F1341) of the CBP’s HAT domain (Fig. 1 D, CBPAHAT mutant)
selectively disables the binding of the primary substrate acetyl CoA and results in the inability of
CBP to acetylate histone and memory consolidation ®*63. Thus, blocking transcription on the
gene promoters that require histone acetylation for synaptic activity-triggered gene expression
hinders long-term memory consolidation. Cytohistological analysis of brain tissue isolated from
PL-CBPAHAT and Ctrl animals showed that conditioned PL-CBPAHAT mice displayed
decreased levels of acetylated histone H3 (AcH3, left panel, t-test PL-Ctrl vs. PL-CBPAHAT: p
=0.0283, (20) = 2.359, r = 0.431; Ctrl: 1 £ 0.1255, n=11; PL-CBPAHAT: 0.6206 + 0.1006, n =
14) and decreased levels of acetylated histone H4 (Ac-H4; right panel; t-test PL-Ctrl vs. PL-
CBPAHAT: p =0.0338, t(17) =2.303, r = 0.441; Ctrl: 1 +0.1428, n =9; PL-CBPAHAT: 0.5746
+ 0.1172, n = 14) in cells expressing mCherry when compared to conditioned control animals
(Fig. S1). These findings corroborated those of previous studies reporting decreased levels of
acetylated histones in CBP mutant mice 286473,

To assess the PL network dynamics and their role in learning CJ accuracy, we compared the CJL
performance of the Ctrl mice with that of PL-CBPAHAT mutants while assessing real-time PL
network dynamics at cellular resolution using HMMs (Fig. 1A-C and Fig. 2). Behaviorally, fear
responses were operationalized as the percentage of time a mouse spent freezing (i.e., motionless
other than respiration and heartbeat) during the trial. Thus, higher freezing levels indicated a
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greater fear response. For imaging during behavior using HMMs, all mice expressed the Ca?*
indicator GCaMPo6f targeted to the PL neurons and had chronically installed prism lenses that
allowed the collection of light signals from the PL cortex (Fig. 2A) during all 33 trials of the CJL
task (Fig. 1A).

As baseline controls for contingency learning, two groups (Ctrl-w/o US and PL-CBPAHAT-w/o
US) were never exposed to US. Figure 1B—C shows the performance of mice carrying HMMs or
non-functional replicas on the CJL task. Figure 1B demonstrates that HMM-carrying Ctrl and
PL-CBPAHAT mutant mice performed similarly in the contextual version of the fear
conditioning (FC) task, showing strong conditioned fear acquisition (Fig. 1B; two-way RM
ANOVA: US x Group: F (9, 114) =9.104, p <0.0001; US, F (2.082, 79.13) = 20.74, p < 0.0001;
Group, F (3, 38) = 6.501, p = 0.0012). Sidak’s comparisons between all four groups at the
baseline were insignificant (p > 0.05). While the Ctrl and PL-CBPAHAT groups showed strong
fear acquisition, the Ctrl-w/o US and PL-CBPAHAT-w/o US groups did not acquire fear to CS+
(Bonferroni’s comparisons of Baseline vs. After 3™ US-CS+ Pairing: Ctrl, p <0.0001; PL-
CBPAHAT, p <0.0001; Ctrl-w/o US, p > 0.05; PL- CBPAHAT -w/o US, p > 0.05. During the
CJL portion of the paradigm, responses to NS were not significant and were similar between the
test (Fig. 1C, left) [Two-way RM ANOVA: Block Trial x Group, F (9, 117)=1.177, p = 0.3158;
Block Trial, F (2.412, 94.08) = 1.350, p = 0.2645; Group, F (3, 39) =2.618, p = 0.0645].

The CJL task was designed to measure the acquisition of CJ accuracy during repeated exposures
to the threatening context stimulus CS+ (always paired with US) alternated with exposures to
similar but not the same safe context stimulus CS- (cue-safety relationship). A three-way
ANOVA showed differences in the performance of the Ctrl and PL-CBPAHAT mice carrying
HMMs during CJL (Fig. 1C, right. Ctrl and PL-CBPAHAT, three-way ANOVA:

Block x Group x Stimulus, F (3, 90) = 5.0778, P=0.0027; Block, F (3, 90) = 1.2842, P=0.2847,
Group, F (1, 30) = 3.7600, P=0.0619; Stimulus, F (1, 30) = 30.337, P<0.0001; Block x Group, F
(3, 90) = 0.37795, P=0.7691; Block x Stimulus, F (3, 90) = 7.4868, P=0.0002; Group x Stimulus,
F (1, 30) = 0.60056, P=0.4444). Initially, the Ctrl and PL-CBPAHAT mice generalized their
conditioned responses and exhibited similar freezing levels to both the CS+ and CS- contexts
(Fig. 1C, Tukey’s correction for multiple comparisons: Ctrl, CS- vs. CS+: Block 1, p > 0.05;
Block 2, p > 0.05; PL-CBPAHAT, CS- vs. CS+, Block 1, p > 0.05; Block 2, p > 0.05). However,
the Ctrl animals began to freeze significantly less in response to context CS- than to context CS+
during Blocks 3 and 4 trials of training (Fig. 1C; Ctrl, CS- vs. CS+: Block 3, p < 0.0001; Block
4, p <0.0001), demonstrating high CJ accuracy during late (L)-CJL. Unlike the Ctrl group, the
PL-CBPAHAT mice failed to distinguish between context CS- and CS+ and continued to show
bias towards a generalized CS+ response during each of the four CS- block trials on the CJL task
(Fig. 1C, PL-CBPAHAT, CS+ vs. CS-: Block 3, p > 0.05; Block 4, p > 0.05), demonstrating
again that PL-CBPAHAT mice have a strong deficit in CJL.

Additionally, average learning curves for learning responses to CS+ and CS— were calculated
based on the performance of the Ctrl and PL-CBPAHAT groups across the CJL training,
followed by fitting the regression line to the CS+ curve (red) and the CS—curve (blue) (Fig. 2C,
Block trials 1-4). The analysis of patterns of responses to CS+ and CS- in Ctrl animals showed
that the improvement of the contingency judgment accuracy (the slopes CS+ vs. CS- are
different: F=14.12, p=0.0027) was due to a decline in freezing responses to CS— (CS— slope, p =
0.0027), while the slope of the CS+ curve did not deviate from zero (P > 0.05, Fig. 2C, Ctrl -
Block trials 1-4). The PL-CBPAHAT group, which failed to improve contingency judgment
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accuracy, showed no difference between the slopes of the CS+ and the CS— curves (F=0.510,
p=0.489), and the slopes of both curves were not different from zero (P > 0.05, Fig. 2C, PL-
CBPAHAT - Block trials 1-4). In addition, the slopes CS+/Ctrl and CS+/PL-CBPAHAT are not
different (F=2.2, p=0/165). Ctrl-w/o US and PL-CBPAHAT-w/o US showed no fear to any
tested stimuli because these mice never acquired fear as a result of not being exposed to US at
any time.

These data show that the CJL paradigm is effective in capturing transitions from spurious cue-
outcome relationships (CS- responses during early (E)-CJL) to predictive cue-outcome
relationships (CS- responses during L-CJL). In contrast, stable responses to CS+ (high) and NS
(low) remain predictable during the entire CJL task (see additional details below). These findings
indicate that neural hypofunction in the PL circuitry can result in imbalanced neural processes
underlying CJL, suggesting that PL network might be the locus of learning contingency
judgment accuracy.

Imaging of prefrontal circuit dynamics during CJL at single-neuron resolution

To assess real-time PL network dynamics associated with the performance on the CJL task, we
extracted Ca?" transients of neurons activated in the PL cortex in response to context CS+, CS-,
and NS stimulus presentation trials across CJL from normal mice carrying HMMs (Ctrl) and
compared them with Ctrl-w/o US mice and PL-CBPAHAT-w/o US mice that were never
exposed to US but otherwise underwent a full training protocol and with mutant PL-CBPAHAT
mice, which showed a strong deficit in CJL (Fig. 1C). Using this approach, we extracted the
activity profile of individual neurons within CJL trials, reflecting rapid large-scale neural
dynamics during responses to contextual stimuli CS+, CS-, and NS. Thus, tracking changes in
large-scale neural dynamics on a trial-to-trial basis while comparing CS+ vs. CS- triggered rapid
dynamics should show long-term circuit plasticity associated with safety learning.

Due to postsurgical tissue scaring, not all mice shown in (Fig. 1B-C) were used for calcium
imaging acquisition (see Methods). Figures S2A and S2B show the performance of mice (Ctrl vs.
PL- CBPAHAT vs. Ctrl-w/o US vs. PL-CBPAHAT-w/o US) used for Ca2+ imaging during CJL
and network dynamics analysis (see Methods). Performance of all four groups of mice (Ctrl, PL-
CBPAHAT, Ctrl-w/o US, PL-CBPAHAT-w/o US) used for Ca2+ imaging (Fig. S2) was similar
to larger cohorts described previously (Fig. 1B-C). Figure S2A showed that Ctrl and PL-
CBPAHAT mice acquired fear, while animals that were not treated with US (Ctrl-w/o US and
PL-CBPAHAT-w/o0 US) showed no fear during the entire behavioral procedure (Fig. S2A-B).
Analysis of CJL learning curves (CS+ vs. CS-) in Ctrl showed strong learning (Fig. S2B, Ctrl:
the slope of Ctrl/CS- descended significantly, Y =-2.895*X + 65.24, F=6.663, P=0.0417; the
slope of Ctrl/CS+ ascended significantly, Y = 1.666*X + 24.88, F=10, P=0,0195; and the slopes
Ctrl/CS+ vs. Ctrl/CS- were different F=13.55, P=0.0031). However, PL- CBPAHAT showed no
learning on the CJL task (Fig. S2B, PL-CBPAHAT: the slope of PL-CBPAHAT /CS- did not
deviate from zero, Y = -0.6589*X + 35.50, F=0.5102, P=0.5019; the slope of PL-CBPAHAT
CS+ did not deviate from zero, Y =-0.1134*X + 38.41, F=0.0309, P=0,8662; and the slopes PL-
CBPAHAT /CS+ vs. PL- CBPAHAT /CS- were not different, F=0.2350, P=0.6366). In addition,
a three-way ANOVA showed differences in the performance of the Ctrl and PL-CBPAHAT mice
used for Ca?* imaging during CJL (Fig. S2B; Ctrl vs. PL-CBPAHAT, three-way ANOVA Block
x Group x Stimulus, F (3, 39) = 2.0803, P=0.1185). Tukey’s correction for multiple comparisons
showed that Ctrl mice learned to discriminate between CS+ and CS- during late-CJL (Fig. S2B,
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Ctrl, CS- vs. CS+: Block 4, P < 0.05) after initially showing fear generalization during early-CJL
(Fig. S2B, Ctrl, CS- vs. CS+: Block 1, P > 0.05). PL-CBPAHAT showed deficits in CJL learning
(Fig. S2B, PL-CBPAHAT: CS- vs. CS+, Blocks 1, 2, 3 and 4, p > 0.05).

Ctrl-w/o US and PL-CBPAHAT-w/o0 US showed no fear to any tested stimuli because these mice
never acquired fear as a result of not being exposed to US at any time (Fig S2B-right, Ctrl-w/o
US Two-way RM-ANOVA Block x Stimulus, no effect of Block, no effect of Stimulus and no
interaction, p > 0.05. PL-CBPAHAT-w/o US Two-way RM-ANOVA Block x Stimulus, (Ctrl-
w/o US Two-way RM-ANOVA Block x Stimulus, no effect of Block, no effect of Stimulus and
no interaction, p > 0.05).

Thus, expression of the inhibitor of long-term memory consolidation (i.e., CBPAHAT) targeting
PL neurons abolished learning on the CJL task. The deficit observed in PL-CBPAHAT mice was
found to be specific to learning contingency judgment accuracy. These mutant animals acquired
and generalized fear to the same levels as Ctrl animals (Fig. 2SA-B) and distinguish between
different contexts similarly to Ctrl (e.g., CS+ vs. NS during E and L); however, subtle differences
between CS+ and CS- led to an inability to transition from spurious to predicted cue-no outcome
relationships. This resulted in biased contingency judgment, leading to the generalization of fear.

In vivo imaging of Ca" transients using miniature fluorescence microscopes can provide insights
into network activity in the brain 337627477 Figure 2A shows a coronal representation of
GCaMPo6f expression in PL neural populations with a laterally positioned microendoscopic lens.
Representative images from a PL-CBPAHAT mouse confirmed PL targeting with GCaMP6f
(Fig. 2A-B) and CBPAHAT.mCherry (Fig. 2A-B), as well as the overlap of GCaMP6f and
mCherry expression (Fig. 2A). We also found that GCaMP6f+ve cells also expressed NeuN (Fig.
2C), confirming that infected cells were neurons. Neural spatial footprints and neural temporal
traces of individual Ca?* transients were retrieved from motion-corrected images collected at 15
Hz after inspection for stability across the stack of frames. Figure 2D shows recordings of the PL
populations’ calcium activity during exposure to fear-conditioned context stimulus CS+ (before
and after US) applying a constrained matrix factorization to accurately separate the background,
followed by demixing and denoising the neural signals (see Methods, Fig. S3, Fig. S4). Figure
2D delineates unsorted Ca?* traces of the general population, with the spatiotemporal
components sorted into two subpopulations of neurons out of the cell range that are categorized
based on US-responding or their unspecific response (Fig. 2D), confirming that some PL neurons
respond directly to US. The accuracy of neural spatial footprints between trials was supervised
using the cell registration code ”® (Fig. S5), which is described in the Methods section. The data
processing protocol described in the Methods section provides an efficient and accurate
extraction of single neural activities from endoscopic video data, allowing us to simultaneously
track well-isolated neural signals within noisy and overlapping data regimes of neurons.

Global network activity is stable across CJL learning trials

The phenotype of the PL-CBPAHAT mutant mice clearly demonstrated that PL integrity is
indispensable for CJL. Our initial hypothesis was that there would be an obvious measurable
change in global PL network dynamics, i.e. a detectable change in manifest variables of a PL
state, explaining a moment of engagement of PL during CJL. With the ability of real-time large-
scale neuronal activity assessment in PL using HMMs, we first tested global network activity
across CJL trials. To gain insights into PL network dynamics, we tracked changes in large-scale
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neural dynamics on a trial-to-trial basis while comparing CS+ vs. CS- vs. NS -triggered PL
network responses.

The average Ca?" spike rates did not vary significantly in Ctrl (Fig. 2E, top: two-way ANOVA of
Block Trial x Stimulus, F (8, 84) = 1.077, P=0.3869; Block, F (2.329, 48.90) = 3.412, P=0.0345;
Stimulus, F (2, 21) = 1.259, P=0.3044. Tukey’s multiple comparisons showed no differences
between consecutive trials for any of the three stimuli: CS+ responses between trial, p > 0.05;
CS- responses between trials, p > 0.05; and NS responses between trials, p > 0.05 or between
responses to any of the three stimuli (CS+ vs. CS- vs. NS) in any block trial, p > 0.05). Similarly,
the PL-CBPAHAT group also did not show any differences between specific trials across CJL in
stimulus-triggered average Ca** spike frequency (Fig. 2E, bottom: two-way ANOVA of Block
Trial x Stimulus, F (8, 72) = 0.6385, P=0.7428; Block, F (3.335, 60.04) = 9.686, P<0.0001;
Stimulus, F (2, 18) = 1.693, P=0.2121). Tukey’s multiple comparisons showed no differences
between trials for any of the three stimuli: CS+ responses between trials, p > 0.05; CS- responses
between trial, p > 0.05; and NS responses between trials, p > 0.05 or between responses to any of
the three stimuli (CS+ vs. CS- vs. NS) in any block trial, p > 0.05.

Investigations showed that average Ca®* spike rates did not vary significantly between all four
tested groups (Fig. S6A, Ctrl vs. PL-CBPAHAT vs. Ctrl-w/o US vs. PL-CBPAHAT-w/o US,
one-way ANOVA: p > 0.05). No significant difference was observed in the average Ca>" spike
rates between block trials (Fig. S6B-E, top) and within block trials (Fig. S6B-E, bottom) of CJL
during exposures to different stimuli (CS-, CS+ or NS) in each of the tested four groups: Ctrl
(Fig. S6B, p > 0.05), PL-CBPAHAT (Fig. S6C, p > 0.05), Ctrl-w/o US (Fig. S6D, p > 0.05), and
PL-CBPAHAT-w/o US (Fig. S6E, p > 0.05).

While global PL network activity was not varied across trials (Fig. 2E), another important
question was if the PL network’s stimulus selectivity of the PL network was changing across

CJL that could explain learning to distinguish between cue—danger and cue—safety predictive
relationships. To assess potential network bias towards specific stimuli signaling spurious or
predictive relationships during cue—danger and cue—safety contingencies across different phases
CIJL, we first evaluated selective tuning toward CS- or CS+ for recorded neurons by calculating
the Discrimination Index (DI, see Methods). The DI was found by using Ca*" spike rate
responses to CS- and CS+ and plotting the cumulative probability distribution of DIs during
habituation (H) or E- or L-phase trials of CJL in Ctrl (Fig. 2F, top) and compared to PL-
CBPAHAT (Fig. 2F, bottom). The Kolmogorov-Smirnov (K-S) test was used to compare
cumulative frequency distributions of DIs across CJL learning. The K-S test did not show any
changes in network selectivity towards stimuli (CS+ and CS-) in Ctrl during transition from
habituation to E-CJL (Fig. 2F, left-top; Ctrl, K-S test; H vs. E; D = 0.026, p = 0.4537) nor during
transition from early- to late-CJL (Fig. 2F, right-top; Ctrl, K-S test; E vs. L; D = 0.0385, p =
0.1098). PL-CBPAHAT mice showed minuscule distortion of cumulative frequency distribution
patterns of DIs during transition from habituation to early-CJL (Fig. 2F, left-bottom; PL-
CBPAHAT, K-S test; Hvs. E; D=0.074, p <0.0001) and during transition from early- to late-
CIL (Fig. 2F, right-bottom; PL-CBPAHAT, K-S test; E vs. L; D =0.076, p <0.0001).

The decomposition of CJL-associated PL network dynamics data shows learning-specific
latent neuronal patterns.
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While behavioral data showed that the PL network is critical for CJL (Fig. 1B-C and Fig. S2A-
B), initial investigations showed that manifest variables representing global PL network states
during learning trials failed to explain CJL. Specifically, average Ca?" spike rates and their
cumulative frequency distributions remained stable across learning trials (Fig. 2E-F and Fig. S6).
We, therefore, hypothesized that there are latent variables that represent model states that could
explain CJL. Our experimental design organized neural Ca®" spike rates into, at a minimum, a
data array with three axes: neuron factor (neuronal populations), trial factor, and temporal factor
(time within trial) (Fig. 3A). This data array is essentially a tensor (the CJL neural tensor), which
is a data representation that has been successfully applied in analyzing and extracting patterns
from high-dimensional high-order data. In order to show latent neuronal activity patterns that
reflect interpretable trial variables (trial conditions and fear levels), we utilized tensor
decomposition-based analytics 7°, which is a set of analytical optimization tools that express a
given tensor as a sum of its constituent components, each one of which representing a pattern
that exists in the data (see Methods).

The Canonical Polyadic Decomposition (CPD) model in Ctrl showed that during the CJL task,
the PL network was driven by three tensor components (TC1, TC2, TC3) that collectively
explained behavioral correlates (Fig. 3, also see Methods). The first tensor component (TC1)
pattern exhibited a habituation-specific response, while TC2 appeared to integrate responses to
multiple stimuli but was explicitly relevant to CJL. TC1 showed neurons most responsive to all
stimuli within the habituation preconditioning phase. TC2 showed neurons most responsive to
CS— and CS+ stimuli postconditioning during the early, middle, and late phases of differential
fear conditioning. TC3 showed neurons most responsive to the NS stimulus postconditioning
during the early, middle, and late phases of differential fear conditioning. Interestingly, TC2 was
triggered by fear conditioning and appeared to manage responses to multiple stimuli during all
CJL trials that are critical to CJ and relevant to learning appropriate responses to safe stimuli.
Thus, we will refer to this population as the PL cortex disambiguation circuit. Remarkably, these
populations captured during the interleaving CJL protocol in the PL network were more likely to
manage different phases of learning underlying complex behavior than typically observed neural
representations associated with specific stimuli, such as those observed in sensory cortices or the
hippocampus 37748084 Thus, The CPD model detected latent populations (TC1, TC2, TC3) and
their activity patterns that reflect interpretable trial variables (trial conditions and fear levels) of
the CJL task in Ctrl mice. TC2, or the disambiguation circuit, integrates responses to multiple
stimuli and guides CJL.

Community detection using ND-graph model shows distinctive learning-specific neuronal
populations in PL during CJL

The CJL tensor decomposition model suggests that three major neural components can explain
the PL network dynamics underlying CJL. However, tensor decomposition is usually used to
identify latent variable models rather than address finite sample issues, and assessing the
meaningful size of components remains a challenging and unresolved issue 8% and is rarely
implemented using unconventional approaches®”:8. To gain deeper insights into the discrete
temporal structure of prefrontal activation patterns during learning using a stochastic graph-
based analysis ®, which was applied to the PL network activation patterns at a single-neuron
resolution across all trials of the CJL task in Ctrl mice. We hypothesized that if there are CJL-
specific latent neuronal populations guiding learning within the PL network, the graph-based
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computational modeling of PL network activity at a single-neuron resolution should be able to
capture these latent populations both qualitatively and quantitatively and show their pattern of
activity correlating with CJL. By considering neurons as vertices and their temporal interactions
as edges, graph-based analytics allow visualization of large neural network recordings within and
across trials so that quantitative testing of theoretical concepts relevant to network dynamics and
behavior can be assessed. Supplementary Figure S8A shows the construction of an exemplar
adjacency matrix for an individual trial used for graph-based computational modeling of PL
network activity during CJL. The neural network dynamics graph (ND-graph also see Methods)
is an application-specific weighted directed graph in which we used a 66 milliseconds time
binning size and a sliding time window set to 666 milliseconds to capture the temporal features
of the PL network dynamics at a cellular resolution underlying CJL (Fig. S8A). The weight
reflects the time interval between neural activation events (i.e., Ca?* spikes), and the probability
of neural coactivation is defined as the value of summed weights. To gain insights into temporal
relationships between individual neurons and/or groups of neurons sharing similar temporal
activation patterns (referred to as neural communities or communities), we modeled assembly
activation patterns across CJL trials. Thus, each temporally aggregated adjacency matrix
representing each of the trials was all-trials temporally aggregated (summed together), collapsing
all trials into a single adjacency matrix (Fig. 4A). In the next step, the Louvain Community
algorithm *° was applied to ND-graphs to determine the optimal community structure subdivision
of the network with nonoverlapping neural clusters in the PL networks during CJL of the Ctrl
mice. Figure 4B shows a representative image of the qualitative analysis outcome of the
community detection that shares a general similarity to tensor decomposition-based
computational analysis (Fig. 3B). Three latent neural groups (i.e., NC1, NC2, and NC3) were
detected, showing a distinctive pattern of activity across CJL trials. Intriguingly, the NC2
community was triggered by fear conditioning and was responsive to both CS+ and CS- during
CJL in a similar fashion as the TC2 component (Fig. 3B). This general qualitative similarity (Fig.
3B vs. Fig. 4B) is striking because applied tensor decomposition and graph-based community
detection analytics are substantially different computational approaches. In addition, Fig. 4C
showed a substantial level of overlap between neuronal population detected using the ND-graph
model approach (Fig. 4B. NC1, NC2, and NC3) and CPD model approach (Fig. 3C. TC1, TC2,
and TC3) in the same Ctrl mouse.

Disambiguation circuit activity explains learning of contingency judgment

The Louvain community detection algorithm (Fig. 4A) yielded a qualitative evaluation of PL
network dynamics (Fig. 4B) and quantitative aspects of communities’ activity patterns across
CJL trials, allowing testing of the main hypothesis that PL network dynamics guides CJL. To
address this hypothesis, we tracked prefrontal dynamics in Ctrl mice and compared them with
PL-CBPAHAT mutant mice displaying unsuccessful learning during CJL. First, we performed a
detailed analysis of activation patterns of neuronal communities across the CJL trials in Ctrl
mice. This analysis method outperforms other computational approaches owing to its temporal
scope, as it enables the capturing of the dynamics of subtle temporal structures formed by
populations across a large number of active cells. Figure SA-B shows detailed patterns of neural
dynamics for each of the three detected communities (NC1, NC2, NC3) plotted as a percent of
total network activity during 10 trials (i.e., 5 block trials: Habituation (Block -1), E-CJL (Blocks
1-2), and L-CJL (Blocks 3-4)) for each tested stimulus (CS-, CS+, NS) in Ctrl mice compared to
PL-CBPAHAT, Ctrl-w/o US, and PL-CBPAHAT-w/o US mice.
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Figure 5A illustrates changes in responsiveness to the tested stimuli in three discovered neural
communities in the Ctrl group. The patterns of neural dynamics across trials of CJL recorded in
the Ctrl group were consistent with those observed in the tensor decomposition model (Fig. 3C).
The NC1 activity pattern correlated specifically with habituation trials, with no bias toward any
of the tested stimuli. The NCI1 activity level declined after CJL started (Fig. SA-left, NC1: Fig.
5A, Ctrl, Two-way RM ANOVA: Block Trial x Stimulus, F (8, 84) = 1.131, P=0.3513; Block
Trial, F (1.420, 29.81) = 399.2, P<0.0001; Stimulus, F (2, 21) = 0.1569, P=0.8558. Bonferroni's
multiple comparisons test: CS-: Block —1 vs. 1 or 2 or 3 or 4, p <0.05. CS+: Block —1 vs. 1 or 2
or 3 or4, p<0.05.NS: Block —1 vs. 1 or 2 or 3 or 4, p <0.05). In addition, NC1 shows no bias
toward any tested stimuli (CS-, CS+, and NS) during any of the block trials across the entire CJL
task (Fig. 5SA, Bonferroni's multiple comparisons test: CS- vs. CS+ vs. NS at all Block Trials, P >
0.05).

Unlike NC1, the NC2 activity rapidly increased in responses to CS+, CS-, and NS after FC (Fig.
5A-middle, NC2: Ctrl, Two-way RM ANOVA: Block Trial x Stimulus, F (8, 84) =2.782,
P=0.0088, Block Trial, F (2.053, 43.11) = 80.06, P<0.0001, Stimulus, F (2, 21) = 4.625,
P=0.0217

Bonferroni's multiple comparisons test: CS-: Block —1 vs. 1 or 2 or 3 or 4, p < 0.05. CS+: Block
—1lwvs. lor2or3or4, p<0.05. NS: Block —1 vs. 1 or 2 or 3 or 4, p <0.05. CS+, CS-, and NS
are cues that should signal a high probability of distinctive future circumstances such as danger,
safety, and neutrality during L-CJL, respectively. We hypothesized that the CJL task requires
temporal (across-trial) and multistimulus integration during memory updates and consolidation
because animals use subtle differences between context CS+ and CS- across many days with a
single exposure to each context only once per day during CS- cue - safety relationship judgment
learning that requires 4—8 days of training. Thus, it was imperative to compare the responses of
FC-triggered NC2 to specific cues (i.e., CS+, CS-, and NS) during each specific block trial after
FC.

Figure 5A shows an unexpected pattern of NC2 responses to these three distinctive cues,
demonstrating that responses to CS- and CS+ were indistinguishable during all block trials of
CJL; however, relative responses to NS were variable but consistent with learning predictive
(i.e., accurate) CS- cue - safety relation. Bonferroni's multiple comparisons test showed that NC2
responses to CS- were not different from those to CS+ at all block trials (CS- vs. CS+: p>0.05
for all block trials). During E-CJL, NC2 showed significantly lower responses to NS than to CS-
(CS-vs. NS: Block 1, P <0.05; Block 2, P <0.05) and CS+ (CS+ vs. NS: Block 1, P <0.05).
However, responses between all three stimuli (CS-, CS+, and NS) became indistinguishable at
late-CJL during block trials 3 and 4 (Block 3 / CS+ vs. NS: P > 0.05, CS- vs. NS: P> 0.05;
Block 4 / CS+ vs. NS: P> 0.05, CS- vs. NS, P > 0.05). These findings suggest that acquiring
predictive CS-/safety relations may involve encoding neutral cues-no outcome relations within
the NC2 circuit. PL appears to be learning contingencies, and maybe CSs are prioritized (i.e.,
have a significantly greater percentage of the network activity compared to NS) in the beginning
(E) because they are more challenging to differentiate during the early learning phase (with the
more spurious relationship for CS-) and less processing is required for the unambiguous NS but
then through learning by the end of CJL (L) once animals are showing successful discrimination,
all three stimuli are processed similarly by this community because each predictive relationship
was learned successfully (i.e., CS- predicts safety, CS+ predicts danger, and NS predicts neutral).
Thus, NC2 tracked responses to unambiguous threat-conditioned, ambiguous safety-conditioned,
and unambiguous neutral stimuli across 33 trials of habituation, fear conditioning, and
differential fear conditioning (Fig. 1A, C). As the NC2 dynamic pattern explains neural
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computations associated with successful CJL learning, community NC2 defines the
disambiguation circuit similarly to TD2 (Fig. 3C).

The community NC3 dynamic pattern appeared to correlate with coding neutrality (Fig. 4B and
5A-right) into the PL network. A two-way RM ANOVA of Block Trial x Stimulus showed
effect of Block Trial (Fig. SA —NC3: Ctrl, two-way RM ANOVA: Block Trial x Stimulus, F (8,
84) = 1.445, P=0.1899; Block Trial, F (1.688, 35.46) = 5.493, P=0.0115; Stimulus, F (2, 21) =
4.453, P=0.0244). Bonferroni's multiple comparisons test showed that NC3 show biased towards
NS after fear conditioning during E-CJL, which suggests that NC3 may code initial NS
recognition in the PL network (Fig. 5A-right, Bonferroni's multiple comparisons test: NS: Block
—1 vs. 1 and Block —1 vs. 2, P <0.05.

We performed the same community analysis in the PL-CBPAHAT mice and compared the
results with those of the Ctrl mice. Similarly, we found three distinctive communities: NCI,
NC2, and NC3 in PL-CBPAHAT (Fig. 5B), with a marked group difference in the activity
patterns of NC2. Fig. 5B shows that PL-CBPAHAT’s NCI1 exhibits a very similar pattern to the
Ctrl’s NC1. The NC1 activity pattern correlated specifically with habituation trials (Fig. 5B-left,
NC1: PL-CBPAHAT, Two-way RM ANOVA: Block Trial x Stimulus, F (8, 72) = 0.9277,
P=0.4991, Block Trial, F (2.252, 40.53) =239.7, P<0.0001; Stimulus, F (2, 18) = 0.3904.
P=0.6824. Bonferroni's multiple comparisons test: CS-: Block —1 vs. 1 or 2 or 3 or 4, p < 0.05.
CS+: Block =1 vs. 1 or 2 or 3 or 4, p <0.05. NS: Block —1 vs. 1 or 2 or 3 or 4, p <0.05). In
addition, NC1 shows no bias toward any tested stimuli (CS-, CS+, and NS) during block trials
across the entire CJL task (Fig. 5B-left, Bonferroni's multiple comparisons test: CS- vs. CS+ vs.
NS at all Block Trials P > 0.05.

In PL-CBPAHAT mice, the NC2 showed an abnormal pattern of activity, explaining the inability
of PL-CBPAHAT mice to learn during the CJL task properly. In these mutant mice expressing
inhibitor of long-term coding in the PL network, the NC2 community rapidly increased in
responses to CS+ and CS- after FC but only during E-CJL (Fig. 5B-middle, NC2: PL-
CBPAHAT, Two-way RM ANOVA: Block Trial x Stimulus, F (8, 72) = 0.3716, P=0.9323;
Block Trial, F (1.483, 26.70) = 15.89, P=0.0001; Stimulus, F (2, 18) = 1.024, P=0.3790).
Bonferroni's multiple comparisons test showed that the NC2 community showed elevated
responses to CS+ and CS- only during E-CJL (NC2/CS-: Block —1 vs. 1 or 2, p <0.05.
NC2/CS+: Block —1 vs. 1 or 2, p < 0.05) but NC2 responses to CS+ and CS- during L-CJL were
not distinguishable from responses before fear conditioning (NC2/CS-: Block —1 vs. 3 or 4, P>
0.05; NC2/CS+: Block —1 vs. 3 or 4, P > 0.05). The responses of NC2 to NS in PL-CBPAHAT
mice remained the same through all CJL trials (NC2/NS, Block Trial =1 vs. 1 or 2 or 3 or 4, P
>0.05). In addition, NC2 shows no bias toward any tested stimuli (CS-, CS+, and NS) during any
of the block trials across the entire CJL task (Fig. 5B-middle, Bonferroni's multiple comparisons
test: CS- vs. CS+ vs. NS at all Block Trials, P > 0.05).

The PL-CBPAHAT mice showed a strong deficit in the function of the disambiguation circuit
(i.e., NC2). The PL-CBPAHAT’s NC2 failed to engage during responses to NS, CS-, and CS+
during late CJL, coinciding with a deficiency in learning contingency judgment accuracy. Unlike
the Ctrl’s NC2, PL-CBPAHAT’s NC2 was not (or weakly) responsive to any stimuli during L-
CJL, suggesting that long-term plasticity within PL is necessary for appropriate coding of the
disambiguation circuit. Thus, the disambiguation circuit was ineffective in managing network
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responses to contextual cues in PL-CBPAHAT mice, yielding failure in learning contingency
judgement accuracy.

Analysis of NC3 in PL-CBPAHAT did not show any changes in pattern of activity across all
behavioral trials (Fig. 5B-right, NC3: PL-CBPAHAT, two-way RM ANOVA: Block Trial x
Stimulus, F (8, 72) =0.1617, P=0.9951, Block Trial, F (1.537, 27.66) = 5.134, P=0.0190;
Stimulus, F (2, 18) = 0.8114, P=0.4598). Bonferroni’s comparisons test found no significant
differences between the Block Trials in responses to CS-, CS+, and NS (CS-: Block —1 vs. 1 or 2
or3or4, p>0.05.CS+: Block =1 vs. 1 or2 or 3 or 4, p > 0.05. NS: Block —1 vs. 1 or 2 or 3 or 4,
p > 0.05). In addition, NC3 in PL-CBPAHAT did not show any meaningful difference in
responses to CS-, CS+, and NS during any of the block trials (Fig. 5B-right, Bonferroni's
multiple comparisons test: CS- vs. CS+ vs. NS at all Block Trials, P > 0.05).

Ctrl-w/o US (Fig. 5C) and PL-CBPAHAT-w/o US (Fig. 5D) mice were not treated with US and
did not acquire any relevant cue—outcome contingencies during behavioral testing. Instead, the
detected NC1, NC2, and NC3 communities in these mice showed no changes in average activity
across all block trials. This confirms that the disambiguation circuit provides a neural platform
for developing learning-specific cognitive schema in subjects after experience with aversive
stimulus during fear conditioning.

We have also performed group statistics on CPD models generated for each mouse separately in
each tested groups: Ctrl (Fig. S10A), PL-CBPAHAT (Fig. S10B), Ctrl-w/o US (Fig. S10C) and
PL-CBPAHAT-w/o US (Fig. S10D) and found similar results as compared to the ND-graph
model. Like the ND-graph model (Fig. 5), the CDP model’s TC1 component was selectively
active during habituation trials for all three stimuli in the Ctrl mice (Fig. 10A, left). The Ctrl’s
TC2 component dynamics showed very strong alignment with the learning of contingency
judgment accuracy (Fig. S10A, middle), in a similar fashion as NC2 (the PL cortex
disambiguation circuit) detected in the ND-graph (Fig. 5A, middle). The Ctrl component TC3
dynamic pattern appeared to correlate with coding neutrality into the PL network in both models
(Fig. 5A, right and S10A, right). Unlike the Ctrl’s TC2, PL-CBPAHAT’s TC2 was not (or
weakly) responsive to any stimuli during L-CJL (Fig. S10B), suggesting that long-term plasticity
within PL is necessary for appropriate coding of the disambiguation circuit. Thus, the PL cortex
disambiguation circuit defined using the CPD model (TC2) was ineffective in managing network
responses to contextual cues in PL-CBPAHAT mice, yielding failure in learning contingency
judgment accuracy.

Ctrl-w/o US (Fig. S10C) and PL-CBPAHAT-w/o US (Fig. S10D) mice were not treated with US
and did not acquire any relevant cue—outcome contingencies during behavioral testing. Instead,
the detected TC1, TC2, and TC3 components in these mice showed no changes in average
activity across all block trials. This confirms that the disambiguation circuit provides a neural
platform for developing learning-specific cognitive schema in subjects after experience with
aversive stimulus during fear conditioning.

The pattern of activity of the PL disambiguation circuit (TC2) recovered in Ctrl explains CJL
(Fig. S10A). Control mice showed a fully functional PL disambiguation circuit (TC2) managing
stimulus responses and guiding successful CJL. In contrast, PL-CBPAHAT showed a deficiency
in CJL, coinciding with impairment of the performance of the PL disambiguation circuit (TC2)

during late-CJL (Fig. S10B). In Ctrl, TC2 manages network responses to CS+, CS-, and NS after
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FC but not before. During E-CJL, TC2 discriminates between NS stimuli and CS+/CS-, but
during L-CJL, it does not; thus, TC2 dynamics across trials explain CJL learning similarly as
was seen in the ND-graph model. TC1 component showed strong responses during habituation
without bias towards specific stimuli in Ctrl and PL-CBPAHAT; however, TC1 component
remains highly active across all Block Trials in animals not treated with US. TC3 component
acquired (transiently) bias toward NS during Block Trials 1 and 2 in Ctrl mice but was not
significantly active across block trials in PL-CBPAHAT.

The ND graph captures a static snapshot of neuron co-firing behavior while preserving temporal
information on the edges and, more specifically, the weights of those edges. with neurons that
co-fire more closely in time having a higher edge weight. On the other hand, the tensor
decomposition treats every time moment equally and does not place any higher emphasis on
neurons that fire more closely together in time. As a result, the two different approaches. even
though they both try to capture temporal dynamics, do so in different ways, driven by the nature
of the approach. Thus, we are expecting that different approaches may highlight somewhat
different sets of neurons as part of each distinct pattern (component or community); however, the
core population per pattern, as we observe experimentally, will be the same (Fig. 4C, Fig. S9).
Remarkably, both CPD model and ND-graph model showed similar neuronal population
dynamics (NC1 vs. TC1, NC2 vs. NC3, and NC2 vs. TC3) in Ctrl mice (Fig. 5A and Fig. S10A)
and strong impairment of the PL cortex disambiguation circuit (TC2 or NC2, respectively) in
PL-CBPAHAT mutant mice (Fig. 5B and Fig. S10B) further supporting that the coding in PL
that underlies mechanisms directing long-term memory consolidation is critical for encoding the
disambiguation circuit within PL. Thus, the distinctive dynamics of the PL cortex
disambiguation circuit that explained CJL was confirmed in two independent computational
models.

DISCUSSION

Remarkably, the community analysis performed on Ctrl mice recovered three characteristic
communities (NC1 — habituation-specific, NC2 — the disambiguation circuit, and NC3 —
neutrality recognition) that showed striking resemblance in temporal patterns to the three tensor
components (TC1, TC2, and TC3, respectively). Detailed analysis of detected communities and
their activity patterns reflect interpretable trial variables (trial conditions and fear levels) and
explain learning on the CJL task. The current data suggest that three neural communities
organize PL network responses during contingency learning in discrete temporal activation
patterns. Graph models demonstrated that responses of the disambiguation circuit to tested
stimuli (CS+, CS-, and NS) varied significantly between E-CJL and L-CJL. At the same time,
CJL-deficient PL-CBPAHAT mutant mice showed significant and specific disruption in the
function of the disambiguation circuit. In contrast, the function of the other two components
driving PL network dynamics remained mostly intact. This finding suggests that the observed PL
network dynamics may arise from encoding safety signals within the disambiguation circuit.
Interestingly, CJL coincides with the simultaneous coding of new information about neutrality
(NS), or cue-no outcome, into the disambiguation circuit. Therefore, the reconstruction of
temporal relationships of functional populations embedded in the PL network across trials,
followed by comparative analysis of CS-, CS+, and NS stimuli-triggered patterns across all CJL
trials, showed discrete temporal patterns in the PL network associated with coding signals
relevant to learning realistic contingency judgment.
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These data suggest that CJL involves assessing and integrating information about real outcomes
in response to ambiguous and unambiguous stimuli within the PL cortex disambiguation circuit
during interleaving learning. Current data suggest that the PL cortex disambiguation circuit may
be pivotal in controlling a general fear circuit and regulating fear modulation and fear responses.
Generalized fear appears to be a primary phenotype of PL-CBPAHAT mutant mice harboring
hypofunction targeted to PL network. Noteworthy, generalized fear is also a well-defined
symptom in disorders of trauma and anxiety and is associated with a hyperactive amygdala and a
hypoactive mPFC °!. Prior studies indicated that neural signatures of fear discrimination are also
present in the BLA 3% %°, and mice with abnormal BLA inhibitory circuits generalize fear 2 %3,
Thus, the PL cortex disambiguation circuit dynamics described in the current study fit the PL —
BLA direct interactions model as a critical component of fear control.

The complexity of fear-related CJL is underscored by evidence indicating that neurons in the
mPFC, BLA, and hippocampus are functionally coupled at the theta range during fear
conditioning °>, conditioned extinction *, and discriminative fear learning >*. Furthermore,
prefrontal memory encoding and consolidation support CJL. In fact, well-defined key molecular
mediators of synaptic plasticity and long-term memory consolidation in the mPFC, such as the
N-methyl-D-aspartate receptor, endocannabinoid-dependent long-term plasticity, CREB, and
CREB-binding protein’s (CBP) intrinsic HAT activity, are all required for successful
discriminative fear learning 2628, consistent with the idea that new memory encoding within the
prefrontal network drives the attainment of CJ accuracy.

The described neural mechanism underlying CJL is surprisingly different from well-studied
redundancy reduction during hippocampal neural computations underlying orthogonalization of
overlapping features in context stimulus discrimination 3939 where each context stimulus
triggers distinctive stimulus-specific neural representations 37748984 with variable levels of
overlap. Hippocampal neurons can code context and space, but strong evidence exists that
aversive stimuli present in the environment can trigger the remapping of their firing field *7. This
may contribute to storing memories of aversive experiences in the hippocampus °%. In addition,
the memory linking mechanism may explain the hippocampal integration of information about
different events 2. Thus, stimuli are likely distinguished before information is relayed to the
prefrontal and amygdala networks.

Current data provide strong evidence that supports the idea that the PL network may be involved
in coding functional context-danger associations during contextual fear conditioning. The CJL
task requires temporal (across-trial) and multistimulus integration during memory updates and
consolidation. Learning that CS- is distinguishable by subtle differences from CS+ and is
predictive of safety rather than threat requires multiple training days and exposure to each
context. In addition, these data demonstrate that the population, referred to as the
disambiguation circuit, manages cue—danger, cue—safety, and cue-neutrality relationships. The
disambiguation circuit is likely a locus of neural computations underlying the learning of CJ
accuracy during CJL because this circuit manages predictive relations after learning and spurious
relationships in E-CJL. Furthermore, the detected changes in responsiveness of the
disambiguation circuit to different stimuli across CJL explained the learning of CJ accuracy (Fig.
5A). These data also confirm the prediction that network science can provide a robust stochastic
approach to analyzing datasets capturing brain network activity °° at a single-neuron resolution,
where the functional and anatomical connectivity between neurons can be modeled to explain
temporal and spatial features of cortical network dynamics, adaptation, and information coding.
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Monitoring network activity at a single-neuron resolution over many days empowered with
informative computational modeling allows precise tracking of brain network dynamics during
interleaving learning of predictive cue-behavioral output relationships relying on cross-trial,
cross-stimuli, and cross-modality prefrontal integration of input information from critical brain
networks, including the amygdala and hippocampus.

Limitations of the study

Due to the scope of the study, this manuscript focuses on PL network dynamics and does not
cover other critical components of the fear modulation circuit, such impact of projections from
the amygdala, and hippocampus, interactions with nucleus accumbens, locus coeruleus,
dopaminergic and cholinergic systems but complete understanding of PL network dynamics
during CJL will require integration our results with the past and future discoveries in the field to
generate comprehensive model of CJL. The major limitation of Ca2+ Imaging is temporal
resolution. Nevertheless, this powerful technology is transformative in studying neural assembly
behavior by allowing for unparalleled real-time imaging of circuit dynamics at cell resolution
from many genetically modified and/or regulated neurons in highly specialized brain regions
such as PL over weeks. Current studies were carried out using male mice; therefore,
interpretations are limited because it is unclear if observed results are sex dependent. While
rodent models are essential to understanding circuitry underlying defensive behavior, one cannot
ignore the limitations of studying the role of the prefrontal network in non-primate animal
models for abnormal fear responses and anxiety because of enormous differences in structure
and cognitive function of prefrontal cortex between the primate and non-primate PFC (e.g.,
primate-specific high-level regulatory strategies aiming at coping with anxiety, also see 10101),
However, even though the rodent PFC is not well differentiated (structurally and functionally),
it's critical interactions across brain regions underlying fear (i.e., with the thalamus, amygdala
and hippocampus) are evolutionarily conserved.
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Figure Legends

Fig. 1. PL network manages learning on CJL task.

(A) Experimental design for contingency judgment learning (CJL). The entire behavioral task
comprises three phases: habituation, fear conditioning, and CJL, further divided into early (E)-
CJL (Block Trial 1) and late (L)-CJL (Block Trial 4) (for details see Methods)

(B) Fear conditioning. The Ctrl and PL-CBPAHAT groups showed similar baseline and robust
performance during fear conditioning, while the mice that were never exposed to US (Ctrl-w/o
US and PL-CBPAHAT-w/o US) failed to acquire fear.

(C) Left, all four groups (Ctrl, PL-CBPAHAT, Ctrl-w/o US, PL-CBPAHAT-w/o US) showed
similar responses to NS throughout the CJL. Right, the Ctrl mice exhibited robust leaning on the
CJL task and learned accurate contingency judgment, while PL-CBPAHAT failed to learn the
task. The change in freezing response to stimuli across training was calculated as the average
freezing per a block trial. However, the PL-CBPAHAT mice failed to learn appropriate
contingency judgment and showed strong generalization during all four block trials (PL-
CBPAHAT, CS+ vs. CS-, Block 14, p > 0.05).

(D) Mechanism of histone acetylation-dependent memory consolidation (for details see ). This
model suggests that CBP-mediated histone acetylation during learning-triggered transcriptional
activation is a critical step in the molecular mechanism controlling memory stabilization. Initial
steps include induction of CREB phosphorylation, CBP activation, and CBP-mediated histone
acetylation at a specific transcriptional unit in response to the initial synaptic events associated
with learning. Subsequently, prolonged elevated transcription required for memory consolidation
could be maintained by CBP- and CREB phosphorylation-independent nuclear mechanisms even
after signals to CREB and CBP are no longer present. This transient transcriptional activation
would remain active until the competing phosphatase- and deacetylase-dependent repression
mechanism shut off transcription.

(E) PL-CBPAHAT mutant mice express CBPAHAT with eliminated acetyltransferase activity
(for details see ). Based on mutagenesis studies demonstrating that single amino acid
substitutions in the acetyl coenzyme A (acetyl-CoA) binding domain of acetyltransferases result
in loss of their enzymatic activity, these studies have employed a CBP dominant negative mutant
(CBPAHAT) harboring a substitution mutation of two conserved residues (Y 1540/F1541 to
A1540/ A1541). This mutant has no intrinsic HAT activity.

Ctrl, n =18, PL-CBPAHAT, n = 14, Ctrl-w/o US, n =5, PL-CBPAHAT-w/o US, n = 5. The data
represent the mean = SEM, and n represents the number of mice per group. Significance values
were set at p <0.05: *, p <0.05; **, p <0.01; *** p <0.001; **** p <0.0001 and ns indicates
not significant.

Fig. 2. Head-mounted microscopes (HMMs) effectively capture PL network dynamics at a
cellular resolution.

(A) Coronal representation of virus injection sites (left) and GCaMP6f expression in PL with a
laterally positioned microendoscopic lens. The middle, representative coronal brain section
shows targeting of PL (red, mCherry) with PL-CBPAHAT, with
HSV.LS1L.CBPAHAT.mCherry vector expressing CBPAHAT and mCherry (red) +
AAV1.CamKII.Cre + AAV1.SynGCaMP6f (or control viruses AAV1.Syn.GCaMP6f +
HSV.LS1L.mCherry + AAV1.CamKII.Cre). Right, a representative coronal brain section shows
the PL cell population expressing GCaMP6f (green) in PL with a laterally positioned
microendoscopic prism lens.
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(B) Representative image indicating PL infection of the viruses for GCaMP6f (left),
CBPAHAT.mCherry + Cre (middle), and overlap of GCaMP6f and mCherry expression (right).
Labeling indicated that most GCaMP+ infected cells were also mCherry+ infected cells. White
scale bars indicate 50 pm.

(C) Representative image indicating PL infection of the viruses for GCaMP6f (left),
immunohistochemistry staining of neuronal marker NeuN (middle), and overlap of GCaMP6f
(green) and NeuN (red) staining (right). White scale bars indicate 50 pm. Immunohistochemistry
of NeuN staining showed that most GCaMP6f+ infected cells are neurons. To determine the
pattern of GCaMP6f-tagged and mCherry-tagged virus expression, the imaged tissue was
compared to the Paxinos and Franklin mouse atlas (Paxinos & Franklin, 2019), and areas of
maximal GCaMP6f and mCherry expression were labeled as injection sites.

(D) A representative analysis of PL neurons from a single mouse demonstrates neuronal
responses to external stimuli (US). Left-top: spatial footprints of the cell population (blue)
responding to CS+ during early-CJL. Left bottom: spike raster of the PL population
corresponding to the general population of cells shown in blue above. The corresponding Ca?*
traces of red (right-top) and green (right-bottom) footprints (left-top) are shown in red and green,
respectively. Right-top: calcium transient time traces of cells from the same dataset as on the left
responding to US. Right-bottom: cells responding to US are marked in red, while cells not
responding to US are marked in green. Black lines below Ca?" traces correspond to inferred Ca?*
spikes. US, red dashed line. Ctrl, n =8, PL-CBPAHAT, n=17.

(E) There were no differences in stimulus-triggered average Ca>* spike frequency between trials
across CJL in Ctrl. Similarly, PL-CBPAHAT group also did not show any differences between
specific trials across CJL in stimulus-triggered average Ca®* spike frequency

(F) The analysis of global PL network activity showed network stability and lack of bias towards
tested stimuli (CS+ and CS-) across CJL (i.e., trials H, E or L) in Ctrl mice (top). PL-CBPAHAT
mice (bottom) showed modest distortions in the global network stability across CJL. The index
of discrimination between CS+ and CS- responses for specific neurons was calculated as
follows: Index of Discrimination = (CS- — CS+) / (CS- + CS+), where CS- and CS+ represent
Ca®* spikes frequencies of individual neurons in response to CS- or CS+, respectively, during H,
E or L Block Trials. Kolmogorov-Smirnov (K-S) test was used to compare cumulative frequency
distributions of neuronal response bias towards CS- vs. CS+ across CJL learning. Number of
binned values: Ctrl-H, n = 2373, Ctrl-E, n =2011; Ctrl-L, n = 1903; PL-CBPAHAT-H, n = 1910;
PL-CBPAHAT-E, n = 2144; PL-CBPAHAT-L, n = 1871. The data represent the mean + SEM,
and n represents the number of mice per group. Significant values were set at p < 0.05: *, p <
0.05, ns indicates insignificant.

Fig. 3. The CPD model detected latent neuronal populations and their activity patterns
that reflect interpretable trial variables (trial conditions and fear levels) of the CJL task in
a single Ctrl mouse.

The three-component tensor decomposition model of neuronal activity across all trials of the CJL
task shows latent components including unveiling the PL cortex disambiguation circuit.

(A) Pipeline of the tensor decomposition analytics. Spike raster (unsorted) of all extracted
neurons from CNMF-E tracked across all trials with CellReg (neurons x time) were reshaped
into a rank 3 tensor (i.e., CJL neural tensor) of shape (I, neurons X J, trial x K, time within trial),
i.e.,. Finally, CPD (Canonical Polyadic Decomposition) model was used to create 3 factors:
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neuron factor [N], temporal factor [S] (within-trial), and trial factor [T]. The Multiplicative
Updates implementation (provided in the Tensor Toolbox for MATLAB '°?) was used to fit the
non-negativity-constrained CPD. For details, see Methods.

(B) CJL Tensor decomposition showed three latent populations in the PL network. Ca2+ spike
recording from 1153 PL neurons of a single Ctrl mouse collected across all 33 trials of CJL was
used as input data set to pipeline of the tensor decomposition analytics shown in Fig. 3A and,
subsequently, to visualize N x S x T factors. Red vertical lines (shown on T factor plots) separate
individual trials lasting 200 s each, while blue dots indicate 10 s timestamps within each trial
(see methods). Entire CJL paradigm (Fig. 1A) involved 11 presentations of each stimulus (CS-,
CS+, NS). (C) Ca2+ spike raster of detected tensor components (TC1, TC2, TC3) found in a
single Ctrl mouse as a result of analytics shown in Fig. 3B (see text Methods).

Fig. 4. The ND-graph model detected the disambiguation circuit in the PL cortex (see text).
A) A pipeline of recovered neuronal communities from trial-aggregated ND-Graph. Extracted
calcium spikes per trial are converted into time-aggregated adjacency matrices per trial via ND-
Graph. All time-aggregated adjacency matrices are further aggregated into a single trial-
aggregated adjacency matrix. Louvain community analysis was performed on a trial-aggregated
ND-Graph. The presented adjacency matrices are examples with 25 nodes.

(B) A three-community ND-graph model uncovered latent populations (NC1, NC2, NC3) and
their activity patterns that reflect interpretable trial variables (trial conditions and fear levels) of
the CJL task in a Ctrl mouse. A characteristic pattern of NC1, NC2, and NC3 activity across
CJL trials is remarkably similar to TC1, TC2, and TC3 activation patterns recovered in the three-
components tensor decomposition model (Fig. 3C).

(C) Comparison of CPD model and ND-graph model based on data obtained from a single brain
(shown in Fig. 3C and Fig. 4B). The overlap between components and corresponding community
was calculated as follows:

% Overlap (intersect) between a tensor component (TC) and a corresponding community (NC) =
100 * [(TC N NC) / total number of TC].

Fig. 5. Activity patterns of recovered latent neural communities.

Activity patterns of recovered latent neural communities (NC1, NC2 and NC3) across trials of
CJL calculated using the NG-graph model in experimental groups: Ctrl (A), PL-CBPAHAT (B),
Ctrl-w/o US (C), and PL-CBPAHAT-w/o US (D). The pattern of activity of the disambiguation
circuit (NC2) recovered in Ctrl explains the learning of contingency judgment accuracy. Control
mice showed a fully functional disambiguation circuit (NC2) managing stimulus responses and
guiding successful CJL. In contrast, PL-CBPAHAT showed a deficiency in CJL, coinciding with
impairment of the performance of the disambiguation circuit. In Ctrl, NC2 manages network
responses to CS+, CS-, and NS after FC but not before. During E-CJL, NC2 discriminates
between NS stimuli and CS+/CS-, but during L-CJL, it does not; thus, CJL learning correlates
with the acquisition of new responsiveness (i.e., to NS) and properties of NC2. NC1 community
showed strong responses during habituation without bias towards specific stimuli in Ctrl, n= 8,
PL-CBPAHAT. However, the NC1 community remains highly active in animals not treated with
US. NC3 community-acquired bias toward NS during Block Trial 2 in Ctrl mice

The NG-graph model was constructed per each mouse independently. The percentage of network
activity in response to each stimulus per trial was calculated per mouse before the group statistic
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was performed. Percent of network activity was defined as the ratio between the number of Ca2+
spikes originating from a defined PL neuronal population during a specific trial (stimulus
presentation) and the total number of Ca2+ spikes elicited from all recorded PL neurons in
individual animals during that same trial. The data represent the mean + SEM, and n represents
the number of mice per group. Ctrl, n =8, PL-CBPAHAT, n =7, Ctrl-w/o US, n =5, and PL-
CBPAHAT-w/o US, n = 4. Significant values were set at p < 0.05: *, p <0.05; **, p <0.01; ***,
p <0.001; **** p <0.0001 and ns indicates not significant.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit Anti-acetyl-Histone H3 Antibodies Millipore Millipore Cat# 06-599, RRID:AB 2115283

rabbit Anti-acetyl-Histone H4 Antibodies Millipore Millipore Cat# 06-866, RRID:AB 310270

donkey anti-Rat IgG (H+L) - highly cross-adsorbed, Life Technologies Thermo Fisher Scientific Cat# A18749,

biotin conjugate, Corporation RRID:AB 2535526

Streptavidin, Alexa Fluor® 555 conjugate, Life Life Technologies Thermo Fisher Scientific Cat# s21381,

Technologies Corporation, Corporation RRID:AB 2307336

Anti-NeuN, clone A60 Millipore Millipore Cat#¥ MAB377, RRID:AB 2298772

goat Alexa Fluor® 568 Goat Anti-Mouse IgG Life Technologies Thermo Fisher Scientific Cat# A-11031,
Corporation RRID:AB_144696)

Bacterial and Virus Strains

AAV1.Syn.GCaMP6f. WPRE.SV40 U Penn Core AV-1-PV2822; RRID:Addgene 100837

HSV-hEFla-LSIL-CBPAHAT-mCherry

MIT Viral Core

Custom Preparation

HSV-hEFla-LS1L-mCherry

MIT Viral Core

RN413

pENN.AAV1-CaMKIIa-Cre U Penn Core AV-1-PV2396; RRID:Addgene 105558
Experimental models: organisms/strains
C57BL/6 mice Taconic C57BL/6NTac
Software and Algorithms
MATLAB Mathworks, NA R2021a
Prism 10 GraphPad version 10
Image] Schneider and Version: 1.54a
Rasband %3

Community detection

Brain Connectivity
Toolbox

Rubinov, M., and Sporns, O. (2010). Neuroimage
52, 1059-1069.

Cell Registration (CellReg) code

Sheintuch et al., 8

https://github.com/zivlab/CellReg
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be
fulfilled by the lead contact, Edward Korzus (edkorzus@ucr.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

» Raw files are available from the lead contact upon request.

* This paper does not report the original code

* Any additional information required to reanalyze the data reported in this paper is available
from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS:

Mice:

The UC Riverside Institutional Animal Care and Use Committee approved all procedures
following the NIH guidelines for the care and use of laboratory animals. C57BL/6 mice from
Taconic were used for the study. The mice housed four animals per cage, with same-sex
littermates. They had ad libitum access to food and water and were maintained on a 12 h
light/dark cycle. Old bedding was exchanged for fresh autoclaved bedding every week. Male
C57BL/6 mice housed with ovariectomized companion females were used for current studies.
The studies used 2-5 months old mice.
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METHOD DETAILS

Behavioral Testing

Figure 1A shows an outline of the behavioral testing schedule. The entire behavioral task
comprises three phases: habituation, fear conditioning, and CJL, further divided into early (E)-
CJL (Block Trial 1) and late (L)-CJL (Block Trial 4). During the habituation phase, mice were
placed in two similar but contextually different contexts: CS+, CS-, and a third neutral context
(NS). During habituation, the mice did not show any fear responses. The mice received three US
(foot shocks) during fear conditioning in the context CS+. During 8 days of CJL, the mice
received three trials daily: exposure to NS followed by exposures to CS+ and CS-. The
behavioral response as a measure of the cue-outcome relationship was assessed as a level of fear
(i.e., freezing) on a scale of 0%—100% to multiple environmental cues: 1) contextual CS+
stimulus always paired with unconditioned stimulus (US, electric foot shock); 2) contextual
inhibitory CS- stimulus never reinforced but similar to CS+; and 3) contextual NS that was
substantially different from threat (CS+) and safety (CS-) stimuli.

After being handled, individual mice were exposed once daily to each of the three context
stimuli used in the protocol - Context A, Context B, and neutral context (NS) - during
habituation trials over three days before fear conditioning. Context A was a modified fear
conditioning box (Coulburn Instruments Inc.) comprising a vanilla scent, staggered floor bars, an
upsweep tone (2-9kHz), and striped wall inserts and was placed inside a sound-attenuated
chamber with the house light and house fan turned on. Contexts A and B were similar but
distinct. Context B was an unmodified fear conditioning chamber with a lemon scent, uniform
floor bars, and a constant 2.8kHz tone. It was placed inside a sound-attenuated chamber with the
house light and house fan turned on. NS was similar to the home cage. Context A, Context B and
NS are illustrated in Fig. S2. Fear conditioning training was done in the fear conditioning box
(CS+) from Coulburn Instruments Inc. Individual mice were exposed to a fear conditioning box
for 180 s and received three-foot shocks (0.75 mA, 2 s) at a 180-s interval (3x US-CS+ pairings).
The animals were left for another 180 s after the last US inside the chamber. Freezing was scored
and analyzed automatically. Performance was scored by measuring freezing behavior, defined as
the complete absence of movement (Fanselow, 1980). Freezing was also scored and analyzed
automatically using a video-based system (Freeze Frame software, ActiMetrics Inc.). The
FreezeFrame software calculated the difference between consecutive frames by comparing the
gray scale values for each pixel in a frame. Freezing was defined based on the experimenter's
observations and set as sub-threshold activity for longer than 1 second. Freezing was expressed
as % freezing, which was calculated as the percentage of freezing time per total time spent in the
testing chamber. The chamber was cleaned in between trials with 70% ethanol and distilled
water. Four days after fear conditioning, the mice were subjected to CJL. During the CJL,
individual mice were exposed once per day to each of the tested context stimuli for 8 days. NS
for 242 s, and two hours later, to Context A for 180 s, received a 0.75 mA, 2 s foot shock, and
left for another 60 s inside the chamber. Two hours later, the mice were exposed to a similar
Context B for 242 s and received no foot shock. The context in which animals received the US
was referred to as CS+, and the context in which animals were never shocked was referred to as
CS— (similar to CS+ but not the same) or NS (home cage). The CS+ and CS— were
counterbalanced.

Calcium imaging
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Head-mounted miniature microscopes (HMMs) (also known as miniscopes) and related
parts were built and used according to the open-source project (Resource: http://miniscope.org/)
62.77.104 Tmaging calcium transients with a miniscope system comprises a four-step protocol.

1) To prepare mice for in vivo imaging during behavior, each mouse underwent the first
surgical procedure of viral injection at 9—12 weeks. The mice were anesthetized with
isoflurane/oxygen (induction: 3.5% / 2 LPM; maintenance: 1%—1.5% / 0.8 LPM), fixed in a
robot stereotactic frame (Neurostar, Kopf Instruments), and stabilized at a body-core temperature
of 36°C (probed temperature-controlled heat pad) and a respiratory rate of 1 Hz. Stereotaxic
coordinates in mm from the bregma were PL (AP + 2.1, ML + 0.37, DV 2.1) at a 15° angle (in
the coronal plane, toward lateral) to avoid disruption of the PL integrity. The calcium-sensitive
fluorescent protein GCaMP6f (Chen et al., 2013) was expressed using AAV virus
(AAV1.Syn.GCaMP6f. WPRE.SV40, 6.9 x 10'> GC/ml)-mediated gene delivery to PL. In
addition, CBPAHAT expression in PL. (PL-CBPAHAT) was controlled by bilateral injection of a
mixture of HSV.CBPAHAT.mCherry (4 x 107 GC/ml) and AAV.CamKII.Cre (~5 x 10'2
GC/ml). Bilateral injection of HSV.mCherry (4 x 10’7 GC/ml) and AAV.CamKII.Cre (5 x 10'2
GC/ml) into PL served as a control for CBPAHAT (Ctrl). While
AAV1.Syn.GCaMP6f.WPRE.SV40 was injected unilaterally, all other viruses were injected
bilaterally. Injection (33 G beveled steel needle; WPI) of 200 nl of the virus suspension (AAV:
6.9 x 10e12 GC/ml. HSV: ~4 x 107 GC/ml) into each PL of mPFC yielded stable expression of
GCaMPo6f or CBPAHAT for the time of all experimental readouts (evaluated in prior dilution
experiments). Speed of injections was set to 50 nl min™

2) One week after viral infections, the second surgical procedure involved a 4.3 mm-long, 1
mm-diameter prism microendoscopic GRIN lens (Inscopix, Inc.) being permanently implanted.
The mice were anesthetized with isoflurane/oxygen (induction: 3.5% / 2 LPM; maintenance:
1%-1.5%/ 0.8 LPM), fixed in a robot stereotactic frame (Neurostar, Kopf Instruments), and
stabilized at a body-core temperature of 36°C (probed temperature-controlled heat pad) and a
respiratory rate of 1 Hz. The skull was cleaned with hydrogen peroxide and saline three times.
The skull was scored and leveled. One screw (00-96 x 1/16 (stainless steel) 1.6 mm cut length)
was implanted above the hippocampus bilaterally. A 1 mm X 1 mm square was drilled into the
skull above PL. Once drilled, the bone fragment was removed, and the tissue was aspirated away
(~1 mm?). Bleeding was aspirated until it stopped. The prism lens was positioned at a 10° angle
lateral to PL and lowered to (AP + 1.75, ML + 0.55, DV 3.0). The space between the skull and
lens was filled with Kwik-Sil Adhesive. The lens was then cemented to the skull with dental
cement (Dental Cement Powder, Coral, 1 Ib. (A-M Systems 525000) & Dental Cement Solvent,
16 0z (A-M Systems 526000).

3) After two weeks of recovery, the baseplate holding the miniature microscope was
cemented onto the mouse skull after the miniscope was optically aligned with the lens. The mice
were anesthetized with isoflurane/oxygen (induction: 3.5% / 2 LPM; maintenance: 1%—1.5% /
0.8 LPM), fixed in a robot stereotactic frame (Neurostar, Kopf Instruments), and stabilized at a
body-core temperature of 36°C (probed temperature-controlled heat pad) and a respiratory rate of
1 Hz.

4) Subsequently, the mice were habituated to the experimenters and the miniscope over
several days prior to the start of Ca?* imaging in freely behaving animals. The animals were
provided with analgesia (Buprenorphine and Rimadyl), and their well-being was monitored
throughout the experimental period.

Histology
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Mice were sacrificed using Nembutal (200 mg/kg, intraperitoneal injection) and
transcardially perfused with 20 ml of PBS and then with 20 ml of 4% PFA. Brains were
extracted and soaked in 4% PFA overnight at 4°C. Then, they were soaked in 20% sucrose at
4°C until the brains sank. The brains were flash-frozen in embedding media (Tissue-Tek, 4583)
using dry ice and ethanol, followed by storage at —80°C. Free-floating 40 um coronal sections
were sliced using a cryostat (Leica, CM1860) and stored in cryoprotectant (50% PBS, 30%
ethylene glycol, and 20% glycerol) at —20°C. Free-floating immunohistochemistry (IHC) was
performed by washing sections 2 times for 10 min in 1x PBS, followed by a 1-h incubation in
blocking buffer (4% normal goat serum in washing buffer) and washing 3 times for 10 min in
washing buffer (1x PBS w/ 0.3% Triton X-100). The sections were then incubated overnight at
4°C in an antibody diluent (2% normal goat serum in washing buffer) with primary antibodies
(rat anti-mCherry Monoclonal Antibody (IgG2a isotype), Life Technologies Corporation,
M11217, 1:2000; mouse Anti-NeuN, clone A60, MILLIPORE, MAB37, 1:2000; rabbit Anti-
acetyl-Histone H3 Antibodies, Millipore, 06-599, 1:2000; rabbit Anti-acetyl-Histone H4
Antibodies, Millipore, 06-866, 1:2000). After three washes with washing buffer, the sections
were incubated with secondary antibodies (donkey anti-Rat IgG (H+L) - highly cross-adsorbed,
biotin conjugate, Life Technologies Corporation, A18749, 1:1000; goat Alexa Fluor® 568 Goat
Anti-Mouse IgG, Life Technologies Corporation, A-11031, 1:1000; goat Alexa Fluor® 647 Goat
Anti-Rabbit IgG (H+L), highly cross-adsorbed, Life Technologies Corporation, A-21245,
1:1000) for 3 h at room temperature in an antibody diluent. After three washes with washing
buffer, the sections were incubated with tertiary antibodies (Biotin Streptavidin, Alexa Fluor®
555 conjugate, Life Technologies Corporation, S-21381, 1:1000) for 3 h at room temperature in
an antibody diluent. The sections were then washed twice with 1x PBS for 10 min and mounted
on glass slides (Superfrost Plus, 12-550-15) using a mounting medium (ProLong Antifade,
P36965) before imaging.

Microscopy imaging

Coronal sections from 2.5 mm to 1.7 mm anterior to the bregma were imaged at 20x
(20x/0.95 XLUMPIlanFI objective) magnification using a semi-automatic laser-scanning confocal
Olympus FV1000 microscope controlled by Olympus FV10-ASW software (v. 2.01). The gain
and offset of each channel were balanced manually using Fluoview saturation tools for maximal
contrast. All settings were tested on multiple slices before data collection, and brain slices were
imaged using identical microscope settings once established. Each channel was acquired in
“Sequential Mode, Frame.” All images were acquired using the “Integration Type: Line Kalman”
and “Integration Count: 2” to increase the signal-to-noise ratio. Localization of the PL and IL
regions within the mPFC was performed by overlaying images from the Allen Mouse Brain

Atlas. For quantification, 10 optical sections were acquired from a 30 um Z-stack encompassing
2.7.

Calcium-imaging and data processing

The behavioral video recordings were synchronized with a PC running the data acquisition
software (DAQ) for in vivo calcium imaging obtained from open source miniscope.org.
Microendoscopic signals from HMM were recorded at ~15 Hz and saved to a hard drive as 50-s
clips. Video clips recorded during the trial were concatenated into a single raw video using
Imagel. Each raw video was motion-corrected by a piecewise motion correction %3 to stabilize
the frames of the video across time and to correct for physiological inner-frame transformations
of the imaged tissue. The motion-corrected videos were further aligned by landmark coordinates
via two-dimensional shift correction manually using ImagelJ. The aligned videos, covering the
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first 200 s of stimulus presentation, were stitched with ImageJ and inspected for stability and
continuity across the stack of frames. The process of cell signal detection using constrained
nonnegative matrix factorization for microendoscopic data (CNMF-E) 19 was semi-supervised
(interventions), demanding manual pre-selection of merge-split-delete decisions about initialized
components during iterative matrix updates to improve the estimates. Demixed spatial footprints
and temporal traces of the identified and extracted components were scanned further for quality
control. Therefore, simultaneous visual inspection of spatiotemporal characteristics was
performed on each output raw dataset to identify and exclude residual false-positive components.
After verification, sets of cells were used for downstream data analysis. Notably, we used only
recordings of high quality to down-sample our groups. Figure S2 shows the behavioral
performance of mice selected for the analysis of PL network dynamics.

Denoising Ca?* traces and Ca?* spike deconvolution

Both calcium traces and Ca?*spike data, the peaks of calcium traces, were extracted using the
open-source (CNMEF-E) % by sampling at ~15 Hz (Fig. S3 and Fig. S4). A spike raster of all
extracted neurons from CNMF-E tracked across the entire CJL (neurons X time) served as a
source of data set for further processing. Each mouse then had a varying number of observable
neurons across all trials, although not all these neurons were active during each trial. Active
neurons were determined if at least one Ca?* spike occurred during a trial. The activity of a
neuron was defined as a Ca?* spike count in a given trial.

Tracking cells

To track cells across the behavioral paradigm, we used the Cell Registration (CellReg) code
8 Fig. S5 shows an output from CellReg capturing spatial footprint similarities across sessions.
33 sessions were loaded into the GUI of all stimulus presentations across all days (11 days and 3
stimulus presentations per day). An approximate micron per pixel value was calculated by
dividing the sampled average diameter of neurons expressing GCaMP6f in the mPFC through
histology (~15.4 microns) by the average diameter in pixels of registered neurons from CNMF-
E. The diameter in pixels was calculated by finding the maximum and minimum arms of the
registered neurons and averaging the two. This was done by finding the maximum distance (long
axis) between any two points on the cell boundary and finding the perimeter of the boundary of
the cell in pixels. Then, using the ellipse perimeter formula, a short axis was found. Lastly, the
short and long axes were averaged to determine the approximate diameter of the cell. The middle
session (17 out of 33) was used as a reference session. We used 12 microns as the maximal
distance in microns. All other parameters were set by the best model, which was determined by
the spatial correlation code. We used the cell to index map to find and use the cell IDs for

tracking across the 33 sessions.
, a? + b?
perimeter ~ 21 —

a = long axis
b = short axis

Neuronal selectivity and network stability.
The selectivity of each neuron was expressed by a Discrimination Index (DI) that was calculated
based on Ca?" spike rates in response to CS- and CS+ using formula DI = (CS- — CS+) / (CS- +
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CS+), where CS- and CS+ represents Ca®* spikes frequencies of individual neuron in response to
CS- or CS+, respectively, during H, E or L Block Trials. Positive or negative values indicate
larger or smaller responses to CS- than to CS+ stimulus presentations. DI values varied between
—1 and 1 and were binned into 0.1 intervals before generating cumulative frequency distributions
of DIs counts in each of 20 intervals during H, E- and L- phase CJL trials. Kolmogorov-Smirnov
(K-S) test was used to find maximum difference between the two cumulative frequency
distributions (H vs. E and, separately E vs. L) of neuronal response selectivity towards CS- vs.
CS+.

Tensor decomposition-based analysis (CPD computational model)

Tensor decomposition analysis was performed per each mouse brain independently. Figure 3A
shows a pipeline of tensor decomposition. A spike raster of all extracted neurons from CNMF-E
tracked across the entire CJL with CellReg (neurons x time) served as a source of the data set.
The CJL behavioral test consists of 33 stimulus presentations (CS+, CS-, NS) called trials. Each
trial lasted 200 s; thus, the total time of CJL was 6,600 s. Data was reshaped from a 2D spike
raster (neurons X time) into a 3D spike raster: neurons (varied in each mouse) x trial (33
behavioral trials) x time (660-time intervals of the total, each lasting 10 s). Note that instead of
dealing with absolute time stamps, each timestamp is in relevance to which trial we are referring
to, and even though we can consider all trials as a single time series, we posit that there is inter-
trial structure and forming a tensor this way allows us to discover it. Therefore, 33 trials yielded
660 data points representing neuronal engagement throughout CJL. In detail, the trial factor
consists of 660 total data points because each data point represents a value of the neuron’s
activity during a 10-second time bin, resulting in each 200-second trial having 20 total data
points. Thus, the output of CNMF-E and CellReg was organized into a contingency judgment
tensor (Fig. 3A), that is, a neuron X trial x time (i.e., tensor X of dimensions IxJxK).

The Canonical Polyadic Decomposition or PARAFAC Decomposition model %7 is
approximating a tensor X of dimensions IxJxK as the sum of R rank-one components ', each
one being the outer product of three vectors, as shown below:

R
X ~ ZATNTOTTOST
r=1
where N is the IxR “Neuron” factor, T is the JxR “Trial” factor, S is the KxR “Time within Trial”
factor, 4 is an R-dimensional vector that absorbs the scaling of each rank-one component
(assuming that the columns of matrices N, T, S are normalized to unit norm) and o denotes the

generalized outer product (for product @ o b ¢, its (i,j,k) value is equal to a; b;cy).

The above CPD model, given that the factors have non-negative entries, essentially performs co-
clustering of neurons, trials, and points of time within a trial ', This essentially means that for a
given component, the neurons, trials, and points of time that have a high value in their
corresponding tensor factor vector have a high degree of participation in that co-cluster. Co-
cluster membership need not be exclusive, so neurons, trials, and time points can belong to
multiple co-clusters with varying degrees of intensity.

In order to achieve non-negative factors, we need to introduce the additional constraint:

R
X =~ ZATNTOTTOST

r=1
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subjectto N > 0, T > 0, S > 0, where the inequality is applied element-wise. In order to fit the
non-negativity-constrained CPD, we use the Multiplicative Updates implementation '*° provided
by the Tensor Toolbox for MATLAB 192,

Finaly, we turned the component memberships from soft (i.e., multiple components membership)
to hard (i.e., single component membership) assignments in a similar fashion as seen in case of
community detection 87#8, For the i-th neuron, we look at the corresponding row of the N
(neuron) factor N(i,:) and find the maximum value. The maximizing column corresponds to the
component to which this neuron belongs with the highest membership value, so we assign that
neuron to the index of the maximum value as follows:

n_i=arg max R N(i,:), where arg max denotes the maximizing index between 1...R for the
vector N(i,:) (which denotes the i-th row of matrix N).

An open problem in tensor analysis that is crucial to the success of the current work is the
determination of the number of meaningful components in the decomposition, a matter that has
not been optimally addressed by previous studies. Using traditional measures of goodness of fit
can be misleading and cannot show the true number of components, risking the extraction of
noisy components!!?. To determine the best rank-R model for our data in the current studies, we
planned to build upon specialized heuristics for tensor decomposition—starting from the so-
called “Core Consistency Diagnostic,” or CORCONDIA !'!'112  CORCONDIA is a heuristic
model fit score that measures how well a given decomposition in a certain rank R (or more
compactly we can say, given R components) adheres to the CPD model. Prior work evaluated
CORCONDIA effectiveness in synthetic and real data and demonstrated that it yielded a robust,
stable, and reliable estimation of the accurate number of latent components that represent
meaningful patterns by eliminating noisy artifacts !!>!14, The core consistency score is always
less than or equal to 100%. Empirically, decompositions that score between 80% - 100%
demonstrate clear structure, while values roughly between 60% - 80% demonstrate a fair amount
of noise which may dilute the purity of the so-called trilinear structure that the tensor
decomposition seeks to uncover, and values below 60% may indicate a decomposition that is
very noisy thus not very suitable to represent the patterns in the data. Note that those thresholds
are rather empirical and a may vary across applications, therefore we use them as a guide in
choosing an appropriate set of components which we subsequently evaluate for validity
manually. The number of components was then based on the CORCONDIA plot, which is the
best-represented model. All models were run with a tolerance of 107° and 10,000 iterations to
ensure convergence. Supplemental Fig. S7 shows the CORCONDIA plot for CJL neuronal
tensor and determined the three-latent factor model as an optimal model, which was used to
generate data output included in the CPD model (Fig. 3B-C, Fig. S10). While CORCONDIA-
based estimation of a number of latent components has been applied before in various
applications, including human brain studies (fMRI and EEG) ''>-!1? it is rarely considered for
neural network studies at a single cell resolution.

Neuronal network dynamics graph (ND-graph)

ND-Graph was constructed independently for each mouse brain. The ND-graph was
constructed to create a graph of neural activity which considers temporal dynamics within the
actual network (Fig. S8A). The ND-graph is essentially a time-aggregated graph generated by
summing multiple dynamic graphs into a single static graph (i.e., time-aggregated). To generate
the ND-graph adjacency matrix from calcium spike data, we begin with the initial activity data in
the 2-dimensional neurons x time (200 s) format for each trial. Then, to create an adjacency
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matrix (i.e., the connections between neurons), we must specify the rule by which these
connections will be formed. In our network graph, a connection (i.e., edge) represents the
strength of the functional connectivity between two neurons (i.e., if two neurons are coactive,
they should be linked). Each trial (200 s total) was segmented into smaller time intervals. We
used a 66 milliseconds time binning size and a sliding time window (SW) set to 666 milliseconds
to capture the temporal features of the PL network dynamics at a cellular resolution underlying
CJL (Fig. S8A). With the specified time window (0.666 s), a SW is used so that each next time
window slightly overlaps with the preceding window. The SW approach has the benefit of
offering continuity in tracking a consistent set of coactive neurons. Assigning edge weights is an
important addition to this graph that helps account for temporal properties. Neurons that fire
within the same frame (i.e., bin) are given the largest weight (weight = 1). Edge weights decrease
from neurons in the first frame that project to subsequent frames within the SW in steps of 1.
Thus, lower weights are assigned as two neurons’ spikes become further separated in time. The
edges within the same frame are considered bidirectional, and the edges from one frame to the
next become directional in accordance with the forward progression of time. The edge weights
are calculated as follows:

SW—f

SW
£=012,..,SW—1

weight =

These weights construct the adjacency matrix for each SW. Each graph is generated using
the 'digraph’' function (MATLAB) and simplified (using 'simplify' function, MATLAB). The
‘simplify’ function was used to aggregate multiple edges between two nodes into a single edge
and constrain nodes with more than one self-loop to a single self-loop in the simplified graph.
This simplified graph (with summed weights) was then converted into an adjacency matrix
(using the 'adjacency' function, MATLAB) and reshaped to be a 3-dimensional adjacency matrix
(neurons x neurons X bin) for each SW. Then, each adjacency matrix representing each SW is
summed across time to generate a cumulative adjacency matrix for a single trial (200 s).

#frames

25 adj, = Adj

t=1

adj; + adj, + ...+ adj, = Adj

The above steps are repeated for each trial (33 trials total) to generate adjacency matrices
for each trial. Lastly, all adjacency matrices are summed into one overall adjacency matrix that
represents the network across the entire behavioral paradigm. In summary, the ND-graph
captures temporal patterns of neuronal activations with the PL network by measuring temporal
proximity of neuronal co-activations within 660 ms timescale. Stronger weights correlate with
neurons firing in closer temporal proximity while higher cumulative weights reflect higher
probability of neurons firing together.
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Community analysis (ND-graph computational mode)

Community analysis was performed per each mouse brain independently. In analogy to the
tensor decomposition model, the ND-graph reflects well temporal structures across neurons and
time (e.g., trial). To gain insights into the trial-based specificity of temporal neuronal
coactivation patterns, we employed a community detection algorithm on data sets that include all
33 CJL trials (Fig. 4). After the cumulative ND-graph representing all 33 trials in one adjacency
matrix is generated, it can be analyzed for the underlying community structure using the Louvain
community detection algorithm (Brain Connectivity Toolbox °°). This algorithm finds the
optimized community structure of nonoverlapping groups of nodes that effectively maximizes
the sum of weighted edges within the community while minimizing the sum of weighted edges
between communities ?%12-122, The inputs to the algorithm include the adjacency matrix and the
value of a hyperparameter ‘gamma’. The gamma value adjusts the resolution of community
detection such that a gamma value exceeding 1 will detect smaller subsets of nodes, while
gamma values between 0 and 1 will detect larger subsets of nodes within the network. The
Louvain community detection algorithm then generates two outputs: community assignments
(i.e., which community each node belongs to) and the modularity value of the graph. Modularity
(Q) is an optimized community structure statistic representing how well a network is divisible
into modules or communities.

kik

0= <3, -t

L

Ajj = represents the edge weight between nodes i and |

k i, kj are the sum of weights of the edges attached to nodes i and j, respectively

m is the sum of all edge weights in the graph, ci and c; are the communities of the nodes
0 is Kronecker delta function (3(x,y) = 1 if x =y, 0 otherwise)

The Louvain community analysis identifies nonoverlapping communities. As a routine, we
(and others) start community detection at hyperparameter gamma value equal to 1 and run
multiple time community detection algorithm oscillating hyperparameter gamma value in the
range 0.9-1.0 with a step of 0.01. We detected three PL network communities using this
approach during a CJL performance (Fig. S8B). The modularity coefficient, Q, is a measure of
how well each of the communities is put together on a scale from 0 to 1, maximizing connections
within the community and minimizing the connections between communities (Fig. SB).

The probability of the intersection of a component and a community.
The overlap (%) between a component (TC) and the corresponding community (NC) was
calculated as follows:

TC N NC

% Overlap (TC and NC) =100 X m

Software
Data processing and analysis were performed using MATLAB (Mathworks, NA), Tensor
Toolbox for MATLAB *°, Brain Connectivity Toolbox #, GraphPad Prism 9, and Imagel.
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QUANTIFICATION AND STATISTICAL ANALYSIS

The experimenters were blind to group designations. The data represent the mean + SEM, and N
represents the number of mice per group unless stated otherwise. Percent of network activity was
defined as the ratio between the number of Ca®* spikes originating from a defined PL neuronal
population during a specific trial (stimulus presentation) and the total number of Ca?* spikes
elicited from all recorded PL neurons in each animal during that same trial. Percent of network
activity (based on Ca** imaging) or percent of freezing (fear behavior) was always accessed from
individual mice first before calculating the mean of a specific animal group. Statistical analysis
was performed using GraphPad Prism and Excel (Microsoft, Inc.). Student’s ¢-test or ANOVA
was used for statistical comparisons. Pearson’s correlation (7) was used as the effect size. For
one-way ANOVA, eta-squared (n2) was used as the effect size. Welch’s tests were used when
the same standard deviation was not assumed. For learning assessment at the circuit or
behavioral levels during behavioral testing, repeated measures (RM), two-way ANOVA or 3-
way ANOVA, and post hoc analysis with appropriate multiple comparisons test were used. With
a large dataset, dealing with sporadic missing data due to technological problems is not unusual.
In the presence of missing values (missing completely at random), the results can be interpreted
as RM ANOVA. We analyzed the data instead by fitting a mixed model (REML) as
implemented in GraphPad Prism 8.0. REML uses a compound symmetry covariance matrix and
is fitted using restricted maximum likelihood. In the absence of missing values, this method
gives the same p values and multiple comparison tests as RM ANOVA. The Greenhouse-
Geisser correction (GGC) in RM designs was used for correcting against violations of sphericity.
The two-sample nonparametric Kolmogorov-Smirnov (K-S) test was used to compare the
cumulative frequency distributions of two data sets representing discrimination indices.
Significance values were set at p < 0.05. Asterisks indicate statistical significance: * p < 0.05;
** p<0.01; *** p<0.001, **** p<0.0001 and ns or absence of asterisk(s) indicates not
significant. The statistical tests used and the number of replicates have been included in the result
section and proper figure legends.

Reporting summary. Further information on research design is available in the Star*Methods
Key Resource Table linked to this article.
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Fig. 1. PL network manages learning on CJL task.
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(A) Experimental design for contingency judgment learning (CJL). The entire behavioral task
comprises three phases: habituation, fear conditioning, and CJL, further divided into early (E)-
CJL (Block Trial 1) and late (L)-CJL (Block Trial 4) (for details see Methods)

(B) Fear conditioning. The Ctrl and PL-CBPAHAT groups showed similar baseline and robust
performance during fear conditioning, while the mice that were never exposed to US (Ctrl-w/o
US and PL-CBPAHAT-w/o US) failed to acquire fear.

(C) Left, all four groups (Ctrl, PL-CBPAHAT, Ctrl-w/o US, PL-CBPAHAT-w/o US) showed
similar responses to NS throughout the CJL. Right, the Ctrl mice exhibited robust leaning on the
CJL task and learned accurate contingency judgment, while PL-CBPAHAT failed to learn the
task. The change in freezing response to stimuli across training was calculated as the average
freezing per a block trial. However, the PL-CBPAHAT mice failed to learn appropriate
contingency judgment and showed strong generalization during all four block trials (PL-
CBPAHAT, CS+ vs. CS-, Block 14, p > 0.05).

(D) Mechanism of histone acetylation-dependent memory consolidation (for details see ). This
model suggests that CBP-mediated histone acetylation during learning-triggered transcriptional
activation is a critical step in the molecular mechanism controlling memory stabilization. Initial
steps include induction of CREB phosphorylation, CBP activation, and CBP-mediated histone
acetylation at a specific transcriptional unit in response to the initial synaptic events associated
with learning. Subsequently, prolonged elevated transcription required for memory consolidation
could be maintained by CBP- and CREB phosphorylation-independent nuclear mechanisms even
after signals to CREB and CBP are no longer present. This transient transcriptional activation
would remain active until the competing phosphatase- and deacetylase-dependent repression
mechanism shut off transcription.

(E) PL-CBPAHAT mutant mice express CBPAHAT with eliminated acetyltransferase activity
(for details see ). Based on mutagenesis studies demonstrating that single amino acid
substitutions in the acetyl coenzyme A (acetyl-CoA) binding domain of acetyltransferases result
in loss of their enzymatic activity, these studies have employed a CBP dominant negative mutant
(CBPAHAT) harboring a substitution mutation of two conserved residues (Y 1540/F1541 to
A1540/ A1541). This mutant has no intrinsic HAT activity.

Ctrl, n =18, PL-CBPAHAT, n = 14, Ctrl-w/o US, n =5, PL-CBPAHAT-w/o US, n = 5. The data
represent the mean = SEM, and n represents the number of mice per group. Significance values
were set at p <0.05: *, p <0.05; **, p <0.01; *** p <0.001; **** p <0.0001 and ns indicates
not significant.
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Fig. 2. Head-mounted microscopes (HMMs) effectively capture PL network dynamics at a
cellular resolution.

(A) Coronal representation of virus injection sites (left) and GCaMP6f expression in PL with a
laterally positioned microendoscopic lens. The middle, representative coronal brain section
shows targeting of PL (red, mCherry) with PL-CBPAHAT, with
HSV.LS1L.CBPAHAT.mCherry vector expressing CBPAHAT and mCherry (red) +
AAV1.CamKII.Cre + AAV1.SynGCaMP6f (or control viruses AAV1.Syn.GCaMP6f +
HSV.LS1L.mCherry + AAV1.CamKII.Cre). Right, a representative coronal brain section shows
the PL cell population expressing GCaMP6f (green) in PL with a laterally positioned
microendoscopic prism lens.

(B) Representative image indicating PL infection of the viruses for GCaMP6f (left),
CBPAHAT.mCherry + Cre (middle), and overlap of GCaMP6f and mCherry expression (right).
Labeling indicated that most GCaMP+ infected cells were also mCherry+ infected cells. White
scale bars indicate 50 pm.

(C) Representative image indicating PL infection of the viruses for GCaMP6f (left),
immunohistochemistry staining of neuronal marker NeuN (middle), and overlap of GCaMP6f
(green) and NeuN (red) staining (right). White scale bars indicate 50 pm. Immunohistochemistry
of NeuN staining showed that most GCaMP6f+ infected cells are neurons. To determine the
pattern of GCaMP6f-tagged and mCherry-tagged virus expression, the imaged tissue was
compared to the Paxinos and Franklin mouse atlas (Paxinos & Franklin, 2019), and areas of
maximal GCaMP6f and mCherry expression were labeled as injection sites.

(D) A representative analysis of PL neurons from a single mouse demonstrates neuronal
responses to external stimuli (US). Left-top: spatial footprints of the cell population (blue)
responding to CS+ during early-CJL. Left bottom: spike raster of the PL population
corresponding to the general population of cells shown in blue above. The corresponding Ca?*
traces of red (right-top) and green (right-bottom) footprints (left-top) are shown in red and green,
respectively. Right-top: calcium transient time traces of cells from the same dataset as on the left
responding to US. Right-bottom: cells responding to US are marked in red, while cells not
responding to US are marked in green. Black lines below Ca?" traces correspond to inferred Ca?*
spikes. US, red dashed line. Ctrl, n =8, PL-CBPAHAT, n=17.

(E) There were no differences in stimulus-triggered average Ca>* spike frequency between trials
across CJL in Ctrl. Similarly, PL-CBPAHAT group also did not show any differences between
specific trials across CJL in stimulus-triggered average Ca®* spike frequency

(F) The analysis of global PL network activity showed network stability and lack of bias towards
tested stimuli (CS+ and CS-) across CJL (i.e., trials H, E or L) in Ctrl mice (top). PL-CBPAHAT
mice (bottom) showed modest distortions in the global network stability across CJL. The index
of discrimination between CS+ and CS- responses for specific neurons was calculated as
follows: Index of Discrimination = (CS- — CS+) / (CS- + CS+), where CS- and CS+ represent
Ca®* spikes frequencies of individual neurons in response to CS- or CS+, respectively, during H,
E or L Block Trials. Kolmogorov-Smirnov (K-S) test was used to compare cumulative frequency
distributions of neuronal response bias towards CS- vs. CS+ across CJL learning. Number of
binned values: Ctrl-H, n = 2373, Ctrl-E, n =2011; Ctrl-L, n = 1903; PL-CBPAHAT-H, n = 1910;
PL-CBPAHAT-E, n = 2144; PL-CBPAHAT-L, n = 1871. The data represent the mean + SEM,
and n represents the number of mice per group. Significant values were set at p < 0.05: *, p <
0.05, ns indicates insignificant.
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Fig. 3. The CPD model detected latent neuronal populations and their activity patterns
that reflect interpretable trial variables (trial conditions and fear levels) of the CJL task in
a single Ctrl mouse.

The three-component tensor decomposition model of neuronal activity across all trials of the CJL
task shows latent components including unveiling the PL cortex disambiguation circuit.

(A) Pipeline of the tensor decomposition analytics. Spike raster (unsorted) of all extracted
neurons from CNMF-E tracked across all trials with CellReg (neurons x time) were reshaped
into a rank 3 tensor (i.e., CJL neural tensor) of shape (I, neurons X J, trial x K, time within trial),
i.e.,. Finally, CPD (Canonical Polyadic Decomposition) model was used to create 3 factors:
neuron factor [N], temporal factor [S] (within-trial), and trial factor [T]. The Multiplicative
Updates implementation (provided in the Tensor Toolbox for MATLAB '°?) was used to fit the
non-negativity-constrained CPD. For details, see Methods.

(B) CJL Tensor decomposition showed three latent populations in the PL network. Ca2+ spike
recording from 1153 PL neurons of a single Ctrl mouse collected across all 33 trials of CJL was
used as input data set to pipeline of the tensor decomposition analytics shown in Fig. 3A and,
subsequently, to visualize N x S x T factors. Red vertical lines (shown on T factor plots) separate
individual trials lasting 200 s each, while blue dots indicate 10 s timestamps within each trial
(see methods). Entire CJL paradigm (Fig. 1A) involved 11 presentations of each stimulus (CS-,
CS+, NS). (C) Ca2+ spike raster of detected tensor components (TC1, TC2, TC3) found in a
single Ctrl mouse as a result of analytics shown in Fig. 3B (see text Methods).
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A) A pipeline of recovered neuronal communities from trial-aggregated ND-Graph. Extracted
calcium spikes per trial are converted into time-aggregated adjacency matrices per trial via ND-
Graph. All time-aggregated adjacency matrices are further aggregated into a single trial-
aggregated adjacency matrix. Louvain community analysis was performed on a trial-aggregated
ND-Graph. The presented adjacency matrices are examples with 25 nodes.

(B) A three-community ND-graph model uncovered latent populations (NC1, NC2, NC3) and
their activity patterns that reflect interpretable trial variables (trial conditions and fear levels) of
the CJL task in a Ctrl mouse. A characteristic pattern of NC1, NC2, and NC3 activity across
CJL trials is remarkably similar to TC1, TC2, and TC3 activation patterns recovered in the three-
components tensor decomposition model (Fig. 3C).

(C) Comparison of CPD model and ND-graph model based on data obtained from a single brain
(shown in Fig. 3C and Fig. 4B). The overlap between components and corresponding community
was calculated as follows:

% Overlap (intersect) between a tensor component (TC) and a corresponding community (NC) =
100 * [(TC N NC) / total number of TC].
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Fig. 5. Activity patterns of recovered latent neural communities.

Activity patterns of recovered latent neural communities (NC1, NC2 and NC3) across trials of
CJL calculated using the NG-graph model in experimental groups: Ctrl (A), PL-CBPAHAT (B),
Ctrl-w/o US (C), and PL-CBPAHAT-w/o US (D). The pattern of activity of the disambiguation
circuit (NC2) recovered in Ctrl explains the learning of contingency judgment accuracy. Control
mice showed a fully functional disambiguation circuit (NC2) managing stimulus responses and
guiding successful CJL. In contrast, PL-CBPAHAT showed a deficiency in CJL, coinciding with
impairment of the performance of the disambiguation circuit. In Ctrl, NC2 manages network
responses to CS+, CS-, and NS after FC but not before. During E-CJL, NC2 discriminates
between NS stimuli and CS+/CS-, but during L-CJL, it does not; thus, CJL learning correlates
with the acquisition of new responsiveness (i.e., to NS) and properties of NC2. NC1 community
showed strong responses during habituation without bias towards specific stimuli in Ctrl, n= 8,
PL-CBPAHAT. However, the NC1 community remains highly active in animals not treated with
US. NC3 community-acquired bias toward NS during Block Trial 2 in Ctrl mice

The NG-graph model was constructed per each mouse independently. The percentage of network
activity in response to each stimulus per trial was calculated per mouse before the group statistic
was performed. Percent of network activity was defined as the ratio between the number of Ca2+
spikes originating from a defined PL neuronal population during a specific trial (stimulus
presentation) and the total number of Ca2+ spikes elicited from all recorded PL neurons in
individual animals during that same trial. The data represent the mean + SEM, and n represents
the number of mice per group. Ctrl, n=8, PL-CBPAHAT, n =7, Ctrl-w/o US, n =5, and PL-
CBPAHAT-w/o US, n = 4. Significant values were set at p < 0.05: *, p <0.05; **, p <0.01; ***,
p <0.001; **** p» <0.0001 and ns indicates not significant.
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