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ABSTRACT

We examine dissipation and energy conversion in weakly collisional plasma turbulence, employing in situ observations from the
Magnetospheric Multiscale mission and kinetic particle-in-cell simulations of proton—electron plasma. A previous result indicated
the presence of viscous-like and resistive-like scaling of average energy conversion rates — analogous to scalings characteristic
of collisional systems. This allows for extraction of collisional-like coefficients of effective viscosity and resistivity, and thus
also determination of effective Reynolds numbers based on these coefficients. The effective Reynolds number, as a measure of
the available bandwidth for turbulence to populate various scales, links turbulence macroscale properties with kinetic plasma

properties in a novel way.
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1 INTRODUCTION

Energy dissipation in fluids and plasmas may be effectively defined as
the conversion process by which macroscopic reservoirs of energy
are transformed into heat. Mechanisms of energy dissipation for
weakly collisional or collisionless plasma are of central importance
for addressing long-standing fundamental problems in space physics
and astrophysics. These include, for example, the acceleration of
energetic particles and the heating of the solar corona and solar
wind. In collisional cases, the (viscous and resistive) dissipation is
expressed in a simple form in terms of viscosity, resistivity, and
spatial gradients of the velocity and magnetic fields. However, space
plasmas frequently reside in (nearly) collisionless regimes, where
the dissipation mechanisms are not well understood. For example, in
one of the most well-studied space plasmas, the solar wind (Bruno
& Carbone 2013), the collision length is of the order of 1au and
collisions are typically too weak to establish a local equilibrium
(Maxwellian particle distribution; Marsch 2006; Verniero et al.
2020). In such cases, the classical collisional approach becomes gen-
erally inapplicable, as do standard closures that describe dissipation
in terms of fluid-scale variables and viscosity and resistivity.

Lacking the standard collisional closures, studies of plasma tur-
bulence have shown increasing interest in quantifying collisionless
dissipation. Investigations of collisionless dissipation have often
considered one or more of the following three aspects:
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(i) Dissipation mechanisms: Collisionless dissipation has often
been described in terms of specific mechanisms such as mag-
netic reconnection (Retino et al. 2007), wave—particle interaction
(Markovskii et al. 2006; Howes et al. 2008; Chandran et al. 2010),
and turbulence-driven intermittency (Dmitruk, Matthaeus & Seenu
2004; Parashar et al. 2011). Identification of such processes affords
specific physical insight. If all possible mechanisms and their relative
contributions can be identified, a full understanding of the dissipation
physics may be achievable.

(ii) Turbulence cascade: The picture of turbulence cascade de-
scribes energy transfer across scales from an energy-containing
range, through an inertial range, and into a (small-scale) dissipation
range. Different dissipation proxies based on the turbulence cascade
process have been adopted to estimate the dissipation rate. At energy-
containing scales, the global decay rate of energy is controlled by the
von Kdrmén decay law (de Kdrman & Howarth 1938; Hossain et al.
1995; Wan et al. 2012; Zank et al. 2017). At inertial-range scales,
the Yaglom relation (Politano & Pouquet 1998; Sorriso-Valvo et al.
2007; Hadid, Sahraoui & Galtier 2017; Andrés et al. 2019; Banerjee
& Andrés 2020) has been adapted to estimate the energy transfer
rate. Hellinger et al. (2022) extended this approach into the kinetic
range by empirically including pressure—strain interaction effects in
the kinetic range.

(iii) Energy conversion channels: Yet another approach to under-
stand dissipation is to trace the flow of energy and examine energy
conversion between different forms. Temperature enhancement im-
plies increase of thermal energy and to specifically track thermal
energy production requires quantification of energy supplies from
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energy reservoirs for each species. Two widely invoked classes
of conversion are the electric work on particles for species o,
Jo - E (Zenitani et al. 2011), and the pressure—strain interaction
for species o, — (P, - V)-u, (e.g. Chiuderi & Velli 2015; Del
Sarto, Pegoraro & Califano 2016; Yang et al. 2017a, b; Barbhuiya
& Cassak 2022; Cassak & Barbhuiya 2022; Cassak, Barbhuiya &
Weldon 2022).(We employ a familiar plasma physics notation with
full definitions given in Section 2.) These channels play different
roles: the electric work measures the release of electromagnetic
energy, while the pressure—strain interaction measures the increase
of thermal energy.

Collisional and collisionless dissipation obviously differ from each
other, but they also share similarities. For example, in both cases,
conversion of energy between different forms can be quantified in
terms of pressure work and electric work.

In collisional cases, however, these two channels can be further
approximated as viscous dissipation via velocity gradients and
resistive dissipation via electric current density (i.e. magnetic field
gradients), which will be discussed in detail in Section 2. On the
other hand, investigations using in situ spacecraft data (Chasapis
et al. 2018; Bandyopadhyay et al. 2020a) and numerical simulations
(Wan et al. 2016; Yang et al. 2017a) support a novel and less
obvious idea, namely that collisionless dissipation is also in direct
association with velocity strain rate and electric current density
(Bandyopadhyay et al. 2023). More specifically, by quantifying
collisionless dissipation by the electric work J, - E and the pressure—
strain interaction — (P, - V) - u,, these are seen to be well correlated
with, respectively, squared electric current density and squared
velocity strain rate. This association stands in direct analogy to
the resistive and viscous dissipation in collisional plasmas. It is
natural then to inquire more deeply into the behaviour of collisionless
dissipation and its similarities with collisional dissipation.

Initial steps in this direction have shown two findings. First,
the global average of electric work conditioned on electric current
density scales as J?, i.e. the square of the current density (Wan et al.
2016; Chasapis et al. 2018). Secondly, there is a similar scaling of
pressure work with respect to D? = DyiDj;, where Dj; is the traceless
velocity strain rate tensor (Bandyopadhyay et al. 2023). These results
provide strong evidence supporting the concept of collisional-/ike
dissipation in collisionless plasmas, and, moreover, allow a novel
estimation of effective viscosity and resistivity, which is then further
applied to define effective Reynolds numbers.

Since the classical closures of viscosity and resistivity are in-
applicable to collisionless plasmas, one might suspect that various
features of classical turbulence theory might not be applicable, in
particular regarding dissipative processes and the several length-
scales and dimensionless numbers related to dissipation. Even the
notion of Reynolds number (Re) — which in the hydrodynamic
sense is the ratio of the strengths of non-linear and viscous effects
— needs to be considered with caution in the absence of viscosity
and resistivity. On the other hand, a point of encouragement is that
wavenumber spectra in large collisionless plasmas such as the solar
wind (Bruno & Carbone 2013) often exhibit a Kolmogorov-like
power-law energy spectrum (Coleman 1968) that extends from a
correlation scale (Matthaeus et al. 2005) to smaller kinetic scales
(Leamon et al. 1998), below which the spectrum steepens. Between
these scales, the power-law inertial range is expected to span a
larger range when the Reynolds number is greater, by analogy with
hydrodynamics.

To achieve physically motivated generalizations of Re in the
collisionless case, previous studies have adopted various definitions
of effective Reynolds number, often related to the ratio of an outer
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scale to an inner scale. For example,

A\ 43 A\ 2
Re~ [ — or Rex~ | — | , €8
Ad Ar

where A, is the correlation length, A, is a dissipation scale, and At
is the Taylor microscale (Batchelor 1970; Pope 2000). For a weakly
collisional plasma, such as the solar wind, the dissipation scale can be
presumed to be the ion inertial length d,, or the ion thermal gyroradius
(Verma 1996; Parashar, Cuesta & Matthaeus 2019; Cuesta et al.
2022), given that the inertial-range spectrum terminates (and then
steepens) near these scales (Leamon et al. 1998; Smith et al. 2006;
Matthaeus et al. 2008; Chen et al. 2014). Another scale related to
dissipation is the Taylor microscale Ar. This has been measured
in the solar wind and then used to estimate effective Reynolds
number for that system (Matthaeus et al. 2005, 2008; Chuychai
et al. 2014; Bandyopadhyay et al. 2020b; Phillips, Bandyopadhyay
& McComas 2022; Wrench et al. 2023). Note that both of the
empirical determinations of effective Reynolds number given by
equation (1) depend on the appropriate estimates of inner scales.
Herein, we adopt a different approach that avoids any need to estimate
inner scales. In a novel examination of the putative connection
between collisional and collisionless dissipation, we explore specific
evaluations of effective viscosity, resistivity, and Reynolds number
from 2.5-dimensional (2.5D) and three-dimensional (3D) kinetic
particle-in-cell (PIC) simulations and in situ observations from the
Magnetospheric Multiscale (MMS) mission.

2 THEORETICAL BACKGROUND

We are concerned with observed phenomena related to energy
conversion processes. Herein, we focus on the bulk flow energy,
electromagnetic energy, thermal energy, and the conversion and
dissipation channels that link them. For consistency in the contexts
of observational and simulation data, all quantities will be expressed
in International System (SI) units throughout the paper.

2.1 Collisional cases

We start with the simplest one-fluid magnetohydrodynamic (MHD)
model. The momentum and magnetic induction equations read

9
pa—l:—l—pu-Vu:—Vp—V-H-i—JxB, )
IB ,

E—Vx(uXB):nVB, 3)

where TT;; = —p (d;u; + 9;u;) + 3 u(V - w)d;; is the viscous stress
tensor, J = MI—OV x B is the electric current density, u is the dynamic
viscosity, 7 is the magnetic diffusivity, and po = 47 x 1077 Hm™!
is the magnetic permeability of free space (also known as vacuum
permeability).

Based on equations (2) and (3), one readily obtains the collisional
dissipation rates of bulk flow energy density (E, = %puz) and
magnetic energy density (£, = ﬁBz). These can be expressed in
terms of the coefficients of dynamic viscosity (1) and electrical
resistivity (1/0 = uon), and particular pieces of the velocity gradient
and magnetic gradient tensors:

D, =2uD?, )
1 2
Dy = —J%. ©)
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Here, D;; = %(aiuj + dju;) — %(V - u)d;; is the traceless strain rate
tensor, with D* = D;;Dj; the second invariant of D;; and equal to the
sum of the squares of the eigenvalues of D;.

As is well known, the viscous dissipation in equation (4) and
the resistive dissipation in equation (5) actually originate from the
closures of the deviatoric pressure tensor IT and the electric field E
that hold in the presence of frequent collisions.

These can be derived by kinetic methods (Chapman & Cowling
1939; Kaufman 1960; Marshall 1960; Braginskii 1965), where an
approximate solution for the Boltzmann equation is first obtained
in terms of macroscopic variables (like density, velocity, and tem-
perature) and the pressure tensor [the second-order moment of the
velocity distribution function (VDF)] is then also expressed in terms
of macroscopic variables. The closure of the electric field can be
derived using Ohm’s law. In outline, the procedure is as follows:
(i) In the presence of frequent collisions, it can be shown that no
matter what the initial conditions are the VDF f must approach a
Maxwellian f; in a time of the order of the mean time between
collisions (Chapman & Cowling 1939). (ii) The VDF fis assumed
to be approximately a Maxwellian f; and higher order terms (f,
f2, -++) are introduced as small corrections or perturbations on the
Maxwellian distribution function, f=fy + f; +f> + ---. (iii) Retaining
only the first-order correction fj can give rise to the closures of the
electric field, E + u x B = J /o, and the deviatoric pressure tensor,
I1; = —2uDj;, which then leads to the collisional dissipation forms
(equations 4 and 5).

To prescribe the applicability of the collisional approximation, we
should keep in mind its requirement: Even though the collisional
dissipation provides a simple representation of dissipation in terms
of the viscosity and resistivity, in all standard cases it applies only
when the local distribution is very close to a Maxwellian due to
particle collisions.

2.2 Collisionless cases

The time evolution of energies can be derived using the first
three moments of the Boltzmann equation, in conjunction with the
Maxwell equations. One obtains (Braginskii 1965; Chiuderi & Velli
2015; Yang et al. 2017a, b)

WL +V - (Elug + Py uy) = (P -V)-ug+ J, - E, (6)

UES +V - (EMuy + ho) = —(Po - V) - Uta, ©
B

Mw+v(Ex—>=—wE, 8)
Ho

where the subscript o = e, p represents the particle species (electrons

1
and protons). Here, £" = > (€0E* + B*/) is the electromag-

netic energy density, with E and B the electric and magnetic
1

fields, respectively; & = §pqu is the bulk flow energy density
for species «, with mass density p, and bulk flow velocity u,;
Eh = %ma [, —uy) - (v—uy,)f, v is the thermal energy, with
mass m, and VDF f,(x,v); P, is the pressure tensor; h, is the
heat flux vector; J = >, J is the total electric current density with
Jo = nyquu, the electric current density of species or; and n,(x) and
q, are the number density and the charge of species «, respectively.
As we can see, the energy conversion between bulk flow and thermal
is quantified by the pressure—strain interaction, — (P, - V) - u,,
while the energy conversion between bulk flow and electromagnetic
is quantified by the electric work, J - E. We emphasize that there

are no J, terms in the thermal energy equation (7).
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The basic assumption of collisional dissipation is that inter-
particle collisions are sufficiently strong to maintain a local equi-
librium. In principle, this assumption is not valid in collisionless
plasmas. Instead, the particle VDF often displays a distorted out-
of-equilibrium shape characterized by non-Maxwellian features as
observed in in situ data (e.g. Graham et al. 2017; Perri et al.
2020) and in numerical simulations (Servidio et al. 2012). Al-
though at large scales collisionless plasma can be described by
the (collisional) MHD model, spacecraft in sifu measurements
reveal complex features at kinetic scales. At these small scales,
kinetic processes must take place. One widely accepted picture
of solar wind fluctuations is that they are characterized by broad-
band energy spectra with several spectral breaks and spectral steep-
ening at kinetic scales (Leamon et al. 1998; Alexandrova et al.
2009; Sahraoui et al. 2009; Kiyani, Osman & Chapman 2015).
In particular, observations indicate that the degree of steepening
of velocity and magnetic field spectra at kinetic scales is clearly
dependent on the dissipation rate (Smith et al. 2006). Clearly,
collisionless dissipation delves deeply into kinetic plasma pro-
cesses.

2.3 Similarities between collisional and collisionless dissipation

Even though collisionless dissipation differs from collisional dissipa-
tion in important ways, studies also suggest that there are similarities
between them. First, they are both organized in structured patterns
and concentrated at, or near, coherent structures. Coherent structures
form dynamically in MHD and plasma flows and are found to be
of importance in heating; they include current sheets and vortices.
According to the definition of collisional dissipation in equations (4)
and (5), it should not be at all surprising to find that the collisional
dissipation occurs with intense values at (and near) these structures.
The physical quantities that are responsible for the conversion of
energy in collisionless plasmas (see equations 6-8) are also found
to exhibit the same kind of spatial localization (Retino et al. 2007;
Osman etal. 2011; Servidio et al. 2012; Franci et al. 2016; Parashar &
Matthaeus 2016; Yang et al. 2017a). In this sense, both collisional and
collisionless dissipation concentrate in structured patterns. Secondly,
both sorts of dissipation are in direct association with velocity strain
rate and electric current density. As we have already remarked,
collisionless dissipation, as quantified by the electric work J, - E
and the pressure—strain interaction — (P, - V) -u,, is found to
be in direct statistical association with J> and D> (Wan et al.
2016; Yang et al. 2017a; Chasapis et al. 2018; Bandyopadhyay
et al. 2020a, 2023), and this scaling is strikingly analogous to
the resistive and viscous dissipation that equations (4) and (5)
represent. Meanwhile, existing work (Thompson 1961; Roberts &
Taylor 1962; Macmahon 1965; Smolyakov 1998), including a finite
Larmor radius correction to the ion pressure tensor, demonstrates a
gyroviscous closure for the pressure tensor in the absence of particle
collisions.

The aforementioned similarities between collisionless and col-
lisional dissipation suggest that the scalings between collisional
dissipation and flow gradients might remain valid for collisionless
dissipation situations. The results presented herein provide further
evidence for this hypothesis. In particular, our results (shown later)
support the statistical relations

(—I1;; D;;|1 D) ~ 2uD?, )

’ 1 2
(J-EIJ)N;J, (10)
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where IT; = P; — pd;; is the deviatoric pressure tensor, and E’ =
E + u. x B is the electric field in the electron fluid frame. Here,
(—I1;Dyj|D) is the average of the anisotropic part of the pressure—
strain interaction conditioned on D = /D;;Dj;, and (J - E'|J)
is the average of the electric work in the electron fluid frame
conditioned on the (local) current magnitude J = | J|. If the scalings
in equations (9) and (10) can be verified, they will permit an
evaluation of effective values for dynamic viscosity u and electrical
resistivity 1/o, and thence for effective kinematic viscosity v = u/p,
magnetic diffusivity n = 1/(o o), and Reynolds numbers.

We need to stress that we do not test a posteriori any analogous
closures to collisional cases for the electric field and the pressure
tensor in collisionless plasmas. Instead, we are trying a priori to
find relations that hold between collisionless dissipation and the
gradients of the flow so that they can be used in the construction
of closures for collisionless dissipation. In this work, we focus
on a global property — the global average of the collisionless
dissipation — that suggests ‘collisional-/ike’ dissipation on average.
However, upon checking local properties (not shown here), we
find that the analogy between collisionless and collisional dissi-
pation is far from pointwise accurate. The only similar studies
in this direction, as far as we know, are Del Sarto et al. (2016)
and Del Sarto & Pegoraro (2018), wherein the action of the
strain tensor on the pressure tensor evolution is isolated. These
authors found that even in an almost collisionless system, the
shear flow and the pressure tensor anisotropy are strongly coupled
and interact on fast time-scales. They further identified certain
conditions, i.e. that the characteristic time of shear is negligible
with respect to the cyclotron frequency, under which the deviatoric
pressure tensor is proportional to the traceless strain rate tensor.
Such considerations motivate future, more detailed, investigation
of the local properties of —I1;D;; and J - E’, which might allow
extraction of non-uniform coefficients of effective viscosity and
resistivity.

3 DATA

We present data from 2.5D and 3D fully kinetic PIC simulations and
one long MMS burst-mode interval in the magnetosheath. In each
case, the analysis leads to a determination of the associated (effective)
resistivity and separate viscosities for electrons and protons.

The 2.5D PIC simulation employs the P3D code (Zeiler et al. 2002),
which has also been used in Yang et al. (2022, ) and Bandyopadhyay
et al. (2023). Here, 2.5D means, as usual, that there are three
components of dependent field vectors and a two-dimensional spatial
grid, i.e. that the phase space coordinates are (x, y, vy, v,, v.).
Normalization in P3D is largely ‘proton based’, with number density
normalized to a reference value ., mass to proton mass m,, charge
to proton charge e, and magnetic field to a reference B,. Length
is normalized to the proton inertial length d,, time to the proton
cyclotron time a)c_pl , and velocity to the consequent reference Alfvén
speed Va, = B/(pompn,)'.

The particular simulation we consider is performed in a square
periodic domain of size L = 150d,, with 4096 grid points and
3200 particles of each species per cell (~1.07 x 10!! total
particles). For numerical expediency, we employ artificially low
values of the proton-to-electron mass ratio, mp/m. = 25, and
the speed of light, ¢ = 15V,,. The run is a decaying initial
value problem, starting with uniform densities and temperatures
for both species. A uniform magnetic field, By = 1.0, is di-
rected out of the plane, and the initial proton and electron
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Table 1. 2.5D and 3D PIC simulation parameters in code units: domain size
L; grid points in each direction N; proton-to-electron mass ratio mp/me; guide
magnetic field in z-direction By; initial magnetic fluctuation amplitude 8b;
plasma B; average number of particles of each species per grid cell ppg.

Dimension L N mplme  BoZ  8b/By  Bp ppg
2.5D 150d, 4096 25 1.0 0.5 0.6 3200
3D 296d. 2048 50 0.5 1.0 025 150

plasma Bs are B, = B. = 0.6. The initial v and b fluctu-
ations are transverse to By (‘Alfvén mode’) and have Fourier
modes with random phases for the wavenumber range 2 <
|kL/(2m)| < 4. The initial normalized cross helicity o is negli-
gible.

The 3D simulation (Roytershteyn, Karimabadi & Roberts 2015)
is obtained using the VPIC code (Bowers et al. 2008), which was
also used in Yang et al. (2022) and Bandyopadhyay et al. (2023).
VPIC normalization differs significantly from that in P3D, being more
electron based. Number density is normalized to a reference value
n,, mass to electron mass m., charge to proton charge e, length to the
electron inertial length d., time to the electron plasma oscillation time
w;el, velocity to the (true physical) speed of light ¢, and magnetic
field to a reference B, = mecwy/e.

The simulation of interest herein was performed in a cubic periodic
domain of size L = 296 d,, with 2048? grid points and 150 particles
of each species per cell (~2.6 x 10'2 total particles). The proton-
to-electron mass ratio is mp/m. = 50. Like the P3D run, this one
is also a decaying initial value problem, starting with uniform
density and temperature of protons and electrons. There is a uniform
magnetic field By = 0.5 in the out-of-plane 2 direction, and the
proton and electron plasma fs are B, = B. = 0.25. The v and b
fluctuations are initialized with two orthogonal polarizations and
an overall power spectrum decaying as k~' for the wavenumber
range 1 < |kL/(2m)| < 7 with equal power in each polarization. The
initial v and b fluctuations are a mixture of Alfvénic and randomly
phased perturbations. The initial normalized cross helicity is o, =~
0.44.

Key parameters for the 2.5D and 3D runs are given in Table 1. For
both runs, we analyse statistics at a time shortly after that at which
the maximum mean square current density occurs. Prior to analyses,
we remove noise inherent in the PIC plasma algorithm via a low-pass
Fourier filtering of the fields.

In addition to simulation data, we also analyse an interval
of MMS spacecraft data. The MMS mission provides high time
cadence and simultaneous multispacecraft measurements, typically
in a tetrahedral formation, with small inter-spacecraft separations.
The MMS spacecrafts sample the near-Earth plasma including
the magnetosheath (Burch et al. 2016). The proton and electron
3D VDFs are available from the Fast Plasma Investigation (FPI)
instrument (Pollock et al. 2016). One can then determine density,
velocity, pressure tensor, and current density, with a time resolu-
tion of 150ms for ions and 30ms for electrons. The Flux-Gate
Magnetometer (Russell et al. 2016) measures the vector magnetic
field, and the Electric Field Double Probes (Ergun et al. 2016)
measures the electric field. Herein, we employ a single long-
burst interval of MMS data obtained in the magnetosheath (see
Table 2). For this interval, the mean plasma velocity is approx-
imately 230kms~!' and the inter-spacecraft separation is about
27km, which is below the ion inertial length and corresponds to
a few times the electron inertial length. As shown in previous
studies (Parashar et al. 2018; Bandyopadhyay et al. 2020a, 2023;
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Table 2. Description of one selected magnetosheath interval of MMS data. [(B
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)| is the mean magnetic field strength; §B =

6123
(|B(t) — (B)|?) is the root-

mean-square magnetic fluctuation; (n) is the mean plasma density; B}, is the proton plasma beta; dj, and de are the ion and electron inertial lengths, respectively;

and L indicates the mean separation between spacecrafts.

[(B)| (nT) SB/I(B (ne) em™)  (np) (cm™3) Bp dp, (km) de (km) L (km)
2017 Dec 26 06:12:43-06:52:23 22.0 0.8 24.9 22.8 4.5 48 1.1 27
2.5D P3D 3D VPIC MMS
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Figure 1. Conditional average of (top) the electromagnetic work J - E’ with respect to the current density magnitude J, and (middle and bottom) Pi-D©®

(:—HE‘}‘) DS‘)) with respect to the traceless velocity strain rate D@ = ,/ Df;’) Di(;‘). The error bars are computed from the standard deviation in each bin. The
coefficients from least-square fitting, within 95 per cent confidence interval, are also shown. Positive and negative values are identified.

Yang et al. ), this interval exhibits features of well-developed
turbulence.

4 RESULTS

4.1 Kinematic viscosity and magnetic diffusivity

To determine the values of the effective diffusion coefficients, we
employ a method based on the recent work of Bandyopadhyay et al.
(2023). The basic procedure, for the case of resistivity determination,
is to compute (J - E'|J), which is the average of the electric work
in the electron fluid frame conditioned on the (local) current density
magnitude J = |J|, and investigate its dependence on J. As was
noted previously (Wan et al. 2016; Bandyopadhyay et al. 2023), this
conditional average is found to follow a curve (J - E'|J) ~ J? to a
reasonable degree of accuracy, as shown here in the top row of Fig. 1.
The error bars are computed from the standard deviation in each bin.
Using this quadratic scaling agreement, we evaluate the constants of
proportionality for the two simulations and for the MMS data, thus
providing an estimation of the effective resistivity for the respective

cases. The functional form of the trend is strongly similar to that of
the collisional case, as given in equation (5). This accounts for the
heuristic description of the result as ‘collisional-like’. These values
of ‘effective resistivity’ 1/o, within 95 per cent confidence interval,
are shown in the legend of Fig. 1 and tabulated in Table 3 in the
respective units.

A similar procedure is followed for the the conditional average
of the anisotropic part of the pressure—strain interaction, Pi-D® (=
—HE;‘) ij‘) ), which represents the incompressive contribution to the
rate of production of thermal energy (Braginskii 1965; Chiuderi
& Velli 2015; Yang et al. 2022). This is done separately for
electrons and protons. Specifically, we compute the average of elec-
tron Pi-D° conditioned on D¢ = ,/Dj; Dj,, that is (—H,?j ijlDe).
Recall that the traceless strain rate tensor for the electron fluid
velocity is D?j = %(aiuj- + 0juf) — %zsi,v -u®. The general trend
is

quite consistent with the collisional scaling in equation (4), as
shown in the second row of Fig. 1. Thus, the resulting approximation,
that (—H?j D,-ej | D) o (D®)?, is indeed a collisional-like representa-
tion of the average results.
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Table 3. Effective electrical resistivity 1/o and effective dynamic viscosity p within 95 per cent confidence interval from least-square fitting in Fig. 1, and the
corresponding effective kinematic viscosity v = u/p and effective magnetic diffusivity n = 1/(o po). The units are shown enclosed in square brackets and are

those that apply to the specific code or data interval.

Variables 2.5D P3D 3D vPIC MMS
1 (5.57 £ 1.09) x (3.80 £ 0.11) x (9.75£2.95) x 10~* [mVmnA~"]
1073 [mp wepne ' €72] 1073 [me wpe n; 1 e72]
n= ﬁ (4.43 +£0.87) x (3.02 £ 0.09) x (7.76 £2.35) x 108 [m?s~']
103 [my wep n, e 2(mH™)] 10% [me Wpe n, e 2(mH™)]

Ue (1.94 £ 0.08) x 107 [m n; Var dp] (3.43 £0.19) x 1073 [m, n; c de] (6.10 & 1.44) x 1073 [nPas]

ve = Le (4.85 £0.20) x 1073 [V A, dp] (3.43£0.19) x 1073 [cd,] (2.69 £ 0.64) x 10° [m?s~']
Pp (5.31£0.30) x 1073 [mp n; Var dp] (3.46 £ 0.15) x 107" [me n; c de] (8.89 £ 3.08) x 1073 [nPas]
vp = %: (5.31 £0.30) x 1073 [V ar dp] (6.92 £0.30) x 1073 [cd.] (2.33 £0.81) x 108 [m?s7]

Table 4. Effective kinematic viscosity v and effective magnetic diffusivity 5 from Table 3 re-expressed in ST units (m? s~1), after mapping the plasma parameters

for the MMS interval on to those for the simulations.

Variables 2.5D P3D 3D vPIC MMS

n(m?s) (2.44 £ 0.48) x 107 (1.21 £0.04) x 10° (7.76 £2.35) x 108
Ve (m%s~1) (227 £0.09) x 107 (1.13 £ 0.06) x 10° (2.69 £ 0.64) x 10°
vp (m?s7h) (2.49 £ 0.14) x 107 (2.28 £0.10) x 10° (233 £0.81) x 108

The analysis for the proton case proceeds in direct analogy to
the electron case, with the results shown in the third row of Fig. 1.
The conditional average of proton Pi-DP is also found to be well
approximated by a fit to a collisional-like scaling, as described
in equation (4). That is, (—I"Ifj ij|Dp) o (DP)?, where Dll.’j is
the traceless strain rate tensor for the proton fluid velocity and
DP = /D! DY,

Fig. 1 also reveals that for these (nearly) collisionless systems
(—Hg’.‘) Dg?’)|D(“)) is sign-indefinite, especially for the MMS data.
This is in contrast to the positive definite collisional dissipation
associated with equations (4) and (5). Here, we presume the existence
of uniform viscosity and resistivity, and calculate them without taking
into account the sign effect. That is, for any negative conditional
averages, we use their absolute values when fitting to the collisional
scalings. A more careful and refined treatment of the sign effect is
deferred to a future study.

The above results, including computations of the effective kine-
matic viscosity (v = u/p) and magnetic diffusivity (n = 1/(o no)),
are summarized in Table 3. Note that the diffusion coefficients from
P3D and VPIC are expressed in the respective code units. To facilitate
a direct comparison of the simulation numbers with MMS, we use
the plasma properties measured for the MMS interval to convert the
diffusion coefficients from code units to SI. That is, to compute the
units in P3D, we need to use the proton inertial length d,, proton
cyclotron frequency w.,, Alfvén speed V4, mean electron number
density (n.) measured over the MMS interval, and the real-life
values of proton mass m, = 1.67 x 1072 kg and proton charge
e =1.6 x 107! C. Similarly, to compute the VPIC units, we use the
electron inertial length d., electron plasma frequency wy., and mean
electron number density (n.) from the MMS interval, and the real-
life values of electron mass m., proton charge e, and speed of light
c. Finally, the effective kinematic viscosity and effective magnetic
diffusivity from the two PIC simulations and the MMS interval
are all expressed in SI units, m>s™! (see Table 4). Note that the
viscosity and diffusivity are widely distributed for different data sets,
reflecting the physical differences between the simulations and MMS
data.
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4.2 Empirical determination of Reynolds numbers

When the diffusivity is known, a general prescription to obtain a
Reynolds number (Re) is to assemble

speed x length

diffusivity

where the speed and length are those characteristics of the turbulence.
The results in the previous section make it possible to compute
effective Reynolds numbers Re as described in equation (11), since
we now have quantitative values for the (effective) diffusivities 7,
ve, and v,. Choosing the correlation scales for the species velocities,
Ac,o (¢ = e, p for electrons and protons, respectively), and magnetic
field, A. p, as the characteristic lengths, we may write separate
effective Reynolds numbers for the electron and protons, Re, o, and
an effective magnetic Reynolds number, Re,, 5, as

Re,, = ‘el (12)

Ve
Re, ) = “L. (13)
Here, u,, are the characteristic fluctuation speeds for each species. For
the magnetic Reynolds number, the characteristic speed is denoted
by u and there is some flexibility in deciding what value to use for it.

The required values of correlation scale can be obtained as
follows: The autocorrelation function is defined in the usual way
as

R(r) = <F(X+r)~F(x)>’ (14)
(F(x) - F(x))

where F can be either the fluctuation velocity or magnetic field.
Note that R(r) is a function of lag vector r = (ry, ry, ;). Upon
averaging over directions, R(r) only depends on lag length r = |r|,
and R(r) denotes the omnidirectional form of the autocorrelation
function. Based on computation of the autocorrelation function, the
correlation scale X, can be defined in several ways. Here, we employ
the so-called e-folding method,

R(%c) = 1/e, 5)

where the correlation scale is computed as the scale where the
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Figure 2. Correlation functions for the electron velocity, proton velocity, and magnetic field for the two PIC simulations and the MMS interval.

Table 5. Characteristic fluctuation speeds u, correlation scales A., and
effective large-scale Reynolds numbers Re.. Additional e, p, and b subscripts
indicate the quantity for the electrons, protons, or magnetic field, respectively.
Here, the characteristic fluctuation speed for protons, up, is used to compute
the effective magnetic Reynolds number.

Variables 2.5D P3D 3D vPIC MMS
ue = /(u2) 0.30 [Varl 0.055 [c]

232.8 [kms™!]
up = /() 0.22 [Varl 0.032 [c]

242.1[kms™']
hele 4.1 [dp] 17 [de] 4380 [km]
Ae,p 7.5 [dp] 65 [d] 15990 [km]
Xeob 8.5 [dp] 36 [de] 3690 [km]
Rec e = Uehe, e/Ve 250 270 380
Re,p = Uphe, p/vp 320 300 16610
Rec, b = tphe, /N 370 310 1150

autocorrelation function drops to 1/e, on the basis that e ="/ is an
adequate approximation for R(r) (Matthaeus et al. 1999; Smith et al.
2018; Wrench et al. 2023).

Fig. 2 shows the results of our correlation analysis of simulation
data and MMS observations. These results are employed to extract
correlation lengths. The average bulk speed in this MMS interval
is approximately Vsw = 230 kms~!, which is used to convert
temporal scales to spatial scales for the MMS data. Characteristic
fluctuation speeds and correlation scales for these three data sets are
recorded in Table 5. As the two codes use different normalizations,
Table 5 also indicates the relevant normalizing quantities, or units, in
square brackets. Together with the (effective) kinematic viscosities
and magnetic diffusivities listed in Table 3, these are combined
in accordance with equations (12) and (13) to compute the three
corresponding effective Reynolds numbers, shown also in Table 5.
Notably, for the simulation cases the three Reynolds numbers are
all rather similar, whereas for the MMS interval there are sizable
differences, which could be attributed to the uncertainties when
computing the correlation length.

5 DISCUSSION AND CONCLUSIONS

This paper elaborates and extends the previous work by Bandyopad-
hyay et al. (2023) in which the initial analysis of conditional averages
was presented, indicating that a collisional-like dissipation may be
present in collisionless plasma, as suggested by consistency of the
data with equations (9) and (10). Here, we have quantitatively exam-
ined these approximate relations and determined effective viscosities
for electrons and protons as well as an effective resistivity. This was
carried out separately for two plasma kinetic (PIC) simulations, one

2.5D and one 3D, and for a sample of magnetosheath turbulence data
recorded by the MMS mission. Having determined effective diffusion
coefficients, and using measured fluctuation speeds and correlation
scales, the assembly of effective Reynolds numbers follows directly.

From the effective large-scale Reynolds number, Re,, relationships

involving a plasma equivalent of the Kolmogorov dissipation scale,
Ap, may also be formulated:
:—; = Cl/*Re}, (16)
where C. is the dimensionless dissipation rate. This relation is
formulated based on the classic development in hydrodynamic
turbulence theory (Kolmogorov 1941a, b; Batchelor 1970), and may
be used in several ways.

One might substitute measured correlation scales A, and effective
Reynolds numbers Re, into the formula to extract an estimate of the
dissipation scale Ap. Alternatively, one might assume, as has been
done previously, that the dissipation scale in a plasma such as solar
wind, corresponds to the upper end of the inertial range. Then, if the
value of Ap is taken to be, for example, the ion (or electron) inertial
length dj, (or d..), equation (16) may be construed as providing another
alternative estimate of (effective) Reynolds number. There are also
other approaches for estimating the dissipation scale. For example,
if the cascade rate € is known and an effective viscosity is available,
hydrodynamic turbulence theory provides the Kolmogorov-style
estimate Ap = (v3/e).

The Reynolds numbers determined here are roughly consistent
with reasonable estimates of the corresponding dissipation scales,
through the formulation given by equation (16). For example, sub-
stituting the proton Reynolds number Re,. , = 320 for the 2.5D sim-
ulations into equation (16) and using a value C. = (2 x 0.5)/(9\/§)
(as in, e.g. Linkmann, Berera & Goldstraw 2017; Bandyopadhyay
et al. 2018; Li et al., in preparation; Wrench et al. 2023) and the
measured correlation scale A, , = 7.5 d,,, the relation equation (16)
gives Ap ~ 0.2d,, which is not an unreasonable estimation. For the
MMS data, the same line of analysis leads to the estimate Ap ~
22km. This too is a reasonable estimate for the dissipation scale
in the magnetosheath, where for this interval the value of d, is
48 km (see Table 2). In fact, there are several other ways to combine
the above values of Reynolds numbers and measured parameters to
examine consistency with traditional estimates. All the combinations
we have tried provide reasonable answers, such as values of Ap
that are deemed reasonable given the findings from simulations and
other observations that spectral steepening usually occurs near d,.
However, no firm guidance is available providing a more detailed
picture of a scale at which electron and proton dissipation become
dominant or ‘turn on’ relative to each other (see e.g. Yang et al. 2022).

In identifying length-scales associated with collisionless dissipa-
tion, it is of significance that kinetic activity including conversion
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of turbulence energy into internal energy (i.e. heating) is found in
plasma simulation to be localized in coherent structures that are
typically several ion inertial lengths (Greco et al. 2012; Servidio et al.
2012) in thickness at order one plasma beta, but with substructure
down to electron scales (Karimabadi et al. 2013); see also discussion
in Section 2.3. The same characteristic scale is found to be associated
with the ‘break’ in the solar wind magnetic spectrum associated
with termination of the inertial range (Chen et al. 2014), and the
limit of the range of applicability of standard MHD in favour of
including more complex effects such as Hall MHD (Sonnerup 1979;
Shay et al. 1998). The association of this same scale — a few ion
inertial lengths — with the onset of the pressure—strain interaction
lends credence to a view that these are the scales that signal the
onset of collisionless dissipation (Matthaeus et al. 2020). It seems
reasonable to suppose that it is the first kinetic scale encountered by
the cascade that triggers the onset of collisionless effects. This may
select, for example, depending on plasma beta, either ion inertial
scale or cyclotron radius as the scale of interest (Chen et al. 2014).

Another interesting aspect of the present results is the size of
the (effective) magnetic Prandtl number Pm, generally defined as
the ratio of kinematic viscosity v to magnetic diffusivity n. Here,
examining the values of the effective magnetic diffusivity and two
viscosities stated in Table 4, we see that the magnetic Prandtl number
estimates from both simulation results are near unity. For the MMS
data, the value is only moderately away from unity. The significance
of this is that when Pm greatly differs from unity, different regimes of
MHD scale behaviour become possible (Cho, Lazarian & Vishniac
2002; Ponty et al. 2005; Sahoo, Perlekar & Pandit 2011). In particular,
in such cases the inertial ranges in magnetic field and velocity
field can develop very different bandwidths. A value of Pm near
unity is consistent with the usual finding of ‘Alfvénic’ turbulence in
which there is order one equipartition of magnetic and velocity field
energy in their respective inertial ranges over very similar ranges of
wavenumber.

In this work, we have assumed that the effective viscosity and
resistivity are spatially uniform scalars. This simplification facilitates
analysis of the simulation and MMS data sets. This approach is
also motivated by earlier results seen in the conditional statistics
reported in Yang et al. (2017b) and Bandyopadhyay et al. (2023).
The more general situation of non-uniform and anisotropic (tensor)
effective viscosity and resistivity is possible, and in fact likely, as
these coefficients should be dependent on current density (Bessho
& Bhattacharjee 2010, 2012; Selvi et al. 2023) and velocity shear
(Del Sarto et al. 2016; Del Sarto & Pegoraro 2018). For example,
in collisionless reconnection, Selvi et al. (2023) and Bessho &
Bhattacharjee (2010, 2012) propose a kinetic physics-motivated
model for non-uniform effective resistivity thatis negligible on global
scales and becomes significant only locally near X-points.

Furthermore, the assumption of scalar coefficients is also unlikely
to be sufficiently general for the typical anisotropies expected to
occur in space plasmas in the presence of a magnetic field. It turns
out that in a magnetized plasma, both the pressure tensor P and the
traceless strain rate tensor D are highly anisotropic (Oughton et al.
2015; Del Sarto et al. 2016; Yang et al. 2023). Also anisotropic is
the electric work J - E, whose parallel and perpendicular elements
(with respect to the mean magnetic field) might contribute differ-
ently to particle energization in, for example, reconnection zones
(Dahlin, Drake & Swisdak 2014; Li et al. 2015). The anisotropy
is intimately related to the structure of potential closure models, if
any exist in collisionless plasmas, in which dissipation coefficients
are more plausibly treated as components of second-rank tensors
(Thompson 1961; Braginskii 1965; Macmahon 1965; Smolyakov
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1998). Therefore, a more complete model for effective viscosity and
resistivity in collisionless plasma should allow for both spatial non-
uniformity and (non-scalar) tensor structure.

‘We remark that although the classical collisional diffusivity must
obviously be absent in collisionless plasmas, a number of previous
works have none the less attempted to write approximate expressions
for effective diffusion coefficients in collisionless plasma. Possible
candidates that act as effective collisions include wave—particle
interactions (Graham et al. 2022), pitch angle scattering (Earl, Jokipii
& Morfill 1988; Zank et al. 2014), stochastic field line effects
(Coroniti & Eviatar 1977; Lazarian & Vishniac 1999), and other
kinetic mechanisms. In particular, viscosity and resistivity have been
estimated based on various approximations; for the present, we
leave aside the estimation of other transport coefficients such as
heat conduction (Hollweg 1976; Riquelme, Quataert & Verscharen
2016). Previous attempts to calculate anomalous resistivity have
been made in collisionless reconnection to sustain reconnection
electric field (Coroniti & Eviatar 1977; Lazarian & Vishniac 1999;
Bessho & Bhattacharjee 2010, 2012; Graham et al. 2022; Selvi et al.
2023). In the case of hyper-resistivity, the non-ideal electric field
in collisionless reconnection is also found to be consistent with the
dissipation due to anomalous electron viscosity (Strauss 1986; Fuji-
moto & Sydora 2021, 2023). A collisional-like viscosity is already
present in earlier studies, such as gyroviscosity (Thompson 1961;
Roberts & Taylor 1962; Macmahon 1965; Smolyakov 1998), cosmic
ray viscosity (Earl et al. 1988), and plasma viscosity (Kaufman
1960). Viscous effects are often estimated by consideration of the
MHD-scale cascade and its implications for pressure anisotropies
(Quataert & Gruzinov 1999; Sharma et al. 2007; Verma 2019).
Considerations of pressure anisotropy (Kasper, Lazarus & Gary
2002; Matteini et al. 2007), and linear instabilities that drive it,
can be employed to develop theories for effective viscosity. This
may be particularly effective when combined with exact results from
Vlasov—Maxwell theory, such as dissipation through the pressure—
strain interaction (Yang et al. 2017a). Such considerations have
motivated more elaborate approximate models for effective viscosity
based on pressure anisotropy in the simplified Chew-Goldberger-
Low (CGL) model (Arzamasskiy et al. 2023; Squire et al. 2023).
Valuable insights are obtained from models of this type, especially
with regard to extrapolations to extreme values of plasma § that
can be relevant to astrophysical systems (Howes 2010; Kawazura,
Barnes & Schekochihin 2019; Roy et al. 2022).

Finally, we recall that several additional relationships may be
adapted from classical turbulence theory to provide alternative
estimates for Reynolds numbers and diffusivities. One possibility
is to base measurements on the Taylor microscale A, which can
be related directly to the second derivative of the autocorrelation
function evaluated at the origin (e.g. Batchelor 1970; Pope 2000).
Up to order unity constants, Ay = [—R'(0)]~2, where we have in
mind that R(r) is the direction-averaged correlation function of,
say, the magnetic field, as in equation (14). Then, one can show
that an estimate of the effective Reynolds number can be written
as Re = (A J/A1)?/C. (e.g. Wrench et al. 2023). This quantity is
measurable when high-resolution data are available, and may be
further developed into an estimate of the effective viscosity, as shown
by Bandyopadhyay et al. (2020b). The above relationships should be
viewed as semi-empirical and, while motivated by theory, should
not be treated as exact in any sense, since the underlying theories
are mainly hydrodynamic (and collisional) and usually founded on
simple assumptions of rotational symmetry or incompressibility.

Based on the above results and given the unique nature of the
analysis developed so far, we conclude that the present approach
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to quantifying collisional-like dissipation in collisionless plasma
turbulence warrants further investigation. Already we have seen
herein that examination of conditional averages of pressure—strain
interaction and electric work, which themselves are exact statements
of energy conversion rates, provides a basis for finding effective
diffusion coefficients. With apparently reasonable values of (effec-
tive) Reynolds numbers, viscosities, and resistivities in hand, the
door is opened to examining a class of relationships that may help
bring turbulence theory concepts into greater contact with turbulent
plasma, as we have described above. There is clearly much more to
do in the complex subject of plasma turbulence, and this work offers
a small step in a possibly useful direction.
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