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Forecasting habitat suitability and niche shifts
of two global maize pests: Ostrinia furnacalis
and Ostrinia nubilalis (Lepidoptera:
Crambidae)
Bing Li,a,b Erik B. Dopman,c Yanling Donga and Zhaofu Yanga,b*

Abstract

BACKGROUND: Ostrinia furnacalis (ACB) and Ostrinia nubilalis (ECB) are devastating pests of the agricultural crop maize world-
wide. However, little is known about their potential distribution and niche shifts during their global invasion. Since long-term
selection to past climate variability has shaped their historical niche breadth, such niche shifts may provide an alternative basis
for understanding their responses to present and future climate change. By integrating the niche unfilling, stability, and expan-
sion situations into a single framework, our study quantifies the patterns of niche shift in the spatial distribution of these two
pests during the different periods.

RESULTS: Our results show that the overall suitable habitats of ACB and ECB in the future decrease but highly and extremely
suitable habitat will become more widespread, suggesting these two insects may occur more frequently in specific regions.
Compared with Southeast Asia and Australia, the ACB niche in China exhibited expansion rather than unfilling. For ECB, initial
niches have a tendency to be retained in Eurasia despite there also being potential for expansion in North America. The niche
equivalency and similarity test results further indicate that niche shifts were common for both ACB and ECB in different survival
regions during their colonization of new habitat and their suitable habitat changes during the paleoclimate were associated
with climatic changes.

CONCLUSIONS: These findings improve our understanding of the ecological characteristics of ACB and ECB worldwide, and will
be useful in the development of prevention and control strategies for two insect pests worldwide.
© 2024 Society of Chemical Industry.

Supporting information may be found in the online version of this article.
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1 INTRODUCTION
The niche conservatism hypothesis assumes that most species
that colonize a new habitat still tend to remain within their native
niches due to long-term adaptation to the initial climatic condi-
tions.1,2 However, habitat suitability is changing in response to cli-
mate change and reduced habitat for many species, such as
insects, mammals, birds and amphibians.3-5 Moreover, increasing
evidence indicates that some species of concern can rapidly
adapt to new habitats through niche shifts, resulting in significant
harm to biodiversity, agriculture, and human health.6,7 Therefore,
understanding the effects of niche shifts will improve predictions
of response to future climate change through adaptive evolution
and support increased sustainability of agricultural management
practices.8

When biological interactions are very strong or climate change
occur frequently, many economically important pests have
changed niches in ways that differ markedly from their initial
niches in order to match their specific requirements.9 A useful
conceptual framework for understanding changes in the

ecological relationship between species and their environment
is (i) unfilling (climate conditions in invasion range not overlapped
with the native niche), (ii) expansion (climate conditions available
in invasion range but not in the native range), and (iii) stability (the
portion of native climatic niche overlapping the invasive climatic
niche).10 However, how pest species have evolved to adapt to a
new habitat by changing niche is not well understood. Consider-
ing the intricate interplay between agricultural pests' adaptability
to climate change and biotic interactions, which encompass fac-
tors such as temperature, precipitation, shifts in ranges, and host
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resources, ecological niche models (ENMs) offer a robust
approach for assessing niche disparities and forecasting potential
habitat suitability.11

As closely related species within the Lepidoptera order, Ostrinia
furnacalis (Asian corn borer, ACB) and Ostrinia nubilalis (European
corn borer, ECB) aremembers of theO. nubilalis species group, pri-
marily distinguished by the morphology of the male genitalia, as
described in Yang et al. (2021, p. 830, Clade III in Fig. 1).12 Studies
have documented that ACB and ECB exhibit considerable pheno-
typic diversity, which is likely pivotal for their adaptation to varied
environmental conditions.13,14 Notably, geographic populations
exhibit variation in life history traits, such as critical day length
(CDL) and post-diapause emergence times, which correlate with
latitude.15,16 ACB has effectively expanded beyond climatic zones,
colonizing the Indochina Peninsula, the South Asian subcontinent
and Oceania,17,36 whereas ECB, originally endemic to Europe, has
become a significant maize pest in North America following its
accidental introduction in the early 20th century.18,19 Further-
more, recent investigations have revealed the co-occurrence of
both pests in the Yili Kazak Autonomous Prefecture of Xinjiang,
China.20,21 Consequently, ACB and ECB represent exemplary
models for investigating niche shifts, attributed to their extensive
distribution patterns and demonstrated capacity for environmen-
tal adaptation.14,22

The ACB and ECBmay have evolved strong dietary convergence
due to global maize introduction.23 Currently, the dietary general-
ism of these two pests and their ability to withstand relative
extremes of temperature and altitude are believed to have
enabled them to persist in a diverse array of niches in North Amer-
ica and Eurasia, including rainforest, savanna, temperate forest,
and high-altitude montane regions.14,15,20 A high rate of ACB
infestation causes heavy damage in corn and other crops in
south-east Asia and Australia, and a 10–30% corn yield reduction
in China and the Philippines.24 ECB has been responsible for
maize yield losses exceeding $1 billion annually in North Amer-
ica.25 Environmental and genetic drivers of variation in the num-
ber of generations per year (voltinism) are well documented.26,27

Overall, these patterns suggest that ACB and ECB could have the
capacity to change their spatial correlations with environmental
factors by shifting their distributional ranges and fundamental
niches they historically occupied.28,29 However, critical evidence
remains missing on niche shift and whether that contributes to
survival and adaption of these two species in various environmen-
tal conditions.
Here, we aim to characterize future distribution changes and

niche shifts for ACB and ECB within native and invaded ranges
under alternative climate scenarios. We developed ENMs by
integrating occurrence records with critical bioclimatic vari-
ables to forecast the global habitat suitability of these two
insect pests. Subsequently, we examined the degree of niche
shifts within their current geographical distributions. More-
over, we employed the conceptual framework of niche unfill-
ing, stability, and expansion to elucidate the observed
variations in niche divergence among the distinct geographi-
cal populations of these pests. Ultimately, we derived prelimi-
nary estimates of their global potential distributions and
delineated maps of ecological habitat suitability for the spe-
cies. This effort furnishes a comprehensive theoretical support
for predicting the niche dynamics of agricultural pests on a
global scale.

2 MATERIALS AND METHODS
2.1 Spatial aggregation analyses of occurrence data
To identify the effects of climate change on two pests in the pri-
mary agricultural production areas worldwide, original occur-
rence records of ACB and ECB in respective survival ranges were
collected and interpreted by searching online database and vari-
ous collections. First, we searched the occurrence records of
ACB from the Global Biodiversity Information Facility (largest-
scale biodiversity database of biological collections and various
sources for species distributional data in the world, GBIF, https://
www.gbif.org/),30 mainly including crop production sites of
Southeast Asia and Australia. To increase data collection of ACB
records, we also obtained detailed occurrence data of ACB in
China through field surveys during the summer 2017–2023. For
ECB, known occurrence records in the Eurasia and North America
were downloaded from GBIF.31 All records with detailed geo-
graphic information of these two insects were generated inde-
pendently (Supporting Information, Table S5 and S6). To avoid
potential sampling bias, occurrence records at geographical dis-
tances <50 km were removed using the ‘thin’ function of the R
package ‘spThin’ in R 4.2.0.32 The remaining occurrence records
of both species were mapped using ArcGIS 10.8.

2.2 Correlation analysis of bioclimatic variables
Bioclimatic variables from 1970 to 2000 at a resolution of 2.5 arc-
min were downloaded from WorldClim 2.1 (http://www.
worldclim.org/) that mainly contains 20 bioclimatic variables
derived from monthly temperature and precipitation values. Sub-
sequently, to predict the future habitat suitability and distribution
of two pests, two different representative concentration pathways
(RCPs) (RCP 2.6: the selected pathway declines to 2.6 W m−2 by
2100; RCP 8.5: Rising radiative forcing pathway leading to
8.5 W m−2 by 2100) from the MICR5 dataset were selected for
the two periods (2050s: average for 2041–2060; 2070s: average
for 2061–2080) (WOS: 000274394300028).33 In addition, the last
interglacial (LIG), last glacial maximum (LGM) and mid-Holocene
bioclimatic variables from the WorldClim 2.1 were used to
describe paleoclimate change. To minimize multi-collinearity
among bioclimatic variables, a Pearson's correlation coefficient
for pairwise comparison was calculated in the R package ‘stats’.
One of the two variables with a correlation coefficient |r| > 0.70
was randomly removed.

2.3 Ecological niche modeling
2.3.1 Modeling approach
Ecological niche models (ENMs) were implemented in the present
study to assess niche disparities and forecast potential habitat
suitability,11 because they can incorporate the complex interplay
between species adaptability to climate change and biotic inter-
actions, such as temperature, precipitation, and shifts in ranges
and host resources. We adopted the commonly used maximum
entropy algorithm (MaxEnt 3.4.4) to construct ENMs due to
its robust predictive performance, flexible hyperparameter set-
tings, accessibility, and simple operation,34 which had been used
in many previous studies to forecast potential geographical
distribution by comparing the similarities of habitats between
occurrences and background environments under settled con-
straints.35-38
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2.3.2 Model settings and evaluations
The R package ‘ENMeval’39 was used to calibrate theMaxEntmodel
by setting different combinations of featured classes (FCs: linear (L),
quadratic (Q), product (P), threshold (T) and hinge (H)) and regular-
izationmultiplier (RMs).40 RMswere set from0.2 to 2 at 0.2 intervals.
Seven combinations of FCs, including ‘L,’ ‘LQ,’ ‘LQP,’ ‘H,’ ‘LQH,’
‘LQHP,’ and ‘LQHPT,’were used.40 To explore the bestmodel, a total
of 70 models (including the default auto-feature model) totally
compared based on the Akaike's information criterion (AIC). Other
parameter settings were as follows: multiplier = 1, maximum iter-
ations = 5000, convergence threshold = 0.0001 and maximum
number of background points = 10, 000. To avoid overfitting of
redundant bioclimatic variables, the lowest values for the differ-
ences between the training and testing areas under the curve
(AUC.diff) and 10% training omission rate (or.10p) were also deter-
mined.41 In order to quantify the discrimination accuracy of ENMs,
25% of the occurrence records were used as the test set while the
remaining 75% were used as the training set randomly with a 10-
fold cross-validation approach.42 Model performance was typically
judged as reliable when the area under receiver operating charac-
teristic curve (AUC) > 0.8, true skill statistics (TSS) > 0.7 and contin-
uous Boyce index (CBI) > 0.7.43

2.4 Habitat suitability prediction and analysis
The suitable habitats of ACB and ECB were converted to raster for-
mat, ranked and extracted using the world administrative division
map using species distribution models (SDM) Tools within ArcGIS

10.8. The suitable habitats were then classified into four types at
equal interval classification based on the minimum training pres-
ence logistic threshold (MTP): unsuitable habitat suitability (0–
0.25), moderate habitat suitability (0.25–0.50), high habitat suit-
ability (0.50–0.75) and extreme habitat suitability (0.75–1.00).44

2.5 Niche shift analysis
For ACB, niches were compared by dividing the thinned occur-
rence records into the three separate ranges, including Southeast
Asia, China and Australia. For ECB, niches compared native range
(Eurasia) and invaded range (North America). To quantify the
niche shifts, we set the minimum convex polygons formed by a
range of 1° around the occurrence records within each range as
buffer zones and randomly selected background points at
30 times the number of occurrences within each buffer zone.45,46

Then, the selected bioclimatic variable information of all occur-
rence points and background points was extracted using the R
package ‘rgdal’.47 Next, the selected bioclimatic variable informa-
tion was generated into a 100 × 100 two-dimensional space and
correlation circles of contribution by environmental principal
component analysis (PCA-env) shared between the native and
invaded ranges.46 Finally, the smoothed densities of occurrences
and background environments were then projected along the
same two principal component axes for a robust comparison of
native and invaded niches.48

In addition, niche equivalency and similarity tests were used to
estimate whether the two pests were distinctively shifted in their

Figure 1. Map showing the occurrence records of Ostrinia furnacalis (ACB) in Southeast Asia (SA), China (CHN), and Australia (AUS).
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respective native and invaded ranges. The niche equivalency test
investigates the degree of overlap for species occurrence points
whenwere pooled and reassigned to both the native and invaded
ranges. The niche equivalency was estimated based on the met-
rics of Schoener's D and Warren et al.'s I.49 Next, observed values
of Schoener's D and Warren et al.'s I statistics were compared to
100 pseudoreplicates to produce a null hypothesis. P <0.05 indi-
cates the null hypothesis of niche unequivalency was rejected.50

The values of two metrics were used to quantify the degrees of
overlap between the native and invaded ranges, ranging from
0 (no overlap) to 1 (complete overlap).50 Meanwhile, the similarity
test was conducted to evaluate whether the degree of overlap of
the observed niche is higher than the overlap between the
observed niche in native range and a randomly selected niche
in an invaded range after 100 repeats. The invaded niches were
determined as more similar to the native niches than expected
if the comparison is statistically significant (P <0.05).48,50 The
same workflow was used to depict niche shifts between
the native and invaded populations of both pests along each sin-
gle bioclimatic variable, and the proportions of niche expansion,
stability, and unfilling were estimated. The above processes were
performed in R using the ‘ecospat’ package.51

3 RESULTS
3.1 Occurrence data thinning and bioclimatic variable
selection
After spatial thinning to include only points at least 50 km apart,
145 and 358 evenly spread points were determined in major crop

growing regions worldwide for habitat suitability modelling and
niche shift analysis for ACB and ECB, respectively. In general, the
georeferenced occurrence points of thinned occurrence records
represent the currently known distribution areas of these two spe-
cies (Figs 1 and 2). For ACB, bio2 (Mean Diurnal Range), bio4 (Tem-
perature Seasonality), bio7 (Temperature Annual Range), bio11
(Mean Temperature of Coldest Quarter), bio13 (Precipitation of
Wettest Month) and bio15 (Precipitation Seasonality) were used
to construct ENMs (Supporting Information, Table S1 and
Fig. S1). For ECB, bio1 (Annual Mean Temperature), bio3 (Iso-
thermality), bio6 (Min Temperature of Coldest Month), bio9 (Mean
Temperature of Driest Quarter), bio12 (Annual Precipitation),
bio13 (Precipitation of Wettest Month), bio14 (Precipitation of Dri-
est Month), bio17 (Precipitation of Driest Quarter) and bio19 (Pre-
cipitation of Coldest Quarter) were applied for habitat suitability
modelling and climatic niche analysis (Supporting Information,
Table S1 and Fig. S2).

3.2 Distribution modelling performance and evaluation
For ACB, the metrics were produced by various combinations of
FCs and RMs and are depicted in Fig. 3. Based on AIC, we ulti-
mately determined the best combination as FCs = LQH and
RMs = 0.8, with the smallest evaluation metrics of delta.AIC = 0.
The best metrics were generated with AUC.diff.avg = 0.0121,
AUC.val.avg = 0.9403 and or.10p.avg = 0.1304, indicating that
overfitting and complexity were effectively reduced. In general,
our results showed that the selected model with random sam-
pling successfully predicted the potential distribution of ACB with

Figure 2. Map showing the occurrence records of Ostrinia nubilalis (ECB) in in Eurasia (EA) and North America (NA).
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highly reliable AUC values of 0.920, TSS of 0.909 and CBI of 0.718
(Supporting Information, Table S2). For ECB, we selected the opti-
mal combination with FCs = LQH and RMs = 1.0 (the value of
evaluation metrics of delta.AIC = 0). In addition, evaluation met-
rics of AUC.diff.avg = 0.0028, AUC.val.avg = 0.9517, and or.10p.
avg = 0.1354 were determined in the best model (Fig. 4). Simi-
larly, the optimized model with random sampling enabled to pre-
dict the potential distribution of ECB with high accuracy AUC
values of 0.944, TSS of 0.801 and CBI of 0.895 (Supporting Informa-
tion, Table S2). These results showed that the best model obvi-
ously reduced the overfitting of the distribution records for ACB
and ECB, indicating that the model output was characterized by
high prediction accuracy.

3.3 Habitat suitability prediction analysis
The ranges of suitable habitat for ACB and ECB worldwide are
shown in Figs 5 and 6. For ACB, the highly and extremely suitable
habitat are mainly distributed in the eastern coastal regions of
China and tend to spread to the southeast. Additionally, Japan,
the Korean Peninsula and the southeast of Australia were also
major suitable habitat (Fig. 5(b)). Compared with the present,
overall suitability habitat areas will decrease by 195.17–
276.47 × 1002 km2 in the future (Table 1), which mainly includes
moderately and extremely suitable habitat (Supporting

Information, Table S3). In particular, the highly suitable areas
steadily remained. By contrast, the unsuitable habitat increased
by varying degrees under the different climate scenarios
(Table S3). For ECB, the highly and extremely suitable habitats in
North America were mainly distributed in the middle and eastern
coastland (Fig. 6(b)). On the other hand, suitable habitat spanned
from the littoral areas of the Mediterranean to the Far-eastern
areas of Eurasia (Fig. 6(b)). The contracted suitable habitat formed
an area of 6.75–51.68 × 1002 km2 besides the 2070 (RCP 2.6)
(Table 2). However, the moderately suitable habitat areas
remained and even increased under the different climate scenar-
ios (Supporting Information, Table S3).
In addition, the overall suitable habitat for ACB decreased from

the LIG to LGM (Fig. 5(a)), especially in moderately and extremely
suitable habitat. By contrast, the highly and extremely suitable
habitats for ACB rapidly increased from the LGM to the mid-Holo-
cene (Supporting Information, Table S3). Overall suitable habitat
areas for ACB gradually concentrated from the mid-Holocene to
the present (Fig. 5(a)). For ECB, the overall suitable habitat
decreased from the LIG to the mid-Holocene beside the unsuita-
ble habitat (Fig. 6(a) and Supporting Information, Table S4). From
the mid-Holocene to the present, the highly and extremely suit-
able habitat in North America for ECB increased markedly (Fig. 6
(a)). Our predicted results show that the potentially suitable

Figure 3. The results of MaxEnt model optimization for Ostrinia furnacalis (ACB) using different combinations of regularization multipliers (RMs) and fea-
ture classes (FCs).
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habitat of the two species increased and became more concen-
trated over several millennia in response to environment or cli-
mate change.

3.4 Niche shift analysis
Niche shift analysis is shown in Fig. 7(a), (b). The first two principal
components totally explain 74.71% and 87.29% of the original
environmental variance for ACB and ECB, respectively. Further-
more, the selection of bioclimatic variables was determined based
on the contribution loadings. For ACB, the bioclimatic variables
which contribute the most to the model performance were bio4,
bio7, bio11 and bio13 (Fig. 7(a)). For ECB, the most contributing
bioclimatic variables were bio12, bio6, bio17, and bio3 (Fig. 7
(b)). Our results indicate there are considerable differences in
the climate preferences for different geographical populations
of the two species. In addition, although niche unfilling was high
between China and Australia, ACB experienced various degrees of
niche expansion during colonization to a new habitat (Fig. 7(c)).
For ECB, the niche of Eurasia populations shows a more obvious
expansion than in the North America (Fig. 7(d)). In addition, the
overlap results of the two species indicate that very limited niche
overlaps are observed between the different distribution ranges
(Table 3).

The ACB's climatic niches in Southeast Asia and China
(P = 0.1584), Southeast Asia and Australia (P = 0.4455), China
and Australia (P = 0.4851) and the ECB's climatic niches in Eurasia
and North America (P = 0.7426) were dissimilar in terms of simi-
larity test results (Supporting Information, Figs S3a, S3b), indicat-
ing that the colonization to new survival ranges resulted in
different climate preferences from those of the original popula-
tions. On the other hand, the lack of significant results for the
equivalency tests of the two insect pests suggests that there
was major distinction between native and invaded niches
(Fig. S3a, S3b). Overall, these findings indicate that the niches of
these two species have undergone niche shifts during their adap-
tations to a new habitat.

4 DISCUSSION
Insects have evolved special adaptive mechanisms to survive in
various environmental conditions.52 Understanding the interac-
tions between pests and future climate change is vital for devel-
oping strategies for pest control. Moreover, increasing evidence
suggests that some species may undergo niche shifts during the
colonization.53,54 For example, a niche shift analysis of Anoplo-
phora glabripennis and Anoplophora chinensis suggested differ-

Figure 4. The results of MaxEnt model optimization for Ostrinia nubilalis (ECB) using different combinations of regularization multipliers (RMs) and fea-
ture classes (FCs).
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Figure 5. (a) Species distribution models of Ostrinia furnacalis (ACB) for historical (mid-Holocene, 4∼8 kya; last Glacial Maximum (LGM), 11∼29 kya; last
Interglacial (LIG), 120∼ kya) and present (∼0 kya). (b) Species distribution models of ACB predicted in the 2050s and 2070s under RCP 2.6 and RCP 8.5
scenarios. Warmer colors indicate higher suitability of occurrence as predicted by MaxEnt. The base maps are from Standard Map Service website.
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Figure 6. (a) Species distribution models of Ostrinia nubilalis (ECB) for historical (mid-Holocene, 4∼8 kya; last Glacial Maximum (LGM), 11∼29 kya; last
Interglacial (LIG), 120∼ kya and present (∼0 kya)). (b) Species distribution models of ECB predicted in the 2050s and 2070s under RCP 2.6 and RCP 8.5 sce-
narios. Warmer colors indicate higher suitability of occurrence as predicted by MaxEnt. The base maps are from Standard Map Service website.
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ences in the degree of niche shift during their invasion.55 Recent
niche studies have clarified that Zyginelline leafhoppers adapt
to the high latitude river-mountain system through the niche
shifts.56 In addition, similar results were found in a study of
Hyphantria cunea by Tang et al. (2021); their results showed that
H. cunea has adapted to several climatic conditions in China,
which indicates the niche of H. cuneamay shift and as the popula-
tions adapt to novel environmental conditions over the course of
their spread.57 The results of this study provide a comprehensive
analysis of suitable areas for two corn borers around the world.
Our findings indicate clear predicted niche shifts for ACB and
ECB in their respective survival areas during the colonization. Fur-
thermore, forecasts for the future show that currently suitable
areas would remain stable, particularly in areas where the ACB
and ECB are already colonized. In addition, the regions in north-
eastern Eurasia and middle North America may be highly suitable
to be inhabited by ECB.
We found that the survival ranges and niche shifts of both pests

were significantly influenced by temperature and precipitation
(Fig. 7(a), (b)). This is likely because limiting environmental factors
of temperature and precipitation significantly impact the distribu-
tion of relevant host plants and cultivation system.58 The two spe-
cies do not, however, appear to be influenced by temperature and
precipitation equally. Potentially due to differences in their geo-
graphical distribution patterns, the ACB (bio4, bio7, bio11 and
bio13) was mainly affected by temperature, whereas the ECB
(bio12, bio6 and bio17) was more susceptible to precipitation
(Supporting Information, Table S1). In this study, ACB ismainly dis-
tributed from Sub-frigid zone (50 °N to 65 °N, mean temperature
in January is lower than −20 °C) to Subtropics (10 °S to 40 °S,

mean temperature in January is higher than 15 °C).59 Therefore,
the ACB populations likely have an abundance of ecological phe-
notypes to adapt to complex climatic zones. For ECB, during the
colonization to new habitat from Eurasia to North America, its sur-
vival ranges remained in the climatic zones (40 °N to 60 °N).72

However, in contrast to the Temperate Marine Climate of native
range (Eurasia), the lower precipitation of invasive ranges (North
America) might be a limiting factor affecting the life-history
traits.19 These findings imply that bioclimatic variables reflect var-
ious characteristics of annual trends, seasonal patterns, and
extreme climate, and are related to the eco-physiological suitabil-
ity of insect species.60,61

In this study, limited niche overlaps were observed between
native and introduced ranges for both ACB (China and Australia)
and ECB (Eurasia and North America) (Table 3 and Supporting
Information, Fig. S3). Our niche shift results indicate that the two
species experienced various degrees of niche expansion during
the colonization of new geographic regions (Fig. 7(c), (d)). The pre-
dicted niche expansion could be facilitated by plasticity, evolution-
ary processes, climate change and by anthropogenic influences (i.
e., crop domestication and farm expansion).62 Analysis of habitat
suitability to paleoclimates show habitat suitability prediction
results show that the partial habitats of ACB and ECB both
decreased from the last interglacial (LIG: 120–140 kya) to last gla-
cial maximum (LGM: 11–29 kya). By contrast, from the LGM to
the mid-Holocene, the large-scale expansion of highly and
extremely suitability habitats was observed (Figs 5(a) and 6(a)),
which could fit the ‘glacial refugia’63 and ‘mountain isolation’
hypotheses.64 Similar findings have been obtained for some rela-
tive species with fossil records distributed in mountain

Table 1. Predicted suitable habitat area changes of Ostrinia furnacalis (ACB) from the current to future climatic scenarios

Climate scenarios

ACB

Area change (100 ˆ2 km2)

No change Contraction Expansion Total

Currently–2050 (RCP 2.6) 660.77 371.05 112.61 −258.44
Currently–2050 (RCP 8.5) 656.83 374.98 98.51 −276.47
Currently–2070 (RCP 2.6) 681.98 349.29 129.08 −220.21
Currently–2070 (RCP 8.5) 686.76 344.60 149.43 −195.17

† Number of spatially defined cells under different scenarios at a resolution of 2.5 arc-min × 2.5 arc-min. The expansion minus the contraction was
compared with the current distribution.

Table 2. Predicted suitable habitat area changes of Ostrinia nubilalis (ECB) from the current and future climatic scenarios

Climate scenarios

ECB

Area change (100 ˆ2 km2)

No change Contraction Expansion Total

Currently–2050 (RCP 2.6) 792.62 146.26 94.58 −51.68
Currently–2050 (RCP 8.5) 803.17 135.71 107.33 −28.38
Currently–2070 (RCP 2.6) 813.35 125.53 136.46 10.93
Currently–2070 (RCP 8.5) 819.92 118.96 112.21 −6.75

† Number of spatially defined cells under different scenarios at a resolution of 2.5 arc-min × 2.5 arc-min. The expansion minus the contraction was
compared with the current distribution.
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regions.65–68 These hypotheses assume that the remaining suit-
ability habitat areas gradually grew due to ecological adaptation
and/or natural selection after the glacial period.69

Previous studies suggested that ACB and ECB have evolved sim-
ilar phenotypes, ecological niches, and host plant use (maize)
based on genetic evidence.12,17,27 Our habitat suitability predic-
tion results indicate that both ACB and ECB show great niche shift
potential and strong adaptability with new habitat colonization,
which may have promoted the mismatch distribution and forma-
tion of new niche patterns between ACB and ECB.16,70,71 In addi-
tion, our predicted results show that survival ranges of both

species will still be greatly concentrated in their initial distribu-
tional ranges in the future. Thus, further combined studies on
niche shift and genetic architecture of ecological adaptation of
ACB and ECB are needed to facilitate in understanding the under-
lying mechanisms of parallel evolution and speciation in Ostri-
nia spp.
In terms of future expansion predictions, our results show that

overall suitable habitat areas of the two species will gradually con-
tract by the 2070s (RCP 2.6) compared with the present (shown in
Tables 1 and 2). However, we also found that different types of
suitable habitat showed inconsistent trends of area change

Figure 7. Correlation circle (a) and (b) indicate the single variables used and their contribution towards the two axes (PC1 and PC2) for Ostrinia furnacalis
(ACB) andOstrinia nubilalis (ECB), respectively, and principal component analysis of niche shift (c) and (d) represent niche overlap for ACB and ECB, respec-
tively. The solid and dashed contour lines illustrate 100% and 50% of the available environmental space, respectively. The niche overlap is visible in yellow
and represents stability, the area of unfilling is shown in green, and the zone of expansion is shown in red. Respective region abbreviations for ACB and
ECB: Southeast Asia (SA), Australia (AUS), China (CHN), Eurasia (EA), North America (NA).

Table 3. The values of niche overlap between the different geographical populations of Ostrinia furnacalis (ACB) and Ostrinia nubilalis (ECB) around
the world

Distribution areas

ACB

Distribution areas

ECB

Schoener's D Warren's I
Schoener's D Warren's I

CHN AUS CHN AUS NA NA

SA 0.2499 0.0137 0.4890 0.0221 EA 0.1980 0.3723
CHN 0.0074 0.0290 NA
AUS

† Respective region abbreviations for ACB and ECB: Southeast Asia (SA), Australia (AUS), China (CHN), Eurasia (EA), North America (NA).

Niche shifts of corn borers www.soci.org

Pest Manag Sci 2024; 80: 5286–5298 © 2024 Society of Chemical Industry. wileyonlinelibrary.com/journal/ps

5295
 15264998, 2024, 10, D

ow
nloaded from

 https://scijournals.onlinelibrary.w
iley.com

/doi/10.1002/ps.8257 by Tufts U
niversity, W

iley O
nline Library on [07/05/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

http://wileyonlinelibrary.com/journal/ps


(Tables S3 and 4). For ACB, some countries in Eurasia and Oceania
such as China, Japan, Korean peninsula and Southeast Asian will
expand to encompass areas that are highly suitable for ACB
(Fig. 5(b)). For ECB, some specific regions in North America such
as the United States and Canada should also be concerned with
potential future expansion due to the large corn growing areas
that are highly suitable for colonization (Fig. 6(b)). For example,
ECB with various habitat suitability co-occur in the main corn pro-
duction areas of the northeastern USA and Canada.72 These find-
ings might be meaningful for explorations of ecological traits
exclusive to the invasive populations and for eradication
measures.
However, there are multiple sources of uncertainty in the pre-

sent study that could be a focus for future investigations. For
instance, comprehensive field investigations have not been car-
ried out throughout Southeast Asia, leading to fewer occurrence
records and incomplete estimates of potential habitat. Moreover,
host information was not used in this study due to the ambiguous
host plants and incomplete host records regarding bioclimatic
variables selection. Finally, a limited set of emission scenarios
were used (RCP 2.6 and RCP 8.5) in this study, which may result
in potential inconsistency of model predictions under different
scenarios (such as SSP 126 and SSP 585).73 Despite these limita-
tions, our findings highlight geographic areas of concern for both
pest species, suggesting that improved monitoring and early
warning measures are needed in these regions and the surround-
ing areas.

5 CONCLUSION
In summary, our results showed that temperature and precipita-
tion are significant bioclimatic variables impacting on the niche
shifts and potential habitat distribution of two widespread pest
species. With the climate change, both ACB and ECB have appar-
ently experienced various degrees of niche shift since they colo-
nized into the new habitats. Particularly, with a large share of
native niches remaining unfilled in North American regions, this
indicates that ECB has potential for further expanded coloniza-
tion. Under the future climate scenarios, the ACB's cores of habitat
distribution accumulated around eastern coastal areas, and
shifted from the corn-growing regions to lower latitudes in China.
In addition, the ECB's initial habitat distribution shifted to central-
western corn belts in North America. The concentration of their
suitable habitats poses a potential threat to future agricultural
production. We encourage the application of monitoring and
eradication plans whenever possible to prevent naturalization
and to avoid further expansion.
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