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Abstract Extreme flooding events are becoming more frequent and costly, and impacts have been
concentrated in cities where exposure and vulnerability are both heightened. To manage risks, governments, the
private sector, and households now rely on flood hazard data from national-scale models that lack accuracy in
urban areas due to unresolved drainage processes and infrastructure. Here we assess the uncertainties of First
Street Foundation (FSF) flood hazard data, available across the U.S., using a new model (PRIMo-Drain) that
resolves drainage infrastructure and fine resolution drainage dynamics. Using the case of Los Angeles,
California, we find that FSF and PRIMo-Drain estimates of population and property value exposed to 1%- and
5%-annual-chance hazards diverge at finer scales of governance, for example, by 4- to 18-fold at the municipal
scale. FSF and PRIMo-Drain data often predict opposite patterns of exposure inequality across social groups
(e.g., Black, White, Disadvantaged). Further, at the county scale, we compute a Model Agreement Index of only
24%—a ~1 in 4 chance of models agreeing upon which properties are at risk. Collectively, these differences
point to limited capacity of FSF data to confidently assess which municipalities, social groups, and individual
properties are at risk of flooding within urban areas. These results caution that national-scale model data at
present may misinform urban flood risk strategies and lead to maladaptation, underscoring the importance of
refined and validated urban models.

Plain Language Summary Flooding presents a significant risk to human activities and development,
and its impacts have been rapidly increasing over recent decades. However, government flood mapping in the U.
S. has not kept pace with adaptation needs, and communities have now turned to other sources of information to
inform planning and design decisions. This study examines the uncertainties of flood hazard data available from
the First Street Foundation across Los Angeles, California, the second largest city in the U.S. With a comparison
to two different models that more fully capture processes known to affect urban flooding, we show concerning
levels of uncertainty in the First Street Foundation data at scales of municipalities and properties. These results
highlight the need for more robust validation of urban flood hazard models, and caution against overreliance of
First Street Foundation data for urban flood management.

1. Introduction

Federal efforts to map flood hazards in the U.S. have been inadequate for meeting the full needs for risk man-
agement including risk awareness, preparedness, risk transfer, and incorporation of future changes in hazards
related to climate change (National Research Council, 2009). Flood hazard maps communicate information about
the severity of flooding that is possible with extreme (i.e., rare) events, and are instruments for public safety,
insurance pricing, asset management, land use regulation and many other applications (Serra-Llobet et al., 2022).
In particular, Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRMs) developed
for regulatory and insurance purposes in the U.S. do not capture all hazard drivers, have been updated too
infrequently to keep pace with changes in land use and climate, and do not capture future changes in flood hazards
(Bates et al., 2021). The private sector has stepped in to fill this void, developing models and data products that
aim to more completely, accurately, and nimbly estimate present and future flood risks (Bates et al., 2021;
Harris, 2023), which are rapidly changing (O’Donnell & Thorne, 2020). The urgent need for this information is
clear: financial-services industries and federal insurance programs have rapidly adopted these data products, yet
with seemingly little concern about potential inadequacies (Harris, 2023).
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Most saliently, the First Street Foundation (FSF) has developed a national-scale flood hazard data set for the U.S.
that has been used for risk communication to the public, insurance pricing, and scientific research about flood
risks and inequities (First Street Foundation, 2020; Tate et al., 2021; Wobus et al., 2021) and the effect of flood
risk on population growth (Shu et al., 2023). FSF data are now featured in many tools and programs for flood risk
management and environmental justice (Harris, 2023) including the Environmental Justice Screening and
Mapping Tool (EJScreen) developed by the U.S. Environmental Protection Agency (EPA, 2023), and the White
House Climate and Environmental Justice Screening Tool (Council on Environmental Quality, n.d.). States have
adopted FSF data for statewide resilience and risk reduction planning and have taken advantage of the property-
specific aspects of FSF data to implement resilience measures such as buyouts (Duncan et al., 2023). Moreover,
FEMA has relied on flood hazard data from many sources, including large-scale flood risk models used in the
insurance industry, to implement Risk Rating 2.0—a program to align insurance rates with actuarial risks on a
property-by-property basis—within the National Flood Insurance Program (FEMA, 2022). Within the real-estate
industry, FSF data are increasingly relied upon for property-level risk assessment by buyers, realtors, and lenders
(Realtors Property Resource, n.d.; Redfin, 2024). However, researchers have cautioned against over-reliance on
large-scale hazard model data for flood management decision-making needs, particularly at increasingly fine
spatial scales (Bates, 2023a), because of uncertainties stemming from the inadequate representation of topo-
graphic features, flood infrastructure, and other features known to affect patterns of flooding (Jonkman, 2013;
Trigg et al., 2016; Ward et al., 2015).

How uncertain are these national-scale flood hazard data now being extensively deployed within the public and
private sectors? A widely used metric of flood hazard data uncertainty is the Model Agreement Index (MAI),
which quantifies the fraction of agreement between hazard models in areas at risk of flooding; MAI = 100%
would indicate perfect agreement (Trigg et al., 2016). Wing et al. (2017) compared flood extent estimated by the
U.S.-wide flood hazard model adopted by FSF to FEMA flood hazard maps and reported an MAI of 55% for the
nation as a whole, but also a trend of decreasing accuracy with increasing levels of urbanization. Wing
et al. (2017) reported MAI values of 33%, 24%, and 23% within areas classified by the National Land Cover
Database as “Developed: low intensity,” “Developed: medium intensity,” and “Developed: high intensity,”
respectively. Lindersson et al. (2021) examined global-scale differences between flood maps developed by the
European Commission's Joint Research Center (Dottori et al., 2016) and by the Global Assessment Report on
Disaster Risk Reduction (Rudari et al., 2015), and reported a global MAI of only 30%. Uncertainties in large scale
hazard models are particularly high in cities given the complexity of interacting factors that affect flooding,
including topography, urban drainage infrastructure, and flood defenses such as levees and flood walls
(Bates, 2023a). Moreover, data describing these features are not widely available to support more accurate
modeling (Bates, 2023a; Trigg et al., 2016; Ward et al., 2015), and data availability at global scales present an
even greater challenge.

From a flood management perspective, these trends in model accuracy present a serious concern: large-scale
hazard model uncertainty is greatest precisely where population density is greatest. The implications for un-
derstanding flood risks, pricing properties, shaping policy, and prioritizing flood adaptation measures may be
profound, with implications for environmental justice. Uncertainties in flood hazard data propagate through
estimates of flood exposure, damages, and social inequalities used in flood adaptation decision-making processes,
as flood hazard data are intersected with spatially explicit social data including the locations of housing, popu-
lation densities, racial and ethnic population fractions, and indicators of socioeconomics, social vulnerability, and
neighborhood disadvantage.

Here we use two models that benefit from more detailed local data and a more complete accounting of processes
known to affect flooding to measure the degree of flood risk uncertainty in FSF data at the scale of properties,
municipalities, and the county of Los Angeles, California. The second largest city in the U.S., Los Angeles has
experienced numerous flooding disasters during its development over the past two centuries and faces significant
flood risk linked to atmospheric rivers and undersized main-stem flood channels (Figure la) (Huang &
Swain, 2022; Sanders et al., 2023). A Parallel Raster Inundation Model (PRIMo) is configured to more fully
capture features known to affect flooding, compared to FSF data—including urban topography, urban drainage
infrastructure, flood walls, and levees—based on access to high quality local infrastructure and topographic data
(Bates, 2023b; Kahl et al., 2022; Sanders et al., 2023; Sanders & Schubert, 2019). A second model, PRIMo-Drain,
is configured to also account for the effect of local street drains on pluvial flooding (see Methods). With three
separate flood hazard data sources representative of 1%- and 5%-annual-chance scenarios, we compare metrics
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Figure 1. Los Angeles study area including: (a) Topographic relief (shading), major road network (light gray lines), main-stem flood channels (dark blue), county
boundaries (dashed gray lines), and municipal boundaries (heavy gray lines) with 1%-annual-chance flood hazard area (pink), (b) population density, and (c) property
value. Flood extent based on PRIMo-Drain model using a 30 cm depth threshold.

that bear on flood management and environmental justice including exposed populations and property values at
county and municipal scales; inequalities in exposure at the county scale by race, ethnicity and disadvantage; and
flood extent, which provides a measure of risk uncertainty at the property scale.

2. Materials and Methods
2.1. Site Description and Parcel Data

Los Angeles (LA) County, California is home to a population of 9.8 million people (U.S. Census Bureau) and a
gross domestic product of 712 billion USD (U.S Bureau of Economic Analysis), making it larger than 40 U.S.
states by population and 43 by economic output. Positioned on a coastal plain below the San Gabriel Mountains,
the region is exposed to fluvial flood risks from mountain runoff, pluvial flooding from intense rainfall and coastal
flooding hazards (Jones, 2018; Sanders & Grant, 2020). Data on flood hazards, land use, lot area, property value,
population, income, race, ethnicity, disadvantage, and vulnerability were characterized across 1,767,588 land
parcels to enable regional and municipal scale exposure analysis. Land parcels represent the smallest unit of land
for the purpose of ownership. Flood hazard, land use, lot area, and property values were resolved for each parcel,
and all other variables were downscaled from 2020 U.S. Census data at the block group and/or census tract scale.
Tracts generally have population sizes of 1,200-8,000, and block groups are divisions of census tracts that
generally contain 600-3,000 people (U. S. Census Bureau, 2022).

Parcel shapefiles with lot area, land use, and Assessor's value were accessed from the Los Angeles County Open
Data Portal (Los Angeles County, n.d.). Population was estimated dasymetrically by apportioning the block group
population from the 2020 Census across residential parcels in proportion to lot area (Tate et al., 2021), and zero
population was ascribed to commercial or other parcel types. Each residential parcel was also assigned a Black,
Hispanic, and White population fraction corresponding to the block group fraction computed from Census data
(Figure 2). We note that U.S. Census data include separate questions related to race (e.g., Black, Asian, Native
American) and ethnicity (Hispanic), and these data are used directly such that there is overlap between race and
ethnicity in the evaluation of exposure and inequalities. The study area population is 9,105,286 which by ethnicity
is 48.2% Hispanic and by race is 49% White, 22.0% other, 14.2% Asian, 8.6% Black, 4.4% Two or More Races,
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Figure 2. Spatial distribution of social groups across Los Angeles County. (a) Disadvantaged populations as estimated by the Neighborhood Disadvantage Index
(NDI > median), (b) Hispanic population fraction, (c) Black population fraction (by race alone), and (d) White population fraction (by race alone). All population
fractions reference the same color scale. Population fractions based on U.S. Census data, and NDI developed from U.S. Census and American Community

Survey (ACS).

0.7% Native American, and 0.3% Hawaii and other Pacific Islander. Each residential parcel was also assigned a

Neighborhood Disadvantage Index (NDI), which is a block group scale measure of socioeconomic disadvantage

that varies from zero to one and was developed from literature on neighborhood disadvantage, urban and

concentrated poverty, neighborhood effects, and residential segregation (Sanders et al., 2023). The 5th, 50th, and
95th percentile value of NDI for Los Angeles County is 0.35, 0.47 and 0.59, respectively (Sanders et al., 2023).
Analysis of exposure and inequalities focuses on four social groups: White (by race), Black (by race), Hispanic,

and Disadvantaged defined by NDI greater than the county median. Distributions of these social groups are shown

in Figure 2. Exposure of Asian populations was also examined and did not reveal strong inequalities; Asian

groups were therefore not a focus of detailed analysis.

2.2. FSF Flood Hazard Data

We accessed 5%- and 1%-annual-chance FSF flood depth data available in a 3 m resolution georeferenced raster
format. FSF flood depth data are produced using the LISFLOOD-FP model for pluvial and fluvial flood risk and
the GeoCLAW model for coastal flood risk (First Street Foundation, 2020). LISFLOOD-FP solves the local-
inertia-only formulation of the 2D shallow water equations (Bates et al., 2010; Sampson et al., 2013) and
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switches to different governing equations in areas where the assumptions of the local-inertial-only formulation are
violated, such as on steep slopes where a slope-dependent variable-velocity rainfall routing scheme is applied
(First Street Foundation, 2020; Sampson et al., 2013). Infiltration of rainfall runoff across pervious surfaces is
modeled using a modified Hortonian infiltration equation, applied in conjunction with the Harmonized World
Soil Database (HWSD) of the Food and Agriculture Organization of the United Nations (FAO) (First Street
Foundation, 2020). The LISFLOOD-FP simulations are executed on a 30 m national elevation data (NED) digital
elevation model (DEM), which was hydroconditioned using hydrologic drainage information from the NHDPlus
and MERIT data sets to synthetically correct the slopes of major river channels (First Street Foundation, 2020).
For channels with widths at or less than the DEM resolution, a one-dimensional (1D) subgrid method is applied to
create a flow routing pathway (Neal et al., 2012). Engineered structures, such as dams and levees as is the case
across Los Angeles, are incorporated in different ways in the modeling strategy. Levees, which typically are
narrower than the DEM resolution, are incorporated in the model using a framework of channel conveyance
increase based on estimates of local defense standards (Sampson et al., 2015). In the case of dams, if LISFLOOD-
FP predicts flooding within a dam's service area for a scenario that has an annual-chance greater than the safety
standard of the dam, then that flooding is removed from the LISFLOOD-FP outputs as a post-processing step.
Dam service areas are obtained from each dam's Emergency Action Plan. FSF derives other flood protection
measures such as culverts, elevated roads, and stormwater systems/pipes from FEMA Flood Insurance Study
(FIS) reports (First Street Foundation, 2020). We note that across the Los Angeles metropolitan region, FIS
reports are primarily available along watercourses and coastal regions, but very few are available across the urban
core. Wing et al. (2017) report that for the U.S. national LISFLOOD-FP model, urban drainage is accounted for by
assuming a design standard depending on the degree of urbanization, based on luminosity data (Elvidge
et al., 2007), and the duration and intensity of the event. However, available documentation does not describe the
regional data sources used for each region of the U.S.

Precipitation forcing data for the FSF flood hazard data considered here are provided by NOAA's Atlas 14
Intensity-Duration-Frequency (IDF) (Perica et al., 2014) relationships for the 24 hr rainfall duration at various
return periods. While FSF has recently moved toward a new set of precipitation intensity data reflective of the
most recently climatic conditions (Kim et al., 2023), the data considered here are based on NOAA Atlas 14
forcing. Fluvial floods hazards are forced in the LISFLOOD-FP model at a set of inflow boundary conditions
derived using the regionalized flood frequency analysis (RFFA) methodology outlined by Smith et al. (2015) and
updated for the U.S. as described in the FSF Technical manual (First Street Foundation, 2020). A two step-
approach is used to create hydrographs for extreme flow events: first an index flood is estimated, and second
the index flood is scaled using growth curves that describe the relationship between index flood and extreme flow.
To create the index flood, gauges were partitioned by river or hydrological zone and their discharge record is used
to calculate the mean annual flood for each zone. To calculate the growth curves, gauging stations are subdivided
into the five categories of the Koppen-Geiger climate classification and pooled together based on catchment
homogeneity. For each pooled group of gages, extreme value distributions are fitted to the gaged streamflow data,
providing relationships between the index flood and extreme flows for any recurrence interval. The methodology
was developed for global flood hazard modeling and in particular to bridge streamflow gaps in data scarce re-
gions. Smith et al. (2015) report that large errors in extreme flow estimation can occur in data scarce regions,
greater than 300% in some cases (global mean error of approx. 80%), although across the denser streamflow
gaging network of the Los Angeles metropolitan region errors are likely smaller. To counteract the potentially
large errors in extreme flow estimates using the RFFA methodology, FSF uses a framework of channel
conveyance scaling, whereby estimated bankfull discharge or local degree of protection (e.g., levees) is utilized to
calibrate the estimated extreme flow (First Street Foundation, 2020).

GeoCLAW predicts storm surge and tidal flood hazard using the 2D shallow water equations with the addition of
source terms for wind friction, non-constant surface pressure and Coriolis (Mandli & Dawson, 2014). GeoCLAW
uses adaptive mesh refinement with overlapping rectangular grids to allow greater detail along the coast while
maintaining computational efficiency and stability. Ocean bathymetry and coastal topography in the model are
parameterized using the global SRTM15+v2 DEM with linear spatial resolution of 500 m, although finer res-
olution lidar DEMS from NOAA and USGS are integrated into the model where available along coastlines. Storm
surge in GeoCLAW is determined by a specification of the storm's wind field through time, and energy from the
wind field is transferred to the water through drag. Tides are predicted using each NOAA tide gage station's
harmonic constituents (First Street Foundation, 2020). While GeoCLAW doesn't model wave run-up, the outputs
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of the model are post-processed using a statistical model that was established by comparing USGS observations of
flood height to GeoCLAW model outputs.

Flood depths are downscaled from LISFLOOD-FP and GeoCLAW to a finer resolution through a two-step
process. First, water surface elevation is resampled at a fine resolution, and second, flood depth is estimated
by subtracting topographic height from surface water elevation (First Street Foundation, 2020).

2.3. PRIMo Flood Hazard Modeling

The Parallel Raster Inundation Model (PRIMo) solves the full 2D shallow-water equations using a dual-grid finite
volume scheme that combines a fine-resolution grid of topography for spatial accuracy with a coarse-resolution
grid for efficient time integration (Kahl et al., 2022; Sanders & Schubert, 2019). The PRIMo model for Los
Angeles previously reported by Sanders et al. (2023) is adopted here as a baseline model for flood hazard
assessment. The baseline model has a 3 m resolution fine-grid (DEM) to resolve topography and updates the
solution in time on a 30 m grid. The DEM was constructed mainly from two sources, 1/9th arc second (3 m) USGS
National Elevation Data set (NED) DEM (primarily from 2016 lidar data (OCM Partners, 2022)) for elevations
above 10 m and a 1 m resolution USGS topobathymetric DEM for elevations less than 10 m NAVD 88 including
coastal bathymetry. The DEM was hydroconditioned to account for culverts, subsurface storm drains, dams and
levees (Sanders et al., 2023). To model flow resistance, a 3 m resolution raster grid model of the Manning co-
efficient was developed based on land use data available from OpenStreetMap and tabulated values of the
Manning parameter for each land use category (Sanders et al., 2023). No infiltration was assumed in PRIMo
simulations because urban areas in the study area are marked by a high level of imperviousness, and because
extreme flooding events are typically associated with persistent rainfall that saturates the ground surface prior to
episodes of extreme rainfall lasting hours (Sanders & Grant, 2020). With hydro-conditioning of the DEM, the
baseline PRIMo model is configured to account for Level 1 drainage infrastructure which corresponds to regional
flood control dams and the main-stem flood channels with levees, as well as Level 2 drainage infrastructure which
corresponds to secondary flood conveyance structures including channels and underground culverts.

A second model, PRIMo-Drain, is introduced here to account for Level 3 drainage infrastructure in the assessment
of pluvial flood hazards, in addition to Level 1 and 2 infrastructure. Level 3 infrastructure corresponds to local
street drains and small conveyance pipes that transfer drainage into Level 2 drainage infrastructure. Data
describing the location of street drain inlets were obtained from the County of Los Angeles (Los Angeles County
Public Works, n.d.), and each drain was configured as a curb inlet with a length of 2 m and a height of 0.2 m
(Gallegos et al., 2009). Across the study area, a total of 153,280 curb drain inlets were included in the model. Inlet
flow rates, Qg;.;,, Were modeled with a mix of weir and orifice equations (Leandro et al., 2009), an approach that
was successfully used in past-studies of flood inundation in Los Angeles County (Gallegos et al., 2009; Sanders &
Schubert, 2019). Specifically, flow is based either on a weir-type equation or an orifice-type equation depending
on the local flood depths, d, and curb height, H_,,, as follows,

cl)Ld\/g_d d < chrb
CDLchrb \' 2gd d> chrb

drain —

where L represents the horizontal length of the curb drain inlet and cj represents a dimensionless discharge
coefficient expected in the range of 0.1-0.5 (Gallegos et al., 2009). A calibration process was used to estimate c:
a single, spatially-uniform value was identified such that flood inundation predicted for the 5% annual chance
event is largely (at least 90%) contained within street curbs, a criterion that approximates the design specifications
for urban drainage infrastructure described in the Los Angeles County Hydrology Manual (Conkle et al., 2006).
To measure whether simulations achieve the design criteria, we computed the fraction of the flooded area with a
depth greater than 0.3 m, the approximate height of street curbs, within a calibration subdomain of the entire study
area (Figure S1 in Supporting Information S1). A depth criterion was used because PRIMo pluvial flood sim-
ulations result in relatively deep flooding within the street network and relatively shallow flooding outside the
street network, and it is straightforward to quantify flood depths. The goal to “largely” (>90%) contain deep
flooding (>0.3 m) was achieved by reducing the deep-flooding fraction to 10%. Calibration resulted in ¢, = 0.14,
which achieved a deep-flood fraction of 9.5%. By comparison, PRIMo predicts a deep-flood fraction of 27.7% for
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the 5% annual chance event. The calibration was tested within two validation subdomains where the flood fraction
was found to be 9.8% and 13.1%. Text S1 in Supporting Information S1 provides a more detailed description of
the calibration and validation process, Figure S1 in Supporting Information S1 shows the flooding distribution
with the calibration and validation sub-domains using PRIMo and PRIMo-Drain, and Table S1 in Supporting
Information S1 summarizes all statistics on the fraction of flooded area with depths greater than 0.3 m. The
existing drainage infrastructure data from the County of Los Angeles (Los Angeles County Public Works, n.d.) do
not allow for matching inlets with their corresponding outlets, so inlet flows are not routed into the mainstem
flood channels for consideration as a possible fluvial hazard. Importantly, fluvial flood hazard scenarios along
mainstem flood channels are configured using extremes in streamflow rates estimated from gage records, as
described next, so routed drainage flows are unnecessary.

PRIMo and PRIMo-Drain were applied to simulate the 5%- and 1%-annual-chance flood hazard depths (at the
50th percentile) considering coastal, fluvial, and pluvial hazard drivers using the same methods reported by
Sanders et al. (2023). Briefly, precipitation forcing is based on NOAA Atlas 14 data, fluvial forcing is based on
frequency analysis of 51 different stream gages in the region, and coastal flooding is based on frequency analysis
of annual maximum total water level measurements at the Los Angeles NOAA tide gage (9410660). Both the
PRIMo and PRIMo-Drain models were configured to run using 756 tiles of raster grids of size 1,000 x 1,000,
which corresponds to 756 million points.

2.4. Exposure and Inequality Analysis

Exposed populations and exposed property value are estimated by intersecting flood hazard distributions
(Figure 1a) with population density (Figure 1b) and property value (Figure 1c) at the scale of land parcels, and by
summing results at the scale of the county and municipalities. Flooded land parcels were defined by a depth
threshold of 30 cm, a level that aligns with U.S. standards for flood hazard mapping (FEMA, 2018). Furthermore,
exposed populations for each social group were estimated by summing the product of the parcel-level population
and the corresponding ethnic/racial fractions in areas classified as flooded. For Disadvantaged exposure, the
summation occurred across land parcels classified as flooded and Disadvantaged. Across the study area, there are
85 municipalities as defined by Los Angeles County Assessor tax codes (Figure la). Lorenz curves were
developed at the County scale by sorting the parcel-level data set in accordance with a ethnic/racial fractions (or
NDI for the Disadvantaged social group) and then building cumulative distribution functions (CDFs) for pop-
ulation (for the x-axis) and population-weighted flood hazard (for the y-axis) (Sanders et al., 2024). All CDFs
were normalized by the maximum values so Lorenz curves scale from zero to unity on both axes. Furthermore,
Gini coefficients are computed as indicators of inequality (Sanders et al., 2024).

Municipal scale flood severity is estimated by averaging the flood depth over land parcels with flood depth greater
than 30 cm, and municipal scale Disadvantage is estimated by averaging the neighborhood disadvantage index
(NDI) over land parcels with a flood depth greater than 30 cm.

Differences in exposure, E, between two models, A and B, across N municipalities are computed using the
Geometric Mean Relative Error (GMRE), which is defined as follows,

GRME (A,B) = exp (%ZN: log (%) )
i=1 i

Differences in flood extent predicted by two models, A and B, were estimating using MAI and Bias (Trigg
et al., 2016),

FyNF, F
A "B Bias(A,B) = -2
F, U Fyg

MAI(A,B) = -
B

where F, and Fj represent the flood extent of models A and B, respectively, and flood extent was defined by 3 m
resolution DEM cells with depth greater than 30 cm.
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Figure 3. 1%-annual-chance flood extent estimated by FSF, PRIMo-Drain and both models using a 30 cm depth threshold. Model Agreement Index (MAI) = 20% at the
county scale, with greater flood extent predicted by FSF in Foothill areas and greater flood extent predicted by PRIMo-Drain in the Riverside areas. Table 1 presents
MALI and Bias tabulated for four geographical subdomains (Foothill, Urban, Riverside and Coastal) delineated by rectangles.

3. Results
3.1. Flood Extent MAI and Bias

Figure 3 shows the spatial distribution of the 1%-annual-chance flood extent predicted by the FSF data only,
PRIMo-Drain data only, and both data sets, and Table 1 documents MAI and Bias between FSF, PRIMo and
PRIMo-Drain at the county scale and within Foothill, Urban, Riverside, and Coastal subdomains for both the 1%-
and 5%-annual-chance flood extent (Figure 3, gray rectangles). Focusing first on biases, results show that FSF
data are biased toward greater flood extent in areas of greater topographic relief, as indicated by Bias = 1.91 and
2.57 between PRIMo and PRIMo-Drain, respectively, for the Foothill subdomain. Conversely, PRIMo and
PRIMo-Drain are biased toward greater flood extent, relative to FSF data, along mainstem flood channels as
indicated by Bias = 0.56 and 0.66, respectively, for the Riverside subdomain. With the 5%-annual-chance hazard,
FSF data remain biased toward greater flood extent in areas of greater topographic relief (Table 1, Foothill
subdomain), while PRIMo models remain biased toward greater flood extent along mainstem flood channels
(Table 1, Riverside subdomain).

Secondly, PRIMo-Drain is biased toward less urban pluvial flooding under the 1%-annual-chance event
compared to PRIMo and FSF data—a result of representing more than 100,000 storm drain inlets across Los
Angeles County. Table 1 shows Bias = 3.15 for FSF flood extent compared to PRIMo-Drain flood extent in the
Urban subdomain, while Bias = 1.03 when FSF flood extent is compared to PRIMo flood extent. Hence, FSF and
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Table 1
Model Agreement Index (MAI) and Bias Comparing FSF Flood Extent to PRIMo and PRIMo-Drain Flood Extent for the 1%
and 5% Annual-Chance Scenario

1%-annual-chance 5%-annual-chance

FSF/PRIMo FSF/PRIMo-drain FSF/PRIMo FSF/PRIMo-drain
Spatial domain MAI (%) Bias MAI (%) Bias MAI (%) Bias MAI (%) Bias
Los Angeles County 24 1.91 20 2.57 16 1.55 16 1.90
Foothill 19 3.11 13 4.72 15 2.38 15 2.54
Urban 34 1.03 25 3.15 15 0.20 23 0.59
Riverside 34 0.56 32 0.66 15 0.22 18 0.33
Coastal 47 0.73 30 0.84 38 0.71 16 1.79

Note. Foothill, Urban, Riverside and Coastal geographies are shown in Figure 3.

PRIMo predict a similar amount of pluvial flooding. Conversely, under the 5%-annual-chance event, PRIMo-
Drain predicts greater pluvial flooding than FSF data (Bias = 0.59 for Urban subdomain) and PRIMo also
predicts much greater pluvial flooding than FSF data (Bias = 0.20 for Urban subdomain). The Hydrology Manual
for Los Angeles County calls for urban drainage systems that are designed to contain flooding within street curbs
from events with an annual frequency greater than 4% (Conkle et al., 2006), although that standard is not
necessarily met across the entire region because responsibility for Level 3 infrastructure (curb inlets and small
storm pipes) falls upon municipal governments and because some areas were developed before these standards
were put into place. Nevertheless, large scale flood hazard models may assume that no flooding occurs with
frequent events, while both PRIMo and PRIMo-Drain models route rainfall amounts to reveal a degree of
flooding. As a consequence, urban pluvial flooding biases between PRIMo models and FSF data may reverse with
changes in flood severity based on the representation of urban drainage.

MALI shown in Table 1 serves as a measure of flood extent accuracy at the property scale. For the 1%-annual-
chance event, MAI is only 24% between FSF and PRIMo and 20% between FSF and PRIMo-Drain. An MAI
value of 25% corresponds to a 1 in 4 chance that models agree on which properties are at risk in areas susceptible
to flooding, which points to high model uncertainties relative to which properties are at risk. With the 5%-annual-
chance event, MAI drops to 16% between FSF and PRIMo and between FSF and PRIMo-Drain. The MAI tends to
be lowest in areas with more topographic relief (13%—19% across all models and scenarios in Foothill subdomain)
and highest in coastal areas (16%—47% across all models and scenarios in Coastal subdomain). The MAI between
FSF and PRIMo for the 1%-annual-chance event (24%) closely matches the value reported by Wing et al. (2017)
for urban areas with high intensity development (MAI = 23%), and is slightly lower than global-scale differences
in global flood hazard models (MAI = 30%) reported by Lindersson et al. (2021).

3.2. Exposed Population and Property at County and Municipal Scales

FSF and PRIMo estimates of population and property value exposed to 1%- and 5%-annual-chance hazards
increasingly diverge at smaller scales relevant to governance. At the county scale overall, we find that population
and property value estimated to be at risk of flooding by FSF and PRIMo models generally differ by 50% or less
(Figures 4a and 4b), even though accuracy at property scale is low as shown by MAI values reported in Table 1.
FSF and PRIMo hazard data point to 495 thousand and 425 thousand people, respectively, under a 1%-annual-
chance hazard (Figure 4a), or a relative difference of 14%. Similarly, property value falling within the 1%-annual-
chance flood zone is estimated to be 84.2 billion USD and 55.8 billion USD based on FSF and PRIMo data
(Figure 4b), respectively, which represents a 34% difference. With the more frequent 5%-annual chance event,
FSF and PRIMo data predict exposure of 120 thousand and 170 thousand people (Figure 4e), respectively—a 30%
difference—and property value of 24.7 billion and 31.5 billion USD (Figure 4g), respectively—a 22% difference.
With PRIMo updated to account for street drain inlets in the analysis of pluvial flooding (i.e., PRIMo-Drain),
estimates of exposed populations and property values are reduced by 32% and 37%, respectively, under the 1%-
annual-chance event (Figures 4a and 4b) and 47% and 40%, respectively, under the 5%-annual-chance event
(Figures 4e—4g). Differences in county-scale exposure are generally similar or smaller than differences in
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Figure 4. Estimates of flood exposure at county and municipal scales. 1%-annual-chance county-scale estimates of (a) exposed population and (b) exposed property
value based on FSF, PRIMo, and PRIMo-Drain models. 1%-annual-chance municipal-scale estimates of (c) exposed people and (d) exposed property value based on
FSF, PRIMo and PRIMo-Drain models. Panels (e-h) mirror (a—d), respectively, for the 5% annual-chance hazard. GMRE represents geometric mean relative error, a
measure of relative difference. There are 85 municipalities (by tax code) in the study area.

exposure from uncertainty in the magnitude of the 1%-annual-chance flood peak, which suggest flood exposure
range of —54% to +76% for the 5th and 95th percentile, respectively (Sanders et al., 2023).

Differences in exposure across hazard data sources are much higher at smaller municipal scales. We find four- and
five-fold differences (Figures 4c and 4d) between FSF and PRIMo data based on Geometric Mean Relative Error
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Figure 5. Estimates using FSF, PRIMo and PRIMo-Drain data of (a) exposed population by social groups, (b) Gini index of exposed populations by social groups,
(c) exposed property value by social groups and (d) Gini index of exposed property value by social groups for the 1% annual-chance hazard. Panels (e—h) mirror (a—d),
respectively, for the 5% annual-chance hazard. Gini index magnitude of 0.1 and 0.2 taken as threshold for weak and strong inequalities, respectively.

(GMRE). Differences between FSF and PRIMo-Drain data are even greater with GMRE = 7.2 (Figures 4c) and
9.1 (Figure 4d) for exposed population and property value, respectively. With the more frequent 5%-annual-
chance hazard, municipal scale differences in exposed population are about five-fold (Figure 4f) between FSF and
PRIMo (GMRE = 5.2) and also between FSF and PRIMo-Drain (GMRE = 4.7). Furthermore, differences in
exposed property value are 18-fold (GMRE = 18.1) between FSF and PRIMo and 16-fold (GMRE = 15.7)
between FSF and PRIMo-Drain. Differences between PRIMo and PRIMo-Drain are smaller, about two-fold or
less, with GMRE = 1.9 (Figures 4c) and 2.1 (Figure 4d) under the 1%-annual-chance hazard for exposed pop-
ulation and property value, respectively, and GMRE = 1.5 for both exposed populations (GMRE = 1.5) and
exposed property value at the 5%-annual-chance level.

3.3. Inequalities in Exposure by Social Groups

Differences in the spatial distribution of flood hazard data sets drive differences in estimates of exposure in-
equalities, with implications for environmental justice. We find that modest differences in number of people
within each social group exposed to the 1%-annual-chance hazard point (Figure 5a) drive major differences in
estimated inequalities (Figure 5b). Taking a Gini index magnitude of 0.1 and 0.2 as the threshold for “weak” and
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“strong” inequalities, the PRIMo models point to strong inequality in exposure for Black populations, a strong
level of underexposure for White populations, and a weak inequality for Disadvantaged populations. Conversely,
the FSF data points to weak underexposure of Disadvantaged populations and weak inequality for White pop-
ulations. Figure 5S¢ shows the property value exposed by social groups across the hazard models, and notably the
FSF data predict almost twice as much property value aligned with White populations compared to the PRIMo
models. Indeed, the FSF data point to a strong inequality (Figure 5d) in property value exposure for White
populations and strong underexposure of property value with Disadvantaged, Black, and Hispanic populations.
We note here that residents are often not owners of property, and thus the exposure of property value and in-
equalities should be taken as indicators of community risk and not necessarily of resident risks. Both PRIMo
models predict a weak level of underexposure for Hispanic populations, and the PRIMo model predicts a weak
underexposure for Disadvantaged communities. Hence, there is agreement in the direction of the inequality
between PRIMo and FSF for these social groups. However, for Black populations, the PRIMo models predict an
inequality in the opposite direction compared to the FSF data. Note here that the formulation of the Lorenz curve
for exposed population differs from the formulation for exposed property value, and this can lead to different
patterns of inequalities across social groups (Sanders et al., 2024).

We also evaluated the exposed population (Figure Se) and exposed property (Figure 5g) by social groups for the
5%-annual-chance hazards, and as before, inequalities predicted by the FSF data (Figures 5f and 5h) are sub-
stantially different from inequalities predicted by the PRIMo data. Indeed, the FSF data point to strong in-
equalities in exposure of people for White populations and strong underexposure for Disadvantaged and Hispanic
populations, while the PRIMo models do not predict strong inequalities. Focusing on property value, FSF data
point to very strong (Gini index magnitude greater than 0.5) inequalities for White populations, very strong
underexposure for Disadvantaged and Hispanic populations, and strong underexposure for Black populations.
The direction of the inequalities derived from the PRIMo data is aligned with those from the FSF data for
Disadvantaged, Hispanic, and White populations, while the magnitudes are smaller with PRIMo data and the
directions are opposite for Black populations.

4. Discussion

There are many sources of uncertainty in flood hazard models, and numerous researchers have emphasized that
these uncertainties tend to amplify with increasing resolution (Alipour et al., 2022; Bates, 2023a; Dottori
et al., 2013; Savage et al., 2016; Trigg et al., 2016). Our results show that exposed population and exposed
property value estimated using three different flood hazard data sources for both 1%- and 5%-annual-chance
scenarios differ overall by about a factor of two or less at the county scale, but that four- to seven-fold differences
in exposed population and five- to 18-fold differences in exposed property value are predicted at municipal scales.
Differences of this magnitude could radically reshape assessment of the geographic distribution of risk and
priorities for flood projects and funding. Our results also show that inequalities in exposure estimated using
different data sources result in nearly polar opposite assessments of whether a particular social group is
disproportionately at risk or not, with implications for environmental justice. Finally, our results point to only 24%
agreement in the spatial extent of the 1%-annual-chance flood zone, which suggests a 1 in 4 chance that individual
properties at risk are confidently assessed as such and decisions related to specific properties could easily be
misinformed.

Differences across data sources stem from a combination of different model structures and data sources. For
example, PRIMo simulates fluvial flooding by routing the estimated flood peaks through channels with a fully
two-dimensional solver and accounts for channel overtopping based on estimates of levee heights from lidar data
and other sources. FSF models generally don't have access to local lidar data sets and other data to sharpen the
representation of levees and instead make assumptions about channel capacity based on local flood defense
standards (Sampson et al., 2015). Hence, FSF estimates of fluvial flooding may be strongly biased by uncertain
estimates about flood defense standards (e.g., Smith et al., 2015). High bias in FSF data in the upper watershed
(e.g., Foothill subdomain in Figure 3a), compared to PRIMo data, can be attributed to differences between models
in the hydroconditioning of topographic data along streams (First Street Foundation, 2020) and routing of
overland flow, including differences in topographic data (30 vs. 3 m DEM) and differences in the equations that
are solved (see Methods). Similarly, low flood extent agreement (MAI ~ 0.3) across the Urban subdomain ge-
ographies can be attributed to the effects of different DEMs and routing methodologies including the treatment of
local drainage infrastructure. Whether similar, greater or lower levels of agreement between FSF and PRIMo
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estimates of flood hazards would be measured across different regions and different geographies is difficult to say,
but the aforementioned drivers of model differences offer some clues. For example, high levels of topographic
relief and ground slopes appear to produce high bias, and high levels of dependence on assumed levels of pro-
tection from infrastructure do as well. Smaller differences between FSF and PRIMo predictions might then be
expected in areas with less topographic relief and areas with lower levels of urbanization. Global comparisons of
flood hazard models have pointed to areas of greater topographic relief and greater aridity—like Los Angeles—as
geographies where model disagreement is particularly high (Lindersson et al., 2021).

It's likely that the PRIMo data are more accurate than the FSF data, but we can't say for sure. The PRIMo models
follow methods known to improve the accuracy of urban flood inundation predictions including use of fine-
resolution topographic data, information about levees and channel conditions, and information about storm
water infrastructure such as culverts, subsurface pipes, and street drains (Bates, 2023b). The PRIMo model has
also been qualitatively validated with comparisons to other local models (Sanders et al., 2023) and feedback from
stakeholders (Ulibarri et al., 2023). Furthermore, PRIMo predictions align with past studies documenting the
Black, Hispanic, and disadvantaged communities at risk along main-stem flood channels and in the lower
watershed, especially (Orsi, 2004). Nevertheless, the degree of validation could be improved, and there remains
an urgent need, as well as a challenge, to validate urban flood models nationwide and globally as others have
suggested previously (Bates, 2012, 2023a; De Moel et al., 2015; Jonkman, 2013; Molinari et al., 2019; Trigg
et al., 2016). The urgent need for urban flood validation data highlights the importance of emerging efforts to
systematically monitor urban flooding at hyper-local scales (Gold et al., 2023; Son et al., 2023).

Opposite indications of exposure inequality across social groups, using FSF versus PRIMo hazard data, signal the
need to carefully consider previous work documenting flood risk inequalities across the U.S. Previous work
intersecting FSF data with social data has resulted in findings that hot spots of flood risk are located across rural
areas of the Southeast (Tate et al., 2021), that poorer White populations are disproportionately at risk today (Wing
etal., 2022), and that future flooding will disproportionately impact Black populations along the Gulf and Atlantic
coasts (Wing et al., 2022). However, these assessments of present-day risk do not necessarily align well with the
impacts of extreme flood events over recent decades, which have revealed major impacts to urban areas and
disproportionate exposure and impacts for Black populations (Bullard & Wright, 2012; Chakraborty et al., 2019;
Hornbeck & Naidu, 2014; Nguyen et al., 2023; Smiley, 2020). Across the U.S., historically underserved and
socially vulnerable populations are concentrated within floodplains defended by levees (Vahedifard et al., 2023),
and the actual levels of protection afforded by these levees may be different from the levels assumed to generate
the FSF hazard data. Indeed, earlier work revealed that several main stem flood channels in Los Angeles are
undersized to contain the 1%-annual-chance flood peak, yet this risk is not reflected in the FEMA flood maps for
the region (Sanders et al., 2023).

The need for credible flood risk information is urgent. Effective flood risk management depends on robust,
spatially explicit understanding of flood hazards, across the social scales of flood risk and response (i.e.,
households, neighborhoods, municipalities, regions) and across the full set of flood-risk drivers that are relevant.
For flood-infrastructure investments and flood-risk-reduction measures, sound decision-making also requires
knowledge of the effectiveness of different response options, attentive to changes in flood-risk determinants
through time—for example, including the ways flood hazards shift under development, impaired maintenance of
flood infrastructure, and climate change. To date, however, decision-making across household-to-federal levels
has relied on flood hazard maps that do not adequately reflect all flood hazard drivers, nor the ways in which
development, stormwater management, and climate change shift patterns of risk through time. Poorly mapped
hazards may misinform urban flood risk strategies and lead to maladaptation (Hino & Burke, 2021; Mach
et al., 2022; Magnan et al., 2023). This issue is becoming increasingly pressing as flood risks intensify across the
U.S. and beyond. Flood maps, such as through FSF, have seemed to fill the flood-map gap, yet with insufficient
accuracy in urban areas especially and also with inadequate responsiveness to different scenarios of flood
response and development patterns through time. As flood models proliferate, systematic, repeatable methods for
comparing the accuracy of flood simulations across them are increasingly essential to develop. It has been
suggested that the regional modeling approach used by PRIMo, including the synthesis of local data and the dual-
grid model structure, could be applied across every region of the U.S. to more fully understand and respond to
flood risks (Bates, 2023b). This becomes possible as several types of data are acquired and organized including
accurate, high-resolution topographic data; data describing urban drainage infrastructure such as levees, flood
channels, culverts and storm drains; flood channel geometry data (i.e., bathymetric data) and hydrologic data to
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analyze extreme events and calibrate models. Our research in Los Angeles also reinforces the importance and
potential of collaborative flood modeling to support the build-out, validation and application of these models to
meet needs (Mach et al., 2022; Sanders et al., 2023; Ulibarri et al., 2023). Regional-scale collaborative flood
modeling could be applied in both urban and rural areas, creating an economy of scale that lowers the overhead
necessary for lower-wealth, small communities to have access to fine-resolution flood data for assessing risks and
empowers participation in regional planning and adaptation processes. Public access to accurate fine-resolution
hazard data, combined with greater public trust in its accuracy, could also help to increase participation in the
National Flood Insurance Program, could aid private insurance companies in the identification of insurable
properties, and could help property owners to design vulnerability reduction measures such as flood proofing.

It is now well understood that federally defined regulatory floodplains underestimate flood hazards in floodplain
communities across the nation (Kelly, 2017). This underestimation results from incomplete inclusion of flood
drivers (e.g., precipitation, high tide inundation, climate change) as well as shifts in impervious surface that mean
maps may be out of date and, in some cases, sociopolitical negotiation of the flood maps themselves. FSF flood
hazard data could be interpreted—and in some cases are being interpreted—as a solution to this underestimation:
fine-scale, multi-driver flood hazard data nationwide. However, we demonstrate the risks in adopting FSF hazard
data for land-use planning, flood hazard mitigation, insurance and risk transfer, and other flood policies at present
—the false precision of the data mean that flood hazards, most especially in urban areas, are not well represented
at the scales purported (parcel, block, neighborhood). Practical implementation of our findings takes several
forms. First, prioritization of a national framework for regional collaborative flood modeling—as described above
—is crucial for actionable flood hazard data products nationwide. Government support for such flood mapping
would eliminate problematic issues of limited data access and/or inadequate methodological transparency that
can be inherent to private-sector products. Second, selection processes used in state and federal funding programs
for flood projects should be cautious about over-reliance on metrics based on FSF data, and consider comple-
mentary metrics such as flood losses, physical vulnerabilities in flood infrastructure (e.g., deficient levees), and
disadvantaged populations. Third, flood adaptation must be robust to the deeper uncertainties still inherent to
flood mapping, under continuing patterns of development and climate change. This can be approached in several
ways that don't necessarily require flood maps, such as more stringent rebuild standards after extreme events,
limiting severe repetitive loss properties, and conserving and restoring natural infrastructure that buffers com-
munities against flooding.

Data Availability Statement
Data used for this study is available at the following links and repositories:

o The parcel-scale data set containing social data (e.g., population estimates, population fractions by race and
ethnicity, and Neighborhood Disadvantage Index (NDI) values) and flood hazard data generated by PRIMo
and PRIMo-Drain is accessible at Schubert et al. (2024).

» First Street Foundation flood hazard depth data cannot be made available by the authors based on the terms of
the contract for which data were acquired and used. First Street data is available for purchase at https:/
firststreet.org/data-access.

« Shape files for geolocating the land parcels of Los Angeles County used in this study are available from the
Los Angeles County Open Data Portal at this https://data.lacounty.gov/documents/
4d67b154ae614d219c¢58535659128e71/about.

¢ Census Block Group geometries and select demographic data used to estimate social data by land parcel is
available at the following link: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-data.
html.

e American Community Survey Detailed Table Data used to estimate social data by land parcel is available from
the U.S. Census Bureau at this link: https://www.census.gov/data/developers/data-sets/acs-5year.2021.
html#list-tab-1806015614.

e Locations of storm drains used in PRIMo-Drain is available through the Los Angeles County Storm Drain
System at this link: https://pw.lacounty.gov/fcd/stormdrain/disclaimer.cfm?CFID=16930751&CFTO-
KEN=75ef602ecca4efdd-84A63D53-BAE9-A10E-D4AFC3CC1051325E.

» Matlab scripts for computing exposed populations, exposed property, and Gini indices which quantify social
inequalities are presently accessible at Schubert et al. (2024).
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Erratum

The originally published version of this article contained typographical errors in the Plain Language Summary. In
the third sentence, “comparision” should be changed to “‘comparison.” In the fourth sentence, “overliance” should
be changed to “overreliance.” The errors have been corrected and, this may be considered the authoritative
version of record.
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