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Abstract

Independent component analysis (ICA)-is widely used to
estimate spatial resting-state networks and their time courses in
neuroimaging studies. It is thought that independent
components correspond to sparse patterns of co-activating brain
locations. Previous approaches for introducing sparsity to ICA
replace the non-smooth objective function with smooth
approximations, resulting in components that do not achieve
exact zeros. We proposea novel Sparse ICA method that enables
sparse estimation ofiindependent source components by solving
a non-smooth non-convex optimization problem via the relax-
and-split framework. The proposed Sparse ICA method balances
statistical independence and sparsity simultaneously and is
computationally fast. In simulations, we demonstrate improved
estimation accuracy of both source signals and signal time
courses compared to existing approaches. We apply our Sparse
ICA to cortical surface resting-state fMRI in school-aged autistic
children. Our analysis reveals differences in brain activity
between certain regions in autistic children compared to children
without autism. Sparse ICA selects coactivating locations, which
we argue is more interpretable than dense components from
popular approaches. Sparse ICA is fast and easy to apply to big
data.


http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2024.2370593&domain=pdf

Keywords: ASD, Functional Connectivity, ICA, Neuroimaging, Sparsity

1 Introduction

Autism spectrum disorder (ASD) is a developmental disorder associated with
challenges in social interaction, communication, and repetitive behaviors. ASD is
believed to be associated with altered communication between brain regions (

Di Martino et al., 2013). Functional connectivity characterizes the co-activation'of brain
regions ( Yeo et al., 2011). To identify areas of the brain that tend to co-activate,
independent component analysis (ICA) is commonly applied to resting-state functional
magnetic resonance imaging (fMRI) data ( Damoiseaux et al., 2006). Therindependent
components (ICs) are known as “resting-state networks,” and the.correlations between
the time courses of the components reveal brain communication patterns. It is believed
that the components should be sparse since most areas of,the brain are not part of any
given component ( Daubechies et al., 2009). However, current approaches usually
estimate dense components. The components ‘are typically thresholded in graphical
summaries to eliminate inactive locations, while‘the time courses used in downstream
analyses correspond to the original non-sparse components ( Erhardt et al., 2011). The
thresholded maps are used to aid the interpretation of brain communication patterns,
but directly estimating sparse components and their time courses may better reveal the

underlying patterns of brain activity.

Our motivating datascontain resting-state fMRI measurements from school-age children
in the Autism Brain Imaging Exchange (ABIDE) ( Di Martino et al., 2013, 2017). Our
overall scientific goal is to estimate functional connectivity differences between autistic
children and children without autism in which functional connectivity is defined by
correlations between independent component time courses. The use of ICA to study
functional connectivity in autistic children has gained favor in recent years because the
standard brain atlases based on adults are not ideal for developmental cohorts. The
estimated spatial components play the role of a study-specific brain parcellation (
Lombardo et al., 2019; Lidstone et al., 2021; Nebel et al., 2022). Correlations or partial



correlations between the time courses of components are analyzed in downstream
analyses ( Smith et al., 2015).

Fast ICA and Infomax ICA are two of the most popular ICA algorithms (

Hyvarinen, 1999; Bell and Sejnowski, 1995). These approaches easily scale to large
fMRI datasets and have been popularized in the Group ICA of fMRI Toolbox (c1rT) (
Calhoun et al., 2001) and Me1odic software ( Smith et al., 2004). Although other ICA
algorithms exist, neuroimaging studies commonly use either Infomax ICA via ¢T&r (
Lidstone et al., 2021; Nebel et al., 2022) or Fast ICA in Melodic ( Lombardo

et al., 2019; Smith et al., 2015). However, these popular methods do not produce
sparse components, so post-estimation thresholding is typically used for interpretation.
As an alternative to thresholding, Melodic includes a post-ICA option that fits a bivariate
mixture of Gaussians to Fast ICA components, but the time,courses are unchanged. In
general, bivariate mixture modeling in ICA is challenging, as its complexity grows
exponentially with the number of components.iDirectly estimating sparse components

may improve accuracy and decrease computational costs.

Sparse methods exist in the literature sbut they do not estimate simultaneously sparse
and independent components. We-definesa component as sparse if it has a large
proportion of elements that are‘exactly equal to zero. In compressed sensing, sparse
dictionary learning estimates a sparse or nearly sparse basis that can reduce noise and
achieve data compression (.Lee et al., 2006). However, sparse dictionary learning can
lead to multiple representations of the same signal, which creates interpretation issues
in fMRI. Sparsity has been incorporated into principal component analysis (PCA)
through penalized reconstruction error or singular value decomposition ( Zou

et al., 2006; Shen and Huang, 2008; Erichson et al., 2020). Neither sparse dictionary
learning nor sparse PCA methods enforce independence among components. Early
work on sparse |ICA approximates sparse sources by applying a clustering algorithm to
principal components ( Babaie-Zadeh et al., 2006), but is not scalable to fMRI data.
Sparse Fast ICA ( Ge et al., 2016) adds a second stage to the Fast ICA algorithm to

constrain the source sparsity through a smooth approximation to the 4 norm, and



involves several tuning parameters. Sparse ICA entropy-bound minimization (SICA-
EBM) ( Boukouvalas et al., 2018; Long et al., 2019) strives to combine sparse dictionary
learning with the independence in ICA by incorporating a smooth approximation to A
regularization with two tuning parameters. However, it is unclear how to choose the best
values and the method is computationally costly. Neither Sparse Fast ICA nor SICA-
EBM achieves exact sparsity due to their reliance on smooth approximations. Recently,
Lukemire et al. (2023) developed Sparse Bayes ICA, which uses horseshoe priors to
select sparse covariate effects in ICA, and thus has a different goal than our‘present

work.

In summary, there are three main challenges in estimating sparse independent
components. Firstly, existing ICA methods, including Sparse Fast ICA and SICA-EBM,
are only capable of handling smooth objective functions, which limits their ability to
impose exact sparsity. Secondly, ICA optimization involves an orthogonality constraint
leading to non-convex optimization, which subsequently.necessitates the use of
specialized algorithms and may lead to preblems with local minima. Thirdly, in fMRI
data analysis, the input data is often high-dimensional. An ICA method should be

computationally feasible when applied to millions of data points.

In this paper, we introduce a novel Sparse Independent Component Analysis (Sparse
ICA) method that can be used for both subject and group-level fMRI data analysis. The
method achieves precise sparsity by employing the Laplace density and ensures
computational efficiency through the relax-and-split framework ( Zheng

and Aravkin, 2020).¢A tuning parameter is used to control sparsity, which is selected
using a BIC-like.criterion. In numerical experiments, our proposed Sparse ICA
outperforms existing methods in terms of the accuracy of estimating source signals and
time courses, and is computationally efficient. When applied to fMRI data from autistic
children, Sparse ICA extracts sparse components that correspond to resting-state
networks, and we discover functional connectivity differences between autistic and

typically developing children.



The rest of this paper is structured as follows. In Section 2, we present the Sparse ICA
model from an optimization perspective and introduce the relax-and-split framework for
model estimation. We extend Sparse ICA to perform group-level analysis and introduce
the BIC criterion for selecting the tuning parameter. In Section 3, we conduct simulation
studies to compare the performance of the proposed Sparse ICA with existing ICA
approaches. In Section 4, we apply our Sparse ICA method to cortical surface fMRI
data from ABIDE ( Di Martino et al., 2013, 2017). In Section 5, we conclude with a

discussion.
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we let =1 =l be the number of itssnon-zero elements, and A~ be its

Moore-Penrose inverse. We let 1» be the p x pidentity matrix, and ©” denotes the
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class of orthogonal matrices such that if A €O"%, then AA=AA =T,

2 Methods
2.1 Sparse ICA Model

Let X eR™ representthe fMRI time series for a single subject (pre-processed as in
Section 4), where each column is a vectorized image of dimension P (the number of
voxels for volume data’or vertices for cortical surface data) and 7is the number of time

points. The noisy ICA model is defined as
X=SM+N. (1)

PxQ . . .
Here S €R™™ s the matrix of non-Gaussian components, also called sources, with @ <
7, where each row of S is a realization from a random vector of mutually independent
non-Gaussian random variables. Each column in S represents a vectorized spatial map

of brain regions that exhibit a tendency to co-activate. Components that are common



across different rs-fMRI studies are referred to as resting-state networks ( Damoiseaux
etal., 2006). M eR? is the mixing matrix, where each row corresponds to the resting-
state network’s time course. N €R”" is a matrix of isotropic normal random variables.
This model is equivalent to the classic noise-free ICA model if @= 7and N equals zero.
Given X, we aim to estimate S and the corresponding mixing matrix M. The sign and
order of the components in S are not identifiable. For sign identifiability, we assume the
components have positive skewness ( Eloyan and Ghosh, 2013). In this paper,,we treat
the number of components @ as known, which is common in the statistical and, scientific
literature, as discussed in Section 5. In our data application, we select @based on
similar previous studies. In the Web Supplement Section 6.2, we discuss,the choice of

@ and conduct a simulation study examining robustness.

To estimate S and M in (1), we adopt a two-stage PCA+ICA procedure: PCA is applied
prior to ICA and then the ICs are estimated from the (-dimensional principal subspace (
Beckmann and Smith, 2004; Mejia et al., 2020)., This preprocessing step is effective if
the noise N is isotropic. When performing PCA, we\first center (and optionally

normalize, see Section 4.1 for details)eX. Then,we apply the singular value

decomposition (SVD) X=LZR'  whére Lio denotes the first Qleft singular vectors.

X=P-1L

We define the whitened data matrix 0 “and subsequently use X to estimate

ICs.

We approach the ICs.estimation problem from an optimization perspective. Given the
whitened X eR"”€ ‘the goal is to find an unmixing matrix U such that the independence
of the components.in the source signal matrix S = XU is maximized. A widely used
metric in thediterature for quantifying the degree of dependence among the components
is Mutual information (Ml), which is minimized to achieve independence (

Hyvarinen, 1999). Mathematically, this is equivalent to maximizing the likelihood of the
components under the assumption of an orthogonal transformation. Let U be a @ x @
matrix such that U U=T and let p;be a density function corresponding to the jth source

signal. The negative log-likelihood is



. P 0 . P 0
J(XU)=-3" > logp, {(XU),} =2 > logp,(Fu).  (2)

i=l j=I1 i=l j=I

~T

where % is the th row of 5(, ujis the th column of U. Thus, we aim to solve

minimize J(XU) st. U'U=I,.(3)

Remark. Our use of the square unmixing matrix U aligns with the common pragetice in
ICA fMRI literature. Specifically, in most fMRI studies, PCA is applied first, withithe
subsequent ICA step used to estimate the square unmixing matrix. Retaininga smaller
number of principal components results in large-scale networks while retaining a larger
number of principal components results in smaller-scale networks (. Smith et al., 2013).
In contrast, in the linear non-Gaussian component analysis (LNGCA) model ( Risk

et al., 2019), the PCA step is omitted altogether and the unmixing matrix U belongs to
the class of 7x Q semi-orthogonal matrices o™ <Whichiis the Stiefel Manifold. LNGCA
and group LNGCA can better recover non-Gaussian.components under certain noise
regimes, but have additional challenges with,Ioeal optima that make them less
computationally competitive with ICA (.Zhao et al., 2022). We conjecture that LNGCA
would result in smaller features that.may split the “classic” resting-state networks (i.e.,
those resulting from a PCA step retaining twenty to thirty components) into multiple,
sparser components. The suppoerting R package also includes the implementation of a
sparse LNGCA (without'the PCA step), but further investigation is beyond the scope of
this paper.

The choice«of source density p;in (2) determines how the non-Gaussianity of
components‘s measured, with common choices including the logistic density, Jarque-
Bera (JB) test statistic, and log hyperbolic cosine ( Bell

and Sejnowski, 1995; Hyvarinen, 1999). Unlike these existing approaches, we use the

_ls—4]

p(s)=fi(s)=e * /22

Laplace distribution, . Unlike the commonly used measures of
non-Gaussianity mentioned above, the Laplace density extracts sparse independent

source components in XU in which the sparsity is promoted by the absolute operator.



We refer to the optimization problem (3) with the proposed choice of p;as the Sparse
ICA model.

Even though we assume the Laplace density in the objective function, Sparse ICA can
accurately estimate the mixing matrix for other heavy-tailed and skewed source
distributions, which are common in ICA of fMRI. However, it is inaccurate for sub-
Gaussian distributions. This is examined in the Web Supplement Section 3. For a
broader discussion of how the proposed densities can mismatch the true source
densities but still result in consistent source estimation, see Risk et al. (2019) and

Wei (2015).

2.2 Model Estimation

2.2.1 Relax-and-Split Framework

Solving (3) is challenging due to the orthogonality gonstraint on U, which is nonconvex,
and the non-smoothness of the objective function, which creates issues with gradient
descent and Newton-type algorithms. To overcome both of these challenges, we utilize
the Relax-and-Split framework ( Zheng-and Aravkin, 2020). The latter separates the
non-smooth objective function from-the.constraint via the introduction of an auxiliary
variable V, and substitutes the equality constraint on the auxiliary variable with a convex
smooth penalty term in the.objective function. The relaxed problem corresponding to (3)

is
minimize J(V)+iHV—XU i ost. U'U=L, (4)
u.v 2v

(4)

where the auxiliary V explicitly models the independent components S, and parameter v
controls the level of relaxation. On the one hand, as vapproaches zero, problems (3)
and (4) coincide. On the other hand, a value of vthat is too large negatively impacts the
accuracy as the objective term involving the data X is effectively ignored. In practice,

the value of v controls the sparsity of resulting estimated components. In Section 2.4,



we propose a BIC-like criterion for selecting the value of tuning parameter v. To
solve (4) for a given v, we alternate updates of U and V. Each update is described

below.
We first consider the update of V for any density [°8/s . Given U, we aim to find

. 1 <
V' =argmin J(V)+—||V-XU|}.
v 2v

= argmin

min 33 {ton (V) 551V, -0, |

Jj=1

Thus, the update can be performed element-wise with

. . 1 S : .
V= arggun{—logfs(\{j)+;(\7lj —(XU)[j)z},ISlSP,IS] <0.

Vi

Specifically, for the proposed Laplace density, the(solution has a closed form:
v =1y, |2y sien(Ruy, ). 9)

where we define *+ = M3X(0:%) petailg of derivations are in the Web Supplement

Section 1.1.
Now consider the update.of U. For a fixed V, we aim to find

U' =argmin || V-XU|{ st. U'U=L,. (6)
U

This is the ‘orthogonal Procrustes problem with closed-form solution U =0V’ , Where
U and V are obtained from the SVD decomposition X'V=UZV" Details regarding

the derivations can be found in the Web Supplement Section 1.2.

As both updates are closed-form, the sequence of objective function values across

iterations is non-increasing, guaranteeing convergence in objective function values (



Erichson et al., 2020). We further prove the sublinear convergence of Algorithm 1 to a

stationary point. See Web Supplement Section 1.3 for details.

2.2.2 Mixing Matrix Estimation and Full Algorithm

We define the estimated sparse components S as the value of V at convergence. Given

A A ~\—1 A
: . M=(S'S] S'X
S | the mixing matrix M consisting of time courses can be estimated‘as ( )

. Note that S'S is approximately equal to the identity matrix, but not exactly, which
contrasts with classic ICA. In fMRI, the th row of the mixing matrix'M is a time series

with length 7 of the independent source brain map containedin the th column of S.

Algorithm 1 summarizes the full estimation procedure from data normalization and PCA
step to the estimation of S and M. We callit:Single-subject Sparse ICA Algorithm. Since
problem (4) is nonconvex, we considermultiple initializations U’ and use the estimate
corresponding to the smallest value of the ebjective function in (4) as the final estimate.
In our data application in Section 4,we use 40 initial values. The number of required
initial values was examined in.Fan (2020). We implement Sparse ICA using Rcpp for
fast estimation. Notably,.the Sparse ICA algorithm demonstrates fast convergence and

the comparisons with.existing ICA methods are discussed in Section 3.

Algorithm 1 Pseudo Code for Single-subject Sparse ICA

XeR" QeZ',veR" max, eZ ,eecR"

iter

1: Inputs:
2: Preprocess:

3: Center X such that 17 X=0;_

4: Optional (recommended for fMRI): Iteratively center and scale X such that row means
equal 0, row variances equal 1, column means equal 0, and column variances equal 1.

Five iterations are recommended in practice.



5: Apply PCA on X and obtain the whitened matrix X eR™C
6: Initialize:

7. U’ e0%? _ A random orthogonal matrix;

g: V' cR™ _ XU

. . iter+1 iter \r
o while e <max max(| (| diag(U™" (U™ Y ) D=1])> €

itr gnd
10: Update V: For ISiSP’ISjSQ,

” \]l;terH _ (‘(X iter)i].‘—\/zV)Jr'Sign((X iter)ij)

12: Update U:

13:  Apply SVD decomposition X' V"' = ULV’
14 Uiter+1 - ﬁ{]T
15: jter < iter+ 1

16: end while

17: Outputs:

2.3 Group Sparse ICA

In this section, we extend the proposed Single-subject Sparse ICA framework to the
analysis of fMRI data collectedfrom multiple subjects. We follow the temporal
concatenation-based group ICA approach which is widely adopted in the literature, and
is implemented in the software crrT ( Calhoun et al., 2001). This approach is based on
the assumption/that.the spatial brain maps (ICs) are common across subjects, while the
time coursestof these independent source signals are subject-specific. This assumption
leads to a scalable, easy-to-implement algorithm as we describe below, but has some

limitations which will be discussed in the Section 5.

PxT; .
X, R, i1=12,..1 \ye assume that each i

For a group of nsubjects with fMRI data
is centered or iteratively normalized by centering and scaling both spatially and

temporally as described in Section 4.1. The temporal concatenation-based group ICA



approach performs separate SVD on the normalized data from each subject /, extracts
the top @ left singular vectors, concatenates these singular vectors across subjects,

and then applies the Single-subject PCA+ICA Algorithm 1 to obtain the group-level

sparse independent components S . The subject-specific time courses (mixing
matrices) are then back-constructed. Algorithm 1 in the Web Supplement details the
proposed Group Sparse ICA algorithm. The number Q; of retained singular vectors for
subject /can be fixed in advance, or chosen using an information criterion ( Calhoun
et al., 2001; Beckmann and Smith, 2004). The proposed framework is computationally

efficient as it only requires one ICA step across all subjects.
2.4 Tuning Parameter Selection

Both the proposed Single-subject and Group Sparse ICA algorithms have the tuning
parameter v, which controls the sparsity level of estimated independent components.

We propose a BIC-like criterion to select vin the Single-subject Sparse ICA:

(11X —§ Q1) S T & aT SN
| X" =S(MIS(v)' S(v)) S(v)' XTI X ) y
BIC(v)=1ogL | — ) J+||S(v)||o—°§§i <D

: (7)

where X is the centered data matrix; S(V) is the estimated source signals (ICs) when

the tuning parameter is.set.asv, ( ) (V)) is the Moore - Penrose inverse of

S(V)TS(V), and | SQotl, is'the number of non-zero elements in S(V). Similar criteria are
widely adopted/in the sparse methods literature ( Allen and Maleti¢-Savati¢, 2011). We
adopt warm start initializations to speed up computations when comparing multiple
values of v. For Group Sparse ICA, we use the same criteria but with the whitened

group PC matrix in place of the centered data matrix, see Web Supplement Section 2.
2.5 Choosing the number of components

There is no consensus in the literature regarding how to select the number of

components in the PCA step. There are several existing order selection methods, but



they have limitations. Minka’s method ( Minka, 2000) and PESEL ( Sobczyk et al., 2017)
have been used to select the number of independent components in the fMRI literature (
Beckmann and Smith, 2004; Mejia et al., 2020; Lukemire et al., 2023). Minimum
description length (MDL) has been implemented in the popular c1rT software ( Calhoun
et al., 2001; Li et al., 2007). In Web Supplement Section 6.1, we investigated Minka’s
method, PESEL, and MDL in simulations, but the results were unsatisfactory. However,
in Web Supplement Section 6.2, we conduct simulations indicating Sparse ICA.is robust
across moderately mis-specified Q, where a subset of components are accurately
estimated for under-specified Q and all components are accurately estimated.for over-

specified Q along with some noise components.

In previous studies, the choice of the number of components,has been informed by the
desired scale of brain networks that researchers aim to delineate ( Sadaghiani

et al., 2010). A larger number of components can result.in a:finer parcellation, for
example, splitting the default mode network inte. more components ( Smith et al., 2013).
The Human Connectome Project (HCP) provides multiple resolutions of ICA (15, 25, 50,
100, 200, 300) to allow the user to choose a resolution appropriate to the scientific
question. In the Web Supplement Section 7.7, we demonstrate that an advantage of
Sparse ICA over existing methods is'that it is more robust to the choice of the number of
components, in the sense that key resting state networks are similar across a range of
Q. In our data application, we choose the number of components based on similar

previous studies (see Section 4:1).

3 Simulations

We evaluate the performance of our proposed Sparse ICA method with selected von
synthetic single-subject and group-level data, and compare it with four existing
methods: Fast ICA with tanh non-linearity ( Hyvarinen, 1999), Infomax ICA ( Bell

and Sejnowski, 1995), SICA-EBM ( Boukouvalas et al., 2018), and Sparse Fast ICA

with tanh non-linearity ( Ge et al., 2016). For all simulations, we use 100 replications.

3.1 Single-subject Simulations



3.1.1 Spatio-temporal Simulation Design

We simulate three true source signals (Q = 3) mixed over 50 time points (7= 50). Each
IC is a 33 x 33 image, which can be represented as a vector of length = 1089. The
active pixels are in the shape of “1”, “2 2, or “3 3 3” with values varying from 0.5 to 1
and inactive pixels set to 0 (Figure 1 A). The time series in the mixing matrix are
simulated to mimic fMRI patterns using neurosim ( Welvaert et al., 2011) by convolving
the gamma function with onsets at {1, 20.6}, {10.8, 40.2}, and {10.8, 30.4} for each IC,

respectively, with a duration of 5 time points.

When generating noise, we consider three settings: low, medium, and high signal-to-
noise ratio (SNR). First, the noise components are generated from Gaussian random
fields using neurosim and a first-order autoregressive process: Atthe first time point, we
use a 33 x 33 Gaussian random field. The standard deviation.is set to 1, and the full-
width at half maximum of the Gaussian kernel (FWHM), which controls spatial

r=23,...50 thendise components are generated

correlation, is set to 6. At times
recursively by multiplying the 7— 1 componentby 0.47, and adding an independent

Gaussian random field with FWHM=6. Second, to achieve the desired SNR ratio, we

A Agsonns A

adjust the variance o of the Gaussiansrandom noise N as follows. Let 70 be

the nonzero eigenvalues of thecovariance matrix of SM . Then we define

0
SNR =>4, /Tc’

= , and consider SNR =0.4 (jow SNR), SNR =15 (medium SNR), and
SNR =3 (high SNRY). To evaluate the performance of each method, we use the scale

and permutation invariant root mean squared error (PRMSE) ( Risk et al., 2019).

Since the ICA problem is nonconvex, convergence to a local rather than a global
optimum is a well-known issue that can affect estimation accuracy ( Risk et al., 2014).
We implement both single and 40 random initializations for Sparse ICA, Fast ICA, and
Infomax ICA, to examine possible issues with local optima. The results are highly similar
in single-subject simulations (See the Web Supplement Section 4.1.1). Moreover, the
available implementations of Sparse ICA-EBM and Sparse Fast ICA methods do not

allow for multiple random initializations, and modifying these procedures accordingly is



not straightforward as they lack an explicit objective function. For fair cross-comparison,

we only consider a single initialization for all ICA methods in single-subject simulations.

3.1.2 Results

Figure 1 shows the true source signal matrix S and estimates S from one replication in
the low SNR regime. Sparse ICA recovers the true components (Panel B), while
component 2 and component 3 in Infomax ICA (Panel C), Fast ICA-tanh (Panel D),
SICA-EBM (Panel E), and Sparse Fast ICA (Panel F) are contaminated by the other
components. The remaining inactive pixels for all components using allFICA methods
except Sparse ICA are nonzero with contamination from the Gaussian random field
noise. We highlight that our Sparse ICA with BIC-selected v not only selects the true
active pixels in estimated ICs but also achieves exact zeros iniinactive pixels. Our
Sparse ICA achieves high detection performance at the’BIC-selected v, which is
measured by Matthew’s correlation coefficient and F1.scere (See Web Supplement
Section 4.1.2). These measurements for the other methods are all 0 because they do

not select for sparsity.

Our Sparse ICA method outperforms the other methods across all SNR settings in both
the source signal and mixing matricessestimations (Figure 2 A and B, respectively).
According to Figure 2 A, the.estimation of source signal matrices using all five ICA
methods becomes more.accurate as the SNR level increases. At each SNR level, Fast
ICA and Infomax ICA.behave similarly, while SICA-EBM shows a slight improvement
Sparse Fast ICA-exhibits similar behavior under the low SNR level but becomes
unstable innmedium’and high SNR settings. Sparse Fast ICA involves multiple tuning
parameters and stop criteria options. There is no clear way to optimize these
arguments, and thus we used the value from the authors’ original paper. Our Sparse
ICA demonstrates the largest improvements at the low SNR setting. These substantial
improvements imply that when the underlying true source signals are sparse, imposing
sparsity constraints leads to better decomposition of source signals. Moreover, accurate
estimates of time courses in the mixing matrix will benefit downstream analyses such as

brain functional connectivity analysis.



Table 1 shows the computation time of all five ICA algorithms. Note Sparse ICA is
implemented in Rcpp, Fast ICA is implemented in R package fastICA with method="“C”,
Infomax ICA is a pure R implementation, while SICA-EBM and Sparse Fast ICA are
implemented in MATLAB using their authors’ codes. Sparse ICA is faster than Infomax
ICA but is slower than Fast ICA. Sparse Fast ICA is comparable and even faster than
Fast ICA, which is probably due to the fact that it’s implemented in MATLAB. However,
SICA-EBM is considerably slower than other methods even though it is implemented in
MATLAB.

In the Web Supplement Section 4.1.3, we examine the setting where the true source
signals are non-sparse. Our estimates of source signals using Sparse ICA are less
accurate than Fast ICA and Infomax ICA, though more accurate'than SICA-EBM and
comparable to Sparse Fast ICA (Web Supplement Figure 3,A). Estimation of the mixing
matrix is more robust, as the accuracy of Sparse ICA is . similar to Fast ICA and Infomax
ICA, and even outperforms Fast ICA in the low.SNRssetting, while outperforming SICA-
EBA and Sparse Fast ICA (Web Supplement Figure 3 B).

3.1.3 High-dimensional Simulation Design

We simulate high-dimensional data that mimics the real fMRI data. We specify three
independent components selected from 30 sparse group components in a preliminary
analysis of group Sparse ICA on the school-age ABIDE cortical surface fMRI data used
in Section 4 with v=_1,"The values of active vertices vary from -1.74 to 5.59, while the
values of inactive.vertices are set to exact zeros. These three components were used to
back-construct the ICA time series of a randomly chosen subject (sub-29286) in the
ABIDE data,which were then used as the true time courses. The noise components are
generated from the standard normal distribution and then spatially smoothed using the
ciftiTools package ( Pham et al., 2022). We simulate 120 time points with SNR=0.4.
The correlations between the true and estimated source signals or rows of the mixing

matrices are calculated for each IC as a measure of estimation accuracy.



We implement both single and 40 random initializations for Sparse ICA, Fast ICA, and
Infomax ICA. The results are highly similar in single-subject simulations (See the Web
Supplement Section 4.2.2). Moreover, due to the difficulties of implementing Sparse

ICA-EBM and Sparse Fast ICA methods using multiple random initializations, we only
consider the single random initialization versions of all five ICA methods for fair cross-

comparison.
3.1.4 Results

Figure 3 shows the second true independent component (IC-2), which is partiof the
default mode network (DMN) estimated from ABIDE data, as well as corresponding
estimates using five ICA methods. Other components are depicted insthe Web
Supplement Section 4.2.1. Similar to other simulations, all other ICA methods capture
the true source signals with noise components in the background, having similar
performance. In contrast, the proposed Sparse |ICAvis superior by estimating zeros at
most of the locations that are truly zero, thus boosting.the accuracy and interpretability
of both estimated independent components.and the mixing matrix. The median Matthew
’s correlation at the selected vis 0.730,:and the median F1 score is 0.983 (Web
Supplement Table 1). Additionally, most true non-zeros are non-zero in the Sparse ICA
estimates, although a few areas with true non-zeros that are close to zero are shrunk to

zero in our Sparse ICA (examplestare in the frontal lobe).

As shown in Table 2, our Sparse ICA method outperforms other ICA algorithms in
recovering the sourge signals across all independent components in high-dimensional
simulations. The,behaviors of Fast ICA, Infomax ICA, and Sparse Fast ICA are similar,
while Sparse’ICA achieves improved estimation for both source signals and mixing
matrices. SICA-EBM also shows slight improvements for IC 2 and 3 relative to Fast ICA
and Infomax ICA. As shown in the last row in Table 1, our Sparse ICA method takes
about 2 seconds to recover ICs, which is faster than Infomax ICA and SICA-EBM but

slower than Fast ICA and Sparse Fast ICA.



In the Web Supplement Section 4.2.3, we examine the non-sparse case by setting the
true components to be the non-sparse Fast ICA solution on ABIDE data. Unsurprisingly,
Sparse ICA does worse than other methods on the source signals when the truth is
non-sparse. However, on mixing matrices, Sparse ICA is highly accurate and performs

similarly to Fast ICA and Infomax ICA.



3.2 Group Level Simulations

3.2.1 Simulation Design

We use 20 subjects, and simulate 3 group components, 22 individual components, and
25 Gaussian noise components for each subject. Web Supplement Section 5.2 contains
example components. The group components have active pixels in the shape of “17, “2
2” and “3 3 3” with values varying from 0.5 to 1. The inactive pixels are exact zeros.
Individual components were simulated from Gamma random fields with shape
parameter 0.02 and rate parameter 10™ The noise components were simulated from
standard Gaussian random fields. All the random fields were generated using the R
package neurosim ( Welvaert et al., 2011). While we do not enforce the orthogonality of
components, the model assumptions are approximately met since.the active areas of
group components are disjoint and the individual components are independent. The
time courses with 50 time units in the mixing matrices were simulated using AR(1)
processes with ¢=047 Thus, subjects in the 'group have different randomly generated

individual components and corresponding time series.

To control the strength levels of signals and noises, we controlled the proportion of
variance from the group components, individual components, and the Gaussian noise
components. In this group-level'simulation, we focused on the signal-to-noise ratio
(SNR) between group components and noise components. The definition of SNR is
described in Section 3.1+/We defined three SNR settings, low SNR (proportion of
variance in group, individual, and noise components = 35%, 15%, 50%), medium SNR
(variance proportion = 40%, 20%, 40%), and high SNR (variance proportion = 50%,
20%, 30%). We use PRMSE, which is also defined in Section 3.1, to evaluate the
performance of each group method. Since each subject has its own estimated mixing
matrix, we use the average PRMSE of mixing matrices in the group as the

measurement of mixing matrix estimation.

Subject-level PCA in which the number of PCs selected to retain at least 80% of the

total variance was conducted for each subject, and the subject PCs were then



concatenated together for input to Sparse ICA. The group Fast ICA and group Infomax
ICA were implemented based on the same procedure to ensure fair comparisons. After
extracting group components, the corresponding subject-specific time courses were
back-constructed. We then calculated the PRMSE between estimated group
components and true group components, and the group average PRMSE between

estimated subject-specific mixing matrices and true mixing matrices.

Unlike the single-subject simulations, we found that employing multiple random
initializations improved accuracy. Since the available implementations of. SICA-EBM
and Sparse Fast ICA do not allow for multiple random initializations, we did not'estimate
group ICs for SICA-EBM or Sparse Fast ICA. Sparse ICA, Fast ICA, and Infomax ICA

were repeated under 50 replications for each SNR setting with'40 random initializations.

We also record computation times for all group ICA methods. Since there is not a
multiple initialization option in the R package fastzca,we'wrote a for-loop in R to select
the estimate with the highest objective functionvalue«In contrast, the implementation of
our Sparse ICA method implements a for-loop in'Rcpp, and is thus much faster than
Fast ICA with the for-loop in R. For a faircomparison, we report the computation time of

ICA methods with a single initialization.
3.2.2 Results

The accuracy of the estimated.components in group Fast ICA and group Infomax ICA is
similar, while our group«Sparse ICA demonstrates substantial improvements across all
SNR settings (Panel A in Figure 4). As for the estimation of the mixing matrix in Panel
B, our group Sparse ICA shows improvements over group Fast ICA and group Infomax
ICA in the low and medium SNR settings, while the mixing matrix accuracy is similar in
the high SNR setting. In Panel C, our group Sparse ICA is computationally faster and

more stable than group Infomax ICA, but is slower than group Fast ICA.



4 Application to Cortical Surface fMRI Data
4.1 Data and Methods

We processed resting-state fMRI data from school-age children selected from the
Autism Brain Imaging Data Exchange (ABIDE) using a cortical surface fMRI pipeline.
We used both the ABIDE-I ( Di Martino et al., 2013) and ABIDE-II datasets ( Di Martino
et al., 2017), and selected 396 children (103 females) aged 8-13 (mean=10.4,.sd=1.4)
from two sites: the Kennedy Krieger Institute (KKI) and NYU Langone Medical'Center
(NYU). The sample included 252 typically developing (TD) (78 females)and 144 ASD
children (25 females). Details on the preprocessing are in Web Supplement Section 7.1.
Nineteen participants were excluded due to poor T1 images or cortical'registration
failure. We then adopted a motion quality control criterion based on Power et al. (2014)
in which participants were excluded if they had less than 5 minutes of data with
framewise displacement less than 0.2 mm. Consequently, 65 participants were marked
as having excessive motion. In total, 84 participants were removed in the quality control

procedure.

We applied group Sparse ICA using Web Supplement Algorithm 1 to our pre-processed
cortical surface fMRI data that passedimanual inspection and motion quality control
criteria (n=312). In ICA, it isstypical to normalize the time course for each voxel to have
zero mean and unit variance,(normalize each row) before centering and scaling each
image (normalize each'column). We use an iterative approach with five iterations to
achieve standardization across both rows and columns ( Risk and Gaynanova, 2021).
The subject-level dimension reduction step was performed by PCA with 85 principle
components retained for each participant ( Nebel et al., 2022), see Web Supplement
Section 7.3. Thirty group components as in ( Lombardo et al., 2019; Nebel et al., 2022)
were extracted in the final Sparse ICA step with the tuning parameter v = 2 selected by
our proposed BIC-like criterion (Web Supplement Figure 18). We found that results
were sensitive to initialization (see Web Supplement Section 7.4). We ran the
algorithms for two independent runs with 40 random initializations each. The argmax

from these two runs were equivalent, indicating a sufficient number of restarts. Since



the sign of the components is not identifiable, we choose the sign to result in positive
skewness ( Eloyan and Ghosh, 2013). We also examined the sensitivity to the specified
number of components and found that Sparse ICA estimates on ABIDE data are similar
across a range of specifications, in agreement with what we also observed in

simulations (Web Supplement Section 6.2).

We used the subject-specific time courses to construct the subject-specific Pearson
correlation matrices. We Fisher z-transformed the correlation matrices and extracted the
lower triangle resulting in 435 edges. We applied comBat for site harmonization ( Yu

et al., 2018) in which “site” was a factor with three levels (NYU, KKI-8 channel, KKI-32
channel) with the following covariates: diagnosis, mean framewise 'displacement, full-
scale intelligence quotient, autism diagnostic observation schedule (a measure of
autism severity), stimulant medication status, non-stimulantmedication status,
proportion of framewise displacement greater than 0.2'mm, proportion of root mean
square displacement greater than 0.25 mm, handedness (right or left handed), age at
scan, and sex. We included all variables used in downstream analyses in the comBat

step in order to avoid over-correction of site effects.

Although the exclusion of participants with excessive motion can improve the quality of
resting-state fMRI data, it may.alter.the distribution of clinically relevant covariates. We
follow Nebel et al. (2022) te account for possible demographic confounders and
selection biases due to'motion.exclusion criteria. Details are in Web Supplement
Section 7.9 and summarized here. We use the augmented inverse probability of
inclusion weighted estimator (AIPWE) ( Robins et al., 1994) to estimate the debiased
group difference.in functional connectivity between ASD and TD children. The
propensity model and the outcome model were fitted using the super learner algorithm (
Van der Laan et al., 2007). The learners for the propensity model included multivariate
adaptive regressions splines, lasso, generalized additive models, generalized linear
models, random forests, step-wise regression, xgboost, and mean. In the outcome
model, we added ridge regression and support vector machines. The same set of

predictors was used in both the propensity and outcome models, including sex, age at



scan, FIQ, handedness, diagnosis, stimulant medication status, non-stimulant
medication status, and ADOS. P-values were corrected for multiple comparisons using

the false discovery rate.
4.2 Results

The functional connectivity between IC-18 and 1C-20 and the functional connectivity
between IC-5 and 1C-13 were significantly lower in ASD than TD at FDR=0.05:(adjusted
p-value=0.011). We depict these components in the top two rows of Figure/s as
estimated using Sparse ICA (A and B) and the corresponding matchedscomponents
from Fast ICA (C and D), with Infomax components in the Web Supplement Section 7.8.
The z-scores for all AIPWE-adjusted group differences are depicted in"the Web
Supplement Section 7.9. Sparse ICA identifies activated vertices‘as non-zero values
with inactive vertices being exact zeros. Interestingly, all'of the'non-zero values are
positive. In contrast, the matched components from"FastiCA are dense with both
positive and negative values. The Sparse ICA components represent vertices that co-
activate, whereas the Fast ICA components.inelude dense locations with opposing

directions of “activation.”

By examining the overlap between the:non-zero ICs and the resting-state networks from
Yeo et al. (2011), IC-18 corresponds to the medial posterior default node network,
highlighting regions in the posterior cingulate cortex and precuneus, and IC-20
corresponds to the medial prefrontal cortex region of the default mode network.
Alterations in the-default mode network were also found in an analysis of all ages in the
ABIDE-I datasetwsing a seed-based correlation analysis ( Di Martino et al., 2013). Our
sparse components depicted in A and B are more easily related to the seed-based
correlation analyses in Di Martino et al. (2013), since a positive correlation between IC-
18 and IC-20 is interpreted as increased brain connectivity in the same way as a
positive correlation in a seed-based analysis is interpreted as increased brain
connectivity. In contrast, the matched components in Fast ICA in Panel C contain
negative values in the components as well, such that an increased correlation between

time courses means opposite things for the locations with positive versus negative



values, which is scientifically harder to understand. IC-13 (top row, column B)
corresponds to portions of the temporal parietal junction, which is associated with
salience, control, auditory, and default mode networks, and IC-5 corresponds to the
frontoparietal network (middle row, column B), which is associated with executive

function.

5 Discussion

In this work, we propose a new ICA method that estimates sparse independent
components leveraging a relax-and-split algorithm. Our method is very/fast.and can be
easily applied to big data. In contrast to the common practice of post-hac thresholding
the components, our method estimates sparse components and corresponding time
courses directly via the Laplace density. Through simulation studies, we show that the
proposed method can accurately select non-zero spatial locations and improve
accuracy. In addition, our analysis of the resting state fMRI data from the school-age
children demonstrates the ability of our Sparse ICA method to handle high-dimensional

fMRI data and produce sparse spatial maps‘thatare easy to interpret.

Some studies suggest that ASD is characterized by overall hypoconnectivity alongside
specific local hyperconnectivity ( Lord et al., 2018; Di Martino et al., 2013). Other
authors emphasize that no clear picture has emerged from neuroimaging ( Muller

and Fishman, 2018). Using Sparse ICA, we find that anterior-to-posterior functional
connectivity in the default. mode network is lower in autistic children. This altered
connectivity may‘relateto atypical integration of information pertaining to self-referential
thought ( Padmanabhan et al., 2017). In an analysis of the first ABIDE data release
including adults and children (ages 7-64), Di Martino et al. (2013) also found posterior to
anterior hypoconnectivity in the default mode network. Secondly, we found reduced
functional connectivity between the temporal parietal junction and frontal areas of
executive function, which may also be related to impairment in information integration (
Lord et al., 2020). One strength of our analysis is that we focus on school-age children,

which is an important age for behavioral interventions. Another strength is that we



excluded high motion participants and used the debiased group difference to account
for possible selection bias ( Nebel et al., 2022). It is scientifically important to note that
the results are highly variable. ASD is a very heterogeneous disorder. As of 2013, ASD
is a single spectrum that includes Asperger’s syndrome and pervasive developmental
disorder not otherwise specified ( Lord et al., 2018). Our findings represent general
patterns in autism rather than biomarkers. Studies examining autism subtypes hold
promise for translational findings ( Muller and Fishman, 2018). Lombardo et al.(2019)
found large effect sizes between the default mode and attention networks in“assubtype
with social-visual engagement difficulties. We hope future studies will combine‘Sparse

ICA with subtype analysis to improve our understanding of brain connectivity in autism.

There is disagreement about whether ICA algorithms applied tosfMRI data are targeting
independence or in fact indirectly approximating sparse latent factors. Daubechies

et al. (2009) argued that the most used ICA algorithms,.including InfomaxICA and
FastICA, handle the sparsity rather than the independence in brain fMRI studies.
However, Calhoun et al. (2013) argued that.lCA algorithms do indeed estimate
maximally independent components. Qur Sparse ICA method contributes to this topic
by formally establishing a mathematical framework that directly introduces sparsity to
the independent components, and finds the balance between the independence and

sparsity of the source signals.

Compared to existing work, the use of the relax-and-split algorithm in our Sparse ICA
method overcomes'challenges of the non-smooth objective function and orthogonal
constraints. Our approach achieves exact zeros, which contrasts with SICA-EBM and
Sparse Fast ICA. Moreover, there is only one tuning parameter controlling the level of
independence and sparsity in our method. In the existing sparse methods in ICA, there
are multiple tuning parameters whose selection procedures are ambiguous, and the
resulting components do not contain exact zeros. Furthermore, we show that the
computation time of our Sparse ICA method is much shorter than Infomax ICA and
SICA-EBM, and easily applied to high dimensions, where components are estimated in

seconds.



There are a number of limitations of our approach and directions for future research. We
follow the group ICA framework popularized in cirT ( Rachakonda et al., 2007) by
assuming the subjects in the group analysis share the same group independent
components with different corresponding time courses, which has been previously
applied in functional connectivity studies of autistic children ( Lombardo

et al., 2019; Lidstone et al., 2021; Nebel et al., 2022). A limitation of our approach is that
there is no variation in components across subjects. Additionally, we use regression to
estimate subject time courses. It would be preferable to formulate a unified statistical
model with population and subject-level effects. Future work can investigate the
incorporation of random effects as in Guo and Tang (2013). However; these methods
tend to be computationally costly as their complexity grows exponentially with the
number of components. Ultimately, widespread adoption of ICA methods depends on
scientists’ assessments of possible, but unknown, benefits of.statistical improvements

with the computational costs, which are known.

Another limitation is that we selected the number of components in our data analysis
based on the results from previous studies with similar data ( Lombardo

et al., 2019; Nebel et al., 2022), rathef than a data-driven approach. We have found that
data-driven selection of the number of components using information criteria as in cTrT
or Melodic can produce variableestimates. In fact, it is common for the authors of the
software packages that provide automated dimension estimation to specify the number
of group components ('Smith etal., 2015; Du et al., 2020). Recent statistical papers on
ICA also specify the. number of group components ( Mejia et al., 2020; Guo

and Tang,.2013). In'general, automated methods do not work well when there is a small
gap betweensthe eigenvalues in the principal subspace and the noise variance, which is
common in fMRI. We made progress on this issue in the related class of models in
LNGCA using a parametric bootstrap accounting for spatially correlated noise
components ( Zhao et al., 2022). A similar procedure could be pursued here by using a
parametric bootstrap to estimate the null distribution of eigenvalues of spatially
correlated noise components, but again the widespread implementation may be limited

by computational costs.



SUPPLEMENTARY MATERIAL

The Web Supplement contains detailed derivations of alternating updates, the proof of
algorithmic convergence, additional simulation results and the real data analysis. R-

package sparse1ca can be obtained from https://github.com/thebrisklab/SparseICA.
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Fig. 1 The true and estimated independent componentsifromia single replication
under SNR=0.4. A: The true ICs. B: Sparse ICA. C: Infomax ICA. D: Fast ICA. E: SICA-
EBM. F: Sparse Fast ICA.
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Fig. 2 The PRMSE of estimated source signal matrices (§) and mixing matrices (M).
Results represent 100 replications withia single initiation for each SNR level. A: PRMSE
of estimated é. B: PRMSE of estimated M.



Fig. 3 The true and estimated I1C-2 (Default Mode Network A) from a single repetition.
A: The true IC-2. B: Sparse ICA. C: Infomax ICA. D: Fast ICA. D: SICA-EBM. F: Sparse
Fast ICA.
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Fig. 4 The PRMSE of estimated group components (Sg) and mixing matrices (

M,.i=1, 2""’20). Results represent 50 replications with 40 random initialization for each

A

SNR level. A: PRMSE between‘estimated S and true S,. B: Average PRMSE between

MYi=12,.

estimated subject M, andtrue "20. C: The computation time of a single

initialization in seconds.
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Fig. S ICs selected for significant edge differences between ASD and TD. Columns A
and B: Sparse ICA. Column A row 1 (I€=18): posterior cingulate and precuneus areas of
the default mode network. Column.A.row.2 (IC-20): medial prefrontal regions of the
default mode. Column A row 3:‘subject-specific correlations between IC time courses
with the AIPWE-adjusted estimate of the means (red square, FDR-adjusted p=0.011).
Column B row 1 (IC-13): temperal parietal junction. Column B row 2 (IC-5): frontal areas
of executive function. Column B row 3: subject-specific correlations (FDR-adjusted

p=0.011). Columns C"and D: matched components from Fast ICA.



Table 1 Average computation times in seconds over 100 replications for Sparse ICA
and other methods. SICA-EBM and Sparse Fast ICA are implemented in MATLAB,
other ICA methods are in R and Rcpp.

Sparse ICA | Fast ICA | Infomax SICA-EBM Sparse Fast ICA
(Repp) (Repp) ICA (R) (MATLAB) (MATLAB)
Low SNR 0.0080 0.0022 0.0141 16.0053 0.0055
Medium SNR (/0.0079 0.0023 0.0186 22.9243 0.0024
High SNR 0.0081 0.0023 0.0177 19.9347 0.0019
High-
dimensional |1.9147 0.4323 2.3359 2233.4951 0.0253

Table 2 Mean (standard deviation) of the correlations between the true and

estimated source signals and mixing matrices based/on.different ICA methods with 100

simulation runs in the high-dimensional setting.

Correlations

Sparse ICA

Fast ICA

Infomax ICA

SICA-EBM

IC1 - Source

0.975(0.002)

0.927(0.003)

0.929(0.003)

0.903(0.108)

0.921(0.036)

IC2 - Source

0.969(0.002)

0.917(0.003)

0.918(0.003)

0.944(0.002)

0.917(0.003)

IC3 - Source

0.983(0.002)

0'920(0.003)

0.921(0.003)

0.949(0.002)

0.913(0.037)

IC1 - Mixing

0.997(0.000)

0.995(0.001)

0.994(0.001)

0.996(0.001)

0.989(0.049)

IC2 - Mixing

0.996(0.001)

0.993(0.001)

0.992(0.001)

0.994(0.002)

0.993(0.001)

IC3 - Mixing

0.997(0.000)

0.995(0.001)

0.994(0.001)

0.883(0.257)

0.986(0.054)

Sparse Fast ICA
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