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Abstract 
Independent component analysis (ICA) is widely used to 
estimate spatial resting-state networks and their time courses in 
neuroimaging studies. It is thought that independent 
components correspond to sparse patterns of co-activating brain 
locations. Previous approaches for introducing sparsity to ICA 
replace the non-smooth objective function with smooth 
approximations, resulting in components that do not achieve 
exact zeros. We propose a novel Sparse ICA method that enables 
sparse estimation of independent source components by solving 
a non-smooth non-convex optimization problem via the relax-
and-split framework. The proposed Sparse ICA method balances 
statistical independence and sparsity simultaneously and is 
computationally fast. In simulations, we demonstrate improved 
estimation accuracy of both source signals and signal time 
courses compared to existing approaches. We apply our Sparse 
ICA to cortical surface resting-state fMRI in school-aged autistic 
children. Our analysis reveals differences in brain activity 
between certain regions in autistic children compared to children 
without autism. Sparse ICA selects coactivating locations, which 
we argue is more interpretable than dense components from 
popular approaches. Sparse ICA is fast and easy to apply to big 
data. 

Acc
ep

ted
 M

an
us

cri
pt

http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2024.2370593&domain=pdf


Keywords: ASD, Functional Connectivity, ICA, Neuroimaging, Sparsity 

1 Introduction 

Autism spectrum disorder (ASD) is a developmental disorder associated with 

challenges in social interaction, communication, and repetitive behaviors. ASD is 

believed to be associated with altered communication between brain regions ( 

Di Martino et al., 2013). Functional connectivity characterizes the co-activation of brain 

regions ( Yeo et al., 2011). To identify areas of the brain that tend to co-activate, 

independent component analysis (ICA) is commonly applied to resting-state functional 

magnetic resonance imaging (fMRI) data ( Damoiseaux et al., 2006). The independent 

components (ICs) are known as “resting-state networks,” and the correlations between 

the time courses of the components reveal brain communication patterns. It is believed 

that the components should be sparse since most areas of the brain are not part of any 

given component ( Daubechies et al., 2009). However, current approaches usually 

estimate dense components. The components are typically thresholded in graphical 

summaries to eliminate inactive locations, while the time courses used in downstream 

analyses correspond to the original non-sparse components ( Erhardt et al., 2011). The 

thresholded maps are used to aid the interpretation of brain communication patterns, 

but directly estimating sparse components and their time courses may better reveal the 

underlying patterns of brain activity. 

Our motivating data contain resting-state fMRI measurements from school-age children 

in the Autism Brain Imaging Exchange (ABIDE) ( Di Martino et al., 2013, 2017). Our 

overall scientific goal is to estimate functional connectivity differences between autistic 

children and children without autism in which functional connectivity is defined by 

correlations between independent component time courses. The use of ICA to study 

functional connectivity in autistic children has gained favor in recent years because the 

standard brain atlases based on adults are not ideal for developmental cohorts. The 

estimated spatial components play the role of a study-specific brain parcellation ( 

Lombardo et al., 2019; Lidstone et al., 2021; Nebel et al., 2022). Correlations or partial 
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correlations between the time courses of components are analyzed in downstream 

analyses ( Smith et al., 2015). 

Fast ICA and Infomax ICA are two of the most popular ICA algorithms ( 

Hyvarinen, 1999; Bell and Sejnowski, 1995). These approaches easily scale to large 

fMRI datasets and have been popularized in the Group ICA of fMRI Toolbox (GIFT) ( 

Calhoun et al., 2001) and Melodic software ( Smith et al., 2004). Although other ICA 

algorithms exist, neuroimaging studies commonly use either Infomax ICA via GIFT ( 

Lidstone et al., 2021; Nebel et al., 2022) or Fast ICA in Melodic ( Lombardo 

et al., 2019; Smith et al., 2015). However, these popular methods do not produce 

sparse components, so post-estimation thresholding is typically used for interpretation. 

As an alternative to thresholding, Melodic includes a post-ICA option that fits a bivariate 

mixture of Gaussians to Fast ICA components, but the time courses are unchanged. In 

general, bivariate mixture modeling in ICA is challenging, as its complexity grows 

exponentially with the number of components. Directly estimating sparse components 

may improve accuracy and decrease computational costs. 

Sparse methods exist in the literature, but they do not estimate simultaneously sparse 

and independent components. We define a component as sparse if it has a large 

proportion of elements that are exactly equal to zero. In compressed sensing, sparse 

dictionary learning estimates a sparse or nearly sparse basis that can reduce noise and 

achieve data compression ( Lee et al., 2006). However, sparse dictionary learning can 

lead to multiple representations of the same signal, which creates interpretation issues 

in fMRI. Sparsity has been incorporated into principal component analysis (PCA) 

through penalized reconstruction error or singular value decomposition ( Zou 

et al., 2006; Shen and Huang, 2008; Erichson et al., 2020). Neither sparse dictionary 

learning nor sparse PCA methods enforce independence among components. Early 

work on sparse ICA approximates sparse sources by applying a clustering algorithm to 

principal components ( Babaie-Zadeh et al., 2006), but is not scalable to fMRI data. 

Sparse Fast ICA ( Ge et al., 2016) adds a second stage to the Fast ICA algorithm to 

constrain the source sparsity through a smooth approximation to the l0 norm, and 
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involves several tuning parameters. Sparse ICA entropy-bound minimization (SICA-

EBM) ( Boukouvalas et al., 2018; Long et al., 2019) strives to combine sparse dictionary 

learning with the independence in ICA by incorporating a smooth approximation to l1 

regularization with two tuning parameters. However, it is unclear how to choose the best 

values and the method is computationally costly. Neither Sparse Fast ICA nor SICA-

EBM achieves exact sparsity due to their reliance on smooth approximations. Recently, 

Lukemire et al. (2023) developed Sparse Bayes ICA, which uses horseshoe priors to 

select sparse covariate effects in ICA, and thus has a different goal than our present 

work. 

In summary, there are three main challenges in estimating sparse independent 

components. Firstly, existing ICA methods, including Sparse Fast ICA and SICA-EBM, 

are only capable of handling smooth objective functions, which limits their ability to 

impose exact sparsity. Secondly, ICA optimization involves an orthogonality constraint 

leading to non-convex optimization, which subsequently necessitates the use of 

specialized algorithms and may lead to problems with local minima. Thirdly, in fMRI 

data analysis, the input data is often high-dimensional. An ICA method should be 

computationally feasible when applied to millions of data points. 

In this paper, we introduce a novel Sparse Independent Component Analysis (Sparse 

ICA) method that can be used for both subject and group-level fMRI data analysis. The 

method achieves precise sparsity by employing the Laplace density and ensures 

computational efficiency through the relax-and-split framework ( Zheng 

and Aravkin, 2020). A tuning parameter is used to control sparsity, which is selected 

using a BIC-like criterion. In numerical experiments, our proposed Sparse ICA 

outperforms existing methods in terms of the accuracy of estimating source signals and 

time courses, and is computationally efficient. When applied to fMRI data from autistic 

children, Sparse ICA extracts sparse components that correspond to resting-state 

networks, and we discover functional connectivity differences between autistic and 

typically developing children. 
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The rest of this paper is structured as follows. In Section 2, we present the Sparse ICA 

model from an optimization perspective and introduce the relax-and-split framework for 

model estimation. We extend Sparse ICA to perform group-level analysis and introduce 

the BIC criterion for selecting the tuning parameter. In Section 3, we conduct simulation 

studies to compare the performance of the proposed Sparse ICA with existing ICA 

approaches. In Section 4, we apply our Sparse ICA method to cortical surface fMRI 

data from ABIDE ( Di Martino et al., 2013, 2017). In Section 5, we conclude with a 

discussion. 

Notation: For a vector 
pv , we let 

2 1/2
2 1

1 1

|| || ( ) , || || | |
p p

j j
j j

v v
 

  v v
. We let 

p
p 1

 be a 

vector with all elements equal to 1, and 
p

p 0
 be a zero vector. For a matrix 

n pA , 

we let 

2 1/2
0

1 1

|| || ( ) , || ||
pn

F ij
i j

a
 

 A A
 be the number of its non-zero elements, and 

A  be its 

Moore-Penrose inverse. We let pI  be the p × p identity matrix, and 
p p

 denotes the 

class of orthogonal matrices such that if 
p pA , then p A A AA I

. 

2 Methods 

2.1 Sparse ICA Model 

Let 
P TX  represent the fMRI time series for a single subject (pre-processed as in 

Section 4), where each column is a vectorized image of dimension P (the number of 

voxels for volume data or vertices for cortical surface data) and T is the number of time 

points. The noisy ICA model is defined as 

. X SM N  (1) 

Here 
P QS  is the matrix of non-Gaussian components, also called sources, with Q < 

T, where each row of S is a realization from a random vector of mutually independent 

non-Gaussian random variables. Each column in S represents a vectorized spatial map 

of brain regions that exhibit a tendency to co-activate. Components that are common 
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across different rs-fMRI studies are referred to as resting-state networks ( Damoiseaux 

et al., 2006). 
Q TM  is the mixing matrix, where each row corresponds to the resting-

state network’s time course. 
P TN  is a matrix of isotropic normal random variables. 

This model is equivalent to the classic noise-free ICA model if Q = T and N equals zero. 

Given X, we aim to estimate S and the corresponding mixing matrix M. The sign and 

order of the components in S are not identifiable. For sign identifiability, we assume the 

components have positive skewness ( Eloyan and Ghosh, 2013). In this paper, we treat 

the number of components Q as known, which is common in the statistical and scientific 

literature, as discussed in Section 5. In our data application, we select Q based on 

similar previous studies. In the Web Supplement Section 6.2, we discuss the choice of 

Q and conduct a simulation study examining robustness. 

To estimate S and M in (1), we adopt a two-stage PCA+ICA procedure: PCA is applied 

prior to ICA and then the ICs are estimated from the Q-dimensional principal subspace ( 

Beckmann and Smith, 2004; Mejia et al., 2020). This preprocessing step is effective if 

the noise N is isotropic. When performing PCA, we first center (and optionally 

normalize, see Section 4.1 for details) X. Then we apply the singular value 

decomposition (SVD) X LΣR , where 1:QL
 denotes the first Q left singular vectors. 

We define the whitened data matrix 1:1 QP X L
, and subsequently use X  to estimate 

ICs. 

We approach the ICs estimation problem from an optimization perspective. Given the 

whitened 
P QX , the goal is to find an unmixing matrix U such that the independence 

of the components in the source signal matrix S XU  is maximized. A widely used 

metric in the literature for quantifying the degree of dependence among the components 

is Mutual information (MI), which is minimized to achieve independence ( 

Hyvarinen, 1999). Mathematically, this is equivalent to maximizing the likelihood of the 

components under the assumption of an orthogonal transformation. Let U be a Q × Q 

matrix such that U U I  and let pj be a density function corresponding to the jth source 

signal. The negative log-likelihood is 
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 
1 1 1 1

( ) log ( ) log ( ),
Q QP P

j ij j i j
i j i j

J p p x u
   

    XU XU  (2) 

where ix  is the ith row of X , uj is the jth column of U. Thus, we aim to solve 

minimize ( ) s.t. .QJ 
U

XU U U I  (3) 

Remark. Our use of the square unmixing matrix U aligns with the common practice in 

ICA fMRI literature. Specifically, in most fMRI studies, PCA is applied first, with the 

subsequent ICA step used to estimate the square unmixing matrix. Retaining a smaller 

number of principal components results in large-scale networks while retaining a larger 

number of principal components results in smaller-scale networks ( Smith et al., 2013). 

In contrast, in the linear non-Gaussian component analysis (LNGCA) model ( Risk 

et al., 2019), the PCA step is omitted altogether and the unmixing matrix U belongs to 

the class of T × Q semi-orthogonal matrices 
T Q

, which is the Stiefel Manifold. LNGCA 

and group LNGCA can better recover non-Gaussian components under certain noise 

regimes, but have additional challenges with local optima that make them less 

computationally competitive with ICA ( Zhao et al., 2022). We conjecture that LNGCA 

would result in smaller features that may split the “classic” resting-state networks (i.e., 

those resulting from a PCA step retaining twenty to thirty components) into multiple, 

sparser components. The supporting R package also includes the implementation of a 

sparse LNGCA (without the PCA step), but further investigation is beyond the scope of 

this paper. 

The choice of source density pj in (2) determines how the non-Gaussianity of 

components is measured, with common choices including the logistic density, Jarque-

Bera (JB) test statistic, and log hyperbolic cosine ( Bell 

and Sejnowski, 1995; Hyvarinen, 1999). Unlike these existing approaches, we use the 

Laplace distribution, 

| |

( ) ( ) / 2
s

j Sp s f s e


 




 
. Unlike the commonly used measures of 

non-Gaussianity mentioned above, the Laplace density extracts sparse independent 

source components in XU  in which the sparsity is promoted by the absolute operator. 
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We refer to the optimization problem (3) with the proposed choice of pj as the Sparse 

ICA model. 

Even though we assume the Laplace density in the objective function, Sparse ICA can 

accurately estimate the mixing matrix for other heavy-tailed and skewed source 

distributions, which are common in ICA of fMRI. However, it is inaccurate for sub-

Gaussian distributions. This is examined in the Web Supplement Section 3. For a 

broader discussion of how the proposed densities can mismatch the true source 

densities but still result in consistent source estimation, see Risk et al. (2019) and 

Wei (2015). 

2.2 Model Estimation 

2.2.1 Relax-and-Split Framework 

Solving (3) is challenging due to the orthogonality constraint on U, which is nonconvex, 

and the non-smoothness of the objective function, which creates issues with gradient 

descent and Newton-type algorithms. To overcome both of these challenges, we utilize 

the Relax-and-Split framework ( Zheng and Aravkin, 2020). The latter separates the 

non-smooth objective function from the constraint via the introduction of an auxiliary 

variable V, and substitutes the equality constraint on the auxiliary variable with a convex 

smooth penalty term in the objective function. The relaxed problem corresponding to (3) 

is 

2

,

1minimize ( ) s.t. = ,
2 F QJ


 
U V

V V XU U U I  (4) 

(4) 

where the auxiliary V explicitly models the independent components S, and parameter ν 

controls the level of relaxation. On the one hand, as ν approaches zero, problems (3) 

and (4) coincide. On the other hand, a value of ν that is too large negatively impacts the 

accuracy as the objective term involving the data X  is effectively ignored. In practice, 

the value of ν controls the sparsity of resulting estimated components. In Section 2.4, 
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we propose a BIC-like criterion for selecting the value of tuning parameter ν. To 

solve (4) for a given ν, we alternate updates of U and V. Each update is described 

below. 

We first consider the update of V for any density 
log Sf . Given U, we aim to find 

   

2

2

1 1

1argmin ( ) || ||
2

1argmin log ( ) .
2

F

QP

S ij ij ij
i j

J

f







 

  

 
    

 


V

V

V V V XU

V V XU
 

Thus, the update can be performed element-wise with 

21argmin log ( ) ( ( ) ) ,1 ,1 .
2ij

ij S ij ij ijf i P j Q


  
        

 V
V V V XU  

Specifically, for the proposed Laplace density, the solution has a closed form: 

   | ) 2 ·sign ( ) ,( |ij ij ij



 V XU XU  (5) 

where we define 
max(0, )x x  . Details of derivations are in the Web Supplement 

Section 1.1. 

Now consider the update of U. For a fixed V, we aim to find 

2argmin || || s.t. = .F Q
  

U
U V XU U U I  (6) 

This is the orthogonal Procrustes problem with closed-form solution 
T U UV , where 

U  and V  are obtained from the SVD decomposition 
T TX V UΣV . Details regarding 

the derivations can be found in the Web Supplement Section 1.2. 

As both updates are closed-form, the sequence of objective function values across 

iterations is non-increasing, guaranteeing convergence in objective function values ( 
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Erichson et al., 2020). We further prove the sublinear convergence of Algorithm 1 to a 

stationary point. See Web Supplement Section 1.3 for details. 

 

 

2.2.2 Mixing Matrix Estimation and Full Algorithm 

We define the estimated sparse components Ŝ  as the value of V at convergence. Given 

Ŝ , the mixing matrix M̂  consisting of time courses can be estimated as 
 

1ˆ ˆ ˆˆ 

M S S S X

. Note that 
ˆ ˆS S  is approximately equal to the identity matrix, but not exactly, which 

contrasts with classic ICA. In fMRI, the ith row of the mixing matrix M is a time series 

with length T of the independent source brain map contained in the ith column of S. 

Algorithm 1 summarizes the full estimation procedure from data normalization and PCA 

step to the estimation of S and M. We call it Single-subject Sparse ICA Algorithm. Since 

problem (4) is nonconvex, we consider multiple initializations 
0U  and use the estimate 

corresponding to the smallest value of the objective function in (4) as the final estimate. 

In our data application in Section 4, we use 40 initial values. The number of required 

initial values was examined in Fan (2020). We implement Sparse ICA using Rcpp for 

fast estimation. Notably, the Sparse ICA algorithm demonstrates fast convergence and 

the comparisons with existing ICA methods are discussed in Section 3. 

Algorithm 1 Pseudo Code for Single-subject Sparse ICA 

1: Inputs: 
, , , max ,P T

iter        X Q
. 

2: Preprocess: 

3: Center X such that P P1 X 0
. 

4: Optional (recommended for fMRI): Iteratively center and scale X such that row means 

equal 0, row variances equal 1, column means equal 0, and column variances equal 1. 

Five iterations are recommended in practice. 
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5: Apply PCA on X and obtain the whitened matrix 
P QX . 

6: Initialize: 

7: 
0 Q QU  ← A random orthogonal matrix; 

8: 
0 P QV  ← 

0XU  

9: while 
maxiteriter 

 and 
 1max(| (| diag ( ) |) 1|)iter iter   U U

 do 

10: Update V: For 1 ,1i P j Q    , 

11: 
1iter

ij
V

 ← 
   ( ) 2 ·sign ( )iter iter

ij ij


XU XU
 

12: Update U: 

13:  Apply SVD decomposition 
1T iter X V UΣV  

14: 
1iterU  ← UV  

15: iter ← iter + 1 

16: end while 

17: Outputs: 
 

1ˆ ˆ ˆ ˆˆ,iter 

 S V M S S S X
. 

 

2.3 Group Sparse ICA 

In this section, we extend the proposed Single-subject Sparse ICA framework to the 

analysis of fMRI data collected from multiple subjects. We follow the temporal 

concatenation-based group ICA approach which is widely adopted in the literature, and 

is implemented in the software GIFT ( Calhoun et al., 2001). This approach is based on 

the assumption that the spatial brain maps (ICs) are common across subjects, while the 

time courses of these independent source signals are subject-specific. This assumption 

leads to a scalable, easy-to-implement algorithm as we describe below, but has some 

limitations which will be discussed in the Section 5. 

For a group of n subjects with fMRI data 
, 1,2,...,iP T

i i n
 X

, we assume that each iX  

is centered or iteratively normalized by centering and scaling both spatially and 

temporally as described in Section 4.1. The temporal concatenation-based group ICA 
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approach performs separate SVD on the normalized data from each subject i, extracts 

the top Qi left singular vectors, concatenates these singular vectors across subjects, 

and then applies the Single-subject PCA+ICA Algorithm 1 to obtain the group-level 

sparse independent components 
ˆ
gS . The subject-specific time courses (mixing 

matrices) are then back-constructed. Algorithm 1 in the Web Supplement details the 

proposed Group Sparse ICA algorithm. The number Qi of retained singular vectors for 

subject i can be fixed in advance, or chosen using an information criterion ( Calhoun 

et al., 2001; Beckmann and Smith, 2004). The proposed framework is computationally 

efficient as it only requires one ICA step across all subjects. 

2.4 Tuning Parameter Selection 

Both the proposed Single-subject and Group Sparse ICA algorithms have the tuning 

parameter ν, which controls the sparsity level of estimated independent components. 

We propose a BIC-like criterion to select ν in the Single-subject Sparse ICA: 

 0 2

0

ˆ ˆ ˆ ˆ|| ( ) ( ) ( ) ( ) || log( )ˆ( ) log || ( ) || ,
F P TBIC

P T P T

   
 

    
  

 

X S S S S X
S  (7) 

where 
0X  is the centered data matrix, 

ˆ ( )S  is the estimated source signals (ICs) when 

the tuning parameter is set as ν, 
 ˆ ˆ( ) ( ) 



S S
 is the Moore - Penrose inverse of 

ˆ ˆ( ) ( ) S S , and 0
ˆ|| ( ) ||S

 is the number of non-zero elements in 
ˆ ( )S . Similar criteria are 

widely adopted in the sparse methods literature ( Allen and Maletić-Savatić, 2011). We 

adopt warm start initializations to speed up computations when comparing multiple 

values of ν. For Group Sparse ICA, we use the same criteria but with the whitened 

group PC matrix in place of the centered data matrix, see Web Supplement Section 2. 

2.5 Choosing the number of components 

There is no consensus in the literature regarding how to select the number of 

components in the PCA step. There are several existing order selection methods, but 
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they have limitations. Minka’s method ( Minka, 2000) and PESEL ( Sobczyk et al., 2017) 

have been used to select the number of independent components in the fMRI literature ( 

Beckmann and Smith, 2004; Mejia et al., 2020; Lukemire et al., 2023). Minimum 

description length (MDL) has been implemented in the popular GIFT software ( Calhoun 

et al., 2001; Li et al., 2007). In Web Supplement Section 6.1, we investigated Minka’s 

method, PESEL, and MDL in simulations, but the results were unsatisfactory. However, 

in Web Supplement Section 6.2, we conduct simulations indicating Sparse ICA is robust 

across moderately mis-specified Q, where a subset of components are accurately 

estimated for under-specified Q and all components are accurately estimated for over-

specified Q along with some noise components. 

In previous studies, the choice of the number of components has been informed by the 

desired scale of brain networks that researchers aim to delineate ( Sadaghiani 

et al., 2010). A larger number of components can result in a finer parcellation, for 

example, splitting the default mode network into more components ( Smith et al., 2013). 

The Human Connectome Project (HCP) provides multiple resolutions of ICA (15, 25, 50, 

100, 200, 300) to allow the user to choose a resolution appropriate to the scientific 

question. In the Web Supplement Section 7.7, we demonstrate that an advantage of 

Sparse ICA over existing methods is that it is more robust to the choice of the number of 

components, in the sense that key resting state networks are similar across a range of 

Q. In our data application, we choose the number of components based on similar 

previous studies (see Section 4.1). 

3 Simulations 

We evaluate the performance of our proposed Sparse ICA method with selected ν on 

synthetic single-subject and group-level data, and compare it with four existing 

methods: Fast ICA with tanh non-linearity ( Hyvarinen, 1999), Infomax ICA ( Bell 

and Sejnowski, 1995), SICA-EBM ( Boukouvalas et al., 2018), and Sparse Fast ICA 

with tanh non-linearity ( Ge et al., 2016). For all simulations, we use 100 replications. 

3.1 Single-subject Simulations 
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3.1.1 Spatio-temporal Simulation Design 

We simulate three true source signals (Q = 3) mixed over 50 time points (T = 50). Each 

IC is a 33 × 33 image, which can be represented as a vector of length P = 1089. The 

active pixels are in the shape of “1”, “2 2”, or “3 3 3” with values varying from 0.5 to 1 

and inactive pixels set to 0 (Figure 1 A). The time series in the mixing matrix are 

simulated to mimic fMRI patterns using neuRosim ( Welvaert et al., 2011) by convolving 

the gamma function with onsets at {1, 20.6}, {10.8, 40.2}, and {10.8, 30.4} for each IC, 

respectively, with a duration of 5 time points. 

When generating noise, we consider three settings: low, medium, and high signal-to-

noise ratio (SNR). First, the noise components are generated from Gaussian random 

fields using neuRosim and a first-order autoregressive process. At the first time point, we 

use a 33 × 33 Gaussian random field. The standard deviation is set to 1, and the full-

width at half maximum of the Gaussian kernel (FWHM), which controls spatial 

correlation, is set to 6. At times 2,3,...,50T  , the noise components are generated 

recursively by multiplying the T – 1 component by 0.47, and adding an independent 

Gaussian random field with FWHM=6. Second, to achieve the desired SNR ratio, we 

adjust the variance 
2  of the Gaussian random noise N as follows. Let 1 2, ,..., Q  

 be 

the nonzero eigenvalues of the covariance matrix of SM . Then we define 

2

1

SNR /
Q

i
i

T 



, and consider SNR 0.4  (low SNR), SNR 1.5  (medium SNR), and 

SNR 3  (high SNR). To evaluate the performance of each method, we use the scale 

and permutation invariant root mean squared error (PRMSE) ( Risk et al., 2019). 

Since the ICA problem is nonconvex, convergence to a local rather than a global 

optimum is a well-known issue that can affect estimation accuracy ( Risk et al., 2014). 

We implement both single and 40 random initializations for Sparse ICA, Fast ICA, and 

Infomax ICA, to examine possible issues with local optima. The results are highly similar 

in single-subject simulations (See the Web Supplement Section 4.1.1). Moreover, the 

available implementations of Sparse ICA-EBM and Sparse Fast ICA methods do not 

allow for multiple random initializations, and modifying these procedures accordingly is 
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not straightforward as they lack an explicit objective function. For fair cross-comparison, 

we only consider a single initialization for all ICA methods in single-subject simulations. 

3.1.2 Results 

Figure 1 shows the true source signal matrix S and estimates Ŝ  from one replication in 

the low SNR regime. Sparse ICA recovers the true components (Panel B), while 

component 2 and component 3 in Infomax ICA (Panel C), Fast ICA-tanh (Panel D), 

SICA-EBM (Panel E), and Sparse Fast ICA (Panel F) are contaminated by the other 

components. The remaining inactive pixels for all components using all ICA methods 

except Sparse ICA are nonzero with contamination from the Gaussian random field 

noise. We highlight that our Sparse ICA with BIC-selected ν not only selects the true 

active pixels in estimated ICs but also achieves exact zeros in inactive pixels. Our 

Sparse ICA achieves high detection performance at the BIC-selected ν, which is 

measured by Matthew’s correlation coefficient and F1 score (See Web Supplement 

Section 4.1.2). These measurements for the other methods are all 0 because they do 

not select for sparsity. 

Our Sparse ICA method outperforms the other methods across all SNR settings in both 

the source signal and mixing matrices estimations (Figure 2 A and B, respectively). 

According to Figure 2 A, the estimation of source signal matrices using all five ICA 

methods becomes more accurate as the SNR level increases. At each SNR level, Fast 

ICA and Infomax ICA behave similarly, while SICA-EBM shows a slight improvement 

Sparse Fast ICA exhibits similar behavior under the low SNR level but becomes 

unstable in medium and high SNR settings. Sparse Fast ICA involves multiple tuning 

parameters and stop criteria options. There is no clear way to optimize these 

arguments, and thus we used the value from the authors’ original paper. Our Sparse 

ICA demonstrates the largest improvements at the low SNR setting. These substantial 

improvements imply that when the underlying true source signals are sparse, imposing 

sparsity constraints leads to better decomposition of source signals. Moreover, accurate 

estimates of time courses in the mixing matrix will benefit downstream analyses such as 

brain functional connectivity analysis. 
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Table 1 shows the computation time of all five ICA algorithms. Note Sparse ICA is 

implemented in Rcpp, Fast ICA is implemented in R package fastICA with method=“C”, 

Infomax ICA is a pure R implementation, while SICA-EBM and Sparse Fast ICA are 

implemented in MATLAB using their authors’ codes. Sparse ICA is faster than Infomax 

ICA but is slower than Fast ICA. Sparse Fast ICA is comparable and even faster than 

Fast ICA, which is probably due to the fact that it’s implemented in MATLAB. However, 

SICA-EBM is considerably slower than other methods even though it is implemented in 

MATLAB. 

In the Web Supplement Section 4.1.3, we examine the setting where the true source 

signals are non-sparse. Our estimates of source signals using Sparse ICA are less 

accurate than Fast ICA and Infomax ICA, though more accurate than SICA-EBM and 

comparable to Sparse Fast ICA (Web Supplement Figure 3 A). Estimation of the mixing 

matrix is more robust, as the accuracy of Sparse ICA is similar to Fast ICA and Infomax 

ICA, and even outperforms Fast ICA in the low SNR setting, while outperforming SICA-

EBA and Sparse Fast ICA (Web Supplement Figure 3 B). 

3.1.3 High-dimensional Simulation Design 

We simulate high-dimensional data that mimics the real fMRI data. We specify three 

independent components selected from 30 sparse group components in a preliminary 

analysis of group Sparse ICA on the school-age ABIDE cortical surface fMRI data used 

in Section 4 with ν = 1. The values of active vertices vary from -1.74 to 5.59, while the 

values of inactive vertices are set to exact zeros. These three components were used to 

back-construct the ICA time series of a randomly chosen subject (sub-29286) in the 

ABIDE data, which were then used as the true time courses. The noise components are 

generated from the standard normal distribution and then spatially smoothed using the 

ciftiTools package ( Pham et al., 2022). We simulate 120 time points with SNR=0.4. 

The correlations between the true and estimated source signals or rows of the mixing 

matrices are calculated for each IC as a measure of estimation accuracy. 
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We implement both single and 40 random initializations for Sparse ICA, Fast ICA, and 

Infomax ICA. The results are highly similar in single-subject simulations (See the Web 

Supplement Section 4.2.2). Moreover, due to the difficulties of implementing Sparse 

ICA-EBM and Sparse Fast ICA methods using multiple random initializations, we only 

consider the single random initialization versions of all five ICA methods for fair cross-

comparison. 

3.1.4 Results 

Figure 3 shows the second true independent component (IC-2), which is part of the 

default mode network (DMN) estimated from ABIDE data, as well as corresponding 

estimates using five ICA methods. Other components are depicted in the Web 

Supplement Section 4.2.1. Similar to other simulations, all other ICA methods capture 

the true source signals with noise components in the background, having similar 

performance. In contrast, the proposed Sparse ICA is superior by estimating zeros at 

most of the locations that are truly zero, thus boosting the accuracy and interpretability 

of both estimated independent components and the mixing matrix. The median Matthew

’s correlation at the selected ν is 0.730, and the median F1 score is 0.983 (Web 

Supplement Table 1). Additionally, most true non-zeros are non-zero in the Sparse ICA 

estimates, although a few areas with true non-zeros that are close to zero are shrunk to 

zero in our Sparse ICA (examples are in the frontal lobe). 

As shown in Table 2, our Sparse ICA method outperforms other ICA algorithms in 

recovering the source signals across all independent components in high-dimensional 

simulations. The behaviors of Fast ICA, Infomax ICA, and Sparse Fast ICA are similar, 

while Sparse ICA achieves improved estimation for both source signals and mixing 

matrices. SICA-EBM also shows slight improvements for IC 2 and 3 relative to Fast ICA 

and Infomax ICA. As shown in the last row in Table 1, our Sparse ICA method takes 

about 2 seconds to recover ICs, which is faster than Infomax ICA and SICA-EBM but 

slower than Fast ICA and Sparse Fast ICA. 
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In the Web Supplement Section 4.2.3, we examine the non-sparse case by setting the 

true components to be the non-sparse Fast ICA solution on ABIDE data. Unsurprisingly, 

Sparse ICA does worse than other methods on the source signals when the truth is 

non-sparse. However, on mixing matrices, Sparse ICA is highly accurate and performs 

similarly to Fast ICA and Infomax ICA. 
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3.2 Group Level Simulations 

3.2.1 Simulation Design 

We use 20 subjects, and simulate 3 group components, 22 individual components, and 

25 Gaussian noise components for each subject. Web Supplement Section 5.2 contains 

example components. The group components have active pixels in the shape of “1”, “2 

2” and “3 3 3” with values varying from 0.5 to 1. The inactive pixels are exact zeros. 

Individual components were simulated from Gamma random fields with shape 

parameter 0.02 and rate parameter 
410

. The noise components were simulated from 

standard Gaussian random fields. All the random fields were generated using the R 

package neuRosim ( Welvaert et al., 2011). While we do not enforce the orthogonality of 

components, the model assumptions are approximately met since the active areas of 

group components are disjoint and the individual components are independent. The 

time courses with 50 time units in the mixing matrices were simulated using AR(1) 

processes with 0.47  . Thus, subjects in the group have different randomly generated 

individual components and corresponding time series. 

To control the strength levels of signals and noises, we controlled the proportion of 

variance from the group components, individual components, and the Gaussian noise 

components. In this group-level simulation, we focused on the signal-to-noise ratio 

(SNR) between group components and noise components. The definition of SNR is 

described in Section 3.1. We defined three SNR settings, low SNR (proportion of 

variance in group, individual, and noise components = 35%, 15%, 50%), medium SNR 

(variance proportion = 40%, 20%, 40%), and high SNR (variance proportion = 50%, 

20%, 30%). We use PRMSE, which is also defined in Section 3.1, to evaluate the 

performance of each group method. Since each subject has its own estimated mixing 

matrix, we use the average PRMSE of mixing matrices in the group as the 

measurement of mixing matrix estimation. 

Subject-level PCA in which the number of PCs selected to retain at least 80% of the 

total variance was conducted for each subject, and the subject PCs were then 
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concatenated together for input to Sparse ICA. The group Fast ICA and group Infomax 

ICA were implemented based on the same procedure to ensure fair comparisons. After 

extracting group components, the corresponding subject-specific time courses were 

back-constructed. We then calculated the PRMSE between estimated group 

components and true group components, and the group average PRMSE between 

estimated subject-specific mixing matrices and true mixing matrices. 

Unlike the single-subject simulations, we found that employing multiple random 

initializations improved accuracy. Since the available implementations of SICA-EBM 

and Sparse Fast ICA do not allow for multiple random initializations, we did not estimate 

group ICs for SICA-EBM or Sparse Fast ICA. Sparse ICA, Fast ICA, and Infomax ICA 

were repeated under 50 replications for each SNR setting with 40 random initializations. 

We also record computation times for all group ICA methods. Since there is not a 

multiple initialization option in the R package fastICA, we wrote a for-loop in R to select 

the estimate with the highest objective function value. In contrast, the implementation of 

our Sparse ICA method implements a for-loop in Rcpp, and is thus much faster than 

Fast ICA with the for-loop in R. For a fair comparison, we report the computation time of 

ICA methods with a single initialization. 

3.2.2 Results 

The accuracy of the estimated components in group Fast ICA and group Infomax ICA is 

similar, while our group Sparse ICA demonstrates substantial improvements across all 

SNR settings (Panel A in Figure 4). As for the estimation of the mixing matrix in Panel 

B, our group Sparse ICA shows improvements over group Fast ICA and group Infomax 

ICA in the low and medium SNR settings, while the mixing matrix accuracy is similar in 

the high SNR setting. In Panel C, our group Sparse ICA is computationally faster and 

more stable than group Infomax ICA, but is slower than group Fast ICA. 
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4 Application to Cortical Surface fMRI Data 

4.1 Data and Methods 

We processed resting-state fMRI data from school-age children selected from the 

Autism Brain Imaging Data Exchange (ABIDE) using a cortical surface fMRI pipeline. 

We used both the ABIDE-I ( Di Martino et al., 2013) and ABIDE-II datasets ( Di Martino 

et al., 2017), and selected 396 children (103 females) aged 8-13 (mean=10.4, sd=1.4) 

from two sites: the Kennedy Krieger Institute (KKI) and NYU Langone Medical Center 

(NYU). The sample included 252 typically developing (TD) (78 females) and 144 ASD 

children (25 females). Details on the preprocessing are in Web Supplement Section 7.1. 

Nineteen participants were excluded due to poor T1 images or cortical registration 

failure. We then adopted a motion quality control criterion based on Power et al. (2014) 

in which participants were excluded if they had less than 5 minutes of data with 

framewise displacement less than 0.2 mm. Consequently, 65 participants were marked 

as having excessive motion. In total, 84 participants were removed in the quality control 

procedure. 

We applied group Sparse ICA using Web Supplement Algorithm 1 to our pre-processed 

cortical surface fMRI data that passed manual inspection and motion quality control 

criteria (n = 312). In ICA, it is typical to normalize the time course for each voxel to have 

zero mean and unit variance (normalize each row) before centering and scaling each 

image (normalize each column). We use an iterative approach with five iterations to 

achieve standardization across both rows and columns ( Risk and Gaynanova, 2021). 

The subject-level dimension reduction step was performed by PCA with 85 principle 

components retained for each participant ( Nebel et al., 2022), see Web Supplement 

Section 7.3. Thirty group components as in ( Lombardo et al., 2019; Nebel et al., 2022) 

were extracted in the final Sparse ICA step with the tuning parameter ν = 2 selected by 

our proposed BIC-like criterion (Web Supplement Figure 18). We found that results 

were sensitive to initialization (see Web Supplement Section 7.4). We ran the 

algorithms for two independent runs with 40 random initializations each. The argmax 

from these two runs were equivalent, indicating a sufficient number of restarts. Since 
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the sign of the components is not identifiable, we choose the sign to result in positive 

skewness ( Eloyan and Ghosh, 2013). We also examined the sensitivity to the specified 

number of components and found that Sparse ICA estimates on ABIDE data are similar 

across a range of specifications, in agreement with what we also observed in 

simulations (Web Supplement Section 6.2). 

We used the subject-specific time courses to construct the subject-specific Pearson 

correlation matrices. We Fisher z-transformed the correlation matrices and extracted the 

lower triangle resulting in 435 edges. We applied ComBat for site harmonization ( Yu 

et al., 2018) in which “site” was a factor with three levels (NYU, KKI-8 channel, KKI-32 

channel) with the following covariates: diagnosis, mean framewise displacement, full-

scale intelligence quotient, autism diagnostic observation schedule (a measure of 

autism severity), stimulant medication status, non-stimulant medication status, 

proportion of framewise displacement greater than 0.2 mm, proportion of root mean 

square displacement greater than 0.25 mm, handedness (right or left handed), age at 

scan, and sex. We included all variables used in downstream analyses in the ComBat 

step in order to avoid over-correction of site effects. 

Although the exclusion of participants with excessive motion can improve the quality of 

resting-state fMRI data, it may alter the distribution of clinically relevant covariates. We 

follow Nebel et al. (2022) to account for possible demographic confounders and 

selection biases due to motion exclusion criteria. Details are in Web Supplement 

Section 7.9 and summarized here. We use the augmented inverse probability of 

inclusion weighted estimator (AIPWE) ( Robins et al., 1994) to estimate the debiased 

group difference in functional connectivity between ASD and TD children. The 

propensity model and the outcome model were fitted using the super learner algorithm ( 

Van der Laan et al., 2007). The learners for the propensity model included multivariate 

adaptive regressions splines, lasso, generalized additive models, generalized linear 

models, random forests, step-wise regression, xgboost, and mean. In the outcome 

model, we added ridge regression and support vector machines. The same set of 

predictors was used in both the propensity and outcome models, including sex, age at 
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scan, FIQ, handedness, diagnosis, stimulant medication status, non-stimulant 

medication status, and ADOS. P-values were corrected for multiple comparisons using 

the false discovery rate. 

4.2 Results 

The functional connectivity between IC-18 and IC-20 and the functional connectivity 

between IC-5 and IC-13 were significantly lower in ASD than TD at FDR=0.05 (adjusted 

p-value=0.011). We depict these components in the top two rows of Figure 5 as 

estimated using Sparse ICA (A and B) and the corresponding matched components 

from Fast ICA (C and D), with Infomax components in the Web Supplement Section 7.8. 

The z-scores for all AIPWE-adjusted group differences are depicted in the Web 

Supplement Section 7.9. Sparse ICA identifies activated vertices as non-zero values 

with inactive vertices being exact zeros. Interestingly, all of the non-zero values are 

positive. In contrast, the matched components from Fast ICA are dense with both 

positive and negative values. The Sparse ICA components represent vertices that co-

activate, whereas the Fast ICA components include dense locations with opposing 

directions of “activation.” 

By examining the overlap between the non-zero ICs and the resting-state networks from 

Yeo et al. (2011), IC-18 corresponds to the medial posterior default node network, 

highlighting regions in the posterior cingulate cortex and precuneus, and IC-20 

corresponds to the medial prefrontal cortex region of the default mode network. 

Alterations in the default mode network were also found in an analysis of all ages in the 

ABIDE-I dataset using a seed-based correlation analysis ( Di Martino et al., 2013). Our 

sparse components depicted in A and B are more easily related to the seed-based 

correlation analyses in Di Martino et al. (2013), since a positive correlation between IC-

18 and IC-20 is interpreted as increased brain connectivity in the same way as a 

positive correlation in a seed-based analysis is interpreted as increased brain 

connectivity. In contrast, the matched components in Fast ICA in Panel C contain 

negative values in the components as well, such that an increased correlation between 

time courses means opposite things for the locations with positive versus negative 
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values, which is scientifically harder to understand. IC-13 (top row, column B) 

corresponds to portions of the temporal parietal junction, which is associated with 

salience, control, auditory, and default mode networks, and IC-5 corresponds to the 

frontoparietal network (middle row, column B), which is associated with executive 

function. 

5 Discussion 

In this work, we propose a new ICA method that estimates sparse independent 

components leveraging a relax-and-split algorithm. Our method is very fast and can be 

easily applied to big data. In contrast to the common practice of post-hoc thresholding 

the components, our method estimates sparse components and corresponding time 

courses directly via the Laplace density. Through simulation studies, we show that the 

proposed method can accurately select non-zero spatial locations and improve 

accuracy. In addition, our analysis of the resting state fMRI data from the school-age 

children demonstrates the ability of our Sparse ICA method to handle high-dimensional 

fMRI data and produce sparse spatial maps that are easy to interpret. 

Some studies suggest that ASD is characterized by overall hypoconnectivity alongside 

specific local hyperconnectivity ( Lord et al., 2018; Di Martino et al., 2013). Other 

authors emphasize that no clear picture has emerged from neuroimaging ( Müller 

and Fishman, 2018). Using Sparse ICA, we find that anterior-to-posterior functional 

connectivity in the default mode network is lower in autistic children. This altered 

connectivity may relate to atypical integration of information pertaining to self-referential 

thought ( Padmanabhan et al., 2017). In an analysis of the first ABIDE data release 

including adults and children (ages 7-64), Di Martino et al. (2013) also found posterior to 

anterior hypoconnectivity in the default mode network. Secondly, we found reduced 

functional connectivity between the temporal parietal junction and frontal areas of 

executive function, which may also be related to impairment in information integration ( 

Lord et al., 2020). One strength of our analysis is that we focus on school-age children, 

which is an important age for behavioral interventions. Another strength is that we 
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excluded high motion participants and used the debiased group difference to account 

for possible selection bias ( Nebel et al., 2022). It is scientifically important to note that 

the results are highly variable. ASD is a very heterogeneous disorder. As of 2013, ASD 

is a single spectrum that includes Asperger’s syndrome and pervasive developmental 

disorder not otherwise specified ( Lord et al., 2018). Our findings represent general 

patterns in autism rather than biomarkers. Studies examining autism subtypes hold 

promise for translational findings ( Müller and Fishman, 2018). Lombardo et al. (2019) 

found large effect sizes between the default mode and attention networks in a subtype 

with social-visual engagement difficulties. We hope future studies will combine Sparse 

ICA with subtype analysis to improve our understanding of brain connectivity in autism. 

There is disagreement about whether ICA algorithms applied to fMRI data are targeting 

independence or in fact indirectly approximating sparse latent factors. Daubechies 

et al. (2009) argued that the most used ICA algorithms, including InfomaxICA and 

FastICA, handle the sparsity rather than the independence in brain fMRI studies. 

However, Calhoun et al. (2013) argued that ICA algorithms do indeed estimate 

maximally independent components. Our Sparse ICA method contributes to this topic 

by formally establishing a mathematical framework that directly introduces sparsity to 

the independent components, and finds the balance between the independence and 

sparsity of the source signals. 

Compared to existing work, the use of the relax-and-split algorithm in our Sparse ICA 

method overcomes challenges of the non-smooth objective function and orthogonal 

constraints. Our approach achieves exact zeros, which contrasts with SICA-EBM and 

Sparse Fast ICA. Moreover, there is only one tuning parameter controlling the level of 

independence and sparsity in our method. In the existing sparse methods in ICA, there 

are multiple tuning parameters whose selection procedures are ambiguous, and the 

resulting components do not contain exact zeros. Furthermore, we show that the 

computation time of our Sparse ICA method is much shorter than Infomax ICA and 

SICA-EBM, and easily applied to high dimensions, where components are estimated in 

seconds. 
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There are a number of limitations of our approach and directions for future research. We 

follow the group ICA framework popularized in GIFT ( Rachakonda et al., 2007) by 

assuming the subjects in the group analysis share the same group independent 

components with different corresponding time courses, which has been previously 

applied in functional connectivity studies of autistic children ( Lombardo 

et al., 2019; Lidstone et al., 2021; Nebel et al., 2022). A limitation of our approach is that 

there is no variation in components across subjects. Additionally, we use regression to 

estimate subject time courses. It would be preferable to formulate a unified statistical 

model with population and subject-level effects. Future work can investigate the 

incorporation of random effects as in Guo and Tang (2013). However, these methods 

tend to be computationally costly as their complexity grows exponentially with the 

number of components. Ultimately, widespread adoption of ICA methods depends on 

scientists’ assessments of possible, but unknown, benefits of statistical improvements 

with the computational costs, which are known. 

Another limitation is that we selected the number of components in our data analysis 

based on the results from previous studies with similar data ( Lombardo 

et al., 2019; Nebel et al., 2022), rather than a data-driven approach. We have found that 

data-driven selection of the number of components using information criteria as in GIFT 

or Melodic can produce variable estimates. In fact, it is common for the authors of the 

software packages that provide automated dimension estimation to specify the number 

of group components ( Smith et al., 2015; Du et al., 2020). Recent statistical papers on 

ICA also specify the number of group components ( Mejia et al., 2020; Guo 

and Tang, 2013). In general, automated methods do not work well when there is a small 

gap between the eigenvalues in the principal subspace and the noise variance, which is 

common in fMRI. We made progress on this issue in the related class of models in 

LNGCA using a parametric bootstrap accounting for spatially correlated noise 

components ( Zhao et al., 2022). A similar procedure could be pursued here by using a 

parametric bootstrap to estimate the null distribution of eigenvalues of spatially 

correlated noise components, but again the widespread implementation may be limited 

by computational costs. 
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SUPPLEMENTARY MATERIAL 

The Web Supplement contains detailed derivations of alternating updates, the proof of 

algorithmic convergence, additional simulation results and the real data analysis. R-

package SparseICA can be obtained from https://github.com/thebrisklab/SparseICA. 
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Fig. 1 The true and estimated independent components from a single replication 

under SNR=0.4. A: The true ICs. B: Sparse ICA. C: Infomax ICA. D: Fast ICA. E: SICA-

EBM. F: Sparse Fast ICA. 
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Fig. 2 The PRMSE of estimated source signal matrices ( Ŝ ) and mixing matrices (M̂ ). 

Results represent 100 replications with a single initiation for each SNR level. A: PRMSE 

of estimated Ŝ . B: PRMSE of estimated M̂ . 
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Fig. 3 The true and estimated IC-2 (Default Mode Network A) from a single repetition. 

A: The true IC-2. B: Sparse ICA. C: Infomax ICA. D: Fast ICA. D: SICA-EBM. F: Sparse 

Fast ICA. 

  

Acc
ep

ted
 M

an
us

cri
pt



 

 

Fig. 4 The PRMSE of estimated group components (
ˆ
gS ) and mixing matrices (

ˆ , 1,2,...,20i i M
). Results represent 50 replications with 40 random initialization for each 

SNR level. A: PRMSE between estimated 
ˆ
gS  and true Sg. B: Average PRMSE between 

estimated subject 
ˆ
iM
 and true 

, 1,2,...,20i i M
. C: The computation time of a single 

initialization in seconds. 
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Fig. 5 ICs selected for significant edge differences between ASD and TD. Columns A 

and B: Sparse ICA. Column A row 1 (IC-18): posterior cingulate and precuneus areas of 

the default mode network. Column A row 2 (IC-20): medial prefrontal regions of the 

default mode. Column A row 3: subject-specific correlations between IC time courses 

with the AIPWE-adjusted estimate of the means (red square, FDR-adjusted p=0.011). 

Column B row 1 (IC-13): temporal parietal junction. Column B row 2 (IC-5): frontal areas 

of executive function. Column B row 3: subject-specific correlations (FDR-adjusted 

p=0.011). Columns C and D: matched components from Fast ICA. 
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Table 1 Average computation times in seconds over 100 replications for Sparse ICA 

and other methods. SICA-EBM and Sparse Fast ICA are implemented in MATLAB, 

other ICA methods are in R and Rcpp. 

 

Sparse ICA 

(Rcpp) 

Fast ICA 

(Rcpp) 

Infomax 

ICA (R) 

SICA-EBM 

(MATLAB) 

Sparse Fast ICA 

(MATLAB) 

Low SNR  0.0080  0.0022  0.0141  16.0053  0.0055  

Medium SNR  0.0079  0.0023  0.0186  22.9243  0.0024 

High SNR  0.0081  0.0023  0.0177  19.9347  0.0019  

High-

dimensional 1.9147  0.4323  2.3359  2233.4951  0.0253  

Table 2 Mean (standard deviation) of the correlations between the true and 

estimated source signals and mixing matrices based on different ICA methods with 100 

simulation runs in the high-dimensional setting. 

Correlations Sparse ICA Fast ICA  Infomax ICA SICA-EBM Sparse Fast ICA 

IC1 - Source 0.975(0.002) 0.927(0.003) 0.929(0.003)  0.903(0.108) 0.921(0.036)  

IC2 - Source 0.969(0.002) 0.917(0.003) 0.918(0.003)  0.944(0.002) 0.917(0.003)  

IC3 - Source 0.983(0.002) 0.920(0.003) 0.921(0.003)  0.949(0.002) 0.913(0.037)  

IC1 - Mixing 0.997(0.000) 0.995(0.001) 0.994(0.001)  0.996(0.001) 0.989(0.049)  

IC2 - Mixing 0.996(0.001) 0.993(0.001) 0.992(0.001)  0.994(0.002) 0.993(0.001)  

IC3 - Mixing 0.997(0.000) 0.995(0.001) 0.994(0.001)  0.883(0.257) 0.986(0.054)  
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