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Abstract 

Background: Continuous glucose monitors (CGMs) are increasingly used to provide detailed 
quantification of glycemic control and glucose variability. An open-source R package iglu has been 

developed to assist with automatic CGM metrics computation and data visualization, providing a 

comprehensive list of implemented CGM metrics. Motivated by the recent international consensus 

statement on CGM metrics and recommendations from recent reviews of available CGM software, we 

present an updated version of iglu with improved accessibility and expanded functionality. 

Methods: The functionality was expanded to include automated computation of hypo- and hyperglycemia 
episodes with corresponding visualizations, composite metrics of glycemic control (Glycemia Risk Index 

(GRI), Personal Glycemic State (PGS)), and glycemic metrics associated with postprandial excursions. 

The algorithm for Mean Amplitude of Glycemic Excursions (MAGE) has been updated for improved 

accuracy, and the corresponding visualization has been added. Automated hierarchical clustering 

capabilities have been added to facilitate statistical analysis. Accessibility was improved by providing 

support for the automatic processing of common data formats, expanding the graphical user interface, 

and providing mirrored functionality in Python.  

Results: The updated version of iglu has been released to the Comprehensive R Archive Network 
(CRAN) as version 4. The corresponding Python wrapper has been released to the Python Package 

Index (PyPI) as version 1. The new functionality has been demonstrated using CGM data from 19 

subjects with prediabetes and type 2 diabetes. 

Conclusions: An updated version of iglu provides comprehensive and accessible software for analyses 
of CGM data that meets the needs of researchers with varying levels of programming experience. It is 

freely available on CRAN and on GitHub at https://github.com/irinagain/iglu.  

  



1 Introduction 
 
Continuous glucose monitors (CGMs) provide high-frequency measurements of interstitial glucose. They 

are increasingly used both in clinical practice and in research studies to provide detailed quantification of 

glycemic control and glucose variability. Multiple metrics for summarizing and interpreting CGM data 

have been proposed1-2 covering various aspects of glycemic control such as overall glucose levels (e.g., 

mean), overall glucose variability (e.g., time in range, coefficient of variation), local glucose variability 

(e.g., MAGE,3 the standard deviation of glucose rate of change4), hypoglycemic risk (e.g., Hypo Index), 

and hyperglycemic risk (e.g., Hyper Index).5 New CGM metrics continue to be proposed and developed, 

including composite metrics that account for multiple dimensions of glucose control (e.g., PGS,6 GRI,7 

COGI8). CGM data interpretation is often enhanced by graphical displays, such as a consensus bar chart 

of times in range that is part of the Ambulatory Glucose Profile (AGP) report or a histogram of glucose 

rates of change.4 The variety of available CGM metrics and graphical display options poses continuous 

challenges for researchers and clinicians, as many metrics require nontrivial calculations. As a result, 

multiple software packages have been developed to assist with automatic CGM metrics computation and 

data visualization. Recent reviews and comparisons across packages are provided by Piersanti et al., 

20239 and Olsen et al., 2024.10 

An open-source R package iglu11 has been developed to assist with automatic CGM metrics 

computation and data visualization, providing a comprehensive list of implemented CGM metrics, while 

also being both accessible to users with no programming experience (due to the graphical user interface 

via Shiny App at https://irinagain.shinyapps.io/shiny_iglu/) and convenient for quantitative researchers 

relying on reproducible scripts for all data processing and metric calculation steps. The combination of 

open-source environment and corresponding functionality made iglu attractive to a wide user base, 

leading to 18,000 downloads from the Comprehensive R Archive Network (CRAN) as of February 2024, 

and its recent application in CGMap project,12 which provides reference values of CGM metrics based on 

CGM data from 7,000 non-diabetic individuals. However, as new CGM metrics continue to be proposed 

and developed, it becomes necessary to expand functionality over time. Motivated by the recent 

consensus statement on CGM metrics for clinical trials,13 as well as recommendations for CGM software 

provided in recent reviews,9-10 in this work, we present an updated version of iglu (relative to the original 

version11) with expanded functionality and enhanced accessibility.  

Introduction of all new functionality is strictly guided by updated consensus definitions and 

recommendations13, recommendations from most recent CGM software reviews9, 10 or user requests (via 

direct emails to the authors or new created issues on the package GitHub website 

https://github.com/irinagain/iglu/issues). This functionality is not meant to replace the commonly adopted 



characterization of CGM data via the Ambulatory Glucose Profile (AGP), already implemented in the prior 

version of iglu11, but rather to complement this characterization13. The expanded functionality of iglu 

covers the quantification of hypo- and hyperglycemia episodes in accordance with consensus 

classification,13 automated computation of composite metrics of glycemic control,6-7 quantification of 

postprandial glucose excursions,15 and the ability to separate metric calculations into day and night 

periods. While some of these features are also available in other CGM software platforms9, 10, to the best 

of our knowledge iglu is the only software that provides automatic quantification of postprandial glucose 

excursions. Recently, this functionality has been successfully used to quantify the impact of sedentary 

behavior on postprandial glucose in older adults with overweight or obesity15. The algorithm for calculating 

the Mean Amplitude of Glycemic Excursions (MAGE) is replaced with a more accurate validated version.3 

Prompted by the identified lack of statistical methods implementation in CGM software,10 the updated 

version also incorporates hierarchical clustering functionality with corresponding visualization, which can 

be used for both the identification of CGM metrics with complementary information as has been 

successfully demonstrated by CGMap project12 as well as patient clustering. To improve accessibility, we 

address the limitations of the previous iglu version by providing support for specialized data formats from 

popular CGMs, expanding the graphical user interface, and releasing a mirror version of the software in 

the Python programming language tailored to computational researchers. We illustrate the functionality 

on public CGM data from 19 subjects with pre-diabetes and type 2 diabetes,17 also made available as 

part of the update. 

 
2 Methods 
 
2.1 Metrics expansion 
 
Episode calculation functionality has been added via the function episode_calculation, where 

episodes are defined as extended periods of hypo- or hyperglycemia, with a consecutive period of 15 

minutes being used as a default minimal period in agreement with the consensus guidelines.13 By default, 

the hypoglycemia thresholds are set at 70 mg/dL (level 1) and 54 mg/dL (level 2), and the hyperglycemia 

thresholds are set at 180 mg/dL (level 1) and 250 mg/dL (level 2). The function introduces 4 new metrics 

for each episode type (hypo- or hyperglycemia, level 1 or level 2): 1. average number of episodes per 

day, 2. average episode duration, 3. average glucose value during the episodes, and 4. total number of 

episodes. Level 2 episodes are nested within level 1 episodes, while exclusive level 1 episodes are 

indicated with the “excl” abbreviation in the returned variable names. Optional user customization of 

episode length and thresholds has also been added. An accompanying episode visualization coded by 

color has been implemented in the epicalc_profile function.  



Two new composite metrics, GRI (Glycemic Risk Index)7 and PGS (Personal Glycemic State)6, have 

been added, with mathematical formulas taken from original publications. Three new metrics 

summarizing postprandial glucose excursions have also been added via the function meal_metrics: 

∆G (the change in glucose from baseline to postprandial peak), ∆T (the time to postprandial peak from 

the start of the meal), and % Baseline Recovery (decrease in glucose one hour after postprandial glucose 

peak expressed as a % of the peak amplitude, i.e. ∆G).15 We define baseline value as the average 

glucose value over an hour window before meal intake, with optional user customization of this time 

window available via before_win function argument. Figure 1 illustrates these metrics using an 

example postprandial excursion.  

Finally, the functionality to separate metrics calculation into sleep and wake periods has been added via 

the function calculate_sleep_wake. By default, the sleep period is defined from midnight to 6 am, 

and the wake period is defined as the remaining hours. The user can adjust the default definition of sleep 

period. 

To assist users whose primary interest is in the calculation of only consensus metrics13, we have added 

consensus_only option to all_metrics function, which results in calculation of only a subset of 

metrics:  percentage of sensor data obtained, time in ranges, mean, GMI, GRI, CV, SD, time in tight range 

(70-140 mg/dL), extended hypoglycemic and hyperglycemic event rates based on episode calculation 

functionality (these metrics are listed in Tables 2 and 3 of Battelino et al., 202313). 

2.2 MAGE calculation 

The mean amplitude of glycemic excursions (MAGE) is originally defined by Service et al17 as the 

arithmetic mean of the amplitude (height) of glucose excursions greater than the standard deviation of 

the glucose values. This definition led to a variety of algorithmic implementations since it requires 

automatic quantification of the visual “excursion” leading to substantial differences across software 

platforms in calculated values.9,19 In the updated version of iglu, we implemented a recent algorithm for 

MAGE from Fernandes et al., 20223. The algorithm uses the crosses of long and short-moving average 

glucose values to identify peaks and nadirs (defining excursions) automatically, with subsequent filtering 

only to select those excursions that are above the 1 standard deviation threshold. The optimal moving 

average window parameters have been developed based on readings of 5 min frequency3; and in the 

update, we internally interpolate to 5 min frequency, which leads to similar accuracy when the original 

frequency is 1 min, 10 min, or 15 min. To differentiate the new algorithm from the previous one, the 

acronym “ma” for the moving average is used in the specification of the MAGE version calculation (with 

the previous algorithm referred to as “naïve”). Since the excursions are not necessarily symmetric, the 



algorithm separately calculates MAGE+ and MAGE− corresponding to the averages of ascending and 

descending excursion amplitudes, respectively. The algorithm has been validated against manual MAGE 

calculations, achieving a correlation of 0.93, and shown to be more accurate than alternative 

implementations.3 According to the original definition,18 the final MAGEService is either MAGE+ or MAGE− 

depending on which amplitude was larger than 1 SD first. Other possible choices are MAGEmax = 

max(MAGE+, MAGE−) and MAGEavg = (MAGE+ + MAGE−)/2. We implemented the function mage that 

allows the calculation of all these variations, with MAGEavg being the default, as has been advocated by 

Baghurst et al., 2011.20 The function automatically handles large missing data gaps. A more detailed 

description of the algorithm, together with additional validation results and cross-comparisons with 

existing MAGE algorithms, are available in the updated iglu MAGE vignette at 

https://irinagain.github.io/iglu/articles/MAGE.html.  

2.3 Clustering and visualization 

Clustering functionality has been added, allowing investigation of differences and similarities both across 

subjects and across glucose metrics via the function metrics_heatmap. Such clustering has been used 

in the original iglu paper11 but has not been made available as a default functionality. Recently, a similar 

clustering analysis has been performed using iglu calculated metrics,12 but relied on customized scripts. 

By default, the analysis is performed using all metrics implemented in iglu, but the user can customize 

this choice. Each selected metric is centered and scaled across subjects before the analyses. 

Hierarchical clustering is performed separately across metrics and across subjects with complete linkage 

as a default agglomeration method for each.21 The dissimilarities are measured by the correlation 

distance, which is defined as d(i, j) = 1 − rij , where rij is the Pearson correlation between ith and jth metric 

(or subject). Both the choice of agglomeration method and the dissimilarity measures can be adjusted by 

the user. The resulting clustering dendrograms can be used to interpret aspects of glycemic control that 

are measured by distinct metric groups (clusters) and identify groups of subjects with distinct glycemic 

profiles. An accompanying visualization of the clusters is implemented using a heatmap with rows 

corresponding to metrics and columns to subjects. The function output contains two objects describing 

the tree produced by the clustering process, with tree_col corresponding to subjects and tree_row 

corresponding to metrics. These objects can be used to extract cluster assignments for subsequent data 

exploration and analysis purposes using cutree function. 

 

2.4 Improved accessibility 



Several enhancements were made to facilitate the use of iglu by a broad range of users. First, the 

read_raw_data function was added to enable the automatic processing of specialized data formats 

from popular CGMs into a unified format used by iglu. The underlying interface closely mimics similar 

functionality in R package cgmanalysis,21 providing support for Dexcom, Libre, Libre Pro, and iPro data 

export formats. 

Second, to increase accessibility for researchers with limited to no programming experience, we updated 

the iglu graphical user interface to incorporate the updated functionality, and also provided a pre-loaded 

example dataset to facilitate exploration of the interface. The pre-loaded dataset contains Dexcom G4 

measurements from 5 subjects with type 2 diabetes and is also included in the original version of iglu.11 

The graphical user interface can be accessed locally in R using the iglu shiny() function and is also made 

available as a web-based interface at https://irinagain.shinyapps.io/shiny iglu/. 

Finally, to increase accessibility for computational and machine learning researchers who are more likely 

to be familiar with Python rather than the R programming language, we released a Python package 

iglu-py that enables calling iglu R functions within the native Python interface without requiring 

manual R installation. The graphical user interface capability has also been made available in iglu-py. 

The Python version iglu-py can be installed from the standard Python Package Index (PyPI) repository 

package, and the development version is also available at https://github.com/IrinaStatsLab/iglu-py. 

 

2.5 Testing and validation 

To test and validate the updated iglu functionality, particularly when calculating metrics associated with 

postprandial glucose excursions, a new example dataset was added. This dataset contains Dexcom G4 

measurements from 19 subjects that are part of the larger study from Hall et al., 2018.16 The purpose of 

the original study was to evaluate how postprandial glucose patterns differ across individuals given a 

standardized nutrient challenge. The selected 19 subjects were diagnosed with either type 2 diabetes (5 

subjects) or pre-diabetes (14 subjects) on screening tests. In addition to CGM data, we also included 

data associated with standardized meal intakes, including the timestamp associated with the start of the 

meal and the meal type. All standardized meals were taken at breakfast and corresponded to one of the 

three meal types: cornflakes and milk (CF), peanut butter sandwich (PB), or PROBAR protein bar (Bar). 

Subject 2133-039, diagnosed with type 2 diabetes, was used to illustrate episode functionality. Subjects 

1636-69-001 (type 2 diabetes), 1636-69-026 (pre-diabetes), and 1636-69-032 (pre-diabetes) were used 

for PGS, GRI, and separate calculations across sleep and wake periods. Subject 2133-018 (type 2 

diabetes), with available data on three meals corresponding to CF, PB, and PROBAR, was used for meal-



related metrics. Subject 2133-019 (pre-diabetes) was used for the MAGE algorithm. All 19 subjects were 

used for clustering and verification of Python capabilities, with the first 5 subject IDs being used to 

illustrate the latter. 

 

3. Results 

The new version of iglu includes a comprehensive list of available glucose metrics with the addition of 

clustering functionality and improved accessibility. Table 1 summarizes new functionalities relative to the 

previous versions. The new functionality was verified using a newly added CGM dataset from Hall et al., 

201816, available as the example_data_hall object. 

3.1. Metrics expansion 

To illustrate episode calculation functionality, we use subject 2133-039, diagnosed with type 2 diabetes, 

as an example. Figure 2 illustrates the output of episode_calculation function and the companion 

episode visualization functionality implemented in epicalc_profile. The table included in the episode 

visualization matches the code output of the episode calculation function. The graphical display, color-

coded by level and episode type, allows visual inspection of episode patterns and validation of results 

presented in the table. There are 10 hypoglycemia episodes, corresponding to 1.3 episodes per day. In 

contrast, there are only 2 hyperglycemia episodes, both strictly within level 1 (above 180 mg/dL but below 

the level 2 threshold of 250 mg/dL). 

The values of two new composite metrics, GRI and PGS, were evaluated on three selected subjects 

using corresponding functions. 

> gri(example_data_hall) 

# A tibble: 3 x 2 

  id              GRI 

  <chr>         <dbl> 

1 1636-69-001   3.34  

2 1636-69-026   0.624 

3 1636-69-032   0.269 

 

> pgs(example_data_hall) 

# A tibble: 3 × 2 



id             PGS 

  <chr>        <dbl> 

1 1636-69-001   5.51 

2 1636-69-026   5.44 

3 1636-69-032   5.32 

PGS values are comparable for all subjects, whereas GRI is notably larger for subjects 1636-69-001. 

Based on the diagnosis from the screening tests, this subject has type 2 diabetes. In contrast, the other 

two subjects have pre-diabetes, which is reflected by the lower GRI values. These differences in PGS 

are less pronounced due to the difference in the constituent components for each composite metric. While 

GRI considers exclusively the percent of time spent out of range, PGS also incorporates information 

about hypoglycemic episodes, as well as glucose variability metrics.  

Functionality associated with meal-related metrics has been validated using subject 2133-018, diagnosed 

with type 2 diabetes, with available data on three meals corresponding to peanut butter (PB), cornflakes 

(CF), and PROBAR (Bar) meal types, respectively. Figure 3 illustrates the matched CGM data 

visualization with the corresponding mealtimes and output of meal_metrics function. The function 

automatically matches CGM data with the supplied mealtime information to compute three metrics: ∆G, 

∆T, and % Baseline Recovery. For all three meals, the glucose peak is reached approximately 80 minutes 

(∆T) after the meal’s start time. The CF meal type leads to the highest glucose excursion, with an increase 

of 171 mg/dL (∆G) compared to the pre-meal baseline, whereas the glucose increase from Bar intake is 

the smallest (∆G = 78 mg/dL). The subject displays relatively poor recovery from the meal intakes, 

reaching only 38% recovery one hour after peak for PB meal type. The recovery is best for the Bar meal 

type, which could be due to its smallest corresponding ∆G.  

To validate new functionality associated with calculating metrics separately across sleep and wake 

periods, we compute mean glucose for each period for three selected subjects as illustrated below. 

> calculate_sleep_wake(example_data_hall, mean_glu, calculate = "both") 

# A tibble: 3 × 3 

   id           `mean sleep` `mean wake` 

   <chr>               <dbl>       <dbl> 

 1 1636-69-001          99.0       111.  

 2 1636-69-026         113.        116.  

 3 1636-69-032         103.        110. 



We find that the average glucose values are higher during the wake period compared to the sleep period 

(defined by default as midnight to 6 am), which is expected since high glucose values tend to be 

associated with meal intakes, which happen during the day. 

Finally, we validated that the new consensus_only option in all_metrics returns a reduced list of 

metric values that agree with the values from individual metric function calls. Below is an example of the 

function use based on CGM data from subject 2133-018. 

> all_metrics(data = example_data_hall %>% dplyr::filter(id == "2133-039"), 

                  metrics_to_include = 'consensus_only') 

3.2 MAGE Calculation 

The new MAGE algorithm has been implemented with corresponding visualization to allow the users to 

examine the identified excursions and visualize any data gaps. Using data from subject 2133-019 as an 

example, the MAGE value is computed by the call to mage_ma_single function, where “ma” in the 

function name stands for moving average to differentiate the new algorithm from other MAGE 

implementations. The optional visualization is available via plot = TRUE, allowing the user to examine 

underlying calculations (Figure 4). In this instance, the output warns of a large missing data gap. The 

illustration reveals two missing data gaps (highlighted by shaded regions), with one of the gaps spanning 

several days of measurements. In the presence of large gaps (over 12 hours of missing data), excursion 

identification is performed separately for each consecutive segment, with the final MAGE value returned 

as a weighted average across segments (adjusting for segment length). Each segment’s start and end 

boundaries are shown with solid and dotted vertical lines, respectively. The arrows indicate the direction 

of calculation (MAGE+ or MAGE−), with both arrows shown as default (corresponding to MAGEavg). The 

up arrows start from the automatically identified nadir, with the arrow height corresponding to the height 

of the peak, and the down arrows start from the peak. By further setting plot type = ”plotly”,23 the 

user gets access to interactive capabilities, for example, the ability to hover over any datapoint to see an 

informative tooltip.  

3.3 Clustering and visualization 

To validate the new clustering functionality, we applied the metrics heatmap function to 19 subjects from 

Hall et al., 201817 and 57 extracted glucose metrics. Figure 5 illustrates the corresponding heatmap and 

clustering dendrograms, where, by default, the metrics are visually divided into 6 clusters. The 

accompanying subjects’ dendrogram visually separates the subjects into three groups, which we would 

interpret from left to right. The 1st group consists of subjects with higher “in-range” values (higher values 

for 1st metric group) and lower values for hypo- and hyperglycemia metrics. The 2nd group consists of 



subjects with more pronounced hypoglycemia. The 3rd group comprises subjects with more pronounced 

hyperglycemia and higher glucose variability. By matching the subjects with the diagnosis, we observe 

that the first two groups primarily correspond to pre-diabetes patients. In contrast, the last group has an 

equal mix of patients with pre-diabetes and type 2 diabetes. To automatically extract subjects’ cluster 

assignments, we use the returned tree_col object with cutree function: 

> cluster_out = metrics_heatmap(data = example_data_hall) 

> cutree(cluster_out$tree_col, k = 3) 

 1636-69-001  1636-69-026  1636-69-032  1636-69-090  1636-69-091  1636-69-114  

           1            2            2            1            2            2  

1636-70-1005 1636-70-1010     2133-004     2133-015     2133-017     2133-018  

           1            3            1            2            2            1  

    2133-019     2133-021     2133-024     2133-027     2133-035     2133-036  

           3            1            3            3            2            3  

    2133-039  

           3 

This clustering information can be used for subsequent data exploration and analysis. 

2.4 Improved accessibility 

The updated iglu functionality has been incorporated into a point-and-click graphical user interface 

(GUI) via the Shiny app, which is available from the R console by calling: 

> iglu::iglu_shiny() 

or directly at https://irinagain.shinyapps.io/shiny iglu/. The pre-loaded data on 5 subjects with type 2 

diabetes allows the users to get accustomed to the functionality quickly. Figure 6 illustrates the newly 

added episode calculation interface, with dedicated boxes for adjustment of default parameters 

corresponding to level 1 and level 2 hypo- and hyperglycemia thresholds and minimal duration length (in 

minutes) to be counted as an episode. This functionality is added as a new tab in addition to the already 

existing AGP report tab14, providing the users with complementary information. 

To validate the functionality of the mirrored Python package, we installed it using the Python package 

manager via: 

$ pip install iglu-py 



We verified iglu functionality within the Python environment by calculating average glucose values for 

data from Hall et al.17 The corresponding script in Python is: 

>>> import iglu_py 

>>> iglu_py.mean_glu(iglu.example_data_hall) 

        id           mean 

1   1636-69-001   108.228602 

2   1636-69-026   115.155902 

3   1636-69-032   108.315760 

4   1636-69-090   108.750403 

5   1636-69-091   103.107044 

and the corresponding output is verified to match the R output. The graphical user interface is also 

accessible from the Python environment via the following command. 

>>> iglu_py.iglu_shiny() 

4 Conclusion 

We provide an updated version of iglu with the intent of meeting the needs for automatic calculation of 

a wide array of CGM metrics that continue to be introduced in the literature, and to improve the 

accessibility of software for both clinical researchers (via an expanded graphical user interface) and 

computational researchers (via the addition of Python interface). Our update also addresses limitations 

in the original iglu version11 by including functionality to read data in specialized formats of many popular 

CGMs, quantify hypo- and hyperglycemic episodes, and separate it into sleep and wake periods. We 

have demonstrated the updated functionality on the CGM data from patients with prediabetes and type 

2 diabetes,17 and these data are also available with the software. 

Many alternative CGM software platforms are available, such as EasyGV,24 GlyCulator,25 cgmanalysis,26 

AGATA,27 etc., which provide complementary solutions to the needs of various research groups. A 

detailed comparison across CGM software packages, including comparison with iglu, is provided in 

recent comprehensive software reviews.9-10 The main strength of iglu is its comprehensive 

implementation of available CGM metrics and graphical displays,9-10 as well as demonstrated agreement 

in calculated metric values against other CGM software.9 Of particular note is the new MAGE algorithm, 

which has been validated against manual calculations,3 showing higher accuracy than several existing 

alternatives. To further aid users in ensuring the accuracy of results, we have added customized graphical 

displays (e.g., new episode calculation display in Figure 2 and a new display for MAGE in Figure 3) to 

enable visual inspection of underlying calculations.  



Objective comparisons of different CGM software packages pose multiple challenges. Usability and ease 

of use assessments can differ greatly among user groups. For example, quantitative researchers might 

prefer tools that facilitate reproducible research in familiar programming environments, while users with 

limited programming skills may favor a user-friendly graphical interface. Moreover, a thorough 

comparison of performance metrics like accuracy and speed necessitates extensive testing across 

diverse datasets and continuous software updates, which are beyond the scope of our current study. 

Recent efforts such as those by Piersanti et al. (2023)9, which evaluates and compares a comprehensive 

list of metrics and software platforms based on CGM data from 6 patients with type 1 diabetes, and Akturk 

et al. (2022)26, which considers a larger cohort of 188 patients with type 1 diabetes but limits its 

comparison to specific software and only few summary metrics, illustrate the limitations of current 

methodologies. These examples highlight the critical need for more comprehensive cross-evaluations 

and the establishment of universal standards for comparing software packages in future studies.  

As with any CGM software, the accuracy of calculated metrics can be affected by missing data. By 

default, iglu performs linear interpolation in the presence of short missing data gaps (using a 45 min 

threshold as default), and provides warnings to the user whenever a large gap (over 12 hours) is present 

in the data. However, linear interpolation is only applied for the calculation of more complex metrics that 

require equally-spaced measurements (e.g., the new MAGE algorithm, episode calculation functionality) 

and is not automatically applied when calculating mean glucose values and time-in-range. While other 

CGM software typically use a similar approach (e.g., 50 min gap is used by default in EasyGV24), large 

amounts of missing data may lead to disagreements in calculated metric values depending on the chosen 

mechanism of handling missing data. Extra care should be taken when data is not missing at random but 

is due to the values outside of thresholds corresponding to CGM measurement range, which is dependent 

on the specific CGM model. By default, iglu treats such values the same as other missing data, whereas 

other software programs may choose to replace those values with values at the threshold. While the 

former approach avoids the downward bias in glucose variability metrics resulting from imputing a 

constant threshold limit for missing values, the latter approach can be more accurate for evaluating time-

in-range measures. However, the latter choice requires explicit knowledge of the measurement limits 

associated with a specific CGM model and thus may be error-prone when applied on a large scale with 

data from several different manufacturers. A preferred solution would be to perform sensitivity analyses 

of calculated metric values depending on the choice of missing data treatment.24 However, such 

customized analyses are difficult to implement in an automated fashion. 

Many CGM metrics are highly correlated28, 29, 30, raising the question of the added value of having a 

comprehensive array of metrics over the consensus ones. Large-scale prospective outcome studies 



would be valuable for examining metrics overlap and their predictive power for clinical outcomes1. By 

providing accessible software that allows computation of the wide array of CGM metrics in a reproducible 

fashion, we hope to facilitate future research in this direction. 

In summary, we believe that an updated version of iglu provides comprehensive and accessible 

software for analyses of CGM data. It accommodates both researchers who favor point-and-click 

graphical user interfaces as well as those who prefer the creation of reproducible scripts for all data 

processing and metric calculation steps. 
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Broll et al., 202111 This paper 

CRAN R package version 
V1 V2 V3 V4 

Metrics Episode 
calculations 

NA NA New feature + update to match 
consensus definition 

Postprandial 
(meal) metrics 

NA NA NA New feature 

Other ADRR, BGIs, 
CONGA, CV, 
ea1c, GRADEs, 
hyper/hypo-
index, IGC, J-
index, linear 
interpolation, 
mean, M-value, 
MODD, SD 
measures, 
times in ranges 

+ AUC, COGI, 
CV measures, 
GMI, GVP, 
MAD, MAG, 
rate of 
change, 
percent of 
sensor data, 
all_metrics 
wrapper 

+ sleep/wake 
metric splitting 

+ PGS, GRI, 
consensus_only13 
option in 
all_metrics to 
return reduced 
metrics list 

MAGE Algorithm NA Naive 
algorithm 
(mean glucose 
values further 
than 1SD from 
the day's 
mean) 

New algorithm3 
to match Service 
definition 

+ updates to 
account for large 
gaps of missing 
data (> 3 hours) 

Clustering and 
Visualizations 

Time-series, 
lasagna plots, 
rates of change 
plot 

+ AGP, day by 
day plots, bar 
plot for times 
in range 

+ interactive 
MAGE plot, 
episode 
visualization 

+ metrics heatmap, 
hierarchical 
clustering, meals 
plot 

Accessibility  GUI via Shiny 
App, example 
dataset 

+ support of 
specialized data 
formats; mmol/l 
to mg/dl 
conversion in 
process_data; 
example dataset 
in Shiny app 

+ updated GUI to 
match R package; 
mirrored Python 
package 

 

Table 1: A summary of iglu functionalities relative to released CRAN R package versions. The original 
manuscript11 covers versions 1 and 2, with the current manuscript describing changes since then. 

 

 

  



 

 

Figure 1: Illustration of metrics summarizing postprandial glucose excursion: ∆G (the change in 
glucose from baseline to postprandial peak), ∆T (the time to postprandial peak from the start of the 

meal), and % Baseline Recovery (decrease in glucose one hour after postprandial glucose peak 

expressed as a % of the peak amplitude, i.e. ∆G). 
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> episode_calculation(data = example_data_hall %>% dplyr::filter(id == "2133-039")) 

# A tibble: 7 × 7 

  id       type level      avg_ep_per_day avg_ep_duration avg_ep_gl total_episodes 

  <chr>    <chr> <chr>             <dbl>           <dbl>     <dbl>          <dbl> 

1 2133-039 hypo  lv1               1.33             49        63.8             10 

2 2133-039 hypo  lv2               0.133            15        51.4              1 

3 2133-039 hypo  extended          0                 0        NA                0 

4 2133-039 hyper lv1               0.266            42.5     188.               2 

5 2133-039 hyper lv2               0                 0        NA                0 

6 2133-039 hypo  lv1_excl          1.20             45        64.2              9 

7 2133-039 hyper lv1_excl          0.266            42.5     188.               2 

 

Figure 2: Illustration of episode visualization (Panel A) and corresponding console calculation (Panel B) 
functionality implemented in iglu using subject 2133-039 from Hall et al., 201817 as an example. 
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B 

> example_meals_hall%>% dplyr::filter(id == "2133-018") 

# A tibble: 3 × 3 

  id       meal  mealtime            

  <chr>    <chr> <dttm>              

1 2133-018 PB 1  2017-03-15 09:40:00 

2 2133-018 CF 1  2017-03-16 07:15:00 

3 2133-018 Bar 1 2017-03-17 09:05:00 

C 

> meal_metrics(example_data_hall %>% dplyr::filter(id == "2133-018"), 

                example_meals_hall%>% dplyr::filter(id == "2133-018")) 

# A tibble: 3 × 6 

  id       time                meal  deltag deltat basereco 

  <chr>    <dttm>              <chr>  <dbl>  <dbl>    <dbl> 

1 2133-018 2017-03-15 09:40:00 PB 1    97.8     80    0.378 

2 2133-018 2017-03-16 07:15:00 CF 1   171.      75    0.429 

3 2133-018 2017-03-17 09:05:00 Bar 1   77.6     75    0.670 

Figure 3: Illustration of meal metrics visualization (Panel A), meal times in original data (Panel B), and 
corresponding metric values (Panel C) using subject 2133-039 from Hall et al., 201817 as an example.  
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> mage_ma_single(data = example_data_hall %>% dplyr::filter(id == "2133-019"), plot=FALSE) 

Gap found in data for subject id: 2133-019, that exceeds 12 hours. 

[1] 47.03813 

Figure 4: Illustration of MAGE calculation (Panel B) and associated visualization (Panel A) in iglu using 
subject 2133-019 from Hall et al., 201817 as an example. The software automatically highlights regions 

with missing glucose readings (gaps). The colored dots correspond to automatically identified peaks 

and nadirs corresponding to excursions. The arrows indicate excursion magnitudes with arrows 

pointing up for MAGE+ and pointing down for MAGE-. 
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Figure 5: Top: Heatmap of CGM metrics on 19 subjects from Hall dataset17. Hierarchical clustering is 
performed on centered and scaled metric values using distance correlation and complete linkage. The 

cluster tree for metrics is cut at 6 groups. Bottom: An enlarged version of dendrogram corresponding to 

subjects with labels corresponding to diagnosis (diabetic or pre-diabetic). 
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Figure 6: Illustration of a graphical user interface for episode calculation functionality available via the 
accompanying Shiny App. The additional tab for episode calculation complements information 

presented in the standard AGP report.  


