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Abstract

Background: Continuous glucose monitors (CGMs) are increasingly used to provide detailed
quantification of glycemic control and glucose variability. An open-source R package iglu has been
developed to assist with automatic CGM metrics computation and data visualization, providing a
comprehensive list of implemented CGM metrics. Motivated by the recent international consensus
statement on CGM metrics and recommendations from recent reviews of available CGM software, we

present an updated version of iglu with improved accessibility and expanded functionality.

Methods: The functionality was expanded to include automated computation of hypo- and hyperglycemia
episodes with corresponding visualizations, composite metrics of glycemic control (Glycemia Risk Index
(GRI), Personal Glycemic State (PGS)), and glycemic metrics associated with postprandial excursions.
The algorithm for Mean Amplitude of Glycemic Excursions (MAGE) has been updated for improved
accuracy, and the corresponding visualization has been added. Automated hierarchical clustering
capabilities have been added to facilitate statistical analysis. Accessibility was improved by providing
support for the automatic processing of common data formats, expanding the graphical user interface,

and providing mirrored functionality in Python.

Results: The updated version of iglu has been released to the Comprehensive R Archive Network
(CRAN) as version 4. The corresponding Python wrapper has been released to the Python Package
Index (PyPl) as version 1. The new functionality has been demonstrated using CGM data from 19

subjects with prediabetes and type 2 diabetes.

Conclusions: An updated version of iglu provides comprehensive and accessible software for analyses
of CGM data that meets the needs of researchers with varying levels of programming experience. It is
freely available on CRAN and on GitHub at https://github.com/irinagain/iglu.




1 Introduction

Continuous glucose monitors (CGMs) provide high-frequency measurements of interstitial glucose. They
are increasingly used both in clinical practice and in research studies to provide detailed quantification of
glycemic control and glucose variability. Multiple metrics for summarizing and interpreting CGM data
have been proposed’ covering various aspects of glycemic control such as overall glucose levels (e.g.,
mean), overall glucose variability (e.g., time in range, coefficient of variation), local glucose variability
(e.g., MAGE,? the standard deviation of glucose rate of change*), hypoglycemic risk (e.g., Hypo Index),
and hyperglycemic risk (e.g., Hyper Index).> New CGM metrics continue to be proposed and developed,
including composite metrics that account for multiple dimensions of glucose control (e.g., PGS,® GRI,’
COGI®). CGM data interpretation is often enhanced by graphical displays, such as a consensus bar chart
of times in range that is part of the Ambulatory Glucose Profile (AGP) report or a histogram of glucose
rates of change.* The variety of available CGM metrics and graphical display options poses continuous
challenges for researchers and clinicians, as many metrics require nontrivial calculations. As a result,
multiple software packages have been developed to assist with automatic CGM metrics computation and
data visualization. Recent reviews and comparisons across packages are provided by Piersanti et al.,
2023° and Olsen et al., 2024."°

An open-source R package iglu'' has been developed to assist with automatic CGM metrics
computation and data visualization, providing a comprehensive list of implemented CGM metrics, while
also being both accessible to users with no programming experience (due to the graphical user interface

via Shiny App at https://irinagain.shinyapps.io/shiny iglu/) and convenient for quantitative researchers

relying on reproducible scripts for all data processing and metric calculation steps. The combination of
open-source environment and corresponding functionality made iglu attractive to a wide user base,
leading to 18,000 downloads from the Comprehensive R Archive Network (CRAN) as of February 2024,
and its recent application in CGMap project,'? which provides reference values of CGM metrics based on
CGM data from 7,000 non-diabetic individuals. However, as new CGM metrics continue to be proposed
and developed, it becomes necessary to expand functionality over time. Motivated by the recent
consensus statement on CGM metrics for clinical trials,'® as well as recommendations for CGM software
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provided in recent reviews,” " in this work, we present an updated version of 1 g1u (relative to the original

version™) with expanded functionality and enhanced accessibility.

Introduction of all new functionality is strictly guided by updated consensus definitions and
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recommendations'®, recommendations from most recent CGM software reviews® '° or user requests (via

direct emails to the authors or new created issues on the package GitHub website

https://github.com/irinagain/iglu/issues). This functionality is not meant to replace the commonly adopted



characterization of CGM data via the Ambulatory Glucose Profile (AGP), already implemented in the prior
version of iglu', but rather to complement this characterization. The expanded functionality of iglu
covers the quantification of hypo- and hyperglycemia episodes in accordance with consensus
classification,” automated computation of composite metrics of glycemic control,®” quantification of
postprandial glucose excursions,’ and the ability to separate metric calculations into day and night
periods. While some of these features are also available in other CGM software platforms® '°, to the best
of our knowledge iglu is the only software that provides automatic quantification of postprandial glucose
excursions. Recently, this functionality has been successfully used to quantify the impact of sedentary
behavior on postprandial glucose in older adults with overweight or obesity'®. The algorithm for calculating
the Mean Amplitude of Glycemic Excursions (MAGE) is replaced with a more accurate validated version.®
Prompted by the identified lack of statistical methods implementation in CGM software,'® the updated
version also incorporates hierarchical clustering functionality with corresponding visualization, which can
be used for both the identification of CGM metrics with complementary information as has been

successfully demonstrated by CGMap project'?

as well as patient clustering. To improve accessibility, we
address the limitations of the previous iglu version by providing support for specialized data formats from
popular CGMs, expanding the graphical user interface, and releasing a mirror version of the software in
the Python programming language tailored to computational researchers. We illustrate the functionality
on public CGM data from 19 subjects with pre-diabetes and type 2 diabetes,'” also made available as

part of the update.

2 Methods
2.1 Metrics expansion

Episode calculation functionality has been added via the function episode calculation, where
episodes are defined as extended periods of hypo- or hyperglycemia, with a consecutive period of 15
minutes being used as a default minimal period in agreement with the consensus guidelines.' By default,
the hypoglycemia thresholds are set at 70 mg/dL (level 1) and 54 mg/dL (level 2), and the hyperglycemia
thresholds are set at 180 mg/dL (level 1) and 250 mg/dL (level 2). The function introduces 4 new metrics
for each episode type (hypo- or hyperglycemia, level 1 or level 2): 1. average number of episodes per
day, 2. average episode duration, 3. average glucose value during the episodes, and 4. total number of
episodes. Level 2 episodes are nested within level 1 episodes, while exclusive level 1 episodes are
indicated with the “excl” abbreviation in the returned variable names. Optional user customization of
episode length and thresholds has also been added. An accompanying episode visualization coded by

color has been implemented in the epicalc profile function.



Two new composite metrics, GRI (Glycemic Risk Index)” and PGS (Personal Glycemic State)®, have
been added, with mathematical formulas taken from original publications. Three new metrics
summarizing postprandial glucose excursions have also been added via the function meal metrics:
AG (the change in glucose from baseline to postprandial peak), AT (the time to postprandial peak from
the start of the meal), and % Baseline Recovery (decrease in glucose one hour after postprandial glucose
peak expressed as a % of the peak amplitude, i.e. AG)."”® We define baseline value as the average
glucose value over an hour window before meal intake, with optional user customization of this time
window available via before win function argument. Figure 1 illustrates these metrics using an

example postprandial excursion.

Finally, the functionality to separate metrics calculation into sleep and wake periods has been added via
the function calculate sleep wake. By default, the sleep period is defined from midnight to 6 am,
and the wake period is defined as the remaining hours. The user can adjust the default definition of sleep

period.

To assist users whose primary interest is in the calculation of only consensus metrics'®, we have added
consensus_only option to all metrics function, which results in calculation of only a subset of
metrics: percentage of sensor data obtained, time in ranges, mean, GMI, GRI, CV, SD, time in tight range
(70-140 mg/dL), extended hypoglycemic and hyperglycemic event rates based on episode calculation

functionality (these metrics are listed in Tables 2 and 3 of Battelino et al., 2023').

2.2 MAGE calculation

I'" as the

The mean amplitude of glycemic excursions (MAGE) is originally defined by Service et a
arithmetic mean of the amplitude (height) of glucose excursions greater than the standard deviation of
the glucose values. This definition led to a variety of algorithmic implementations since it requires
automatic quantification of the visual “excursion” leading to substantial differences across software
platforms in calculated values.®'® In the updated version of iglu, we implemented a recent algorithm for
MAGE from Fernandes et al., 20223, The algorithm uses the crosses of long and short-moving average
glucose values to identify peaks and nadirs (defining excursions) automatically, with subsequent filtering
only to select those excursions that are above the 1 standard deviation threshold. The optimal moving
average window parameters have been developed based on readings of 5 min frequency?; and in the
update, we internally interpolate to 5 min frequency, which leads to similar accuracy when the original
frequency is 1 min, 10 min, or 15 min. To differentiate the new algorithm from the previous one, the
acronym “ma” for the moving average is used in the specification of the MAGE version calculation (with

the previous algorithm referred to as “naive”). Since the excursions are not necessarily symmetric, the



algorithm separately calculates MAGE. and MAGE- corresponding to the averages of ascending and
descending excursion amplitudes, respectively. The algorithm has been validated against manual MAGE
calculations, achieving a correlation of 0.93, and shown to be more accurate than alternative
implementations.® According to the original definition,® the final MAGEsenice is either MAGE. or MAGE-
depending on which amplitude was larger than 1 SD first. Other possible choices are MAGEnax =
max(MAGE.:, MAGE-) and MAGE.,y = (MAGE: + MAGE-)/2. We implemented the function mage that
allows the calculation of all these variations, with MAGE..4 being the default, as has been advocated by
Baghurst et al., 2011.2° The function automatically handles large missing data gaps. A more detailed
description of the algorithm, together with additional validation results and cross-comparisons with
existing MAGE algorithms, are available in the wupdated iglu MAGE Vvignette at
https://irinagain.github.io/iglu/articles/MAGE .html.

2.3 Clustering and visualization

Clustering functionality has been added, allowing investigation of differences and similarities both across
subjects and across glucose metrics via the functionmetrics heatmap. Such clustering has been used
in the original ig1u paper' but has not been made available as a default functionality. Recently, a similar
clustering analysis has been performed using ig1u calculated metrics, but relied on customized scripts.
By default, the analysis is performed using all metrics implemented in ig1u, but the user can customize
this choice. Each selected metric is centered and scaled across subjects before the analyses.
Hierarchical clustering is performed separately across metrics and across subjects with complete linkage
as a default agglomeration method for each.?! The dissimilarities are measured by the correlation
distance, which is defined as d(i, j) = 1 — r;j, where rj is the Pearson correlation between i and ji metric
(or subject). Both the choice of agglomeration method and the dissimilarity measures can be adjusted by
the user. The resulting clustering dendrograms can be used to interpret aspects of glycemic control that
are measured by distinct metric groups (clusters) and identify groups of subjects with distinct glycemic
profiles. An accompanying visualization of the clusters is implemented using a heatmap with rows
corresponding to metrics and columns to subjects. The function output contains two objects describing
the tree produced by the clustering process, with tree col corresponding to subjects and tree row
corresponding to metrics. These objects can be used to extract cluster assignments for subsequent data

exploration and analysis purposes using cutree function.

2.4 Improved accessibility



Several enhancements were made to facilitate the use of iglu by a broad range of users. First, the
read raw_data function was added to enable the automatic processing of specialized data formats
from popular CGMs into a unified format used by iglu. The underlying interface closely mimics similar
functionality in R package cgmanalysis,?' providing support for Dexcom, Libre, Libre Pro, and iPro data

export formats.

Second, to increase accessibility for researchers with limited to no programming experience, we updated
the iglu graphical user interface to incorporate the updated functionality, and also provided a pre-loaded
example dataset to facilitate exploration of the interface. The pre-loaded dataset contains Dexcom G4
measurements from 5 subjects with type 2 diabetes and is also included in the original version of iglu."
The graphical user interface can be accessed locally in R using the iglu shiny() function and is also made

available as a web-based interface at https://irinagain.shinyapps.io/shiny iglu/.

Finally, to increase accessibility for computational and machine learning researchers who are more likely
to be familiar with Python rather than the R programming language, we released a Python package
iglu-py that enables calling iglu R functions within the native Python interface without requiring
manual R installation. The graphical user interface capability has also been made available in iglu-py.

The Python version iglu-py can be installed from the standard Python Package Index (PyPl) repository

package, and the development version is also available at https://github.com/IrinaStatsLab/iglu-py.

2.5 Testing and validation

To test and validate the updated i g1u functionality, particularly when calculating metrics associated with
postprandial glucose excursions, a new example dataset was added. This dataset contains Dexcom G4
measurements from 19 subjects that are part of the larger study from Hall et al., 2018."® The purpose of
the original study was to evaluate how postprandial glucose patterns differ across individuals given a
standardized nutrient challenge. The selected 19 subjects were diagnosed with either type 2 diabetes (5
subjects) or pre-diabetes (14 subjects) on screening tests. In addition to CGM data, we also included
data associated with standardized meal intakes, including the timestamp associated with the start of the
meal and the meal type. All standardized meals were taken at breakfast and corresponded to one of the
three meal types: cornflakes and milk (CF), peanut butter sandwich (PB), or PROBAR protein bar (Bar).
Subject 2133-039, diagnosed with type 2 diabetes, was used to illustrate episode functionality. Subjects
1636-69-001 (type 2 diabetes), 1636-69-026 (pre-diabetes), and 1636-69-032 (pre-diabetes) were used
for PGS, GRI, and separate calculations across sleep and wake periods. Subject 2133-018 (type 2

diabetes), with available data on three meals corresponding to CF, PB, and PROBAR, was used for meal-



related metrics. Subject 2133-019 (pre-diabetes) was used for the MAGE algorithm. All 19 subjects were
used for clustering and verification of Python capabilities, with the first 5 subject IDs being used to

illustrate the latter.

3. Results

The new version of iglu includes a comprehensive list of available glucose metrics with the addition of
clustering functionality and improved accessibility. Table 1 summarizes new functionalities relative to the
previous versions. The new functionality was verified using a newly added CGM dataset from Hall et al.,

2018, available as the example data hall object.
3.1. Metrics expansion

To illustrate episode calculation functionality, we use subject 2133-039, diagnosed with type 2 diabetes,
as an example. Figure 2 illustrates the output of episode calculation function and the companion
episode visualization functionality implemented in epicalc _profile. The table included in the episode
visualization matches the code output of the episode calculation function. The graphical display, color-
coded by level and episode type, allows visual inspection of episode patterns and validation of results
presented in the table. There are 10 hypoglycemia episodes, corresponding to 1.3 episodes per day. In
contrast, there are only 2 hyperglycemia episodes, both strictly within level 1 (above 180 mg/dL but below
the level 2 threshold of 250 mg/dL).

The values of two new composite metrics, GRI and PGS, were evaluated on three selected subjects

using corresponding functions.
> gri(example data hall)
# A tibble: 3 x 2
id GRI
<chr> <dbl>
1 1636-69-001  3.34
2 1636-69-026  0.624

3 1636-69-032 0.269

> pgs (example data hall)

# A tibble: 3 x 2



id PGS
<chr> <dbl>

1 1636-69-001 5.51

2 1636-69-026 5.44

3 1636-69-032 5.32

PGS values are comparable for all subjects, whereas GRI is notably larger for subjects 1636-69-001.
Based on the diagnosis from the screening tests, this subject has type 2 diabetes. In contrast, the other
two subjects have pre-diabetes, which is reflected by the lower GRI values. These differences in PGS
are less pronounced due to the difference in the constituent components for each composite metric. While
GRI considers exclusively the percent of time spent out of range, PGS also incorporates information

about hypoglycemic episodes, as well as glucose variability metrics.

Functionality associated with meal-related metrics has been validated using subject 2133-018, diagnosed
with type 2 diabetes, with available data on three meals corresponding to peanut butter (PB), cornflakes
(CF), and PROBAR (Bar) meal types, respectively. Figure 3 illustrates the matched CGM data
visualization with the corresponding mealtimes and output of meal metrics function. The function
automatically matches CGM data with the supplied mealtime information to compute three metrics: AG,
AT, and % Baseline Recovery. For all three meals, the glucose peak is reached approximately 80 minutes
(AT) after the meal’s start time. The CF meal type leads to the highest glucose excursion, with an increase
of 171 mg/dL (AG) compared to the pre-meal baseline, whereas the glucose increase from Bar intake is
the smallest (AG = 78 mg/dL). The subject displays relatively poor recovery from the meal intakes,
reaching only 38% recovery one hour after peak for PB meal type. The recovery is best for the Bar meal
type, which could be due to its smallest corresponding AG.

To validate new functionality associated with calculating metrics separately across sleep and wake

periods, we compute mean glucose for each period for three selected subjects as illustrated below.
> calculate sleep wake (example data hall, mean glu, calculate = "both")

# A tibble: 3 x 3

id ‘mean sleep’ “mean wake’®

<chr> <dbl> <dbl>
1 1636-69-001 99.0 111.
2 1636-69-026 113. 116.

3 1636-69-032 103. 110.



We find that the average glucose values are higher during the wake period compared to the sleep period
(defined by default as midnight to 6 am), which is expected since high glucose values tend to be

associated with meal intakes, which happen during the day.

Finally, we validated that the new consensus_only option in all metrics returns a reduced list of
metric values that agree with the values from individual metric function calls. Below is an example of the
function use based on CGM data from subject 2133-018.

> all metrics(data = example data hall %>% dplyr::filter(id == "2133-039"),
metrics to include = 'consensus only')

3.2 MAGE Calculation

The new MAGE algorithm has been implemented with corresponding visualization to allow the users to
examine the identified excursions and visualize any data gaps. Using data from subject 2133-019 as an
example, the MAGE value is computed by the call to mage ma single function, where “ma” in the
function name stands for moving average to differentiate the new algorithm from other MAGE
implementations. The optional visualization is available via plot = TRUE, allowing the user to examine
underlying calculations (Figure 4). In this instance, the output warns of a large missing data gap. The
illustration reveals two missing data gaps (highlighted by shaded regions), with one of the gaps spanning
several days of measurements. In the presence of large gaps (over 12 hours of missing data), excursion
identification is performed separately for each consecutive segment, with the final MAGE value returned
as a weighted average across segments (adjusting for segment length). Each segment’s start and end
boundaries are shown with solid and dotted vertical lines, respectively. The arrows indicate the direction
of calculation (MAGE. or MAGE-), with both arrows shown as default (corresponding to MAGE..,). The
up arrows start from the automatically identified nadir, with the arrow height corresponding to the height
of the peak, and the down arrows start from the peak. By further setting plot type = “plotly”,? the
user gets access to interactive capabilities, for example, the ability to hover over any datapoint to see an

informative tooltip.
3.3 Clustering and visualization

To validate the new clustering functionality, we applied the metrics heatmap function to 19 subjects from
Hall et al., 2018"" and 57 extracted glucose metrics. Figure 5 illustrates the corresponding heatmap and
clustering dendrograms, where, by default, the metrics are visually divided into 6 clusters. The
accompanying subjects’ dendrogram visually separates the subjects into three groups, which we would
interpret from left to right. The 1st group consists of subjects with higher “in-range” values (higher values

for 1st metric group) and lower values for hypo- and hyperglycemia metrics. The 2nd group consists of



subjects with more pronounced hypoglycemia. The 3rd group comprises subjects with more pronounced
hyperglycemia and higher glucose variability. By matching the subjects with the diagnosis, we observe
that the first two groups primarily correspond to pre-diabetes patients. In contrast, the last group has an
equal mix of patients with pre-diabetes and type 2 diabetes. To automatically extract subjects’ cluster

assignments, we use the returned tree col object with cutree function:
> cluster out = metrics heatmap(data = example data hall)
> cutree (cluster outStree col, k = 3)

1636-69-001 1636-69-026 1636-69-032 1636-69-090 1636-69-091 1636-69-114

1 2 2 1 2 2
1636-70-1005 1636-70-1010 2133-004 2133-015 2133-017 2133-018
1 3 1 2 2 1
2133-019 2133-021 2133-024 2133-027 2133-035 2133-036
3 1 3 3 2 3

2133-039

3

This clustering information can be used for subsequent data exploration and analysis.
2.4 Improved accessibility

The updated iglu functionality has been incorporated into a point-and-click graphical user interface

(GUI) via the Shiny app, which is available from the R console by calling:
> iglu::iglu shiny ()

or directly at https://irinagain.shinyapps.io/shiny iglu/. The pre-loaded data on 5 subjects with type 2
diabetes allows the users to get accustomed to the functionality quickly. Figure 6 illustrates the newly
added episode calculation interface, with dedicated boxes for adjustment of default parameters
corresponding to level 1 and level 2 hypo- and hyperglycemia thresholds and minimal duration length (in
minutes) to be counted as an episode. This functionality is added as a new tab in addition to the already

existing AGP report tab', providing the users with complementary information.

To validate the functionality of the mirrored Python package, we installed it using the Python package

manager via:

$ pip install iglu-py



We verified iglu functionality within the Python environment by calculating average glucose values for
data from Hall et al."” The corresponding script in Python is:
>>> import iglu py
>>> iglu py.mean glu(iglu.example data hall)
id mean
1 1636-69-001 108.228602
2 1636-69-026 115.155902
3  1636-69-032 108.315760
4  1636-69-090 108.750403
5 1636-69-091  103.107044

and the corresponding output is verified to match the R output. The graphical user interface is also

accessible from the Python environment via the following command.
>>> iglu py.iglu shiny ()
4 Conclusion

We provide an updated version of iglu with the intent of meeting the needs for automatic calculation of
a wide array of CGM metrics that continue to be introduced in the literature, and to improve the
accessibility of software for both clinical researchers (via an expanded graphical user interface) and
computational researchers (via the addition of Python interface). Our update also addresses limitations
in the original ig1u version' by including functionality to read data in specialized formats of many popular
CGMs, quantify hypo- and hyperglycemic episodes, and separate it into sleep and wake periods. We
have demonstrated the updated functionality on the CGM data from patients with prediabetes and type

2 diabetes,'” and these data are also available with the software.

Many alternative CGM software platforms are available, such as EasyGV,?* GlyCulator,?® cgmanalysis,®®
AGATA,?" etc., which provide complementary solutions to the needs of various research groups. A
detailed comparison across CGM software packages, including comparison with iglu, is provided in
recent comprehensive software reviews.>'® The main strength of iglu is its comprehensive

implementation of available CGM metrics and graphical displays,®'°

as well as demonstrated agreement
in calculated metric values against other CGM software.® Of particular note is the new MAGE algorithm,
which has been validated against manual calculations,® showing higher accuracy than several existing
alternatives. To further aid users in ensuring the accuracy of results, we have added customized graphical
displays (e.g., new episode calculation display in Figure 2 and a new display for MAGE in Figure 3) to

enable visual inspection of underlying calculations.



Objective comparisons of different CGM software packages pose multiple challenges. Usability and ease
of use assessments can differ greatly among user groups. For example, quantitative researchers might
prefer tools that facilitate reproducible research in familiar programming environments, while users with
limited programming skills may favor a user-friendly graphical interface. Moreover, a thorough
comparison of performance metrics like accuracy and speed necessitates extensive testing across
diverse datasets and continuous software updates, which are beyond the scope of our current study.
Recent efforts such as those by Piersanti et al. (2023)°, which evaluates and compares a comprehensive
list of metrics and software platforms based on CGM data from 6 patients with type 1 diabetes, and Akturk
et al. (2022)%, which considers a larger cohort of 188 patients with type 1 diabetes but limits its
comparison to specific software and only few summary metrics, illustrate the limitations of current
methodologies. These examples highlight the critical need for more comprehensive cross-evaluations

and the establishment of universal standards for comparing software packages in future studies.

As with any CGM software, the accuracy of calculated metrics can be affected by missing data. By
default, iglu performs linear interpolation in the presence of short missing data gaps (using a 45 min
threshold as default), and provides warnings to the user whenever a large gap (over 12 hours) is present
in the data. However, linear interpolation is only applied for the calculation of more complex metrics that
require equally-spaced measurements (e.g., the new MAGE algorithm, episode calculation functionality)
and is not automatically applied when calculating mean glucose values and time-in-range. While other
CGM software typically use a similar approach (e.g., 50 min gap is used by default in EasyGV?*), large
amounts of missing data may lead to disagreements in calculated metric values depending on the chosen
mechanism of handling missing data. Extra care should be taken when data is not missing at random but
is due to the values outside of thresholds corresponding to CGM measurement range, which is dependent
on the specific CGM model. By default, 1 g1u treats such values the same as other missing data, whereas
other software programs may choose to replace those values with values at the threshold. While the
former approach avoids the downward bias in glucose variability metrics resulting from imputing a
constant threshold limit for missing values, the latter approach can be more accurate for evaluating time-
in-range measures. However, the latter choice requires explicit knowledge of the measurement limits
associated with a specific CGM model and thus may be error-prone when applied on a large scale with
data from several different manufacturers. A preferred solution would be to perform sensitivity analyses
of calculated metric values depending on the choice of missing data treatment.”* However, such

customized analyses are difficult to implement in an automated fashion.

d28, 29, 30

Many CGM metrics are highly correlate , raising the question of the added value of having a

comprehensive array of metrics over the consensus ones. Large-scale prospective outcome studies



would be valuable for examining metrics overlap and their predictive power for clinical outcomes'. By
providing accessible software that allows computation of the wide array of CGM metrics in a reproducible

fashion, we hope to facilitate future research in this direction.

In summary, we believe that an updated version of iglu provides comprehensive and accessible
software for analyses of CGM data. It accommodates both researchers who favor point-and-click
graphical user interfaces as well as those who prefer the creation of reproducible scripts for all data

processing and metric calculation steps.
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(mean glucose
values further
than 1SD from
the day's
mean)

definition

CRAN R package version
V1 V2 V3 V4
Metrics | Episode NA NA New feature + update to match
calculations consensus definition
Postprandial NA NA NA New feature
(meal) metrics
Other ADRR, BGils, + AUC, COGI, | + sleep/wake + PGS, GRI,
CONGA, CV, CV measures, | metric splitting consensus_only"
ealc, GRADEs, | GMI, GVP, option in
hyper/hypo- MAD, MAG, all metricsto
index, IGC, J- rate of return reduced
index, linear change, metrics list
interpolation, percent of
mean, M-value, | sensor data,
MODD, SD all metrics
measures, wrapper
times in ranges
MAGE Algorithm NA Naive New algorithm® | + updates to
algorithm to match Service | account for large

gaps of missing
data (> 3 hours)

Clustering and

Time-series,

+ AGP, day by

+ interactive

+ metrics heatmap,

to mg/dl
conversion in
process_data;
example dataset
in Shiny app

Visualizations lasagna plots, day plots, bar | MAGE plot, hierarchical
rates of change | plot for times episode clustering, meals
plot in range visualization plot
Accessibility GUI via Shiny | + support of + updated GUI to
App, example | specialized data | match R package;
dataset formats; mmol/l | mirrored Python

package

Table 1: A summary of iglu functionalities relative to released CRAN R package versions. The original

manuscript'’ covers versions 1 and 2, with the current manuscript describing changes since then.
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Figure 1: lllustration of metrics summarizing postprandial glucose excursion: AG (the change in
glucose from baseline to postprandial peak), AT (the time to postprandial peak from the start of the
meal), and % Baseline Recovery (decrease in glucose one hour after postprandial glucose peak

expressed as a % of the peak amplitude, i.e. AG).



Episode Metrics — 2133-039

Hypoglycemia Hypoglycemia Hypoglycemia Hyperglycemia Hyperglycemia Hypoglycemia Hyperglycemia
Level 1 , Level 2 . Extended | Level 1 , Level 2 . Level1excl |, Level1 excl
Thresholds <70mg/dL | <54mg/dL | <70mg/dL | >180mg/dL | >250 mg/dL | 70-54 mg/dL | 180-250 mg/dL
Avg Episodes/Day 1.33 ! 0.13 ! 0.00 | 0.27 ! 0.00 ! 1.20 ! 0.27
Mean duration 49.00min 1 1500min 1 0.00min | 4250min : 000min : 4500min .  42.50 min
Mean glucose 63.79mg/dl ' 51.43mg/dl © NAmg/idl  187.87mg/dl : NAmg/dl | 64.22mg/dl @ 187.87 mg/di
Total episodes 10.00 ! 1.00 ! 0.00 ! 2.00 ! 0.00 ! 9.00 ! 2.00

An episode is >= 15 continuous minutes
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B
> episode_calculation(data = example_data_hall %>% dplyr::filter(id == "2133-039"))
# A tibble: 7 x 7
id type level avg_ep_per_day avg_ep_duration avg _ep_gl total_episodes
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 2133-039 hypo 1vi 1.33 49 63.8 10
2 2133-039 hypo 1lv2 0.133 15 51.4 1
3 2133-039 hypo extended 0 (%] NA (%]
4 2133-039 hyper 1lvi 0.266 42.5 188. 2
5 2133-039 hyper 1v2 (%] 0 NA 0
6 2133-039 hypo 1lvl_excl 1.20 45 64.2 9
7 2133-039 hyper 1lvl_excl 0.266 42.5 188. 2

Figure 2: lllustration of episode visualization (Panel A) and corresponding console calculation (Panel B)

functionality implemented in iglu using subject 2133-039 from Hall et al., 2018"" as an example.



Meal Metrics Plot
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B
> example_meals_hall%>% dplyr::filter(id == "2133-018")
# A tibble: 3 x 3
id meal mealtime
<chr> <chr> <dttm>
1 2133-018 PB 1 2017-03-15 09:40:00
2 2133-018 CF 1 2017-03-16 07:15:00
3 2133-018 Bar 1 2017-03-17 09:05:00
C

> meal_metrics(example _data_hall %>% dplyr::filter(id == "2133-018"),
example_meals_hall%>% dplyr::filter(id == "2133-018"))

# A tibble: 3 x 6

id time meal deltag deltat basereco
<chr> <dttm> <chr> <dbl> <dbl> <dbl>
1 2133-018 2017-03-15 ©9:40:00 PB 1 97.8 80 0.378
2 2133-018 2017-03-16 07:15:00 CF 1 171. 75 0.429
3 2133-018 2017-03-17 ©9:05:00 Bar 1 77.6 75 0.670

Figure 3: lllustration of meal metrics visualization (Panel A), meal times in original data (Panel B), and

corresponding metric values (Panel C) using subject 2133-039 from Hall et al., 2018'" as an example.



Glucose Trace — Subject 2133-019
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B
> mage_ma_single(data = example_data_hall %>% dplyr::filter(id == "2133-019"), plot=FALSE)

Gap found in data for subject id: 2133-019, that exceeds 12 hours.
[1] 47.03813

Figure 4: lllustration of MAGE calculation (Panel B) and associated visualization (Panel A) in iglu using
subject 2133-019 from Hall et al., 2018'" as an example. The software automatically highlights regions
with missing glucose readings (gaps). The colored dots correspond to automatically identified peaks
and nadirs corresponding to excursions. The arrows indicate excursion magnitudes with arrows

pointing up for MAGE- and pointing down for MAGE..



% in 63-140 4
GRADE_ _eugly B
% in 701 =
COGI

Min

hypo_Iv2 2
% bleTow 54

E@g_m excl 0

Hypo Index
% below 70 -1

u R e

S dm
AD
Dwsh
VP
D.Roc

), p?:oove 250

i

| EN
—p
‘.E
=z
0]
x
o

CVsd

1st quartile
3rd quartile

Meglan

AU

Meal

&A1
b

% above 140

H 9RADE

index
0@%\ q"%‘/\“»(”% %0\0\%”\%“0%0@0
A\
VYV
&

%’%’%’%’Q"‘D{b 0 %"% SIS
OO~ 0" ORD; ‘b OO0
%«@g@ge@w«aw«a%ﬂ PRy
R & RSG

N N

Cluster Dendrogram

1.5

Height
0.5
1

1.0
1
pre—diabetic W

8 g g hﬂ_‘ e o
o o [ [5} = =
ol e o I § %5 2 ¢ s 2 g .
o g 3 ‘% ) 8§ 8 9 g8 2 £ T 3 -
£ £ 533 7787 38 8 8 8 S % % g
o o © & & 5 & S © © g =
s s T3 7 7
g 8 & o
hclust (*, "complete")
Figure 5: Top: Heatmap of CGM metrics on 19 subjects from Hall dataset'’. Hierarchical clustering is

performed on centered and scaled metric values using distance correlation and complete linkage. The
cluster tree for metrics is cut at 6 groups. Bottom: An enlarged version of dendrogram corresponding to

subjects with labels corresponding to diagnosis (diabetic or pre-diabetic).



Shiny iglu
Data Metrics Plots AGP Episode Calculation

Enter Subject ID Episode Calculation Profile (ECP)

Subject 3

Enter a value for HyperThreshold (level1)

Episode Metrics

180
P P ypergly
Level1 | Level2 Extended Level 1 Level 2 Level Texd | Level 1excl
Thresholds <70mg/dL | <54mgidL | <7OmgidL | >180mgidl | >250mgidL | 70-54mg/dL | 180-250 mgidL
Entealvalusifortiypsuhresnoldi{isvel2) Avg Episodes/Day 018 | 000 0.00 164 073 018 091
Mean duration 2500min | 0.00 min 0.00 min 158.33 min 10625 min 2500min | 117.00 min
250 Mean glucose 6319 mg/dl | NA mg/dl NAmg/dl | 22079 mg/dl | 26964 moidl | 63.19mgidl | 202.12 ma/dl

An episode is >= 15 continuous minutes
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Figure 6: lllustration of a graphical user interface for episode calculation functionality available via the
accompanying Shiny App. The additional tab for episode calculation complements information

presented in the standard AGP report.



