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singR: An R Package for Simultaneous
Non-Gaussian Component Analysis for

Data Integration
by Liangkang Wang, Irina Gaynanova, and Benjamin Risk

Abstract This paper introduces an R package singR that implements Simultaneous non-Gaussian
Component Analysis (SING) for data integration. SING uses a non-Gaussian measure of information
to extract feature loadings and scores (latent variables) that are shared across multiple datasets. We
describe the functions implemented in singR and showcase their use on two examples. The first
example is a toy example working with images. The second example is a simulated study integrating
functional connectivity estimates from a resting-state functional magnetic resonance imaging dataset
and task activation maps from a working memory functional magnetic resonance imaging dataset.
The SING model can produce joint components that accurately reflect information shared by multiple
datasets, particularly for datasets with non-Gaussian features such as neuroimaging.

1 Introduction

Combining information across different datasets collected on the same individuals is an important task,
especially in biology and medicine. For example, in neuroimaging research, combining information
across different modalities, or types of imaging data, can lead to a more comprehensive picture of
human brain activity. Commonly used modalities to investigate brain function include functional
magnetic resonance imaging (fMRI), resting-state fMRI (rs-fMRI), diffusion MRI, structural images,
electroencephalography, and positron emission tomography. Combining data from multiple modalities
can result in a better understanding of the underlying biology than analyzing each modality separately
(Calhoun and Sui 2016). In previous studies, researchers use data fusion to define a set of joint
components that are composed of subject scores (a vector in R”, where 7 is the number of subjects)
and loadings (a vector in IRP¥, where py, is the number of variables in the kth dataset). For a particular
component, the subject scores are equal or strongly correlated across datasets. The loadings represent
the relative importance of each variable to each component. A higher subject score implies the vector
of loadings is more important in that individual.

Data integration approaches for neuroimaging should accommodate the distinct statistical prop-
erties of imaging data. Imaging features characterizing brain activation and intrinsic functional
connectivity are substantially more non-Gaussian compared to noise. Methods employing principal
component analysis (PCA) for dimension reduction and independent component analysis (ICA) have
been widely used in neuroscience (Calhoun and Sui 2016; J. Sui et al. 2012; Zhou et al. 2016). ICA
maximizes the non-Gaussianity of components, which is useful for extracting interesting features
from imaging data. ICA is commonly used to estimate resting-state networks (Beckmann et al. 2005),
estimate task-activated components (Jing Sui et al. 2010), and has been used to derive network struc-
ture in resting-state correlation matrices (Amico et al. 2017). Risk and Gaynanova (2021) proposed
simultaneous non-Gaussian component analysis (SING) for analyzing two datasets, which uses an
objective function that maximizes the skewness and kurtosis of latent components with a penalty to
enhance the similarity between subject scores. Unlike previous methods, SING does not use PCA for
dimension reduction, but rather uses non-Gaussianity measured by skewness and kurtosis, which can
improve feature extraction.

Some useful software have been developed in this area. In multimodal analysis and multitask
fMRI data fusion, FIT is a Matlab toolbox that implements jointICA, parallel ICA (Vergara et al. 2014),
and multimodal/multiset CCA (J. Sui et al. 2011). GIFT provides functions for conducting group ICA
on fMRI data from multiple subjects from a single modality (Calhoun, Liu, and Adali 2009; Calhoun,
Adali, Giuliani, et al. 2006; Calhoun, Adali, Kiehl, et al. 2006). On the Comprehensive R Archive
Network (CRAN)), there are several R packages for ICA functions, including steadyICA (Risk, James,
and Matteson 2015), ica (Helwig 2018), fastICA (Marchini, Heaton, and Ripley 2021), JADE (Miettinen,
Nordhausen, and Taskinen 2017), and templateICAr (Mejia et al. 2020). These R packages use different
algorithms to extract non-Gaussian features but are designed for decomposing a single modality.
For data integration, r.jive (O’Connell and Lock 2020) and ajive (Carmichael 2022; Feng et al. 2018)
capture the joint variation, or variance shared between datasets, and individual variation, or variance
unique to a dataset. JIVE methods use singular value decompositions, which are related to maximizing
variance instead of non-Gaussianity. In this way, there exists a need for freely available software for
extracting joint structure from multiple datasets using non-Gaussian measures of information.
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This paper introduces singR, an R package to implement Risk and Gaynanova (2021). This paper
is structured as follows. In Section 2, we review the Simultaneous non-Gaussian component analysis
(SING) model. In Sections 3 and 4, we present the main functions in the singR package and show how
to utilize it for joint components estimation in two example datasets. Finally, Section 5 summarizes
our conclusions.

2 Methods

2.1 Linear non-Gaussian Component Analysis

Matrix decomposition for one dataset. Based on linear non-Gaussian component analysis (LNGCA), we
first summarize a matrix decomposition for a single dataset X € R"*P~ (n subjects and py features)
into a non-Gaussian subspace and a Gaussian subspace. Each row of X is a vector of features from the
ith subject. Let X denote the double-centered data matrix such that 17X, = 0T and X.1 = 0 where
1 denotes the vector of ones of appropriate dimension, which has rank n — 1 when p, > n. Let I,
denote the 7y x ry identity matrix. Then define the matrix decomposition

X = MySy + My, Ny. 1)

Here, M, € R"*"~, and the columns of M, are called subject scores. My, € ]R”X<”*r—¥*1), and the
matrix [My,My, ] is called the mixing matrix and has rank n — 1. S, € R™*P~ and Ny € R=rx=1)xpx
SxST = pylr, NyST = 0(1—r,—1)xr,- The rows of Sy are the non-Gaussian components, and elements
of Sy are called variable loadings because % XCSZ = M. The rows of Ny are the Gaussian components.
The rows of Sy have the largest non-Gaussianity, as described below.

This decomposition may be meaningful in neuroimaging studies because: 1) vectorized compo-
nents like brain activation maps and resting-state networks have highly non-Gaussian distributions,
and 2) it is often the situation that py > n, i.e., the number subjects is smaller than the number of
voxels or edges.

To achieve the matrix decomposition in (1), we need to find a separating matrix A, that maximizes
non-Gaussianity and satisfies the constraint AXXCXCT AZ =S ng = pxl;,. We utilize a prewhitening
matrix and then reparameterize the model with a semiorthogonal separating matrix to enforce this
constraint. Let &, = XCXCT / px. Then define the eigenvalue decomposition flx = ViAy VxT and the
prewhitening matrix fx = VxA;U 2VxT (for double-centered X, this is understood to be the square
root of the generalized inverse from the non-zero eigenvalues). Note Ay = Uxfx, and it follows that
My = Ly U, with L; denoting the generalized inverse. Let f() be a measure of non-Gaussianity.
Then (1) is estimated using

T'x
minimize — Zf (u;rleXC> ,
ur
2 =1

@)

subject to llxllxT =1,

where u;l is the [th row of the ry X n matrix Uy.

We measure non-Gaussianity with the Jarque-Bera (JB) statistic, a combination of squared skew-
ness and kurtosis. For a vector s € IR?, the JB statistic is

2 2
1 1
f(s) =08 ;Z}f +0.2 EZS?—3 . (3)
] ]

2.2 Simultaneous non-Gaussian component analysis model

Matrix decomposition for two datasets. We now decompose X € R"*Pr and Y € R"*Pv into a joint
non-Gaussian subspace defined by shared subject score directions, individual non-Gaussian subspaces,
and Gaussian subspaces. Let r; denote the rank of the joint non-Gaussian subspace and rx, ry denote
the rank of the non-Gaussian subspaces for X and Y, respectively. Define the double-centered X, and
Y., ie., 1" X. = 0and X.1 = 0. In data applications, we also recommend standardizing each feature
to have unit variance, as is common in PCA. The double centering with standardization requires an
iterative algorithm that standardizes each feature (mean 0 variance 1 across subjects), then centers the
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features for a given subject (the mean of the features for a subject is 0), and repeats (typically < 10
iterations on real data suffices). The function standard is described in Section [3].

The SING matrix decomposition is

X = M]st]x + MIxSIx + MNxNx/ (4)
Y. = M]DyS]y + MIySIy + MNyNy-

Here, M] e R"%7 M, € e R"%(rx=1y) MI ]Rnx(ryfr,) , My, € R1x(n—rx—1) ,and MN c R*(n—ry—1)

Dy and Dy, are diagonal and allow the scahng of Mj to vary between datasets Sy are the joint non-

Gaussian components, Sy, are the individual non-Gaussian components, and Ny are the individual

Gaussian components, respectively, for X, with constraints S;, S]Tx = pxly, S [XSITX = pxlr,—r;, S ]xSITX =

Or;x(rx—r/)
Y.

NxS]x = 0(n—r,~1)xr;s NyST. = O(11—r,—1)x (r,—ry)» and similarly define the components of

Simultaneous non-Gaussian Component Analysis fitting and algorithm. Recall the whitening matrix
for X, is fx, and define its generalized inverse f; = (XCXCT / px)l/ 2= VXA}C/ 2 VxT . We will estimate a
semiorthogonal unmixing matrix Uy such that M, = Ly U} . Similarly define the whitening matrix Ly
and ]\7Iy for Y;. Let f be the JB statistic, as defined in (3). We consider

Ty R
minimize — Zf(u;rleXC Zf ylLch +p Zd (Ly uxl,L_uyl)
Uy, U, = = ®)

subjectto U U, =1I,,, uyuyT =1,

where d(x,y) is the chosen distance metric between vectors x and y, calculated using the chordal

x| oy
R
scores in the SING objective funct1on is equal to zero when their correlation is equal to one. Larger

values of the tuning parameter p result in common Mj, but smaller values result in highly correlated
joint structure and could also be considered. In our examples, we match components from the separate
LNGCA, determine candidate joint components from a permutation test, and then set p equal to the
sum of the JB statistics of all candidate joint loadings divided by 10, which results in L Uy R L Uyl
i.e., a shared M;.

distance: d(x,y) = . When columns are mean zero, the chordal distance between joint

Let Uy and ﬁy be the estimated value of Uy and Uy, in (5). The corresponding estimated non-
Gaussian components are defined as Sy = Uy Xy and §y = U, Yy, where Xy = Ly X, and Yy = nyC,
respectively. Then the first r; columns of My = L*Ux , scaled to unit norm, define Mj,. We can
similarly define M Jy- For sufficiently large p, M Jx = M Jy = M 7, and more generally, M ; is defined
from their average. Additionally, the first r; rows of Sx correspond to S Jx-

3 Overview of functions

The R package singR implements simultaneous non-Gaussian component analysis for data integration
in neuroimaging. Highlighted below are key functions:

Ingca: This function estimates non-Gaussian components for a single dataset. Non-Gaussian
components can be estimated using the Jarque-Bera test statistic, which is the non-Gaussian measure
used in SING, or using likelihood component analysis, which achieves dimension reduction while
estimating the densities of non-Gaussian components (Risk, Matteson, and Ruppert 2019). It returns
Uy and Sy from decomposing X, through (2). It also returns the non-Gaussianity of each estimated
component.

standard: This function is an iterative algorithm that standardizes each feature (mean 0 variance 1
across subjects), then centers the features for a given subject (the mean of the features for a subject is 0)
for the original datasets (R"*7), and repeats until the variance is approximately equal to 1 (typically
< 10 iterations on real data suffices).

est.M.ols: This function returns ]\7Ix with input §x and X..

greedymatch: This function reorders the columns in U, to match the columns (subject scores) in
Uy based on the chordal distances between corresponding My and My,.

permTestJointRank: This function tests whether the correlation between matched columns (subject
scores) is significant and returns the family wise error rate corrected p-values.
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%"%: Calculates the matrix exponential. For example, A%"%0.5 returns a matrix square root. Used
during prewhitening.

calculate] B: This function calculates the sum of the B statistics across components and is useful
for determining the size of the penalty parameter p (sufficiently large p results in the chordal distance
between M), and My, equal to 0). Assumes the variance of each row of the input S is equal to 1 and
mean of each row is equal to 0.

curvilinear: This function gives the final estimates of U, and ﬁy using the curvilinear algorithm
derived from (5). This is a pure R implementation but is slow.

curvilinear_c: This implements the curvilinear algorithm in C++, which is faster.

NG_number: This is a wrapper function for FOBIasymp from ICtest (Nordhausen et al. 2022) that
can be used to estimate the number of non-Gaussian components in a single dataset.

signchange: This function makes the skewness of each row of Sy positive, which is useful for
visualizing non-Gaussian component loadings.

singR: This function integrates all the functions above. We can use this function to estimate
joint scores and loadings from two datasets X and Y and optionally return the individual scores and
loadings.

4 Examples

To illustrate the use of singRR, we provide two examples.

4.1 Example 1. The toy datasets decomposition

The tutorial dataset exampledata are included in the singR package. We generate the SING model
in (4) as follows. We generate joint subject scores M; = [m1, mpy] € R"™ 2 with mj; ~ N(uq, L),
mp ~ N(pz, In), i1 = (155, —15,) " and pp = (—15,,1],) . We set Dx = I and D, = diag(—5,2) to
have differences in both sign and scale between the two datasets. We generate My, and My, similar to
M using iid unit variance Gaussian entries with means equal to H3y = (—16T, 16T, —12 , 16T , —16T, 16T —
19, —10)", pay = (13, =13, pax = (=10, 1, —15,10) " and pyy = (10, =1, 1, —1) "
These means result in various degrees of correlation between the columns of the mixing matrices.
For the Gaussian noise, we generate My, My, Nx and Ny using iid standard Gaussian mean zero
entries.

Each row of Sy, and Sy, is a vectorized image. We can reshape the loadings back to their image
dimensions for visualization. The loadings Sy, are inspired by activation patterns found in functional
MRI, and similar simulations were considered in (Risk, Matteson, and Ruppert 2019). The rows of
Sjy and Sy are formed from the lower diagonal of a symmetric matrix, which are inspired by ICA of
correlation matrices (Amico et al. 2017), and we can visualize the loadings by reshaping the vectors
back to the symmetric matrix. The true loadings of latent non-Gaussian components are plotted in
figure 1.

library(singR)
data(exampledata)
data <- exampledata

lgrid = 33

par(mfrow = c(2, 4))

# Components for X

image(matrix(data$sjx[1, 1, lgrid, lgrid), col = heat.colors(12),

xaxt = "n", yaxt = "n", main = expression("True S"["Jx"]1 * " 1"))
image(matrix(data$sjx[2, 1, lgrid, lgrid), col = heat.colors(12),

xaxt = "n", yaxt = "n", main = expression("True S"["Jx"] x ", 2"))
image(matrix(data$siX[1, ], lgrid, lgrid), col = heat.colors(12),

xaxt = "n", yaxt = "n", main = expression("True S"["Ix"] x ", 1"))
image(matrix(data$six[2, 1, lgrid, lgrid), col = heat.colors(12),

xaxt = "n", yaxt = "n", main = expression("True S"["Ix"] %= ", 2"))

# Components for Y

image(vec2net(data$sjY[1, 1), col = heat.colors(12), xaxt = "n", yaxt = "n",
main = expression("True S"["Jy"]1 * ", 1"))

image(vec2net(data$sjY[2, 1), col = heat.colors(12), xaxt = "n", yaxt = "n",

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859


https://CRAN.R-project.org/package=ICtest
https://CRAN.R-project.org/package=singR
https://CRAN.R-project.org/package=singR

CONTRIBUTED RESEARCH ARTICLE 73

True Syy,1 True Sy, 2 True Sy, 1 True Sy, 2
True Sy, 1 True S, 2 True Sy, 1 True Sy, 2

Figure 1: True joint and individual loadings in example 1.

main = expression("True S"["Jy"]1 = ", 2"))
image(vec2net(data$siY[1, 1), col = heat.colors(12), xaxt = "n", yaxt = "n",
main = expression("True S"["Iy"]1 = ", 1"))
image(vec2net(data$siY[2, ]), col = heat.colors(12), xaxt
main = expression("True S"["Iy"] * ", 2"))

noan — nan
= n

n", yaxt

Function singR performs all steps in the SING pipeline as a single function

We first illustrate the use of the wrapper function singR using the default settings. We will describe
optional arguments in more detail in example 2.

examplel = singR(dX = data$dX, dY = data$dY, individual = T)

Details of the SING pipeline

We next explain each of the steps involved in SING estimation. Using these individual functions
in place of the high-level singR function allows additional fine-tuning and can be helpful for large
datasets.

Estimate the number of non-Gaussian components in datasets dX and dY using FOBIasymp from
ICtest:

n.comp.X = NG_number (data$dX)
n.comp.Y = NG_number (data$dY)

Apply lngca separately to each dataset using the B statistic as the measure of non-Gaussianity:

# JB on X

estX_JB = lngca(xData = data$dX, n.comp = n.comp.X, whiten = "sqrtprec”,
restarts.pbyd = 20, distribution = "JB")

Uxfull <- estX_JB$U

Mx_JB = est.M.ols(sData = estX_JB$S, xData = data$dX)

# JB on Y

estY_JB = lngca(xData = data$dY, n.comp = n.comp.Y, whiten = "sqrtprec”,
restarts.pbyd = 20, distribution = "JB")

Uyfull <- estY_JB$U

My_JB = est.M.ols(sData = estY_JB$S, xData = data$dy)
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Use greedymatch to reorder U, and ﬁy by descending matched correlations and use permTestJointRank
to estimate the number of joint components:

matchMxMy = greedymatch(scale(Mx_JB, scale = F), scale(My_JB, scale = F),
Ux = Uxfull, Uy = Uyfull)

permJoint <- permTestJointRank(matchMxMy$Mx, matchMxMy$My)

joint_rank = permJoint$rj

For preparing input to curvilinear_c, manually prewhiten dX and dY to get ;! and fy* L.

# Center X and Y

dX = data$dX
dY = datasdy
n = nrow(dX)
pX = ncol(dX)
pY = ncol(dY)

dXcentered <- dX - matrix(rowMeans(dX), n, pX, byrow = F)
dYcentered <- dY - matrix(rowMeans(dY), n, pY, byrow = F)

# For X Scale rowwise

est.sigmaXA = tcrossprod(dXcentered)/(pX - 1)
whitenerXA = est.sigmaXA %"% (-0.5)

xDataA = whitenerXA %x*% dXcentered

invLx = est.sigmaXA %*% (0.5)

# For Y Scale rowwise

est.sigmaYA = tcrossprod(dYcentered)/(pY - 1)
whitenerYA = est.sigmaYA %% (-0.5)

yDataA = whitenerYA %x% dYcentered

invLy = est.sigmaYA %*% (0.5)

Obtain a reasonable value for the penalty p by calculating the JB statistics for all the joint compo-
nents:

# Calculate the Sx and Sy.
Sx = matchMxMy$Ux[1:joint_rank, ] %*% xDataA
Sy = matchMxMy$Uy[1:joint_rank, ] %*% yDataA

# Calculate total JB
JBall = calculateJB(Sx) + calculateJB(Sy)

# Penalty used in curvilinear algorithm:
rho = JBall/10

Estimate ﬁx and fly with curvilinear_c:

# alpha=0.8 corresponds to JB weighting of skewness and kurtosis
# (can customize to use different weighting):

alpha = 0.8

# tolerance:

tol = 1e-10

out <- curvilinear_c(invLx = invLx, invLy = invLy, xData = xDataA,
yData = yDataA, Ux = matchMxMy$Ux, Uy = matchMxMy$Uy, rho = rho,
tol = tol, alpha = alpha, maxiter = 1500, rj = joint_rank)

Obtain the final result:

# Estimate Sx and Sy and true S matrix using rotation matrices
# of Ux and Uy

Sjx = out$Ux[1:joint_rank, ] %*% xDataA

Six = out$Ux[(joint_rank + 1):n.comp.X, 1 %x% xDataA

Sjy = out$Uy[1:joint_rank, 1 %*% yDataA
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Figure 2: Estimated joint and individual loadings in example 1.

Siy = out$Uy[(joint_rank + 1):n.comp.Y, 1 %x% yDataA

# Estimate Mj

Mxjoint = tcrossprod(invLx, out$Ux[1:joint_rank, 1)

Mxindiv = tcrossprod(invLx, out$Ux[(joint_rank + 1):n.comp.X, 1)
Myjoint = tcrossprod(invLy, out$Uy[1:joint_rank, J)

Myindiv = tcrossprod(invLy, out$Uy[(joint_rank + 1):n.comp.Y, 1)

# signchange to make the skewness of the rows of S positive
Sjx_sign = signchange(Sjx, Mxjoint)
Sjy_sign = signchange(Sjy, Myjoint)
Six_sign = signchange(Six, Mxindiv)
Siy_sign = signchange(Siy, Myindiv)

Sjx = Sjx_sign$S

Sjy = Sjy_sign$S
Six = Six_sign$S
Siy = Siy_sign$S

Mxjoint = Sjx_sign$M
Myjoint = Sjy_sign$M
Mxindiv = Six_sign$M
Myindiv = Siy_sign$M

est.Mj = aveM(Mxjoint, Myjoint)

trueMj <- data.frame(mj1 = data$mj[, 1], mj2 = data$mj[, 2], number = 1:48)
SINGMj <- data.frame(mj1 est.Mj[, 11, mj2 = est.Mj[, 2], number = 1:48)

Plot §]x, §]y, §1x, and §1y in figure 2.
Plot M 7 in figure 3.

library(tidyverse)
library(ggpubr)

# true Mj
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Figure 3: Estimated joint subject scores in example 1.

t1 <- ggplot(data = trueMj) + xlab("Subject ID") + geom_point(mapping = aes(y
X = number)) + ggtitle(expression("True M"["J"] % ", 1")) + theme_bw() +
theme(panel.grid = element_blank())

mj1,

t2 <- ggplot(data = trueMj) + xlab(”"Subject ID") + geom_point(mapping = aes(y = mj2,
x = number)) + ggtitle(expression("True M"["J"] % ", 2")) + theme_bw() +
theme(panel.grid = element_blank())

# SING estimated Mj

S1 <- ggplot(data = SINGMj) + xlab("Subject ID") + geom_point(mapping = aes(y = mj1,
X = number)) + ggtitle(expression("Estimated M"["J"] * ", 1")) +
theme_bw() + theme(panel.grid = element_blank())

S2 <- ggplot(data = SINGMj) + xlab("Subject ID") + geom_point(mapping = aes(y = mj2,
x = number)) + ggtitle(expression("Estimated M"["J"] %= ", 2")) +
theme_bw() + theme(panel.grid = element_blank())

ggarrange(tl, t2, S1, S2, ncol = 2, nrow = 2)

4.2 Example 2. MRI data simulation

This example is a simulation inspired by the real data analysis of the Human Connectome Project
from Risk and Gaynanova (2021). X are generated from S x from working memory task maps and Y
are generated from Sy from resting-state correlations from a previous SING analysis of the Human
Connectome Project. The working memory loadings are defined on the cortical surface, which is the
highly folded ribbon of gray matter forming the outer layer of the brain containing billions of neural
bodies and dendrites. Large working memory loadings indicate locations in the brain that tend to
work together during memory tasks. The resting-state correlation loadings are defined using a brain
parcellation from (Glasser et al. 2016) and (Akiki and Abdallah 2019). Large resting-state loadings are
related to large correlations between brain regions occurring when a participant is lying in a scanner
performing no task. Additional details are in (Risk and Gaynanova 2021). For the purposes of this
example, we reduce computation time by lowering the resolution of the working memory loadings
in dataset X from 60,000 to 2,000. For the resting-state correlation loadings, we subset from the 360
x 360 loadings matrices formed from the 360 regions in the multimodal parcellation (MMP) to 100 x
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Figure 4: True joint loadings in dataset X in example 2.

100. To run this example, download the files in the folder extdata from the github repository (Wang,
Gaynanova, and Risk 2022).

# Load the package
library(singR)

# Read and visualize data
load("extdata/simdata.rda")

# sign change makes the skewness positive, which makes the
# region of 'activation' yellow in the plots that follow
Sxtrue = signchange(simdata$sjx)$S

Sytrue = signchange(simdata$sjy)$S

The simdata.rda have already been resampled from 32k to 2k resolution to reduce computation
time. Next, we resample the background surface (i.e., template found on (Wang, Gaynanova, and
Risk 2022)) to the same resolution, which will allow us to plot the loadings on the cortical surface.
This step uses ciftiTools (Pham, Muschelli, and Mejia 2021) and connectome workbench (Marcus
et al. 2011). To run this code, one needs to install connectome workbench, as described in (https:
//github.com/mandymejia/ciftiTools).

library(ciftiTools)
ciftiTools.setOption("wb_path”, "C:/Software/workbench")

## the template cifti file is on

## https://github.com/thebrisklab/singR/tree/main/extdata.

## here, resample to 2k resolution.

xii_template <- read_cifti("extdata/template.dtseries.nii”, brainstructures = c("left"”,
"right"), resamp_res = 2000)

xii_new <- newdata_xifti(xii_template, t(Sxtrue))
view_xifti_surface(select_xifti(xii_new, 1), zlim = c(-2.43, 2.82)) ## true S_JXI
view_xifti_surface(select_xifti(xii_new, 2), zlim = c(-2.43, 2.82)) ## true S_JX2

In figure 4, the yellow regions indicate locations with large loadings. Similar plots can be created
for the two individual components (not shown). When applied to fMRI activation maps, SING tends
to identify small patches of cortex, similar to this figure.

Next, we convert the rows of 5, to symmetric matrices and create plots. The nodes are organized
into communities (i.e., modules) to aid visualization. SING tends to identify a single node and the
connections with this node, which result in a cross-like pattern in the matrix representation. The joint
loadings are plotted in figure 5 with plotNetwork_change, which is defined below. Similar plots can
be created for the loadings from the two individual components.

# define plotNetwork_change
plotNetwork_change = function(component, title = "", gmin = 0.005,
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gmax = 0.995, path = "mmpplus.csv”, make.diag = NA) {
# component: vectorized network of length choose(n,?2)
require(ggplot2)

require(grid)

require(scales)

# load communities for plotting:
mmp_modules = read.csv(path, header = TRUE)
mmp_order = order (mmp_modules$Community_Vector)

zmin = quantile(component, gmin)
zmax = quantile(component, gmax)

netmat = vec2net(component, make.diag)
meltsub = create.graph.long(netmat, mmp_order)

g2 = ggplot(meltsub, aes(X1, X2, fill = value)) + geom_tile() +
scale_fill_gradient2(low = "blue”, high = "red”, limits = c(zmin,
zmax), oob = squish) + labs(title = title, x = "Node 1",
y = "Node 2") + coord_cartesian(clip = "off"”, xlim = c(-0,
100))

loadingsummary = apply(abs(netmat), 1, sum, na.rm = TRUE)
loadingsum2 = loadingsummary[mmp_order]

Community = factor (mmp_modules$Community_Label)[mmp_order]

g3 = gplot(c(1:100), loadingsum2, col = Community, size = I(3)) +
xlab("MMP Index") + ylab(”"L1 Norm of the Rows")

return(list(netmatfig = g2, loadingsfig = g3, netmat = netmat,
loadingsummary = loadingsummary))

}

library(cowplot)

# plot for the true component of Y

path = "extdata/new_mmp.csv"

out_truel = plotNetwork_change(Sytrue[1, 1, title = expression("True S"["Jy"] *
", 1"), gmin = @.005, gmax = 0.995, path = path)

out_true2 = plotNetwork_change(Sytrue[2, 1, title = expression("True S"["Jy"] *
", 2"), gmin = 0.005, gmax = 0.995, path = path)

pl = out_truel$netmatfig
p2 = out_truel$loadingsfig
p3 = out_true2$netmatfig
p4 = out_true2$loadingsfig

plot_grid(pl, p2, p3, p4, nrow = 2)

In figure 5, the left plots depict the loadings in the network space, where each element represents
the strength of the connection between two nodes (i.e., regions). Then if the subject score corresponding
to the component is large, the loadings make a large contribution to the subject’s functional connectivity.
In our previous work, we found that the loadings for a component tend to be structured such that a
single node is prominent, resulting in a cross-like pattern. To easily identify which node or nodes are
prominent, the right plots depict the L1-norms of the rows of the loadings matrices. In this example,
a single node stands out for each of the components. For additional interpretation, see (Risk and
Gaynanova 2021). In (Risk and Gaynanova 2021), it was discovered that for a given joint component,
the patch of cortex with largest loadings in the working memory task tended to be located in the same
area as the node whose loadings have the largest L1-norm in the resting-state dataset.

Function singR performs all steps in the SING pipeline as a single function

In example 1, we introduced the pipeline of the SING method. We will use example 2 to explain the
singR function in detail. The default output of singR is a list of S, S Jyr M Js M Jx, and M Ty- By default,
it will center the data such that the mean of each row is equal to zero. In our simulated dataset, all
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Figure 5: True joint loadings in dataset Y in example 2.

variables are on the same scale, and consequently we do not perform standardization (stand=FALSE).
When stand=TRUE, the data are additionally standardized to have the mean of each column equal to
zero and variance of each column equal to one, which is the standardization commonly used in PCA. If
n.comp.Xand n.comp.Y are not specified, singR will use FOBIasymp from ICtest to estimate the number
of non-Gaussian components in each dataset, which requires additional computational expense. Other
tests of the number of non-Gaussian components accounting for spatial smoothing/autocorrelation
can be found in (Zhao et al. 2022). These may be more effective for spatially correlated data but are
generally slower.

When individual = TRUE, the singR will additionally output 1\711x, 1\711y, §1x and §1y. When
distribution = "tiltedgaussian”, non-Gaussian components will be estimated through 1ngca using
likelihood component analysis, which is slower but can be more accurate. By default distribution
= "JB", and lngca will use the Jarque-Bera test statistic as the measure of non-Gaussianity of each
component.

The Cplus argument determines whether to use curvilinear_c or curvilinearin singR. curvilinear
is implemented with pure R but is slow while curvilinear_c uses C++. The parameter rho_extent
can be one of c("small”, "medium”, "large") or a number. This determines the penalty p in
curvilinear or curvilinear_c that results in equal or highly correlated M jx and M Jy- Additionally,
we can use pmse() to evaluate the distance between two subject score matrices. With larger p, the
pmse (]\71 Jxr M ]y) value will be smaller. Usually, “small” p is sufficient for approximately equal M Jx

and M Jy- We have observed that very large p can adversely impact the accuracy of the loadings. Our
recommendation is to use “small” p and check if it results in equal scores, and if not, then try other
settings. The code below took approximately 20 seconds to run on a 2.8 GHz processor.

example2 = singR(dX = simdata$dX, dY = simdata$dY, rho_extent = "small”,
Cplus = TRUE, stand = FALSE, individual = TRUE, distribution = "JB")

The joint loadings 3 Jx are depicted in figure 6.

xii_new <- newdata_xifti(xii_template, t(example2$Sjx))

c(-2.43, 2.82)) ## componentl small rho
c(-2.43, 2.82)) ## component2 small rho

view_xifti_surface(select_xifti(xii_new, 1), zlim
view_xifti_surface(select_xifti(xii_new, 2), zlim

The joint loadings S Jy are depicted in figure 7.
library(cowplot)

path = "extdata/new_mmp.csv"
out_rhoSmalll = plotNetwork_change(example2$Sjy[1, 1, title = expression("Estimate S"["Jy"] *
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Figure 7: Estimated joint loadings in dataset Y in example 2.

", 1"), gmin = @.005, gmax = 0.995, path = path)
out_rhoSmall2 = plotNetwork_change(example2$Sjy[2, 1, title = expression("Estimate S"["Jy"] *
", 2"), gmin = @.005, gmax = 0.995, path = path)

p5 = out_rhoSmalll$netmatfig
p6 = out_rhoSmalli$loadingsfig
p7 = out_rhoSmall2$netmatfig
p8 = out_rhoSmall2$loadingsfig

plot_grid(p5, p6, p7, p8, nrow = 2)

5 Summary

This paper introduces the singR package and demonstrates how simultaneous non-Gaussian compo-
nent analysis can be used to extract shared features from two datasets using R. The main contribution
of the R package singR is to provide easy code for data integration in neuroscience. We introduce
the function singR, which combines the SING pipeline into one function that performs data stan-
dardization, estimates the number of non-Gaussian components and estimates the number of joint
components. Previous analyses indicate the joint structure estimated by SING can improve upon other
neuroimaging data integration methods. SING can reveal new insights by using non-Gaussianity for
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both dimension reduction and latent variable extraction, whereas ICA methods involve an initial PCA
step that tends to aggregate features and can remove information.
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