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Abstract Keywords

Explanation supervision aims to enhance deep learning models
by integrating additional signals to guide the generation of model
explanations, showcasing notable improvements in both the pre-
dictability and explainability of the model. However, the application
of explanation supervision to higher-dimensional data, such as 3D
medical images, remains an under-explored domain. Challenges
associated with supervising visual explanations in the presence of
an additional dimension include: 1) spatial correlation changed, 2)
lack of direct 3D annotations, and 3) uncertainty varies across dif-
ferent parts of the explanation. To address these challenges, we pro-
pose a Dynamic Uncertainty-aware Explanation supervision (DUE!)
framework for 3D explanation supervision that ensures uncertainty-
aware explanation guidance when dealing with sparsely annotated
3D data with diffusion-based 3D interpolation. Our proposed frame-
work is validated through comprehensive experiments on diverse
real-world medical imaging datasets. The results demonstrate the
effectiveness of our framework in enhancing the predictability and
explainability of deep learning models in the context of medical
imaging diagnosis applications.

CCS Concepts

« Computing methodologies — Supervised learning; Com-
puter vision.
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1Code available at: https://github.com/AlexQilong/DUE.
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1 Introduction

While deep learning models demonstrate exceptional performance
in computer vision, their “black box” feature raises concerns about
their application in high-risk areas. In constructing transparent and
trustworthy models, Explainable AI (XAI) has become a critical fo-
cus, especially in medical imaging. Existing works have introduced
various XAl techniques, such as saliency maps [19, 24, 30, 33], which
elucidate the features responsible for model predictions. However,
there has been limited attention devoted to the quality of model ex-
planations, including their fidelity to predictions and strategies for
enhancing explainability when ground truth explanations are ab-
sent or inaccurate. Beyond traditional XAI techniques, an emerging
research direction known as explanation supervision aims to incor-
porate additional supervision signals during the learning process of
a model, in improving both the generalizability and explainability
of deep learning models.

Current methods for explanation supervision have been exten-
sively examined across tabular data, natural language, and two-
dimensional (2D) image data. For tabular and natural language data,
existing studies [1, 3, 13] have leveraged techniques such as attribu-
tion and feature regularization as means of supervision to enhance
models. For 2D image data, recent studies [12, 31? ] focus on jointly
optimizing explanation loss and prediction loss, by comparing hu-
man explanation annotations with model-generated saliency maps
from post-hoc [25, 32] or intrinsic explainers [9, 28] along with
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comparing the predicted label and ground-truth label. However,
the research into the direct application of explanation supervision
techniques to 3D data remains an under-explored domain. This gap
is notable given the abundance of 3D data in real-world applica-
tions, particularly in the field of medical imaging, where images
such as computed tomography (CT) scans and magnetic resonance
imaging (MRI) intrinsically present data in a 3D format.

This lack of exploration can be attributed to various fundamental
challenges associated with supervising visual explanations when an
additional dimension is involved: 1) Spatial correlations change
from 2D to 3D. The shift from 2D to 3D image data induces a sig-
nificant change in spatial correlation, as the additional dimension
introduces depth. Unlike 2D image data, where spatial information
is confined to width and height dimensions, and each annotation
slice is treated as independently distributed, the intricacy of 3D
image data necessitates modifications to both the model architec-
ture and the explanation supervision paradigm. The model must
capture spatial features and correlations in the third dimension,
potentially causing misalignment between data patterns and the
learning capabilities of the paradigm. 2) Gaps between 2D ex-
planation annotations and 3D images. Humans usually cannot
directly delineate a precise curvature surface for 3D complex ob-
jects in 3D space. Instead, it is intuitive to label annotations on a
few 2D slices (usually with a limited number of them to constrain
the labor cost). Hence, such 2D slices cannot fully represent 3D
explanation annotations, and leads to a gap when being used for
explanation supervision on 3D images. This gap impedes effective
explanation-guided learning in fields like medical imaging, where
training samples are often limited. 3) The quality of annotations
varies in 3D space. The curse of dimensionality tells us that 3D
space is “much larger” than 2D space, making it almost impossible
to maintain the explanation annotations to have the same quality
at any point in 3D space. Therefore, it is very important to identify
the quality of explanation annotations to customize the strength
of supervision accordingly. However, automatic estimation of the
quality of explanation annotation is extremely difficult.

To address the above challenges, we propose a Dynamic Uncertainty-

aware Explanation supervision (DUE) framework for 3D explana-
tion supervision that ensures uncertainty-aware explanation guid-
ance when handling sparsely annotated 3D data. The uncertainty-
aware guidance is achieved by integrating a 3D explanation loss
term, a diffusion-based distance-sensitive interpolation method,
and a post hoc weighting module. This module dynamically fine-
tunes the weights assigned to the smallest individual units in the
interpolated annotation slices based on their respective levels of
uncertainty.

Specifically, our main contributions are summarized as follows:

(1) Proposing a DUE framework for explanation supervision
in 3D. We propose a novel framework that extends the appli-
cation of explanation supervision to the 3D domain, thereby
improving the predictability and explainability of 3D models.

(2) Introducing a module for uncertainty-aware guidance.
Our approach introduces an uncertainty quantification module
that dynamically estimates uncertainty levels. These estima-
tions are utilized to weight the interpolated annotation slices,
providing uncertainty-aware explanation guidance.
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(3) Proposing an objective for incomplete and uncertain 3D
annotations. We propose an explanation loss term to handle
the challenges introduced by incomplete 3D annotations and
noisy interpolation. The computation of this loss term involves
interpolated annotation slices and their weights.

Conducting comprehensive experiments to evaluate our
proposed approach. We conduct comprehensive experiments
on various real-world datasets and employ diverse evaluation
metrics, demonstrating the effectiveness of our approach. Ad-
ditionally, we present a thorough analysis of the generated
explanations, showing their consistency and informativeness.

©

The rest of the paper is organized as follows: Section 2 reviews
the background and related work, and Section 3 presents the prob-
lem formulation. Section 4 describes the proposed DUE framework.
The experiments on 2 real-world tasks are provided in Section 5, and
the paper concludes with a summary of the research in Section 6

2 Related Work

2.1 Images Interpolation

Image interpolation is a fundamental task of image processing to
enlarge an image’s size or resolution. Traditional techniques like
linear and cubic interpolation [22] have been foundational but of-
ten insufficient for capturing the complex details necessary for
accurate medical diagnoses. Methods such as Neighbor Mean Inter-
polation [18], Interpolation by Neighboring Pixels [37], and New
Interpolation Expansion [17] take one step forward in improving
detail preservation and accuracy by leveraging local pixel rela-
tionships more effectively. While works like Marching Cubes [21]
and Volume Rendering [8] focus on interpolating 3D data. Recent
years have witnessed a shift towards machine learning approaches,
particularly with Convolutional Neural Networks (CNNs) making
notable advancements in preserving anatomical structures more
effectively [23]. Oring et al. [26] proposed a regularization method
that molds the latent space into a smooth, locally convex manifold
consistent with training images. [27] presents a method for inter-
polating between generative models of the StyleGAN architecture
in a resolution-dependent manner. However, these approaches fail
to capture the substantial alterations in spatial correlation present
in 3D image data.

2.2 Explanation Supervision

Incorporating human knowledge into explainable models has been
a central focus of research in natural language and tabular data,
utilizing methods like attribution and feature regularization [1].
XAI-Class [3] utilize highlighted words from the input as additional
signals for training the Transformer model. Commonsenseqa [34]
proposes to train language models in a multi-task manner, super-
vised by both labels and rationales [39]. Recently, there has been
a growing recognition of the value of visual explanations. A lead-
ing method to achieving this involves the use of saliency maps,
which identify the input features most influential to a model’s pre-
dictions [25, 30]. The HAICS framework [31] represents a notable
advancement in image classification, utilizing human-generated
scribble annotations as the explanation supervision signal. RES [10]
introduced an innovative objective designed to accommodate the
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inaccurate, incomplete, and inconsistent nature of human annota-
tions. SRDML [5] utilizes saliency to regularize the input gradients
across different tasks, enhancing interpretability of task relation-
ships. MAGI [38] proposes a generative model to solve the multiple
noisy and incomplete annotations for supervision. Despite this ad-
vancement, research on applying explanation supervision to 3D
data remains under-explored.

3 Problem Formulation

This section presents problem formulation regarding explanation
supervision in the context of image classification. We first define
the general paradigm of explanation supervision, and then explore
the extension of this paradigm from 2D to 3D data, introducing
unique challenges posed by the additional dimensionality. Problem
formulation for 3D explanation supervision is presented as follows:
Given a set of inputs X = {xi}%\:’1 with class labels Y = {yi}fil,
and their corresponding human explanation annotation M = {m; }{i "
where N denotes the training sample size, the model aims to learn
the mapping function f(-) for each input image x; to its class label
as f : x — y and provide a model explanation via an explainer
g(+) as g : (f,{x,y)) — m. The general paradigm of explanation
supervision can be formulated as the objective function below:

min > (Lorea(f (et 90) 41 L (9 Gxiyid).mi) (1)
e ——

prediction loss explanation loss

where the first term measures the prediction loss of the model’s pre-
dicted class labels, the second term measures the explanation loss of
the model-generated explanation, and A is a hyper-parameter used
to balance the two loss terms. Here, Lp,.q represents a common
prediction loss (e.g., cross-entropy loss), while Lgy, is tailored to
the characteristics of individual datasets.

In our study, we want to extend the above explanation supervi-
sion paradigm to 3D data as X = {x; € ROPXHXW)N with class
labels Y = {yi}{i 1» and their corresponding binary annotations
M ={m; e RDXHXW}fil, where N denotes the training sample
size, C denotes the number of channels, D denotes depth, H denotes
height, and W denotes width. However, various challenges arise
when extending this paradigm to 3D data: 1) Spatial correlation
changed. Spatial correlation has changed significantly from 2D to
3D image data. The complexity of 3D data requires adjustments to
capture features and correlations in the third dimension, potentially
causing misalignment between data patterns and the paradigm’s
capacity. 2) Absence of direct 3D labeling. The absence of direct
3D labeling poses a challenge because human labeling is initially 2D.
Manual labeling of volumetric data is costly and leads to sparse la-
beling, especially in the depth dimension. Limited training samples
in domains such as medical imaging exacerbate the challenge of
effective generalization. 3) Uncertainty varies across different
parts of the explanation. Medical imaging data are shaped by
anatomical structures and lesions, which exhibit a diverse range
of shapes. The inconsistent human labeling further contributes
to varying distances between consecutive slices along the depth
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dimension, introducing dynamic uncertainty. Addressing these un-
certainties poses a challenge to the model’s capacity to provide
consistent explanations across different regions of 3D data.

4 Proposed Framework

This section describes the proposed DUE framework in detail. We
begin with an overview of the framework and then describe its key
components.

/" (a)3D

WEEING N (b) Distance-Sensitive 3D \
Explanation & Interpolation
Supervision / X
Py AN
-
image / X

classifier

Imputed uncertainty
predictor

(c) Uncertainty-Aware Explanation Guidancﬂ

Figure 1: Overview of the DUE framework: (a) presents the
3D explanation supervision, (b) demonstrates the Distance-
Sensitive 3D interpolation, and (c) illustrates the Uncertain-
Aware Explanation Guidance.

4.1 Framework Overview

The proposed DUE framework, as shown in Figure 1, consists of
three modules: 3D explanation supervision, distance-sensitive 3D
interpolation, and uncertain-aware explanation guidance.

The 3D explanation supervision module aims to enhance both
the predictability and explainability of models by introducing 3D
explanation supervision. This approach incorporates 3D explana-
tion annotations as additional supervision, alongside traditional
prediction label supervision, as depicted in Figure 1(a). While ideal
explanation guidance requires comprehensive and precise expla-
nation annotations specifying areas of focus at the pixel (or voxel)
level, the sparsity of annotation slices serves as incomplete guides,
limiting the effectiveness of explanation supervision. In this sce-
nario, addressing missing slices becomes crucial for effective 3D vi-
sual explanation guidance. Traditional interpolation methods such
as linear interpolation [22] can fill in missing slices but may intro-
duce bias since they ignore the proportional relationship between
uncertainty and the distance from conditional slices. Furthermore,
they only provide deterministic predictions, neglecting random-
ness observed in real-world scenarios [4], making them less suitable
compensatory approaches.

To address this issue, we propose a distance-sensitive 3D in-
terpolation module, which comprises a 3D interpolator to better
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account for the proportional relationship between uncertainty and
the distance from the conditional slices when interpolating missing
slices. The 3D interpolator is extended from a conditional diffusion
model, detailed in Section 4.2.

Subsequently, we introduce an uncertain-aware explanation
guidance module to estimate the uncertainty of the interpolated
slices and determine the weights assigned to the interpolated slices
based on their associated uncertainty. Specifically, we utilize an
imputed uncertainty predictor to accelerate the uncertainty esti-
mation procedure via neural processes, which will be elaborated
in Section 4.3. These uncertainties are translated into weights for
each voxel contributing to the final 3D explanation, tuning their
influence as uncertain-aware explanation guidance, as shown in
Figure 1(c). Subsequently, the above two modules are synergisti-
cally incorporated into the 3D explanation supervision framework,
enabling effective handling of challenges arising from the absence
of direct 3D annotations.

Based on the above statement, the proposed DUE framework
achieves 3D explanation supervision through the integration of
3D interpolation uncertainty prediction and uncertainty-aware
explanation annotation guidance, as depicted in Figure 1. Formally,
the overall objective of the DUE framework is expressed as follows:

Na
min D Lrrealf (). yo)+

AN Loy (90F, (i ), Gimp(m) - hnnerp(mi))

where prediction loss is computed for all samples, while explanation
loss is computed only for samples with manual labels (i.e., positive
samples). The function Gymy () represents the imputed uncertainty
predictor, tasked with adjusting the influence of annotations on the
explanation loss based on their imputed uncertainty. Additionally,
the 3D interpolator is denoted as ginterp (*)-

@

4.2 Distance-Sensitive 3D Interpolation

To enhance the proportional relationship between uncertainty and
distance from conditional slices, we involve a 3D interpolation
method that extends a conditional diffusion model to perform
distance-sensitive interpolation for the missing slices [35]. When
interpolating missing annotation slices, consider a set A = {A; €
RH Xw}fi , representing the annotation slices of an incomplete
annotation, where N is the total number of slices. Each annota-
tion slice A; contains the contour line of the region of interest.
Let D = {dy, € R}ﬁ;l be the corresponding set of distances be-
tween adjacent annotation slices, where d; denotes the distance
between slices A; and A;;1. The goal is to interpolate missing slices
Amissing = {Amissing,i € RH XW}A;I within this set based on the
set of existing slices A, where M is the number of missing slices.
Given the considerable time consumption and computational
complexity associated with 3D interpolation, we adopt a chunking
approach to interpolate the entire annotation. Initially, the annota-
tion is segmented into multiple blocks, each comprising two slices.
Subsequently, interpolation is applied to fill in the missing slices
within each interval, with conditioning on the two slices. The in-
terpolation process adopts an autoregressive approach, allowing
each new interpolation conditioned on the preceding interpolations.
This generates j < d; slices iteratively until a cumulative total of

6338

Qilong Zhao et al.

d; slices is attained. By amalgamating all the missing slices within
each interval Zfi;l d;, the total number of slices M is obtained.
Conditional diffusion for slice interpolation. Based on the above
discussion, consider an annotation block comprising two annota-
tion slices, denoted as A; and A;1, utilized as conditions. The diffu-
sion model is tasked with interpolating each intermediate slice A,
where j ranges from 1 to d;, as shown in Figure 2. This interpolation
process can be formulated as follows:

Et: [Ai:Aj,AiH ] ”‘Pannotation:s"N(O»I)»(mp:mf)"B(Pmask)
[||€ —€p (\/d_tAj + VI —are|mpAi, mpAiy, t) ||2] ,

where my, and my are all-zero masks independently sampled from
the Bernoulli distribution 8 with a probability of py.sk = 1/2. The
term pannotation represents the distribution of annotation slices. The
function eg(Aj;|t) estimates e through a time-conditional neural
network parameterized by 0, and @; is a parameter that regulates
the balance between the contribution of the interpolated slice A;
and the noise term € at step ¢ in the reverse process [16].

®)

Annotation Condition RO = R ., Interpolation
| x x x x x {
conca S S ] ] =
“pirru|2] 2] 3] |5 [2]
i gl 1 1&] 1] 1€
1
- I J anance
Noise level € at step t
Blocks pmmmmmmmmm— Uncertalnty
Uncertalnty

Figure 2: Overview of the imputed uncertainty predictor train-
ing: A diffusion model is first trained for interpolation and
uncertainty generation (solid orange line). Then, a Neural
Processes (NP)-based VAE is trained to impute uncertainty
for NP representations (dashed orange line). The red line
represents the deployment path.

4.3 Uncertainty-Aware Explanation Guidance

After obtaining the interpolated slices and the 3D interpolator,
we introduce the uncertain-aware explanation guidance module
for generating associated uncertainties. Specifically, we involve
an imputed uncertainty predictor to dynamically estimate voxel
uncertainty levels, represented as U = {ul!) ¢ RHXW}?;IP for
intervals within the annotation slices by utilizing spatial correlation
and the distribution of annotation features, conditioned on two
ground truth slices. After determining the voxel uncertainties of
interpolated 3D annotations, we translate the uncertainties into
weights, then multiply weights by the interpolated annotations to
obtain the final, complete explanatory annotation.

Initially, we use the diffusion model described in Section 4.2 to
iteratively perform the interpolation process and compute variance,
as illustrated in Algorithm 1. The variance is used as an approxi-
mation to uncertainty. The iterative interpolation process and the
computation of variance are carried out from lines 4 to 8. The inter-
polation procedure is detailed from lines 10 to 15, while the function
for computing variance spans from lines 16 to 21. This approach
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enables a quantitative assessment of uncertainty, offering insights
into the randomness inherent in the interpolation results. These
estimations are then used to weight the interpolated annotation
slices, tuning their influence as explanation guides.

Algorithm 1 Algorithm for Variance Generation

: Input: Training data D, number of iterations T
: Output: Variance V
. Train a diffusion model on D.
: fort=1toT do
Interpolate segments of the annotation using the diffusion
model: A; < 3DINTERPOLATION(D).
6: Aggregate interpolated segments: A «— AU Ay.
7: end for
8: Compute the variance of all outcomes: V <« COMPUTEVARI-
ANCE(A).
9: return V.

S R

10: function 3DINTERPOLATION(D)

1 Input: Training data D.

12: Output: Interpolated annotation segments A;.

13: Interpolate D using the diffusion model, following the spec-
ified loss function.

14: return Interpolated segments A;.

15: end function

16: function COMPUTEVARIANCE(A)

17: Input: Aggregate of interpolated annotation segments A.

18: Output: Variance V.

19: Calculate the variance of outcomes across all A.

20: return Calculated variance V.

21: end function

As in the above statements, we use diffusion models for interpola-
tion and generate the associated uncertainties. However, generating
variance with diffusion models is slow and inherently unstable. To
address this, we substitute the diffusion model with a Variational
Autoencoder (VAE) based on Neural Processes (NP) [36] for more
stable and swift variance generation. The VAE model enables a
continuous mapping of uncertainty and promptly generates it, alle-
viating concerns about deployment speed and stability associated
with the diffusion model. Additionally, neural processes accommo-
date varying spacing between annotation slices. To emphasize the
purpose of the VAE, we name it imputed uncertainty predictor in
Figure 1.

The learning process of the imputed uncertainty predictor com-
prises two stages, as shown in Figure 2. Initially, the diffusion model
is trained for interpolation and uncertainty generation (depicted by
the solid orange line). Subsequently, we utilize the same condition
slices from the diffusion model as conditions for the VAE, with the
variances generated by the diffusion model serving as the targets.
The VAE is trained to expand the representation of uncertainty for
varying spacing (illustrated by the dashed orange line). The reason
for this two-stage approach is the complexity associated with train-
ing diffusion models and VAEs, which makes simultaneous training
a challenging task. During deployment, the VAE is employed di-
rectly, as indicated by the red line. Upon obtaining the uncertainty,
it is converted into weights using a simple mapping: applying a
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flipped Sigmoid function to the uncertainty, followed by min-max
normalization. After the training process, we can generate the NP
uncertainty of a given interpolated 3D annotation with the VAE
model.

5 Experiments

We present a comprehensive analysis of the experimental results
of our proposed framework, focusing on two tasks: pancreatic tu-
mor classification and lung nodule classification. We first introduce
our experimental settings, including tasks and datasets, evalua-
tion metrics, and comparative methods. Subsequently, we conduct
an extensive quantitative assessment of the model’s predictions
and explanations and simulate real-world scenarios by restricting
training samples. Additionally, we conduct an ablation study, a qual-
itative assessment featuring case studies, and a sensitivity analysis
to provide further insights.

5.1 Experimental Settings

Pancreatic tumor classification: We obtained negative samples
(i.e., normal samples) from the Pancreas-CT dataset? [29] and posi-
tive samples (i.e., abnormal samples) from the Medical Segmenta-
tion Decathlon dataset?, resulting in a dataset of 281 CT scans with
tumors and 80 CT scans without tumors. The pancreas region was
extracted based on doctors’ annotations while retaining the pres-
ence of tumors. We kept the original 3D modality for the samples,
and extracted the middle slice along the depth dimension for 2D
comparative methods, resulting in 128 X 128 X 64 image blocks and
128 x 128 image slices, respectively. We split the dataset into 30% for
training and validation, and 70% for testing, maintaining a balanced
data distribution for training while keeping the original ratio for
validation and test sets. In our experiments, we only utilized 20
samples during training to simulate a real-world scenario where
manual labels are strictly limited.

Lung nodule classification: We obtained both positive samples
(i.e., samples with nodules) and negative samples (i.e., non-nodule
samples) from the LIDC-IDRI dataset* [2]. This dataset includes CT
scans collected from 1010 patients, accompanied by annotations
provided by four experienced radiologists. Employing a standard
50% consensus consolidation of these annotations, we identified
nodule regions as positive samples and the surrounding areas as
negative samples, resulting in 2625 positive samples and 68,160
negative samples. We retained the original 3D modality for the
samples and extracted the middle slice along the depth dimension
for 2D comparative methods. This yielded image blocks of size
128 X 128 x 64 and image slices of size 128 x 128, respectively. The
dataset was first split at patient level, allocating 10% for training,
30% for validation, and 60% for testing. We ensured a balanced
distribution of the training data while preserving the original distri-
bution of validation and test sets. To simulate real-world scenarios,
we conducted experiments using 20, 50, and 100 training samples.
Evaluation metrics: In assessing the model’s performance, we con-
sider both its predictability and explainability. To evaluate its predic-
tive capabilities, common metrics such as prediction accuracy and

2 Available at: https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
3 Available at: http://medicaldecathlon.com/

4 Available at: https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageld=1966254
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Table 1: The experimental results comparing model prediction and generated explanations to various methods for pancreatic
tumor and lung nodule classification tasks. Optimal outcomes for each task are highlighted in bold.

Dataset | Method | ROC-AUC (1) PR-AUC(1) | IoU (1) Precision ()  Recall (1) F1 (1)
HAICS 76.37 £10.26  89.35+6.09 | 33.63+3.95 99.83+0.29 40.29+5.20 54.83 +4.40
GRADIA 76.41 £11.62  90.35+6.52 | 36.40 £5.59 99.83+£0.29 45.13+£7.18 59.84+6.95
Pancreas RES 77.90 £11.02  90.57 £ 6.52 | 35.47+8.36 99.66 £0.59 42.68 +11.31 57.23 +11.77
Baseline 96.83 + 4.22 99.14 + 1.12 | 38.81 £16.85 99.83 +0.29 49.11 +21.55 62.60 + 20.27
Baseline™ 96.51 + 5.42 99.17 £ 1.26 | 36.88 + 5.39 100 + 0 42.40 £ 6.75  57.33 £ 6.31
DUE (proposed) | 99.58 + 0.24 99.88 + 0.07 | 51.20 + 2.43 100 + 0 63.43 +4.19 75.66 = 2.76
HAICS 62.29 +14.20 8.25+6.63 26.77+4.49 99.74+0.45 47.60+9.36  62.22 +9.27
GRADIA 58.37 £ 12.05 7.72 +3.21 29.46 £5.30 100 + 0 52.69 £8.18  67.27 +£7.31
LIDC RES 65.84 +£17.37 14.59+16.28 | 28.53 £8.69 99.48+£0.45 50.05+16.83 64.00 + 16.29
Baseline 97.60 £ 0.39 81.72+1.94 | 1430+ 6.58 9432+ 1.79 30.10+13.76 40.42 + 14.38
Baselinet 96.55 + 1.76 79.81 £435 | 3147 £041 97.67 +£233 4384+512 5699 + 4.18
DUE (proposed) | 98.58 + 0.38 87.82 + 1.25 | 33.28 £ 2.69 90.18 +3.82 64.99 +4.39 67.66 + 4.25
100 100 —
..... —$— HAICS
> 80 —— HAICS 85 | —4— HAICS GRADIA
[9) —— RES E
8 60 GRADIA o GRADIA
5 | —— RES S 70 r,,—7'4\+ RES —4— Baseline
Y 40 —4— Baseline + < = —4— Baseline -+- Baseline+
< 20 I -4- Baseline+ | 55 -4- Baseline+ 10 —— DUE h
—— DUE —k— DUE
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Training Sample Size
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Figure 3: Model performance under varying training sample sizes on the lung nodule classification dataset. (Left) Comparison
of test prediction accuracy. (Middle) Comparison of test prediction ROC-AUC. (Right) Comparison of test IoU score.
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Figure 4: Visualizations display explanations for pancreatic tumor classification (left) and lung nodule classification (right).
Human annotations are presented in the Mask columns, while model-generated explanations are depicted using heatmaps
overlaid on the original images, highlighting regions of greater importance with warmer color intensities.

the Area Under the Curve of the Receiver Operating Characteristic
(ROC-AUC) curves are employed. Due to the pronounced imbalance
in the test sets (with a positive-to-negative ratio of approximately
1:26 for LIDC), we additionally employ the Area Under the Curve
of the Precision-Recall (PR-AUC) curves as a metric [7]. To assess
the quality of the model’s explanations, we compare its generated
explanations with human annotations. Specifically, we utilize the
Intersection over Union (IoU) score, as introduced in [6]. This score

is derived from the bit-wise intersection and union operations be-
tween the human explanations and the binarized model-generated
explanations, providing a measure of overlap between the two in-
puts. Additionally, we compute pixel-wise precision, recall, and F1
score, offering a comprehensive evaluation of the model-generated
explanations.

Comparative methods: We conduct a comparative analysis by
evaluating our proposed method against three existing explanation
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supervision methods: HAICS [31], GRADIA [11], and RES [10].
Additionally, we include the baseline, which is a 3D model trained
solely with the prediction loss. Furthermore, as part of an ablation
study, we assess two variants of our proposed method, namely
Baseline* and the standard DUE.

e HAICS [31]: This framework employs explanation supervi-
sion to train a 2D model, utilizing Binary Cross Entropy (BCE)
loss to minimize the discrepancy between the model-generated
explanations and provided explanation annotations.

e GRADIA [11]: This framework employs explanation super-
vision to train a 2D model, utilizing L1 loss to minimize the
discrepancy between the model-generated explanations and
provided explanation annotations.

e RES [10]: This framework trains a 2D model with robust ex-
planation supervision, utilizing imputation to bidirectionally
minimize the distance between the model’s explanations and
the provided explanation annotations.

e Baseline: The backbone model of our method, which is a bare
3D model trained solely with the prediction loss.

e Baseline™: A naive variant of our method, which trains a 3D
model using explanation supervision that directly minimizes
the distance between the model’s explanations and the provided
explanation annotations.

o DUE: The standard variant of our method, which trains a 3D
model using explanation supervision with uncertainty-aware
explanation guidance to minimize the distance between the
model’s explanations and the provided explanation annotations.

Implementation details: The backbone model utilized is a 3D
ResNet18 [14]for all 3D methods. For the 2D methods, ResNet18 [15]
is employed with customization. This customization involves ad-
justing the first convolutional layer to possess a kernel size of (7, 7),
a stride of (2, 2), and padding of (3, 3). This modification aligns the
feature map’s view with that of the 3D models, thus mitigating res-
olution discrepancies and enabling a fair comparison. For RES [10],
we use the Gaussian imputation (i.e., RES-G) and set « to 0.001. All
explanation supervision methods employ an attention weight A
of 1. All models undergo training for 50 epochs using the Adam
optimizer [20] with a learning rate set at 0.001. Model explanations
are generated via Grad-CAM [30] and binarized using a threshold
of 0.5.

5.2 Performance

Table 1 shows the model prediction and generated explanation
performance for the pancreatic tumor and lung nodule classifi-
cation datasets. The results are obtained from 5 individual runs.
The best results for each dataset are highlighted in bold. Overall,
our proposed framework DUE outperformed all other comparison
methods in both prediction performance and explainability on both
datasets. In addition, the huge difference in predictive abilities be-
tween 3D and 2D models is due to the underutilized information in
3D data, which further demonstrates the significance of extending
the primitive explanation supervision paradigm to 3D models.
For the pancreatic tumor classification task, our proposed DUE
consistently yields the best performance on all metrics. Specifically,
DUE achieved the highest ROC-AUC and PR-AUC, outperform-
ing the baseline and other comparison methods by 2.75%-23.21%,
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and 0.71%-10.53% respectively for the predictive capability. The
improvements are even more on the model explainability in terms
of IoU, recall, and F1 scores, where DUE exceeded baseline and
other comparison methods by 12.39%-17.57%, 14.32%-23.14%, and
13.06%-20.83% respectively. Additionally, precision is at a perfect
100% for DUE.

Furthermore, for the lung nodule classification task, the DUE
shows stronger predictive capabilities, where the ROC-AUC and
PR-AUC scores are 0.98%-40.21%, and 6.1%-80.1% higher for the
DUE compared to baseline and other comparison methods. While
precision has a decrease of 4.14% compared to the baseline model,
this is offset by a significant improvement in recall with an increase
of 34.89%. This balance between precision and recall is reflected in
the IoU, with an improvement of 18.98% over the baseline model,
as well as an overall increase in the F1 score by 27.24%, indicating
enhancing model explainability robustly.

Subsequently, we investigate the performance of the DUE frame-
work to strengthen the generalization capabilities under various
training sample sizes. We study three training sample sizes of 20,
50, and 100 using the lung nodule classification dataset. As depicted
in Figure 3, we present the results of the prediction accuracy, AUC,
and IoU score of each method concerning the training sample size.
Each data point represents the mean values of five independent runs
and the corresponding error bar stands for the standard deviation.
In general, our DUE framework outperformed all other comparison
methods, especially in the predictive capabilities, demonstrating
the effectiveness of our proposed framework. Specifically, DUE can
improve the prediction accuracy and AUC by 40% and 30% respec-
tively on average against other comparison methods. Interestingly,
DUE performs the best in the IoU score when the sample size is
as small as 20. As the training sample size increases, the IoU score
decreases and then stabilizes while still outperforming other com-
parison methods, indicating a transition from potential overfitting
to better generalization.

5.3 Qualitative Analysis of Model Explanation

Here, we present a case study examining the comparison of model-
generated explanations for pancreatic tumor and lung nodule clas-
sification datasets, as depicted in Figure 4. The model-generated
explanations are showcased through heatmaps overlaid on the orig-
inal image samples, with increased emphasis on areas exhibiting
warmer colors to denote higher importance.

Pancreatic tumor classification: In the context of pancreatic
tumor classification, illustrated in the left portion of Figure 4, we
chose five samples of model-generated explanations from all mod-
els. The visualization reveals that explanations produced by models
employing the proposed DUE framework exhibit superior perfor-
mance in both accuracy and alignment with human annotations
compared to the comparative methods. Notably, the explanations
generated by the baseline model largely fail to concentrate on the
annotated region, indicating its inherent lack of explainability. The
2D methods exhibit a recurring focus on the lower region, con-
sistently focusing on the lower region, while the ground truth is
distributed in the middle of the view. Generally, Baseline+ manages
to anchor on the correct region but with a narrow scope deviating
from the central tumor area. DUE achieves optimal visualization by
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consistently focusing on the central area, with margin adjustments
to accurately encompass the tumor region.
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Figure 5: IoU and F1 scores for model explanations at differ-
ent thresholds on pancreatic tumor and lung nodule classifi-
cation datasets.

Lung nodule classification: In the right segment of Figure 4, five
selected samples of model-generated explanations across all mod-
els are presented for lung nodule classification. The contours of
the lung nodules exhibit greater variability, with DUE consistently
delivering the most effective visualization results. Specifically, the
baseline model continues to favor areas outside the annotated re-
gion, indicating a questionable basis for its predictions. The 2D
methods consistently focus on the lower right part, capturing a
significant portion of the ground truth but also encompassing large
non-relevant areas. Baseline® achieves precise concentration; how-
ever, it remains incomplete and repeats the same bias observed in
the baseline for row 3. In contrast, DUE tends to encompass the
annotated region as extensively as possible while also adjusting
its margins to prevent overreaching. Furthermore, DUE exhibits
strong confidence in its attention area, as indicated by its heatmap
being predominantly red with a narrow margin of yellow.

5.4 Quantitative Analysis of Model Explanation

In addition to the qualitative analysis of model explanations pre-
sented in Section 5.3, which is conducted with a limited number
of samples, we provide IoU and explanation F1 scores calculated
using various thresholds for the model explanations (given their
continuous nature) for a more comprehensive study. We vary the
threshold of attention values in the model explanations and recalcu-
late both IoU and F1 scores. A low threshold (e.g., 0.1) encompasses
regions with minimal influence on the model’s prediction results
when calculating the degree of overlap with human annotations.
Conversely, a high threshold (e.g., 0.9) focuses solely on regions
with significant influence on the model’s prediction results when
determining the degree of overlap with human annotations. Using
Figure 4 to better illustrate, the yellow-green areas in the model
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Figure 6: The sensitivity study of A in our framework, DUE,
on the lung nodule classification dataset. The red dashed line
denotes the baseline model’s performance.

explanation may have an attention value of 0.1, while the red areas
in the model explanation may have an attention value of 0.9. Fig-
ure 5 displays the IoU and F1 scores achieved by each model across
varying attention value thresholds from 0 to 0.9 (where attention
values range from 0 to 1) for both Pancreas and LIDC datasets. In
general, DUE has the highest IoU and F1 at different thresholds
and consistently outperforms others, evident in the red line consis-
tently occupying a higher position in most cases. This superiority
becomes more pronounced as the threshold increases, suggesting
that DUE exhibits greater confidence in identifying important areas.
This observation aligns with our findings in Section 5.3.

5.5 Sensitivity Analysis of Hyper-Parameter

We evaluate the robustness of our proposed DUE framework to var-
ious changes in hyper-parameter A as shown in Equation 2, which
determines the balance between the predictive loss and explanation
loss. Figure 6 shows that the PR-AUC is relatively stable across the
range of A values, with a slight increase as A approaches 1. The IoU
metric shows an initial increase with small values from 0.001 to 0.01
and the explanation F1 score increases notably as A moves from
0.001 to 0.1, and then gradually declines, indicating a moderate em-
phasis on explanation loss leads to a better performance. Generally,
our model outperformed the baseline model by a significant margin
in both prediction accuracy as well as explainability. The optimal
range for A is between 0.1 and 1, with the peak at 1, which suggests
the overall performance is the best when the prediction loss and
explanation loss are balanced.

6 Conclusion

This paper introduces the Dynamic Uncertainty-aware Explanation
supervision (DUE) framework, addressing challenges in applying
explanation supervision to 3D medical images. Our approach over-
comes issues such as altered spatial correlations, sparse 3D annota-
tions, and varying uncertainty by introducing a diffusion-based 3D
interpolation method with uncertainty-aware guidance. Through
extensive experiments on diverse medical imaging datasets, we
show that the DUE framework significantly improves the pre-
dictability and explainability of deep learning models in medical
diagnosis, showcasing its potential to advance Explainable AI (XAI)
in healthcare diagnostics.
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