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Abstract—Zero-shot link prediction (ZSLP) on knowledge
graphs aims at automatically identifying relations between given
entities. Existing methods primarily employ auxiliary information
to predict tail entity given head entity and its relation, yet face
challenges due to the occasional unavailability of such detailed
information and the inherent simplicity of predicting tail entities
based on semantic similarities. Even though Large Language
Models (LLMs) offer a promising solution to predict unobserved
relations between the head and tail entity in a zero-shot manner,
their performance is still restricted due to the inability to leverage
all the (exponentially many) paths’ information between two
entities, which are critical in collectively indicating their relation
types. To address this, in this work, we introduce a Condensed
Transition Graph Framework for Zero-Shot Link Prediction
(CTLP), which encodes all the paths’ information in linear time
complexity to predict unseen relations between entities, attaining
both efficiency and information preservation. Specifically, we
design a condensed transition graph encoder with theoretical
guarantees on its coverage, expressiveness, and efficiency. It
is learned by a transition graph contrastive learning strategy.
Subsequently, we design a soft instruction tuning to learn and map
the all-path embedding to the input of LLMs. Experimental results
show that our proposed CTLP method achieves state-of-the-art
performance on three standard ZSLP datasets.1

Index Terms—Zero-Shot Link Prediction, Condensed Transition
Graph, Large Language Models

I. INTRODUCTION

Knowledge graphs (KGs) [1], which are rich structured

representations of real-world entities and their relations, are

foundational in various applications, from semantic search

to recommendation systems [2, 3, 4]. However, despite their

extensive utility, most KGs suffer from an intrinsic shortcoming:

incompleteness, which makes them unable to encapsulate the

full breadth of evolving concepts. The task of KG link predic-

tion therefore arises that aims to predict relation types between

given entities in KGs [5]. Conventional methods [6, 7, 8] in

KG link prediction learn low-dimensional representations of

entities and relations, which are then used to infer links between

entities. However, these methods rely on observed links to infer

missing ones, limited by 1) the data they have been trained on
and 2) struggling to generalize to unseen entities or relations.

In light of both limitations, the motivation for Zero-Shot Link

Prediction on KGs becomes apparent.
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Fig. 1. Example of predicting the direct relation between two scholar entities in
zero-shot by only giving their local neighboring information. Local neighboring
information indicates there are many multi-hop paths with different intermediate
entities, including co-author entity, venue entity, topic entity, etc.

To date, zero-shot link prediction on KGs is still under-

explored, where previous works [9, 10, 11] have utilized

textual features or ontologies as auxiliary information to discern

relationships between head entities, seen relations, and tail

entities. Specifically, they have focused on predicting tail

entities given a head entity and a relation, regardless of whether

that relation has been previously encountered in the training

data. However, rich text features and ontologies may not always

be available in KG. In addition, when given head entities and

the relation, predicting tail entities is relatively easy since

semantic similarity would greatly reduce the pool of candidate

tail entities [12].

In this work, as illustrated in Figure 1, we focus on an

exploration of a novel zero-shot link prediction task on KGs,

which aims to predict unseen relation types between head and

tail entities without depending on learned model parameters that

tie seen relations to specific head and tail entities. As a general

task solver, Large Language Models (LLMs) can intuitively

be employed to predict the unseen relation [13, 14]. Existing

methods [15, 16] suggest querying LLMs about the relationship

between specific head and tail entities, often enriching these

queries with information about neighbors. However, general

neighbors are insufficient and distracting for link prediction.

Instead, it is important to focus on the (higher-order) neighbors

that form any paths between head and tail entities. As shown

in Figure 1, to predict the direct relationship between two

scholar entities: David E. Rumelhart and Geoffrey E. Hinton,

there exist many multi-hop paths connecting both entities, and

a high portion of these paths are related to co-authorship. This

path information can provide a more concentrated source of

relational cues than feeding the local neighboring information as

a whole. LLMs can thus leverage path information as in-context
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demonstrations to more precise predictions, i.e., co-authorship.

However, extracting and summarizing these paths is fraught

with computational hurdles, given the NP-hard nature of path

retrieval between entities in million-scale KGs [17, 18].

To balance the trade-off between efficiency and information

preservation of information encoding between head and tail

entities toward link prediction, we propose a novel framework:

Condensed Transition Graph Framework for Zero-Shot Link

Prediction (CTLP), which distill all the paths’ information

into a condensed transition graph embedding with linear

time complexity. Then, it allows LLMs to fully incorporate

path information to predict relation types given a head entity

and tail entity. Specifically, CTLP consists of three main

components: (1) A new condensed transition graph encoder

is proposed to predict the embedding aggregated from all the

condensed paths between head and tail entities via different

edges, with coverage, expressiveness, and efficiency guarantees;

(2) A graph-centric contrastive learning is designed to learn

the condensed transition graph encoder; (3) to encode the

condensed graph information into the LLMs, we propose a

new prefix-tuning method to encode graph information into the

task instructions. We provide our key contributions as follows:

• Problem. We propose to solve the task of zero-shot link

prediction in KGs by encoding all the paths’ information

in linear time complexity and letting LLMs make zero-shot

predictions with soft prompt tuning.

• Technique. We propose to summarize all paths between

given entities into a condensed transition graph while

retaining the same expressiveness with a theoretical

guarantee. Graph-centric contrastive learning is designed

to ensure the path information is being injected into the

soft prompt.

• Experiments. We conduct a thorough analysis of our

method both quantitatively and qualitatively, which demon-

strates better performance than existing state-of-the-arts.

Additional experiments, including the ablation study and

sensitivity analysis, illustrate the robustness of CTLP.

II. RELATED WORK

Link Prediction. Many studies [6, 11, 16, 19, 20, 21, 22] have

been proposed to better predict the relationship between the

head and tail entity. The translation-based model TransE [6]

requires that the tail entity embedding is close to the sum of

the head and relation embeddings; The non-bilinear model

TuckER [20] utilizes the tucker decomposition to build the

connection between different knowledge graph triples. KG-

BERT [23] regards entities and relations as textual sequences,

transforming the link prediction task into a classification prob-

lem. KopA [21] feeds the entity and relation embedding into

LLM in the format of soft-prompting. Although performance

has been achieved incrementally, these approaches in their

original form are unable to learn embeddings for unseen

relations. This is because they learn entities and relation

embeddings using the topological structure of the KG.

Zero-shot Link Prediction. Previous works tend to predict the

tail by giving the head entity and unseen relation [9]. [9] used

textual information of the relation as auxiliary information

and applied a Zero-Shot Generative Adversarial Network

(ZSGAN) to learn the unseen relation embedding for the task. A

hierarchical n-gram framework (HNZSLP) [11] is proposed to

use the structural information in relational n-grams for zero-shot

link prediction. Despite the success, there exists a research gap

in investigating the selection of relations from a given candidate

relation set without training on the seen relation dataset. To

achieve this objective, an intuitive idea is to utilize the LLMs,

such as LLama [24], to predict the relations, for example, by

constructing the prompt and feeding the head entity and tail

entity in the format of what is the relationship between the
head entity and tail entity? to the LLM. Unfortunately, this

method is easy to cause hallucinations, because it fails to use

enough knowledge to guide the LLM. So, in this work, we try

to explore how to encode the path information between the

head entity and the tail entity to predict the relationship in a

new zero-shot learning setting.

III. PROBLEM STATEMENT

This section formulates our problem of Zero-shot Link
Prediction.

Zero-shot link prediction on (knowledge) graphs. This task

is formulated as predicting the relation type between any

two entities of a knowledge graph without any training on

the current knowledge graph. More specifically, we aim at

predicting the relation type r ∈ C(s,t) between a head entity s
and a tail entity t, where C(s,t) is the set of possible relation

types.

The relation between s and t is well-centered among all the

possible routes through which s could correlate to t, which

can be collectively formulated as an (s, t)-transition graph.

a) Transition graph.: For any pair of two entities (s, t)
in a knowledge graph, all the paths from head entity s to

tail entity t collectively form an (s, t)-transition graph. Figure

1 exemplifies an (s, t)-transition graph where s is “David E.

Rumelhart” and t is “ Geoffery Hinton”. In practice, the length

of paths can be upper-bounded by an integer k, which can

usually be set as the diameter of the knowledge graph. To

be specific, let G = (V,E) denote an (s, t)-transition graph

consisting of a set of node V and a set of edges E ∈ V × V .

We denote by n the number of nodes in G and by m its

number of edges. A path from head entity s and tail entity v
is denoted by π = [v0, r0, v1, ..., vj−1, ri, vj ] such that v0 =
s, vj = t, (vj , vj+1) ∈ E. The textual description of the path

π is described as: T (π) = the relationship between v0 and v1
is r0 ,..., the relationship between vj−1 and vj is ri.

IV. PROPOSED APPROACH: CTLP

A. Motivation and Approach Overview

To achieve the link prediction between s and t, the most

commonly used way is to learn the embeddings of s and t
with graph models (typically graph neural networks) and then

calculate the similarity of their embeddings to predict their

relation type r. Such a way, though efficient with O(|E|), is

limited in considering higher-order neighborhoods spanning
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Fig. 2. Overview of CTLP. During the training process, the language model parameters are frozen, and only the condensed graph encoder is trained.

s and t due to the inherently limited number of layers of

graph models. However, higher-order consideration is critical,

especially in zero-shot link prediction, as it provides a broader

context with more chance to generalize across different domains.

On the contrary, the thorough way that preserves all the

information is to consider all the possible paths traversing

from s to t. However, the number of such paths is exponential

to the number of edges |E|, which makes it prohibitive.

To address the above issue, we aim at a new framework

that can not only preserve higher-hop relation information

between s and t but also is efficient, with linear time complexity.

More specifically, we propose a Condensed Transition Graph

Enhanced LLM for the zero-shot Link Prediction (CTLP),

which distills the information from all the paths between

s and t to a condensed transition graph encoder that can

learn the information in the neighborhood of all the hops

with O(|E|) time complexity, as detailed in Section IV-B

and theoretically analyzed in Section IV-C, and illustrated

in Figures 2(3) and 2(4). To let the condensed transition graph

encoder better approximate the information from all the paths

between s and t, we design a contrastive learning strategy that

minimizes their divergence, as detailed in Section IV-D and

illustrated in Figures 2(1), 2(2), and 2(5). Finally, the learned

embedding will be input into LLMs with the transferrer that

is learned in Section IV-E and illustrated in Figure 2(6).

B. Condensed Transition Graph Building and Encoder

Here, the embedding of the information of each path between

s and t through (u, v) can be decomposed into: (s, u) path

embedding, (u, v) edge embedding, and (v, t) path embedding.

To estimate the (s, u) and (v, t) path embedding, we have

proposed different ways detailed in Section 4.2. We demonstrate

at the end of this section that such decomposition leads to a

total time complexity of O(|E|).
In this section, we propose our Condensed Transition Graph

encoder that can calculate the embedding in linear time

complexity (as demonstrated at the end of this section). More

concretely, in the condensed transition graph encoder, we

leverage the principle that all the paths between s and t can

be split into each subset of paths between s and t going

through each edge (u, v) ∈ E. Hence, the entirety of the

embedding of all the paths between s and t is equivalent to the

aggregation of the embeddings of paths pertaining to different

edges (u, v) ∈ E, which is denoted as follows:

h̄G =
1

|E|
∑

(u,v)∈E
h(u,v)

where E is the edge set in G. h(u,v) denotes the embedding

of all the paths between s and t through an edge (u, v), and

is calculated by the encoding of the composition of the three

segments of this path, which is the key to achieving linear

time complexity, as denoted in the following:

h(u,v) = CGE(h(s→u,v→t))

where CGE is an encoder, such as the encoder part in a

Transformer. (s → u, v → t) is called a condensed path via

an edge (u, v) and a condensed transition graph G∗ is defined

as the composition of all the condensed paths via all the edges.

and h(s→u,v→t) is the concatenation of the embeddings of the

three segments of the path between s and t via (u, v), namely:

h(s→u,v→t) = h(s→u)|h(u,v)|h(v→t)

where h(s→u), h(u,v), and h(v→t) are the paths’ embedding

from s to u, edge embedding of (u, v), and the paths’

embedding from v to t, respectively. “|” is the concatenation

function. This step is also illustrated in the section “c)” of

Figure 2(3). In the following, we elaborate our efficient methods

to calculate the path embedding h(s→u) and h(v→t), as well

as edge embedding h(u,v), respectively.

The goal of embedding computation of the path h(s→u) is

to calculate the embedding that can enclose the correlation

information between s and u. An intuitive option is to aggregate

all the paths’ embedding between s and u. However, a better

trade-off between efficiency and information preservation can

be a sampling or traversal through the most representative

path(s) between s and t. Hence, methods like the shortest
path search and fattest path search between s and t provide

a reasonable trade-off. Figure 2 provides an example of this
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shortest path collection, such as the shortest path of v1 to

s is s − r1 − v1, its textual description T ((v1 → s)) is

“the relationship between s and v1 is r1”. The embedding

of T ((v1 → s)) is initialized by a pre-trained language model,

like LLaMA. Embedding computation of the path h(v→t) can

be calculated similarly, while the calculation of h(u,v) can be

done by using LLaMA to initialize its textual embedding for

the statement ”the relationship between u and v is r”, r is the

relationship between u and v.

C. Complexity and Expressiveness of Condensed Transition
Graph Encoder

Here, we demonstrate the critical merits of our condensed

transition graph encoder in terms of its coverage, expressive-

ness, and time complexity.

Lemma 1 (Path Coverage). The condensed graph covers all
paths from s to t when all relevant paths are within k hops.

Proof Sketch. By finding the shortest path from s to every

node v in the transition graph G, we ensure that we have a

way to reach every node starting from s. This guarantees that

any node that is part of a path from s to t in the original

subgraph is reachable in the condensed graph G∗ through one

of these shortest paths. Similarly, by finding the shortest path

from every node v to t, we ensure there is a way to reach t
from any node v in G. This guarantees that for any part of

a path from s to t that passes through any v, there exists a

continuation to t in the condensed graph G∗. When all relevant

paths are within k hops, for any path from s to t in G, it can be

decomposed into segments where each segment starts and ends

at nodes where the shortest paths from s to t were calculated.

Since G∗ contains all these shortest paths, the segments can

be combined to form a path π in G∗ that corresponds to the

original path.

Lemma 2 (Expressiveness). The condensed transition graph
G∗ retains the same expressive power of the original transition
graph G when all relevant paths are within k-hop in G.

Proof Sketch. First, G∗ ensures the connectivity from s to v
for every node v in G∗ as proved in Lemma 1. Let Pk(s, t)
be the formula stating the existence of a path from s to t of

length k and let E(s, t) be an edge connecting the nodes s
and t. Pk(s, t) can be defined recursively as follows:

P1(s, t) ≡ E(s, t),

Pk(s, t) ≡ ∃vPk−1(s, v) ∧ E(v, t).

Then, G∗ and G can achieve the WL-equivalent (i.e., G∗ and

G have the same expressive power) for k ≥ 2 according to

Theorem 3.1 and 4.1 in [25].

Lemma 3 (Time complexity). The time complexity to approxi-
mate the embedding of all the paths between s and t by our
Condensed Transition Graph Encoder is linear in the number
of edges in G.

Proof Sketch. The calculation of embedding consists of two

steps: 1) computing the path embedding of (s → u), edge

embedding (u, v), and path embedding (v → t), which can

be done in O(n), where n is the number of nodes (if using

popular algorithms like breath-first search for shortest path

search around s and t, respectively); and 2) aggregating the

above embeddings for all the edges, which can be done in

O(m). Therefore, the total time complexity is O(m) since G
is connected.

D. Graph-Centric Contrastive Learning

Here, we elaborate on how to train our condensed transition

graph encoder proposed above. Again, our objective is to let

the embedding h̄G output by the condensed transition graph

encoder preserve all the information carried by all the paths

in G. To achieve this, we propose a graph-centric contrastive

learning (GCCL) method that minimizes the information gap

between them. Specifically, for each (s, t) pair, GCCL aims

to reduce the distance between the embedding h̄G from the

condensed transition graph encoder and the embedding hG
extracted from all the paths in G (see the next paragraph about

the computation of hG). To compose negative samples, we

just use (s, t) for one embedding while focusing on (s′, t′) for

the other, where (s, t) �= (s′, t′), by maximizing the distance

between them. Note that one will tend to use small transition

graph samples G’s to train the condensed transition graph

encoder efficiently.

Note that the embedding of all the paths in G is calculated

as follows. Specifically, all the paths between the s and t in

the transition graph G constitute the initial paths set P . For

each textual path T (π) in P , its representation is learned from

a pre-trained path encoder f(·), which can be denoted as:

hT (π) = f(T (π)), hG =
1

|P|
∑|P|

π
hT (π)

where the representation of G (i.e., hG) is calculated by a mean

function across all sample paths.

E. Soft Instruction Tuning

The embedding calculated by our condensed transition graph

encoder can be used flexibly for downstream tasks. One

important usage of it is a soft prompt into LLMs. To see

this, here we introduce a soft instruction tuning method. In

particular, we put the aligned condensed graph embedding h̄G ,

calculated through Graph-Centric Contrastive Learning, in the

front of the original instruction I (The instruction to guide
the LLM for the link prediction task) and input sentence S
(what is the relationship between s and t ?). The h̄G serves

as a soft prompt in the instruction. In practice, we add several

special tokens (e.g., [S]) to the beginning of the instruction,

forming a sequence of length l, such as ([S] [S] [S]), where

l = 3, and then map the representation of h̄G into these token

embeddings. the concatenation of h̄G , I and S are fed into

LLM to predict the relationship between s and t. I and S are

the embedding of I and S separately. In the training progress,

the LLM parameter is frozen. The overall objective for our
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proposed CTLP is the combination of the contrastive loss CL
(elaborated in Section IV-D) and cross-entropy loss CE:

LCE = −
∑k

i=1
log(yi|y1:i−1, h̄G , I,S)

Loverall = LCE + LCL

where, yi is the generated token in the output relationship.

V. EXPERIMENTS

A. Dataset
In our experiments, we use three public KG benchmarks

FB60K-NYT10 [26], UMLS [27], and NELL [28] to evaluate

the capability of the proposed CTLP. FB60K-NYT10 [26]

dataset includes the FB-60K knowledge graph and the NYT10

corpus. To further correct the data-building error, triples (head

entity, relation, tail entity) are excluded if either the head entity

or the tail entity is not found within the provided knowledge

graph. UMLS [27] contains triples from the Unified Medical

Language System [29], providing knowledge in the domain

of healthcare and medicine. The NELL dataset, as presented

by [28], consists of individual graphs corresponding to each

query relation, sourced from the web. The statistic information

is shown in Table I.

TABLE I
DATASETS STATISTICS, COLUMN 5 REFERS TO THE NUMBER OF TRIPLES IN

THE DIFFERENT SET.

Dataset V R # Triples # Train/ # Dev/ # Test

FB60K-NYT10 9,840 56 13,837 12,104/ –/ 1,733

UMLS 135 46 6,529 5,216/ 652/ 661

NELL 9,093 12 12,108 8,747/ 543/ 2,818

B. Baselines and Evaluation Metrics
In our experiments, the baselines include three commonly

used KG embedding methods: TransE [6], DisMult [19] and

ComplEx [30]. Obviously, these original models cannot predict

the unseen relationship in the zero-shot setting. Therefore, based

on these three methods, we propose three zero-shot baselines,

1) ZSL-TransE, 2) ZSL-DistMult, and 3) ZSL-ComplEx.

Specifically, the pre-trained BERT model [31] is employed to

compute embeddings for each entity and relation. Following

this, the score for each candidate relation is determined using

the scoring functions within TransE, DistMult, and ComplEx.

4) ZS-BERT [32], it is designed specifically for zero-shot text

classification, we adapt it to our zero-shot setting by calculating

the similarity between the sentence what is the relationship
between head entity and tail entity? and the candidate relations.

Otherwise, We also compare the performance of CTLP with

several strong baselines based on the LLM, including 5) GPT-
3.5/4: In GPT-3.5/4, we design hard prompts to guide the

GPT models in predicting relations between the head and tail

entities. 6) ZSL-InstructGLM [16]: we employ the same

prompt construction method as InstructGLM [16] to predict

the relationship between two entities in zero-shot settings. We

consider 7) LLAMA family as the baselines: LLaMA2-(13,

70b) [24]. We report the standard Micro Precision, Recall, and

F1-score on the test set.

C. Implementation Detail

To ensure the zero-shot setting, in the testing progress of

dataset FB60K-NYT10, and UMLS, the condensed graph

encoder is trained in the knowledge graph NELL, and the

LLM is frozen in the training progress of the condensed graph

encoder. Following this, the trained condensed graph encoder is

employed to encode the condensed transition graph in FB60K-

NYT10 and UMLS. The condensed graph encoder in the NELL

dataset is trained using the FB60K-NYT10. We set the hops

k = 4 in the transition graph of FB60K-NYT10, UMLS, and

NELL. During the training process of the condensed graph

encoder, the vector dimensions of the transition graph and the

LLM are the same. In the dataset FB60K-NYT10, the length

of the soft prompt token is set to l = 5, while in the dataset

UMLS and NELL, the length of the soft prompt token is set

to l = 10. The relation types of these three data sets do not

overlap with each other.

D. Main Results

Table II presents the experiment results of various approaches

based on Precision, Recall and F1. We have the following

observations: (1) our CTLP significantly outperforms all the

strong baselines across all evaluation metrics. (2) In the dataset

FB60K-NYT10, we observe that CTLP improve the original

LLaMA2 13B, LLaMA2 70B by 6.87%, 1.2% respectively,

in terms of F1. (3) CTLP does not significantly enhance the

performance of LLM in UMLS. This can be attributed to the

ongoing challenges faced by large language models (LLMs) in

understanding path information within the biomedical domain,

particularly due to the complexity of relations and entity names,

such as abbreviations. (4) We observe that ZSL-InstructGLM

gets zero performance in the UMLS, the reason is that ZSL-

InstructGLM injects the hop3 information around the head and

tail entity to the LLM, and this hard prompt design exceeds

the maximum input length of LLM. (5) GPT-3.5/4 exhibits

the lowest performance. The main reason is that the reported

results are in the zero-shot setting due to the unavailability of

open resources.

VI. ANALYSIS

In order to further explore the effectiveness of our framework,

we perform a series of analyses based on different characteris-

tics of our model. First, we evaluate the effectiveness of our

proposed CTLP with the models that feed all paths from the

transition graph to the LLM. The contribution of our model

components can also be learned from ablated models. So we

propose two model variants to help us validate the advantages of

the contrative learning operation and condensed graph encoder.

Next, we explore the performance of our model with a different

number of hops k in the transition graph, and we also explore

the model performance with different soft prompt token lengths

l. Lastly, to further investigate the effectiveness of our model,

we explore the model performance by using the limited dataset

to train our graph encoder. Due to space constraints, please

refer to Appendix IX-B and Appendix IX-C for the parameter
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TABLE II
RESULTS OF VARIOUS APPROACHES FOR ZERO-SHOT LINK PREDICTION ON THREE OPEN DATASETS.

FB60K-NYT10 UMLS NELL

Approach Precision Recall F1 Precision Recall F1 Precision Recall F1

ZSL-TransE 7.27 7.27 7.27 3.78 3.78 3.78 8.94 8.94 8.94

ZSL-ComplEx 1.21 1.21 1.21 1.81 1.81 1.81 9.44 9.44 9.44

ZSL-DistMult 7.09 7.09 7.09 4.08 4.08 4.08 7.94 7.94 7.94

ZS-BERT [32] 3.52 3.52 3.52 2.11 2.11 2.11 0.18 0.18 0.18

ZSL-InstructGLM [16] 0.52 0.52 0.52 0.00 0.00 0.00 0.19 0.19 0.19

GPT-3.5 20.00 20.00 20.00 1.98 1.98 1.98 35.29 36.00 35.64

GPT-4 12.00 12.00 12.00 6.00 6.00 6.00 39.00 39.00 39.00

LLaMA2 13b 36.18 36.18 36.18 9.83 9.83 9.83 38.18 38.18 38.18

LLaMA2 13b + CTLP 43.05 43.05 43.05 10.30 10.30 10.30 39.32 39.32 39.32

LLaMA2 70b 36.75 36.75 36.75 13.76 13.76 13.76 55.28 55.28 55.28

LLaMA2 70b + CTLP 37.97 37.97 37.97 13.92 13.92 13.92 56.78 56.78 56.78

exploration and evaluation of model performance using the

limited dataset.

A. Comparison with All Paths Input

TABLE III
F1 RESULTS OF CTLP, PATHLLM-HOP-K AND CPATHLLM-HOP-K

Approach FB60K-NYT10 UMLS NELL

LLaMA2 13b

PATHLLM-HOP-3 21.29 0.00 12.67

PATHLLM-HOP-4 4.22 0.00 3.10

CPATHLLM-HOP-3 21.29 0.00 12.67

CPATHLLM-HOP-4 4.33 0.00 3.21

CTLP 43.05 10.30 39.32

LLaMA2 70b

PATHLLM-HOP-3 30.92 0.00 18.29

PATHLLM-HOP-4 6.38 0.00 6.39

CPATHLLM-HOP-3 30.92 0.00 18.29

CPATHLLM-HOP-4 6.26 0.00 6.42

CTLP 37.97 13.92 56.78

To further evaluate the effectiveness of our proposed CTLP,

we introduce PATHLLM-HOP-K and CPATHLLM-HOP-K, two

LLMs that utilize path information to predict the relationship

between the head and tail entities. In PATHLLM-HOP-K,

the path information is derived from the transition graph,

whereas in CPATHLLM-HOP-K, the path information is from

the condensed transition graph. More specifically, we first

transfer all paths in the transition graph or condensed transition

graph into their textual descriptions. For example, the path

s− r1− v1− r2− t is represented by the relationship between
v1 and s is r1, the relationship between v1 and t is r2. Secondly,

these path descriptions are fed into the LLM to predict the

relationship between the head entity and the tail entity in the

format of the hard prompt.

Table III shows the performance comparison. Our model

demonstrates superior performance on these datasets, out-

performing the PATHLLM-HOP-K and CPATHLLM-HOP-K.

This is because when we provide all path information to the

LLM, the prompt length exceeds the maximum input length

of LLM, particularly evident in the UMLS dataset. As a

result, PATHLLM-HOP-K achieves zero performance in UMLS.

Otherwise, despite our algorithm could reduce the number of

paths, the condensed paths still surpass the maximum input

length of the LLM. Consequently, CPATHLLM-HOP-K also

exhibits a worse performance. Moreover, inputting excessively

long textual descriptions to the LLM can also lead to a reduction

in generation time. In contrast, our method employs a soft

prompt strategy to alleviate this issue. Additionally, it utilizes

contrastive learning to ensure comprehensive path information.

For the comparison of path numbers on the transition graph

and condensed transition graph, please check Appendix IX-A.

B. Ablation Experiments

We introduce two ablated models of CTLP: (1) CTLP-WCL
does not use the pre-computed transition graph information to

guide the learning progress of condensed graph encoder; (2)

CTLP-GCN uses the traditional Graph Convolutional Network

(GCN) [33] to encoder the condensed graph information. To

ensure a fair comparison, we maintain consistency in the

LLM, hop-k, and the length of prefix soft token across all

datasets. We find that the performance of CTLP degrades

as we remove important model components. Specifically,

both CTLP-WCL and CTLP-GCN perform poorly when

compared to CTLP, indicating the importance of using the pre-

computed transition graph information to guide the condensed

graph encoder, thereby preventing the loss of valuable path

information. Otherwise, the lower performance of CTLP-GCN

also indicates that GCN may face challenges in effectively

learning comprehensive path information.

TABLE IV
CTLP PERFORMANCE AND ITS ABLATED MODEL ON THE F1 SCORE.

Approach FB60K-NYT10 UMLS NELL

CTLP-WCL 39.12 13.46 55.93

CTLP-GCN 35.49 13.61 55.78

CTLP 43.05 13.92 56.78

VII. CONCLUSION

In this paper, we introduce CTLP, a novel ZSL framework

for link prediction. Our approach focuses on leveraging all

sample paths between the head and tail entities to predict their

relationship. To achieve this, we develop a condensed transition

graph construction method and employ contrastive learning to

balance time efficiency and comprehensiveness when encoding
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these paths. Subsequently, the learned condensed transition

graph is used as the soft prompt to feed into the LLM. Exper-

imental results show that our framework achieves consistent

improvements over various baselines in three open datasets.
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IX. APPENDIX

A. Path Numbers Comparison

Table V presents a comparison of path numbers between

the transition graph and the condensed transition graph. The

results demonstrate that our method effectively reduces the

path numbers on the transition graph.

TABLE V
A COMPARISON OF PATH NUMBERS WITHIN HOP 4 IN TRANSITION GRAPH

AND CONDENSED TRANSITION GRAPH. EACH VALUE REFERS TO THE

AVERAGE PATH NUMBERS ON THE TEST SET ACROSS THE RELEVANT

DATASET.

FB60K-NYT10 UMLS NELL

path numbers in transition graph 4,689 12,617 1,220

path numbers in condensed transition graph 1,748 558 524

B. Impact of Hop-k and the Length l of Soft Prompt Tokens

In our proposed model, there is one parameter controlling

the size of the transition graph, it is hop-k. And the other

important parameter is the length l of the soft prompt tokens in

CTLP, we treat these two parameters with the same importance.

From Figure 3(a), we observed that the model performs better

under hop-4 than under hop-3. This indicates that richer path

information is beneficial for relationship prediction. From

Figure 3(b), For the UMLS and NELL datasets, our model

demonstrates superior performance when l = 10, whereas its

effectiveness is more pronounced on the FB60k-NYT10 dataset

when l = 5.
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Fig. 3. (a): CTLP performance with different prompt token length (l) on
the F1 score. We fix the hop-k = 4. 13b denotes the LLaMA2 13b, 70b
denotes the LLaMA2 70b. (b):CTLP performance with different hop-k on the
F1 score. We fix the LLM as LLaMA 70b, and the l = 10.

C. Train the Condensed Graph Encoder using a Limited
Dataset

In our study, we initially trained the condensed graph

encoder on the knowledge graph NELL. Subsequently, we

employ the trained condensed graph encoder to encode the

condensed transition graphs in the UMLS and FB60K-NYT10

datasets. This approach ensures compatibility with the zero-shot

setting. In this section, we mainly focus on investigating the

effectiveness of our model when utilizing a constrained dataset

for training the condensed graph encoder. For example, when

training the condensed graph encoder on the knowledge graph

NELL, we mask %30/50 of the relation types along with their

associated entity pairs in the training dataset. The selection is

based on the relation set identified in the test dataset. They are

denoted as CTLP MASK 30% and CTLP MASK 50%.

The results are presented in Table VI. It is noteworthy that

our model consistently outperforms the original LLM even

when the mask operation is applied. The model performance

even beyond the CTLP, indicating that our model achieves

superior performance with a limited dataset.

TABLE VI
CTLP PERFORMANCE WITH DIFFERENT SETTINGS. FOR THE

FB60K-NYT10 DATASET, THESE MODELS ARE BUILT UPON LLAMA2 13B,
WHEREAS FOR THE UMLS AND NELL DATASETS, THESE MODELS ARE

BUILT UPON LLAMA2 70B.

Approach FB60K-NYT10 UMLS NELL

LLAMA2 13B 36.18 – –

LLAMA2 70B – 13.76 55.28

CTLP MASK 50% 36.98 13.92 56.85
CTLPMASK 30% 42.35 14.22 56.42

CTLP 43.05 13.92 56.78
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