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Abstract—Zero-shot link prediction (ZSLP) on knowledge
graphs aims at automatically identifying relations between given
entities. Existing methods primarily employ auxiliary information
to predict tail entity given head entity and its relation, yet face
challenges due to the occasional unavailability of such detailed
information and the inherent simplicity of predicting tail entities
based on semantic similarities. Even though Large Language
Models (LLMs) offer a promising solution to predict unobserved
relations between the head and tail entity in a zero-shot manner,
their performance is still restricted due to the inability to leverage
all the (exponentially many) paths’ information between two
entities, which are critical in collectively indicating their relation
types. To address this, in this work, we introduce a Condensed
Transition Graph Framework for Zero-Shot Link Prediction
(CTLP), which encodes all the paths’ information in linear time
complexity to predict unseen relations between entities, attaining
both efficiency and information preservation. Specifically, we
design a condensed transition graph encoder with theoretical
guarantees on its coverage, expressiveness, and efficiency. It
is learned by a transition graph contrastive learning strategy.
Subsequently, we design a soft instruction tuning to learn and map
the all-path embedding to the input of LLMs. Experimental results
show that our proposed CTLP method achieves state-of-the-art
performance on three standard ZSLP datasets.'

Index Terms—Zero-Shot Link Prediction, Condensed Transition
Graph, Large Language Models

I. INTRODUCTION

Knowledge graphs (KGs) [1], which are rich structured
representations of real-world entities and their relations, are
foundational in various applications, from semantic search
to recommendation systems [2, 3, 4]. However, despite their
extensive utility, most KGs suffer from an intrinsic shortcoming:
incompleteness, which makes them unable to encapsulate the
full breadth of evolving concepts. The task of KG link predic-
tion therefore arises that aims to predict relation types between
given entities in KGs [5]. Conventional methods [6, 7, 8] in
KG link prediction learn low-dimensional representations of
entities and relations, which are then used to infer links between
entities. However, these methods rely on observed links to infer
missing ones, limited by /) the data they have been trained on
and 2) struggling to generalize to unseen entities or relations.
In light of both limitations, the motivation for Zero-Shot Link
Prediction on KGs becomes apparent.
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Fig. 1. Example of predicting the direct relation between two scholar entities in
zero-shot by only giving their local neighboring information. Local neighboring
information indicates there are many multi-hop paths with different intermediate
entities, including co-author entity, venue entity, topic entity, etc.

To date, zero-shot link prediction on KGs is still under-
explored, where previous works [9, 10, 11] have utilized
textual features or ontologies as auxiliary information to discern
relationships between head entities, seen relations, and tail
entities. Specifically, they have focused on predicting tail
entities given a head entity and a relation, regardless of whether
that relation has been previously encountered in the training
data. However, rich text features and ontologies may not always
be available in KG. In addition, when given head entities and
the relation, predicting tail entities is relatively easy since
semantic similarity would greatly reduce the pool of candidate
tail entities [12].

In this work, as illustrated in Figure 1, we focus on an
exploration of a novel zero-shot link prediction task on KGs,
which aims to predict unseen relation types between head and
tail entities without depending on learned model parameters that
tie seen relations to specific head and tail entities. As a general
task solver, Large Language Models (LLMs) can intuitively
be employed to predict the unseen relation [13, 14]. Existing
methods [15, 16] suggest querying LLMs about the relationship
between specific head and tail entities, often enriching these
queries with information about neighbors. However, general
neighbors are insufficient and distracting for link prediction.
Instead, it is important to focus on the (higher-order) neighbors
that form any paths between head and tail entities. As shown
in Figure 1, to predict the direct relationship between two
scholar entities: David E. Rumelhart and Geoffrey E. Hinton,
there exist many multi-hop paths connecting both entities, and
a high portion of these paths are related to co-authorship. This
path information can provide a more concentrated source of
relational cues than feeding the local neighboring information as
a whole. LLMs can thus leverage path information as in-context
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demonstrations to more precise predictions, i.e., co-authorship.
However, extracting and summarizing these paths is fraught
with computational hurdles, given the NP-hard nature of path
retrieval between entities in million-scale KGs [17, 18].

To balance the trade-off between efficiency and information
preservation of information encoding between head and tail
entities toward link prediction, we propose a novel framework:
Condensed Transition Graph Framework for Zero-Shot Link
Prediction (CTLP), which distill all the paths’ information
into a condensed transition graph embedding with linear
time complexity. Then, it allows LLMs to fully incorporate
path information to predict relation types given a head entity
and tail entity. Specifically, CTLP consists of three main
components: (1) A new condensed transition graph encoder
is proposed to predict the embedding aggregated from all the
condensed paths between head and tail entities via different
edges, with coverage, expressiveness, and efficiency guarantees;
(2) A graph-centric contrastive learning is designed to learn
the condensed transition graph encoder; (3) to encode the
condensed graph information into the LLMs, we propose a
new prefix-tuning method to encode graph information into the
task instructions. We provide our key contributions as follows:

o Problem. We propose to solve the task of zero-shot link
prediction in KGs by encoding all the paths’ information
in linear time complexity and letting LLMs make zero-shot
predictions with soft prompt tuning.

o Technique. We propose to summarize all paths between
given entities into a condensed transition graph while
retaining the same expressiveness with a theoretical
guarantee. Graph-centric contrastive learning is designed
to ensure the path information is being injected into the
soft prompt.

o Experiments. We conduct a thorough analysis of our
method both quantitatively and qualitatively, which demon-
strates better performance than existing state-of-the-arts.
Additional experiments, including the ablation study and
sensitivity analysis, illustrate the robustness of CTLP.

II. RELATED WORK

Link Prediction. Many studies [6, 11, 16, 19, 20, 21, 22] have
been proposed to better predict the relationship between the
head and tail entity. The translation-based model TransE [6]
requires that the tail entity embedding is close to the sum of
the head and relation embeddings; The non-bilinear model
TuckER [20] utilizes the tucker decomposition to build the
connection between different knowledge graph triples. KG-
BERT [23] regards entities and relations as textual sequences,
transforming the link prediction task into a classification prob-
lem. KopA [21] feeds the entity and relation embedding into
LLM in the format of soft-prompting. Although performance
has been achieved incrementally, these approaches in their
original form are unable to learn embeddings for unseen
relations. This is because they learn entities and relation
embeddings using the topological structure of the KG.

Zero-shot Link Prediction. Previous works tend to predict the
tail by giving the head entity and unseen relation [9]. [9] used

textual information of the relation as auxiliary information
and applied a Zero-Shot Generative Adversarial Network
(ZSGAN) to learn the unseen relation embedding for the task. A
hierarchical n-gram framework (HNZSLP) [11] is proposed to
use the structural information in relational n-grams for zero-shot
link prediction. Despite the success, there exists a research gap
in investigating the selection of relations from a given candidate
relation set without training on the seen relation dataset. To
achieve this objective, an intuitive idea is to utilize the LLMs,
such as LLama [24], to predict the relations, for example, by
constructing the prompt and feeding the head entity and tail
entity in the format of what is the relationship between the
head entity and tail entity? to the LLM. Unfortunately, this
method is easy to cause hallucinations, because it fails to use
enough knowledge to guide the LLM. So, in this work, we try
to explore how to encode the path information between the
head entity and the tail entity to predict the relationship in a
new zero-shot learning setting.

III. PROBLEM STATEMENT

This section formulates our problem of Zero-shot Link

Prediction.
Zero-shot link prediction on (knowledge) graphs. This task
is formulated as predicting the relation type between any
two entities of a knowledge graph without any training on
the current knowledge graph. More specifically, we aim at
predicting the relation type 7 € (', ;) between a head entity s
and a tail entity ¢, where C|, ;) is the set of possible relation
types.

The relation between s and ¢ is well-centered among all the
possible routes through which s could correlate to ¢, which
can be collectively formulated as an (s, t)-transition graph.

a) Transition graph.: For any pair of two entities (s, )
in a knowledge graph, all the paths from head entity s to
tail entity ¢ collectively form an (s, ¢)-transition graph. Figure
1 exemplifies an (s, t)-transition graph where s is “David E.
Rumelhart” and ¢ is “ Geoffery Hinton”. In practice, the length
of paths can be upper-bounded by an integer k, which can
usually be set as the diameter of the knowledge graph. To
be specific, let G = (V, E) denote an (s, t)-transition graph
consisting of a set of node V" and a set of edges £ € V x V.
We denote by n the number of nodes in G and by m its
number of edges. A path from head entity s and tail entity v
is denoted by 7 = [vg, 70,1, ..., vj_1,7;,v;] such that vy =
s,vj =t, (vj,vj41) € E. The textual description of the path
m is described as: T'(w) = the relationship between vy and vy
is 19 ,..., the relationship between v;_y and vj is r;.

IV. PROPOSED APPROACH: CTLP
A. Motivation and Approach Overview

To achieve the link prediction between s and ¢, the most
commonly used way is to learn the embeddings of s and ¢
with graph models (typically graph neural networks) and then
calculate the similarity of their embeddings to predict their
relation type r. Such a way, though efficient with O(|E|), is
limited in considering higher-order neighborhoods spanning
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Fig. 2. Overview of CTLP. During the training process, the language model parameters are frozen, and only the condensed graph encoder is trained.

s and t due to the inherently limited number of layers of
graph models. However, higher-order consideration is critical,
especially in zero-shot link prediction, as it provides a broader

context with more chance to generalize across different domains.

On the contrary, the thorough way that preserves all the
information is to consider all the possible paths traversing
from s to ¢. However, the number of such paths is exponential
to the number of edges |E|, which makes it prohibitive.

To address the above issue, we aim at a new framework
that can not only preserve higher-hop relation information

between s and ¢ but also is efficient, with linear time complexity.

More specifically, we propose a Condensed Transition Graph
Enhanced LLM for the zero-shot Link Prediction (CTLP),
which distills the information from all the paths between
s and t to a condensed transition graph encoder that can
learn the information in the neighborhood of all the hops
with O(|E|) time complexity, as detailed in Section IV-B
and theoretically analyzed in Section IV-C, and illustrated
in Figures 2(3) and 2(4). To let the condensed transition graph
encoder better approximate the information from all the paths
between s and ¢, we design a contrastive learning strategy that
minimizes their divergence, as detailed in Section IV-D and
illustrated in Figures 2(1), 2(2), and 2(5). Finally, the learned
embedding will be input into LLMs with the transferrer that
is learned in Section IV-E and illustrated in Figure 2(6).

B. Condensed Transition Graph Building and Encoder

Here, the embedding of the information of each path between
s and t through (u,v) can be decomposed into: (s, u) path

embedding, (u,v) edge embedding, and (v, t) path embedding.

To estimate the (s,u) and (v,t) path embedding, we have
proposed different ways detailed in Section 4.2. We demonstrate
at the end of this section that such decomposition leads to a
total time complexity of O(|E|).

In this section, we propose our Condensed Transition Graph
encoder that can calculate the embedding in linear time
complexity (as demonstrated at the end of this section). More
concretely, in the condensed transition graph encoder, we
leverage the principle that all the paths between s and ¢ can

be split into each subset of paths between s and ¢ going
through each edge (u,v) € E. Hence, the entirety of the
embedding of all the paths between s and ¢ is equivalent to the
aggregation of the embeddings of paths pertaining to different
edges (u,v) € E, which is denoted as follows:

- 1
hg = — h
g |E‘ Z(u,v)GE (u,v)

where E is the edge set in G. h, ) denotes the embedding
of all the paths between s and ¢ through an edge (u,v), and
is calculated by the encoding of the composition of the three
segments of this path, which is the key to achieving linear
time complexity, as denoted in the following:

h(u,v) = CGE(h(s—HL,v—)t))

where C'GE is an encoder, such as the encoder part in a
Transformer. (s — u,v — t) is called a condensed path via
an edge (u,v) and a condensed transition graph G* is defined
as the composition of all the condensed paths via all the edges.
and h(s_yy ¢ 18 the concatenation of the embeddings of the
three segments of the path between s and ¢ via (u, v), namely:

h(s%u,vﬂt) = h(s%u) |h(u,v) |h(v~>t)

where hs_yu)s Ruv), and hq, ) are the paths’ embedding
from s to u, edge embedding of (u,v), and the paths’
embedding from v to ¢, respectively. “|” is the concatenation
function. This step is also illustrated in the section “c)” of
Figure 2(3). In the following, we elaborate our efficient methods
to calculate the path embedding % (,_,,) and h(,_4), as well
as edge embedding Ay, ), respectively.

The goal of embedding computation of the path h(,_,,, is
to calculate the embedding that can enclose the correlation
information between s and . An intuitive option is to aggregate
all the paths’ embedding between s and u. However, a better
trade-off between efficiency and information preservation can
be a sampling or traversal through the most representative
path(s) between s and t. Hence, methods like the shortest
path search and fattest path search between s and t provide
a reasonable trade-off. Figure 2 provides an example of this
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shortest path collection, such as the shortest path of vl to
s is s —rl — vl, its textual description T'((vl — s)) is
“the relationship between s and vl is r1”. The embedding
of T((vl — s)) is initialized by a pre-trained language model,
like LLaMA. Embedding computation of the path A, can
be calculated similarly, while the calculation of A(,,,) can be
done by using LLaMA to initialize its textual embedding for
the statement “’the relationship between u and v is r”, r is the
relationship between u and v.

C. Complexity and Expressiveness of Condensed Transition
Graph Encoder

Here, we demonstrate the critical merits of our condensed
transition graph encoder in terms of its coverage, expressive-
ness, and time complexity.

Lemma 1 (Path Coverage). The condensed graph covers all
paths from s to t when all relevant paths are within k hops.

Proof Sketch. By finding the shortest path from s to every
node v in the transition graph G, we ensure that we have a
way to reach every node starting from s. This guarantees that
any node that is part of a path from s to ¢ in the original
subgraph is reachable in the condensed graph G* through one
of these shortest paths. Similarly, by finding the shortest path
from every node v to ¢, we ensure there is a way to reach ¢
from any node v in G. This guarantees that for any part of
a path from s to ¢ that passes through any v, there exists a
continuation to ¢ in the condensed graph G*. When all relevant
paths are within & hops, for any path from s to ¢ in G, it can be
decomposed into segments where each segment starts and ends
at nodes where the shortest paths from s to ¢ were calculated.
Since G* contains all these shortest paths, the segments can
be combined to form a path 7 in G* that corresponds to the
original path. O

Lemma 2 (Expressiveness). The condensed transition graph
G* retains the same expressive power of the original transition
graph G when all relevant paths are within k-hop in G.

Proof Sketch. First, G* ensures the connectivity from s to v
for every node v in G* as proved in Lemma 1. Let Py(s,t)
be the formula stating the existence of a path from s to ¢ of
length & and let E(s,t) be an edge connecting the nodes s
and t. Py(s,t) can be defined recursively as follows:

Py (s,t) = E(s,t),
Py(s,t) = 3, Pe—1(s,v) A E(v,1).

Then, G* and G can achieve the WL-equivalent (i.e., G* and
G have the same expressive power) for k > 2 according to
Theorem 3.1 and 4.1 in [25]. O]

Lemma 3 (Time complexity). The time complexity to approxi-
mate the embedding of all the paths between s and t by our
Condensed Transition Graph Encoder is linear in the number
of edges in G.

Proof Sketch. The calculation of embedding consists of two
steps: 1) computing the path embedding of (s — u), edge

embedding (u,v), and path embedding (v — t), which can
be done in O(n), where n is the number of nodes (if using
popular algorithms like breath-first search for shortest path
search around s and ¢, respectively); and 2) aggregating the
above embeddings for all the edges, which can be done in
O(m). Therefore, the total time complexity is O(m) since G
is connected. O

D. Graph-Centric Contrastive Learning

Here, we elaborate on how to train our condensed transition
graph encoder proposed above. Again, our objective is to let
the embedding hg output by the condensed transition graph
encoder preserve all the information carried by all the paths
in G. To achieve this, we propose a graph-centric contrastive
learning (GCCL) method that minimizes the information gap
between them. Specifically, for each (s,t) pair, GCCL aims
to reduce the distance between the embedding hg from the
condensed transition graph encoder and the embedding hg
extracted from all the paths in G (see the next paragraph about
the computation of hg). To compose negative samples, we
just use (s,t) for one embedding while focusing on (s’,t") for
the other, where (s,t) # (s',t¢'), by maximizing the distance
between them. Note that one will tend to use small transition
graph samples G’s to train the condensed transition graph
encoder efficiently.

Note that the embedding of all the paths in G is calculated
as follows. Specifically, all the paths between the s and ¢ in
the transition graph G constitute the initial paths set P. For
each textual path T'() in P, its representation is learned from
a pre-trained path encoder f(-), which can be denoted as:

1 [P
hr@) = f(T(7)), hg = ] Zﬂ b ()

where the representation of G (i.e., hg) is calculated by a mean
function across all sample paths.

E. Soft Instruction Tuning

The embedding calculated by our condensed transition graph
encoder can be used flexibly for downstream tasks. One
important usage of it is a soft prompt into LLMs. To see
this, here we introduce a soft instruction tuning method. In
particular, we put the aligned condensed graph embedding hg,
calculated through Graph-Centric Contrastive Learning, in the
front of the original instruction Z (The instruction to guide
the LLM for the link prediction task) and input sentence S
(what is the relationship between s and t ?). The hg serves
as a soft prompt in the instruction. In practice, we add several
special tokens (e.g., [S]) to the beginning of the instruction,
forming a sequence of length [, such as ([S] [S] [S]), where
I = 3, and then map the representation of hg into these token
embeddings. the concatenation of hg, I and S are fed into
LLM to predict the relationship between s and ¢. I and S are
the embedding of Z and S separately. In the training progress,
the LLM parameter is frozen. The overall objective for our
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proposed CTLP is the combination of the contrastive loss C'L
(elaborated in Section IV-D) and cross-entropy loss C'E:

E _
Lep = _Zi:1 log(yily1i-1,hg,Z,S)
Loveran = LCE + LCL

where, y; is the generated token in the output relationship.

V. EXPERIMENTS
A. Dataset

In our experiments, we use three public KG benchmarks
FB60K-NYT10 [26], UMLS [27], and NELL [28] to evaluate
the capability of the proposed CTLP. FB60OK-NYT10 [26]
dataset includes the FB-60K knowledge graph and the NYT10
corpus. To further correct the data-building error, triples (head
entity, relation, tail entity) are excluded if either the head entity
or the tail entity is not found within the provided knowledge
graph. UMLS [27] contains triples from the Unified Medical
Language System [29], providing knowledge in the domain
of healthcare and medicine. The NELL dataset, as presented
by [28], consists of individual graphs corresponding to each
query relation, sourced from the web. The statistic information
is shown in Table I.

TABLE I
DATASETS STATISTICS, COLUMN 5 REFERS TO THE NUMBER OF TRIPLES IN
THE DIFFERENT SET.

Dataset v R # Triples  # Train/ # Dev/ # Test
FB60K-NYTI0 9,840 56 13,837 12,104/-/1,733

UMLS 135 46 6,529 5,216/ 652/ 661

NELL 9,093 12 12,108 8,747/543/2,818

B. Baselines and Evaluation Metrics

In our experiments, the baselines include three commonly
used KG embedding methods: TransE [6], DisMult [19] and
ComplEx [30]. Obviously, these original models cannot predict
the unseen relationship in the zero-shot setting. Therefore, based
on these three methods, we propose three zero-shot baselines,
1) ZSL-TransE, 2) ZSL-DistMult, and 3) ZSL-ComplEx.
Specifically, the pre-trained BERT model [31] is employed to
compute embeddings for each entity and relation. Following
this, the score for each candidate relation is determined using
the scoring functions within TransE, DistMult, and ComplEx.
4) ZS-BERT [32], it is designed specifically for zero-shot text
classification, we adapt it to our zero-shot setting by calculating
the similarity between the sentence what is the relationship
between head entity and tail entity? and the candidate relations.
Otherwise, We also compare the performance of CTLP with
several strong baselines based on the LLM, including 5) GPT-
3.5/4: In GPT-3.5/4, we design hard prompts to guide the
GPT models in predicting relations between the head and tail
entities. 6) ZSL-InstructGLM [16]: we employ the same
prompt construction method as InstructGLM [16] to predict
the relationship between two entities in zero-shot settings. We
consider 7) LLAMA family as the baselines: LLaMA2-(13,
70b) [24]. We report the standard Micro Precision, Recall, and
Fl-score on the test set.

C. Implementation Detail

To ensure the zero-shot setting, in the testing progress of
dataset FB60K-NYT10, and UMLS, the condensed graph
encoder is trained in the knowledge graph NELL, and the
LLM is frozen in the training progress of the condensed graph
encoder. Following this, the trained condensed graph encoder is
employed to encode the condensed transition graph in FB60K-
NYT10 and UMLS. The condensed graph encoder in the NELL
dataset is trained using the FB60OK-NYT10. We set the hops
k =4 in the transition graph of FB60K-NYT10, UMLS, and
NELL. During the training process of the condensed graph
encoder, the vector dimensions of the transition graph and the
LLM are the same. In the dataset FB6OK-NYT10, the length
of the soft prompt token is set to [ = 5, while in the dataset
UMLS and NELL, the length of the soft prompt token is set
to [ = 10. The relation types of these three data sets do not
overlap with each other.

D. Main Results

Table II presents the experiment results of various approaches
based on Precision, Recall and F1. We have the following
observations: (1) our CTLP significantly outperforms all the
strong baselines across all evaluation metrics. (2) In the dataset
FB60K-NYT10, we observe that CTLP improve the original
LLaMA2 13B, LLaMA?2 70B by 6.87%, 1.2% respectively,
in terms of F1. (3) CTLP does not significantly enhance the
performance of LLM in UMLS. This can be attributed to the
ongoing challenges faced by large language models (LLMs) in
understanding path information within the biomedical domain,
particularly due to the complexity of relations and entity names,
such as abbreviations. (4) We observe that ZSL-InstructGLM
gets zero performance in the UMLS, the reason is that ZSL-
InstructGLM injects the hop3 information around the head and
tail entity to the LLM, and this hard prompt design exceeds
the maximum input length of LLM. (5) GPT-3.5/4 exhibits
the lowest performance. The main reason is that the reported
results are in the zero-shot setting due to the unavailability of
open resources.

VI. ANALYSIS

In order to further explore the effectiveness of our framework,
we perform a series of analyses based on different characteris-
tics of our model. First, we evaluate the effectiveness of our
proposed CTLP with the models that feed all paths from the
transition graph to the LLM. The contribution of our model
components can also be learned from ablated models. So we
propose two model variants to help us validate the advantages of
the contrative learning operation and condensed graph encoder.
Next, we explore the performance of our model with a different
number of hops k in the transition graph, and we also explore
the model performance with different soft prompt token lengths
l. Lastly, to further investigate the effectiveness of our model,
we explore the model performance by using the limited dataset
to train our graph encoder. Due to space constraints, please
refer to Appendix IX-B and Appendix IX-C for the parameter
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TABLE II
RESULTS OF VARIOUS APPROACHES FOR ZERO-SHOT LINK PREDICTION ON THREE OPEN DATASETS.

FB60K-NYT10 UMLS NELL

Approach Precision  Recall F1 Precision  Recall F1 Precision  Recall F1

ZSL-TransE 7.27 7.27 7.27 3.78 3.78 3.78 8.94 8.94 8.94
ZSL-ComplEx 1.21 1.21 1.21 1.81 1.81 1.81 9.44 9.44 9.44
ZSL-DistMult 7.09 7.09 7.09 4.08 4.08 4.08 7.94 7.94 7.94
ZS-BERT [32] 3.52 3.52 3.52 2.11 2.11 2.11 0.18 0.18 0.18
ZSL-InstructGLM [16] 0.52 0.52 0.52 0.00 0.00 0.00 0.19 0.19 0.19
GPT-3.5 20.00 20.00  20.00 1.98 1.98 1.98 35.29 36.00 35.64
GPT-4 12.00 12.00  12.00 6.00 6.00 6.00 39.00 39.00  39.00
LLaMA2 13b 36.18 36.18  36.18 9.83 9.83 9.83 38.18 38.18  38.18
LLaMA2 13b + CTLP 43.05 43.05  43.05 10.30 10.30  10.30 39.32 3932 3932
LLaMA2 70b 36.75 36.75  36.75 13.76 13.76  13.76 55.28 5528  55.28
LLaMA2 70b + CTLP 37.97 37.97 3797 13.92 13.92 13.92 56.78 56.78  56.78

exploration and evaluation of model performance using the
limited dataset.

A. Comparison with All Paths Input

TABLE IIT
F1 RESULTS OF CTLP, PATHLLM-HOP-K AND CPATHLLM-HOP-K

Approach FB60K-NYT10 | UMLS | NELL
PATHLLM-HOP-3 21.29 0.00 12.67
PATHLLM-HOP-4 4.22 0.00 3.10
LLaMA2 13b | CPATHLLM-HOP-3 21.29 0.00 12.67
CPATHLLM-HOP-4 4.33 0.00 3.21
CTLP 43.05 10.30 39.32
PATHLLM-HOP-3 30.92 0.00 18.29
PATHLLM-HOP-4 6.38 0.00 6.39
LLaMA2 70b | CPATHLLM-HOP-3 30.92 0.00 18.29
CPATHLLM-HOP-4 6.26 0.00 6.42
CTLP 37.97 13.92 56.78

To further evaluate the effectiveness of our proposed CTLP,
we introduce PATHLLM-HOP-K and CPATHLLM-HOP-K, two
LLMs that utilize path information to predict the relationship
between the head and tail entities. In PATHLLM-HOP-K,
the path information is derived from the transition graph,
whereas in CPATHLLM-HOP-K, the path information is from
the condensed transition graph. More specifically, we first
transfer all paths in the transition graph or condensed transition
graph into their textual descriptions. For example, the path
s—rl—wvl—r2—tis represented by the relationship between
vl and s is rl, the relationship between vl and t is r2. Secondly,
these path descriptions are fed into the LLM to predict the
relationship between the head entity and the tail entity in the
format of the hard prompt.

Table III shows the performance comparison. Our model
demonstrates superior performance on these datasets, out-
performing the PATHLLM-HOP-K and CPATHLLM-HOP-K.
This is because when we provide all path information to the
LLM, the prompt length exceeds the maximum input length
of LLM, particularly evident in the UMLS dataset. As a
result, PATHLLM-HOP-K achieves zero performance in UMLS.
Otherwise, despite our algorithm could reduce the number of
paths, the condensed paths still surpass the maximum input

length of the LLM. Consequently, CPATHLLM-HOP-K also
exhibits a worse performance. Moreover, inputting excessively
long textual descriptions to the LLM can also lead to a reduction
in generation time. In contrast, our method employs a soft
prompt strategy to alleviate this issue. Additionally, it utilizes
contrastive learning to ensure comprehensive path information.
For the comparison of path numbers on the transition graph
and condensed transition graph, please check Appendix IX-A.

B. Ablation Experiments

We introduce two ablated models of CTLP: (1) CTLP-WCL
does not use the pre-computed transition graph information to
guide the learning progress of condensed graph encoder; (2)
CTLP-GCN uses the traditional Graph Convolutional Network
(GCN) [33] to encoder the condensed graph information. To
ensure a fair comparison, we maintain consistency in the
LLM, hop-k, and the length of prefix soft token across all
datasets. We find that the performance of CTLP degrades
as we remove important model components. Specifically,
both CTLP-WCL and CTLP-GCN perform poorly when
compared to CTLP, indicating the importance of using the pre-
computed transition graph information to guide the condensed
graph encoder, thereby preventing the loss of valuable path
information. Otherwise, the lower performance of CTLP-GCN
also indicates that GCN may face challenges in effectively
learning comprehensive path information.

TABLE IV
CTLP PERFORMANCE AND ITS ABLATED MODEL ON THE F1 SCORE.

Approach | FBGOK-NYT10 | UMLS | NELL
CTLP-WCL 39.12 1346 | 55.93
CTLP-GCN 35.49 13.61 | 55.78
CTLP 43.05 1392 | 5678

VII. CONCLUSION

In this paper, we introduce CTLP, a novel ZSL framework
for link prediction. Our approach focuses on leveraging all
sample paths between the head and tail entities to predict their
relationship. To achieve this, we develop a condensed transition
graph construction method and employ contrastive learning to
balance time efficiency and comprehensiveness when encoding
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these paths. Subsequently, the learned condensed transition
graph is used as the soft prompt to feed into the LLM. Exper-
imental results show that our framework achieves consistent
improvements over various baselines in three open datasets.
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IX. APPENDIX
A. Path Numbers Comparison

Table V presents a comparison of path numbers between
the transition graph and the condensed transition graph. The
results demonstrate that our method effectively reduces the
path numbers on the transition graph.

TABLE V
A COMPARISON OF PATH NUMBERS WITHIN HOP 4 IN TRANSITION GRAPH
AND CONDENSED TRANSITION GRAPH. EACH VALUE REFERS TO THE
AVERAGE PATH NUMBERS ON THE TEST SET ACROSS THE RELEVANT
DATASET.

FB60K-NYT10 | UMLS | NELL
4,689 12,617 | 1,220
1,748 558 524

path numbers in transition graph

path numbers in condensed transition graph

B. Impact of Hop-k and the Length | of Soft Prompt Tokens

In our proposed model, there is one parameter controlling
the size of the transition graph, it is hop-k. And the other
important parameter is the length [ of the soft prompt tokens in
CTLP, we treat these two parameters with the same importance.
From Figure 3(a), we observed that the model performs better
under hop-4 than under hop-3. This indicates that richer path
information is beneficial for relationship prediction. From
Figure 3(b), For the UMLS and NELL datasets, our model
demonstrates superior performance when [ = 10, whereas its
effectiveness is more pronounced on the FB60k-NYT10 dataset
when [ = 5.
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Fig. 3. (a): CTLP performance with different prompt token length (I) on
the F1 score. We fix the hop-k = 4. 13b denotes the LLaMA2 13b, 70b
denotes the LLaMA2 70b. (b):CTLP performance with different hop-k on the
F1 score. We fix the LLM as LLaMA 70b, and the [ = 10.

C. Train the Condensed Graph Encoder using a Limited
Dataset

In our study, we initially trained the condensed graph
encoder on the knowledge graph NELL. Subsequently, we
employ the trained condensed graph encoder to encode the
condensed transition graphs in the UMLS and FB60K-NYT10
datasets. This approach ensures compatibility with the zero-shot
setting. In this section, we mainly focus on investigating the
effectiveness of our model when utilizing a constrained dataset
for training the condensed graph encoder. For example, when
training the condensed graph encoder on the knowledge graph
NELL, we mask %30/50 of the relation types along with their
associated entity pairs in the training dataset. The selection is
based on the relation set identified in the test dataset. They are
denoted as CTLP MASK 30% and CTLP MASK 50%.

The results are presented in Table VI. It is noteworthy that
our model consistently outperforms the original LLM even
when the mask operation is applied. The model performance
even beyond the CTLP, indicating that our model achieves
superior performance with a limited dataset.

TABLE VI
CTLP PERFORMANCE WITH DIFFERENT SETTINGS. FOR THE
FB60K-NYTI10 DATASET, THESE MODELS ARE BUILT UPON LLAMA?2 138,
WHEREAS FOR THE UMLS AND NELL DATASETS, THESE MODELS ARE
BUILT UPON LLAMA?2 70B.

Approach FB60K-NYTI10 | UMLS | NELL
LLAMA?2 138 36.18 - -

LLAMA?2 708 - 1376 | 55.28
CTLP MASK 50% 36.98 1392 | 56.85
CTLPMASK 30% 4235 1422 | 5642
CTLP 43.05 1392 | 5678
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