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Abstract. Deep neural networks (DNNs) are frequently employed in a
variety of computer vision applications. Nowadays, an emerging trend
in the current video distribution system is to take advantage of DNN’s
overfitting properties to perform video resolution upscaling. By splitting
videos into chunks and applying a super-resolution (SR) model to overfit
each chunk, this scheme of SR models plus video chunks is able to replace
traditional video transmission to enhance video quality and transmission
efficiency. However, many models and chunks are needed to guarantee
high performance, which leads to tremendous overhead on model switch-
ing and memory footprints at the user end. To resolve such problems, we
propose a Dynamic Deep neural network assisted by a Content-Aware
data processing pipeline to reduce the model number down to one (Dy-
DCA), which helps promote performance while conserving computational
resources. Additionally, to achieve real acceleration on the user end, we
designed a framework that optimizes dynamic features (e.g., dynamic
shapes, sizes, and control flow) in Dy-DCA to enable a series of com-
pilation optimizations, including fused code generation, static execution
planning, etc. By employing such techniques, our method achieves bet-
ter PSNR and real-time performance (33 FPS) on an off-the-shelf mobile
phone. Meanwhile, assisted by our compilation optimization, we achieve
a 1.7× speedup while saving up to 1.61× memory consumption. Code
available in https://github.com/coulsonlee/Dy-DCA-ECCV2024.

Keywords: Super-resolution · Dynamic neural network · Compilation
optimizations

1 Introduction

With the rapid advancement of artificial intelligence, Deep Neural Networks
(DNNs) have emerged as a cornerstone technology in various computer vision
tasks, revolutionizing the field of image processing [15,22,24,34,61]. Among this,
Video Super-Resolution (VSR) [4,10,30,48,51] has garnered increasing attention
in recent years. Among the various approaches explored in the realm of VSR, a
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Fig. 1: Model switching overhead on currently widely used backbones in video data
overfitting. Figure (a) show the switching time in EDSR [37] and WDSR [63]. Figure
(b) demonstrates the comparison of video length and switching overhead. Figure (c)
shows the total energy consumption brining by model switching.

rising trend is focused on utilizing Super Resolution (SR) models to upscale the
resolution of low-resolution (LR) videos instead of directly transmitting high-
resolution (HR) videos [38, 60]. This emerging representative aims to address
the challenge of high bandwidth consumption between servers and clients, which
often occurs when directly transmitting HR videos.

In the context of video transmission using neural networks, one prevalent ap-
proach is the utilization of conventional VSR models [55,56], which are designed
to cater to all types of videos. However, to achieve optimal performance, these
models typically demand larger parameter sizes, rendering their deployment on
mobile devices impractical [23,54,65]. Additionally, there is no assurance that a
single model can consistently yield optimal results for all videos. To tackle these
challenges, researchers have turned their attention to leveraging the overfitting
property of DNNs. Instead of pursuing a one-size-fits-all approach, a novel strat-
egy has emerged to utilize a dedicated model to overfit the whole video [59,60].
To enhance the quality of super-resolved video and reduce model size, raw videos
are often split into segments based on time or spatial information [33,35,38], al-
lowing each model to focus on a smaller segment. However, during the HR video
recovery process, the frequent loading and unloading of numerous models can
lead to significant overhead at the user end [65]. As shown in Figure 1, the over-
head of switching model takes a large portion of total video length and brings
more than 50% additional energy consumption, which is impossible to achieve
real-time performance and system efficiency.

Therefore, it is essential to find a video transmission framework capable
of meeting the requirements for SR video quality and the resource demands
of prevalent edge devices. Several key points are not fully discussed in previ-
ous works. (i) The number of models and corresponding model size should be
minimized under certain SR video quality requirements. (ii) A corresponding
algorithm-compiler-hardware optimization framework that can ensure a real-
time system and reasonable on-device resource usage. To fulfill the above expec-
tations, this paper proposes Dy-DCA, as shown in figure 2, which consists of a
dynamic deep neural network and a fine-grained data preprocessing methodology
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to achieve better performance while minimizing the model switching overhead
on the hardware side. Meanwhile, a compiler-level optimization framework for
accelerating dynamic DNNs is designed to achieve real-time inference and save
memory consumption.

(i) To minimize models while maintaining high PSNR. The prior
art [33] splits video frames into evenly small patches and regroups them into
different chunks according to texture complexity. Although this helps reduce the
required model number and increases PSNR, these chunks & model pairs may
still lead to I/O and model switching overhead at the user end [6, 65]. Thus,
in Dy-DCA, we propose a fine-grained data processing method that splits the
frames into patches with uneven sizes (e.g., use large patches for monotonous
backgrounds and smaller patches for detailed foregrounds), then overfits these
data with a designed dynamic neural network, bringing the total transmitted
model down to one. The uneven splitting minimizes the total number of patches,
thereby reducing both server training effort and user-end I/O overhead. The
dynamic neural network has a dynamic routing node and itself follows a tree
structure to handle patches of different texture complexity.

(ii) To ensure real-time performance on device. Although dynamic
DNN resolves the system overhead caused by model switching, the dynamic in-
put shapes, and control flow in the model poses many challenges for the compiler-
hardware-level optimizations (e.g., loop fusion [71], execution order planning [2],
etc.). Due to very conservative assumptions and/or expensive analyses at run-
time, current approaches [1, 26] face difficulties in achieving practical on-device
efficiency. In this paper, we finish the last piece of our design for the system
by proposing a nuanced approach that optimizes DNN dynamic features, which
allows us to close the loop (algorithm, software, hardware) and achieve on-device
intelligence. The foundation of our approach is an in-depth study of operators
that form the basis for modern DNNs. These operators are classified into sev-
eral groups on the basis of how the output shapes relate to the input shapes
and values. Under this classification, we introduce a data-flow analysis frame-
work dedicated to inferring the shapes and dimensions of intermediate tensors.
Subsequently, the outcomes of the analysis are used for enabling a number of
compilation optimizations, which include operator fusion and fused code gener-
ation, static execution planning, and runtime memory allocation.

We summarize our contributions as follows:

– With the proposed context-aware data pipeline paired with dynamic DNN,
patches with appropriate content and dimensions are directed to the suit-
able processing path, thus enhancing PSNR while reducing model shifting
overhead.

– Given the existence of dynamic features, we introduce a data-flow analysis
framework based on the classified DNN operators, which enables us to infer
the shapes and dimensions of intermediate tensors. This design helps reduce
the inference latency at the edge while reducing memory consumption.

– Based on the data-flow analysis framework, we implement a series of compiler-
level optimizations (e.g. fused code generation, static execution planning,
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Fig. 2: Overview of the proposed framework Dy-DCA. We split video frames into
different shapes, and all patches will be distributed at a learnable gating module, then
overfitted by a dynamic SR model. The dynamic SR model and LR patches will be
delivered to users for video super-resolution. The on-device inference is accelerated by
our designed compiler optimization framework.

etc.) to solve the challenges brought by dynamic shape and routing, achiev-
ing 1.7× overall speedup across various dynamic features.

2 Algorithm and hardware co-design

2.1 Motivations

The main promotions of previous arts concentrated on elevating the PSNR and
expediting the training process [33,35,38,60]. An important aspect that hasn’t
received adequate attention is whether these improvements can actually be im-
plemented on the devices used by end-users while maintaining the required qual-
ity. These methods often require multiple models for high performance and are
sensitive to model number [35,38,60]. Also, based on the result in Figure 1, nu-
merous models will bring tremendous overhead, which may have a severe impact
on the user end. Thus, our goal is to minimize the total number of models while
maintaining good performance.

We investigate the patterns of these methods and find that there are two
video segmentation methods used in their framework. [60] first operates on the
temporal axis (e.g., every 5 seconds of content as a segment). As there may be
consistent and repeated content in the whole video, different models may learn
the same content at different segments, which is not effective. Also, a single frame
covers information with large differences in texture complexity (e.g., foreground
and background) [3, 16,31,53,64], potentially making overfitting more difficult.

[33] splits video frames into evenly small patches (around 50×50) and re-
groups them into different chunks according to texture complexity. Although
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this method helps reduce the number of models, the small patches may carry
similar information, which introduces meaningless computation and I/O over-
heads when training or inferring them. In order to reduce the need for multiple
models, a better segmentation pattern and model structure need to be proposed.

2.2 Algorithm level optimization for hardware friendliness

To address the model switching overhead mentioned above, in this section, we
propose a scalable dynamic deep neural network paired with a fine-grained data
processing method that reduces the number of models down to one while main-
taining good performance and a reasonable model size.

As shown in Figure 2, for an input video, we first split those frames into
different shape patches. These patches contain various levels of texture complex-
ity. (e.g., the minimum informative patches are concentrated in the background
section, while the maximum ones are on the foreground object.) To achieve this,
we propose a coarse- to fine-grained data processing pipeline to dynamically
produce patches of different texture complexity. In our framework, frames will
first be split into large patches and evaluated by a general SR model to get the
corresponding PSNR value for each patch. Guided by the PSNR values, we can
roughly determine the texture complexity of each patch [16,33,35,53,64]. Specif-
ically, for the patches where the PSNR value is greater than a certain threshold,
as they contain less information, we will not further split those patches. For
those lower ones, we will split them into smaller patches and follow the previous
evaluation & split step. This forms an iterative processing pipeline to provide
patches with different shapes and texture complexity. In this manner, patches
with similar complexity features will almost all have the same shape. In Dy-

DCA, each execution path is able to learn a similar distribution, which boosts
the super-resolution performance. Also, the total number of patches in a video
drops a lot compared to the method [33], thus reducing the I/O pressure on the
user end.

To overfit the above patches with different shapes, we propose a dynamic
deep neural network with different paths and a routing node. Specifically, with
multiple paths for various resolutions and a learnable routing node to distribute
input patches to corresponding paths, our proposed Dy-DCA resolves the sys-
tem overhead caused by model switching. Meanwhile, taking advantage of mod-
ular SR neural network design [37, 63, 67], we delicately design the structure of
each path to maintain better performance and a reasonable model size for the
resource-constrained devices.

2.3 Compiler level optimization to better support algorithm

In Section 2.2, we utilize a dynamic neural network to resolve the system over-
head caused by model switching. However, our approach introduces dynamic in-
put in the form of differently shaped patches, which are subsequently distributed
across various paths, a process known as routing. This introduces uncertainty
into model execution, impeding the compiler’s ability to achieve high efficiency.
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Thus, a compiler-level optimization method should be proposed to resolve the
challenges brought by dynamic input and routing.

DNN Operator Classification. In dynamic DNNs, each tensor can be cat-
egorized into an input tensor (I) and an output tensor (O) at operator (T l),
where l is the operator index. We denote the shape of an input tensor as I(S)
and its corresponding value as I(V ). Similarly, for an output tensor, we have
O(S) and O(V ) to represent shape and value, respectively.

Our key observation is that dynamism (routing, input) brings uncertainty
to optimization. For instance, loop fusion [71] relies on knowledge of the iden-
tical index space between two loops, typically corresponding to the dimensions
of respective input tensors. Likewise, planning execution order [2] to minimize
memory usage or organizing memory allocation [44] is hindered in the absence
of static knowledge regarding tensor sizes.

Thus, in order to help predict intermediate tensor shape and value, we
first group DNN operators into four types: Input Shape Determined Output
(I(S) → O(S, V )), Input Shape Determined Output Shape (I(S) → O(S)), In-
put Shape & Value Determined Output Shape (I(S, V ) → O(S)), and Execution
Determined Output (Exec → O(S, V )).

(i) Input Shape Determined Output: The output tensor shapes are
determined by the input tensor shape, but the input values do not impact the
output. The representative operators include Shape and Eyelike.

(ii) Input Shape Determined Output Shape: The output shapes are
dependent on the input shapes, much like in the preceding category. The output
values, however, depend on all the input values. Examples include Conv, Add,
and Pooling. The significance of this category, as compared to the next set of
categories, is that if the input shape of this operator is known, compiler opti-
mizations (e.g., operator fusion, execution/memory optimizations) are enabled.

(iii) Input Shape & Value Determined Output Shape: The output
values are dependent on the input shapes and all the input values, just like the
previous category. The distinction is that only a portion of the input data is
used by the output shapes. Examples include Extend and Range.

(iv) Execution Determined Output: Similar to the previous two cat-
egories, the output values rely on the input shapes and all the input values.
Examples include Nonzero and If.

Data-flow analysis. In this section, we present a novel data-flow analysis
methodology to infer the intermediate result tensor shape based on the DNN
operator classification discussed above. Such an analysis enables a number of
optimizations, including dynamic DNN operator fusion, execution path plan-
ning, etc.

Our main finding is that, for many operators and operator combinations (such
as an input shape determined output operator and an input shape determined
output shape operator), it is possible to infer the shape of the intermediate result
tensor to some extent even without knowing the input tensor shape.
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Table 1: DNN Operators Classification. These operators are from ONNX (Open Neu-
ral Network Exchange) [43].

Operator Class Example of Operators Representatives

I(S) → O(S, V) Shape, ConstantOfShape, Eyelike Shape

I(S) → O(S)
Add, AveragePool, Cast, Concat, Conv, Elementwise w/ broadcast,

Conv, MatMul
Gather, MatMul, MaxPool, Reduce, Relu, Round, Sigmoid, Softmax

I(S,V) → O(S)
Expand, GroupNormalization, MaxUnpool, Onehot, Range, Reshape,

Reshape, Range
Resize, Slice, TopK, Upsample

Exec → O(S, V) If, Loop, NMS, Nonzero, <Switch, Combine> If, Loop

Fig. 3: The lattice of the data-flow
domain.

Data-flow domain: To infer the shape
and value of the intermediate tensor, we first
define the value domain of tensor shape (S)
and tensor value (V) for subsequent opti-
mization algorithms. As shown in Figure 3,
the lattice includes known constants, sym-
bolic constants, and operator-inferred con-
stant. The lattice also includes undefined and
not-a-constant (nac) at the top and bottom,
respectively.

Transfer function: The transfer function is used to transfer the Shape and
Value from the input tensor to the output tensor based on the operator type. In
our proposed dynamic neural network, there are two kinds of transfer functions:
Update and Merge. Update transfers from the input tensor to the output tensor
for an individual operator. Merge operates on branch control flow and merges
(output) tensors from multiple possible execution paths.

Algorithm for data-flow analysis: The computation graph (G) of a dy-
namic neural network can be viewed as a Directed Acyclic Graph (DGA). d We
first sort the operators in G in depth-first order and initialize the output shape
and value map of each operator as undefined. e If the operator is a control-flow
node (like Combine or Switch), it needs to call the Merge function to merge
analysis results from multiple control-flow paths. f For non-control-flow opera-
tors, we send them to forward transfer functions. These functions are based on
dynamism classification of DNN operators in Table 1. For example, if the opera-
tor in the case “Input Shape Determined Output Shape” like Conv and Add, the
function will return the predicted shape. g Then, for the case of “Input Shape
Determined Output”, if the value domain of operator shape is not undefined or
nac, we then set a symbolic value to the output tensor value to facilitate sub-
sequent analysis. The algorithm will iteratively process e-g until there are no
updates on the shape and value of the output tensor of an operator.

Operator fusion. A common challenge encountered in dynamic DNNs is the
absence of knowledge regarding the tensor shapes of two operators. In such
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cases, the DNN compiler faces limitations, as it is either unable to perform
fusion between these operators or has to generate a multitude of code versions,
each accommodating a possible combination of shapes for the two operators. In
reality, when we are dealing with the merging of more than two operators, the
need to generate separate code for all the potential combinations becomes quite
extensive.

This problem can be resolved by our suggested data-flow analysis, which
makes use of (potentially symbolic) shape information. Fusion can be enabled
and/or made simpler by information like the fact that the two operators have
tensors of the same shape, even if the precise dimensions are not known until
runtime.

Static execution planning. The computational graph of dynamic DNN sup-
ports a variety of orderings for the execution of operators. The ordering decision
affects the peak memory usage, which further affects the effectiveness of the
cache and the execution latency. However, it has been proven that finding an
optimal path in the computational graph is a NP-hard problem [2]. Therefore, it
is hard to find an optimal plan for modern large DNNs with more than hundreds
of operators.

In our data-flow analysis, the general assumption is that a method based
on graph partitioning is appropriate because a globally optimal solution is im-
practical. It turns out that the analysis results can direct the segmentation of
the graph, as well as the choice of solution within each sub-graph. The main
reason lies in the value domain (undefined, known constant, symbolic constants,
operator-inferred constants, and not a constant) we defined before, which facili-
tates the generation of an optimal execution plan. For example, in a sub-graph
G_sub, if all tensors in G_sub are known, the optimal execution plan for G_sub

can be obtained statistically by an exhaustive search. If there exist known con-
stant, symbolic constants, and operator-inferred constants, it is still possible to
generate a close optimal execution under certain requirements like memory us-
age and latency limitation. For those operators that have a not constant output
tensor shape, it provides an opportunity to partition the original graph into
sub-graphs that can be independently analyzed.

3 Experimental results

In this section, we evaluate Dy-DCA on multiple videos to show its superiority.
Also, to demonstrate the effectiveness of our proposed algorithm and compiler
co-design approach, we deploy Dy-DCA on an off-the-shelf mobile phone. The
detailed information of dataset and implementation can be found in Section 3.1.
We compare our method with current multimodel methods [33, 35, 60], and the
main results are shown in Section 3.2. In Section 3.3, we deploy our model on
edge and achieve real-time inference speed, which shows the advantages of our
proposed compiler optimization. In Section 3.4, we compare our method with
SRVC [27], both of which employ a single model to accommodate all videos.
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Table 2: Comparison results of Dy-DCA with different data overfitting methods.

Data UVG-Beauty UVG-Bosphorus UVG-HoneyBee
Model Scale ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

EDSR

NAS 60 45.74 42.71 40.52 44.99 41.47 38.04 44.54 41.51 40.23
EMT 35 46.84 43.79 41.80 46.12 42.33 39.14 45.21 42.29 39.38
STDO 33 47.02 44.12 42.03 46.64 42.72 39.71 45.82 42.74 42.15
Ours 47.21 44.42 42.35 46.87 43.06 40.25 46.02 43.24 42.74

WDSR

NAS 60 46.23 43.24 41.10 45.45 42.01 38.92 44.89 41.97 41.08
EMT 35 47.04 44.17 42.40 46.42 42.86 39.92 45.87 43.01 42.12
STDO 33 47.50 44.73 42.88 46.98 43.06 40.22 46.10 43.29 42.74
Ours 47.64 44.85 43.10 47.10 43.31 40.29 46.33 43.52 43.02

game-45s inter-45s vlog-45s
×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

EDSR

NAS 60 43.22 36.72 34.32 43.31 35.80 32.67 48.48 44.12 42.12
EMT 35 44.04 37.89 35.27 43.89 36.21 33.07 48.86 44.71 42.80
STDO33 45.65 39.93 37.24 44.52 38.28 35.51 49.84 45.47 43.07
Ours 45.72 40.17 37.60 44.74 38.53 35.77 49.89 45.61 43.19

WDSR

NAS 60 43.70 37.25 34.93 43.41 36.05 33.11 48.52 44.75 42.80
EMT 60 44.47 38.14 35.72 43.92 36.73 33.47 49.07 44.72 42.87
STDO33 45.71 40.33 37.76 44.54 38.72 36.03 49.76 45.95 43.99
Ours 45.86 40.51 37.98 44.76 39.02 36.44 49.84 46.13 44.12

3.1 Experiment settings

To evaluate the overfitting performance of our framework, we we adopt the UVG
[40] and VSD4K [38] datasets. UVG dataset contains 16 test video sequences and
each video has multiple resolutions and bitrates to choose from. In the VSD4K
video dataset, there are 6 video categories, and each of the categories contains
various video lengths. We set the resolution for HR videos to 1080p and the
bitrate at 10bit, and LR videos are generated by bi-cubic interpolation to match
different scaling factors.

We utilize EDSR [37], and WDSR [63] as our backbone. Both of them use
a modular design, which provides flexibility in our design of dynamic neural
networks. During training, we split frames into different sizes of patches. The
PSNR thresholds we set for splitting are 40 and 30. Specifically, patches with
a PSNR greater than 40 will not be split. The next round larger than 30 will
not be split. [41] Regarding the hyperparameter configuration of training the SR
models, we follow the setting of [37,38,63]. We adopt the Adam optimizer with
´1 = 0.9, ´2 = 0.009, ϵ = 10−8 and we use L1 loss as a loss function.

3.2 Evaluation on VSD4K and UVG datasets

In this part, we sample three video categories from VSD4K and UVG and tested
them on 45-second videos (VSD4K) and 20-second videos (UVG), respectively.
Our results are shown in Table 2. The visual results are shown in Figure 4. We
compare with the state-of-the-art DNN-based SR video overfitting methods, such
as NAS [60] that splits a video into multiple chunks in advance and overfit each of
each chunk with independent SR model, EMT [35] utilizes same training pattern
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Fig. 4: Super-resolution quality comparison on Dy-DCA and baseline methods.

while taking advantage of meta learning to accelerate training, and STDO [33]
that uses texture information to a divided video chunk and overfits with multiple
models. As we can see, we achieve a higher PSNR across these different videos.

3.3 Deployment on Mobile Devices

The on-device evaluations are conducted using a OnePlus 11 mobile phone,
equipped with a Snapdragon 8 Gen 2 processor [46]. This processor is built
on one Cortex-X3 based prime core, four Cortex A-715 and A-710 based perfor-
mance core, three Cortex A-510 based efficient core, and paired with a Qualcomm
Adreno 740 GPU, delivering superior performance while maintaining efficient
power consumption. We tested our model on Alibaba MNN [25] with standard
configuration, which utilizes 4 threads and employs FP16 precision to optimize
computational efficiency. The inference process is executed 20 times, with the
first 5 iterations serving as a warm-up phase to ensure system stability and
to negate the effects of start-up transients on the experimental outcomes. The
results are then averaged to account for any variations, and measured the perfor-
mance under the designated conditions. The main points of our assessment are
to methodically analyze model shift overhead, run-time memory usage, power
consumption, and image loading overhead.

Memory and latency result. In Table 3, the memory consumption and
end-to-end execution latency are tested by MNN. As Dy-DCA has different in-
put patches shape and these patches will be sent to different paths, we randomly
chose 50 frames to inference then averaged them. Since NAS, EMT and STDO
utilize static DNN, they do not support dynamic input shapes and routing,
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thus we do not show the results of these methods on our proposed optimiza-
tion framework. Overall, with our designed compiler optimization framework,
we achieve 1.7× speedup and 1.61× memory reduction compared with MNN.
The average inference speed on mobile GPU is 30ms, which achieves real-time
requirement [66].

Table 3: Memory consumption and end-to-end execution latency comparison among
MNN and our proposed data-flow analysis framework. S stands for the number of
parameter of a 16-4 WDSR [63] model. We test on the 45 seconds video. The “/"
format is mobile CPU/GPU.

Method
Model MNN(MB) Ours(MB) MNN(ms) Ours(ms)

Size Min Max Min Max Min Max Min Max

NAS[60] 9S 79/415 79/415 - - 457/271 476/275 - -
EMT [35] 9S 79/415 79/415 - - 457/271 476/275 - -
STDO [33] 4S 72/175 72/175 - - 334/158 342/162 - -
Ours S 66/170 69/184 47/103 53/116 66/48 82/54 52/28 59/32

Our’s framework speedup 1.45× - 1.61× 1 1.30× - 1.70× 1

Overhead analysis. In Table 4, As our proposed Dy-DCA reduces the model
down to one and provides a fine-grained video frame splitting module, we analyze
the overhead in terms of model switching and I/O. As STDO also splits video
frames into patches, compared with it, we achieve 4× saving on model switching
overhead and 7× saving on I/O.

Table 4: The comparison of model switching and I/O overhead between STDO and
our method.

Method
Model switching Patches Average I/O

PSNR
Number Overhead Number Overhead

STDO [33] 4 4× 1.2×10e5 6× 47.50

Ours 1 1× 2.16×10e4 1× 47.64

3.4 More discussion on one-size-fits-all method

The method named SRVC proposed by [27] can adaptively fit different content
with incremental model changes in a single model, which mitigates the model
switching overhead. However, when the video content becomes complicated, the
super-resolution quality drops dramatically. In the following Table 5, the inter-
45s and game-45s have richer information. Compared with our method, the per-
formance of SRVC drops a lot when using WDSR as the backbone with a scaling
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factor of ×2. Especially for gmae-45s, a 31.03 dB is not acceptable for a high-
quality video requirement. Furthermore, our method is based on algorithm and
compiler co-design, which is more favorable to practical usage. The operators
and data flow can be fully supported by mobile devices.

Table 5: The comparison of SRVC and our method on different types of videos.

Method vlog-45s inter-45s game-45s Average

SRVC [27] 48.71 39.26 31.03 39.68

Dy-DCA (Ours) 49.84 44.76 45.86 46.82

4 Ablation Study

Different number of paths. We evaluate different number of paths in the
network structure of Dy-DCA. We compare the PSNR and the latency tested on
mobile GPU for different dynamic paths of Dy-DCA. As shown in the following
Table 6, more paths bring higher PSNR by introducing fine-grained data patch
groups with more trainable parameters, which sacrifices latency at the user end.

Table 6: The PSNR and inference speed (Mobile GPU) on different number of paths.

Method Path PSNR Ours(ms)

(Backbone) Number Value Min Max

Dy-DCA(WDSR) 2 45.86 28 32
Dy-DCA(WDSR) 3 46.33 33 37
Dy-DCA(WDSR) 4 46.51 37 42

Long video. We also test different video lengths to show our design is capa-
ble of handling longer and more complex video contents. We select a 2-minute
game video in VSD4K [38] and combine the game-45s video and the vlog-45s
video together into a 90s-long video (combine-90s). We conduct experiments us-
ing WDSR as a backbone with a scaling factor of 4. These two videos are longer
and more complex when compared with the videos we show in Table 2 in our
paper. As we can see in the following Table 7, the 2-min game video is still
maintaining an acceptable PSNR, and the PSNR of combine-90s is close to the
average value of overfitting two videos (game-45s and vlog-45s). The results show
that our proposed framework can work well even in longer videos with complex
contents.
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Table 7: The PSNR results on different video lengths.

video game-45s vlog-45s game-2min combine-90s

PSNR 45.86 49.84 44.72 47.34

5 Related works

5.1 DNN-based image and video super-resolution

For Single Image Super-Resolution (SISR) tasks, SRCNN [13] is the pioneer of
applying DNN to image super-resolution. Then, followed by FSRCNN [14] and
ESPCN [49], both of them make progress in efficiency and performance. After
this, with the development of deep neural networks, more and more network
backbones are used for SISR tasks. For example, VDSR [29] uses the VGG [50]
network as the backbone and adds residual learning to further improve the ef-
fectiveness. Similarly, [32, 37, 63] proposed a SR network using ResNet [22] as a
backbone. With the emergence of channel attention mechanisms networks rep-
resented by SENet [45], various applications of attention mechanisms poured
into the area of image super resolution [11,42,67,68]. Observing the remarkable
performance of the transformer architecture in computer vision, as exemplified
by [15] in their work on image processing, an increasing number of researchers
are now employing various vision transformer models for image super-resolution
tasks. [7,36,39]. The Video Super-Resolution (VSR) methods mainly drive from
SISR. Some of the works described above that were primarily created for SISR,
including EDSR [37] and WDSR [63], all have results on VSR. Several of the
recent VSR works perform alignment to calculate optical flow by DNNs in order
to estimate the motions between images [4,30,48,51]. However, accurate optical
flow may not be easy to compute for videos with occlusion and large motions.
Another method to perform alignment is called deformable convolution meth-
ods, which is first proposed by [10]. The Deformable convolution (DConv) [10]
was first used to deal with geometric transformation in vision tasks because the
sampling operation of CNN is fixed. TDAN [52] applies DConv to align the input
frames at the feature level, which avoids the two-stage process used in previous
optical flow based methods. Other works like DNLN [55] and D3Dnet [62] also
apply Dconv in their model to achieve a better alignment performance. However,
these models incorporate with DConv may suffer from high computation com-
plexity and difficulty for convergence. To increase the robustness of alignment
and account for the visual informativeness of each frame, EDVR [56] uses their
proposed Pyramid, Cascading and Deformable convolutions (PCD) alignment
module and the temporal-spatial attention (TSA) fusion module.

5.2 Development of Dynamic DNN

The development of dynamic DNNs is extensive, including recurrent neural net-
works (RNNs) and their derivatives, along with instance-specific dynamic mod-
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els, spatial-oriented dynamic networks, and time-oriented dynamic models [21].
Our motivation for utilizing DNNs in super-resolution stems from their adapt-
ability and the comprehensive range of dynamic capabilities they offer, allowing
for enhanced performance in reconstructing high-resolution details from low-
resolution inputs. This survey [21] highlights numerous studies pertinent to
dynamic inference, illustrating the establishment of model aggregations through
either cascaded or concurrent configurations and the selective activation of mod-
els based on input conditions. Additionally, this advancement underscores the
significance of deploying Spiking Neural Networks (SNNs), which conduct data-
driven inference through the propagation of pulse signals [18]. This review also
underscores several pivotal publications in these domains, such as Dynamic Net-
work Surgery [20], Spatially Adaptive Computation Time (SACT) [17], Dynamic
Conditional Networks (DCNs) [69], Dynamic Filter Networks [70], Dynamic
Convolutional Neural Networks (DCNNs) [9], Dynamic Routing Between Cap-
sules [47], Dynamic Skip Connections (DSCs) [19], and Dynamic Time Warping
Networks (DTWNs) [5]. The discussion concludes by reflecting on the unresolved
challenges in this field and suggesting intriguing paths for future research. These
include the development of theories for dynamic networks, the crafting of efficient
decision-making, and diversified application exploration in various disciplines.

5.3 Content-Aware DNN

It is not possible to develop a DNN model that can efficiently handle all web
video. To ensure reliability and performance, [60] suggests that the video delivery
system take into account employing DNN models to overfit each video chunk.
Several livestreaming and video streaming applications [8,12,28,57,58] make use
of overfitting property to guarantee great client performance. [28] proposes a live
video ingest framework, which adds an online learning module to the original
NAS [60] framework to further ensure quality. NEMO [58] selects key frames to
apply super-resolution. This greatly reduces the amount of computation on the
client sides. CaFM [38] splits a long video into several time-based chunks and
design a handcrafted layer along with a joint training technique to reduce the
number of SR models and improve performance. EMT [35] proposes to leverage
meta-tuning and challenge patches sampling technique to further reduce model
size and computation cost. STDO [33] takes spatial information as well as tem-
poral information into account to further enhance model performance.

6 Conclusion

In this paper, we introduce a content-aware dynamic DNN to overfit videos. This
design reduces the required model number down to one, thus reducing the model
switching overhead at the user end. In order to resolve the challenges brought
By using dynamic input patches and routing in dynamic DNN, we propose a
data-flow analysis framework to predict the shape and value of intermediate
tensor. Subsequently, the outcomes of the analysis are used to enable a number
of compilation optimizations, which achieve real-time performance on the edge.
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