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We characterize optimal honest and obedient (HO) mechanisms for
the classic collective action problem with private information, where
group success requires costly participation by some fraction of its mem-
bers. For large n, a simple HO mechanism, the volunteer-based or-
ganization, is approximately optimal. Success is achieved in the limit
with probability one or zero depending on the rate at which the re-
quired fraction declines with n. For finite n, optimal HO mechanisms
provide substantial gains over unorganized groups when the success
probability converges to zero, because the optimal HO success proba-
bility converges slowly and is always positive, while finite-sized unorga-
nized groups have exactly zero probability of success.

I. Introduction

Collective action is one of the most basic and ubiquitous forms of strate-
gic interaction in societies. Examples of collective action problems range
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from the case of private citizens banding together in public demonstra-
tions, to dissatisfied workers participating in union activities, to voters
bearing up against bad weather to cast their ballots, to community mem-
bers donating their time to organize charity or cultural events. At a more
macro level, the choices by countries contemplating joining an interna-
tional environmental agreement also constitute a collective action prob-
lem. These are all instances of environments in which a common goal can
be achieved by a community but only if a sufficiently large number of its
members are willing to make individual contributions, thus overcoming
the incentives to free ride. There are many concrete examples testifying
that societies are indeed able to partially solve collective action problems;
theories of voluntary behavior and free riding, however, find significant
levels of individual participation that are hard to explain, other than as-
suming that citizens like it or feel morally obliged to it.

In his seminal work, Mancur Olson (1965) provided a taxonomy of the
factors determining success of collective action and highlighted the pres-
ence of an organization as a key factor. This observation is intuitive, butit
opens up practical and theoretical questions that have not yet been fully
explored in the literature, as we will argue. A first set of questions is pos-
itive: what type of organizations should we plausibly expect in collective
action problems, and how effective should we expect them to be? A sec-
ond related set of questions is normative: how do empirically plausible or-
ganizations compare with the theoretically optimal organization? To what
extent can the presence of an organization (plausible or even optimal) ex-
plain the observed effectiveness of collective action even with a large num-
ber of agents? Understanding these questions is important for making
sense of the limits and opportunities of collective action and may provide
normative insights to improve it.

In this paper, we make progress on these issues by studying the effec-
tiveness of organizations in a classic threshold contribution game, widely
studied in economics, biology, political science, and sociology. In the game,
a group of n agents pursue a collective goal that, if achieved, generates
a benefit v per agent. The goal is achieved if at least m, out of n agents
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choose to make a personal contribution.' The cost of a personal contribu-
tion is private information to each agent; it is independently distributed
across agents according to some commonly known distribution, F(¢). The
agents may or may not have an organization to coordinate individual de-
cisions, and the organization may be strong (allowing for transfers and/
or some form of coercion) or, more plausibly, weak (no transfers and no
coercion). We ask how the probability of success changes as n increases,
depending on (1) the rate of increase in m,, (2) whether there is an orga-
nization, and (3) whether the organization, if it exists, is strong or weak.
We also ask under what conditions the group of agents will endogenously
form an organization.

Our analysis produces four new theoretical insights. As a preliminary
step, we first revisit the equilibrium analysis without an organization
when the threshold m, is a general increasing function of n. Our first find-
ing is that, even without an organization and with a threshold m, that
grows to infinity, failure of collective action is not inevitable: the key fac-
tor is the rate of increase of m, versus n. Perhaps surprisingly, we show
that, regardless of the shape of F{(c), success is achieved with probability
converging to one if m, grows at a rate slower than n?/?; success is instead
impossible if n grows faster than n*®. When m, grows faster than n*?,
moreover, there is a critical group size, n, such that the probability of suc-
cess falls precipitously from a strictly positive success probability to ex-
actly zero for n > ny. Collective action therefore does not require an or-
ganization to be successful if m, grows sufficiently slowly, but it can be very
valuable otherwise.

The other three main findings address the questions of how and to
what extent the performance of collective action can be improved by an
organization. The key issue here is how to model an organization. The
standard approach in mechanism design theory has focused on the study
of optimal organizations with transfers that are Bayesian incentive com-
patible (IC) and interim individually rational (IR), what we refer to as
strong mechanisms.”> This approach, through the IC constraint, captures
the problem of honestly aggregating the dispersed private information
regarding the agents’ types; it also partially captures, through the IR con-
straint, a moral hazard problem at the interim stage by guaranteeing a
minimal expected utility to all types. In most environments of interest,

' Classic contributions are Palfrey and Rosenthal (1984) in economics and Diekmann
(1985) in sociology, who coined the term “volunteer’s dilemma” for the special case in
which m, = 1. A survey of the work using these games in biology is presented by Archetti
and Scheuring (2012). Applications to environmental economics include, e.g., Tavoni
etal. (2011) and Barrett etal. (2014). Recent contributions in economics include Battaglini
and Benabou (2003), Battaglini (2017), Bergstrom (2017), Noldeke and Pena (2020), and
Dziuda, Gitmez, and Shadmeher (2021), among others.

* An exception is Dixit and Olson (2000), as we discuss below.
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however, this approach bypasses the moral hazard problem faced by the
group, since some types might choose to disobey a recommendation by
the mechanism if carrying out the recommendation would not be opti-
mal. In the standard Bayesian mechanism design problem, a direct mech-
anism maps each reported profile of types to an allocation and a payment
to or from each agent, which is then imposed on all agents even if the al-
location/payment makes some agents worse off at the reported type pro-
file. In contrast, in a collective action problem, a mechanism lacks the
power to simply impose the outcome on all agents and can only suggest
recommended (i.e., not imposed) actions, one for each agent (“go pro-
test,” “sign a petition,” “volunteer,” “do nothing,” etc.). The final out-
come ultimately depends on the individual willingness of each agent to
voluntarily carry out these recommendations.

To clarify this point with an example, consider a community asking for
volunteers to organize an event. The event requires at least three out of
10 agents to spend one afternoon at the community center and yields a
value v = 0.5 per person if the quota is met. If the support of Fis [0, 1],
then a simple IC and IR mechanism can achieve the goal with probability
one using a simple random mechanism:* randomly and anonymously se-
lect three agents and ask them to volunteer. This is IC, since the informa-
tion on the types is not used, and it is IR, since the interim expected cost,
0.3¢, is lower than the benefit, v, even for the highest type (0.3 < 0.5). The
problem with this mechanism is that it violates the moral hazard (obedi-
ence) constraint: no type ¢ > 0.5 would agree to volunteer if asked.” In
such a situation, one must add an obedience constraint, requiring that
the agents asked to volunteer find it optimal to carry out the mechanism’s
recommendation. We refer to mechanisms that also satisfy obedience and
no transfers as weak mechanisms.

This distinction between IC and IR mechanisms and honest and obe-
dient (HO) mechanisms was not especially important for limiting results
with large groups in the early literature that assumed constant returns to
scale; that s, the cost of the common project grows linearly with the num-
ber of agents. In that case, the limit probability of success is zero even if we
ignore the obedience constraint (Rob 1989; Mailath and Postlewaite
1990; Ledyard and Palfrey 1994, 1999). If one generalizes the constant re-
turns assumption, however, the distinction becomes important. As we are
able to show, when m, grows slower than n, even if at a speed arbitrarily
close to n, then optimal IC and IR mechanisms achieve a probability one

”» o«

* This mechanism is also optimal under some weak conditions, as we see in sec. III. How-
ever, this fact is irrelevant for the present discussion.

* This random mechanism is also ex post IR, since outcomes do not depend on the pro-
file of types. All types are willing to participate, even after conditioning on the entire type
profile.



ORGANIZING FOR COLLECTIVE ACTION 000

of success for a large enough 7 even if we adopt a simple random mech-
anism with no transfers as outlined before. However, such mechanisms
violate the obedience constraint, as explained in the example above. It
therefore becomes important to understand what can be achieved with
an HO mechanism.

Our second theoretical contribution is to show that a simple class of HO
mechanisms that we call volunteer-based organizations (VBOs) is asymp-
totically optimal. The mechanism is a simple extension of the random
mechanism described above. In a VBO, agents are asked to report whether
they are willing to be activated (volunteers) or not ( free riders). If the num-
ber of agents who state that they are willing to be volunteers is lower than
m,, then no agent is asked to be active and the group fails but wastes no
cost of action by any agent. If the number of volunteers is greater than
or equal to m,, then the collective goal is achieved by randomly and anon-
ymously selecting m, volunteers. These volunteers are willing to follow the
recommendation because they know that exactly m, — 1 volunteers will
also carry out similar recommendations. Free riders are never asked to
be active.

In our third theoretical result, we use the previous characterization to
explore the limits of optimal HO organizations. This allows us to extend
the negative limit results of the previous literature—that is, that the limit
probability of success in an optimal IC and IR mechanism with constant
returns to scale is zero, both with an organized and with an unorganized
group (Rob 1989; Mailath and Postlewaite 1990; Ledyard and Palfrey
1994, 1999, 2002). We show that with HO mechanisms the limiting prob-
ability of success is the same with an organized and with an unorganized
group for any rate of growth of m,: as with the Bayesian Nash equilibrium
for unorganized groups, the optimal HO mechanism achieves a limiting
success probability equal to one if m, grows at a rate slower than n%?, and
it achieves a limit probability equal to zero if it grows faster than n%°. An
implication of this result is that the probability of success converges to
zero even if the total group benefit is strictly greater than the maximum
possible total cost, a case in which strong mechanisms are successful with
probability one even with no transfers, as we will show.

So is there any value in having an organization? The fourth lesson from
our analysis is that organizations are indeed very useful and that focusing
only on limit results for infinite-sized groups misses an important part of
the problem. We show that even when m, grows faster than n*?, the limit
probability of success in an HO organization converges to zero at a rate
that is infinitely slower than without an organization (which indeed achieves
exactly zero probability after a finite threshold, 7).

Taken together, these results confirm and sharpen Olson’s intuition
for the importance of organizations for collective action and also high-
light important limitations to the power of organizations. Simple forms
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of cooperation such as a VBO, however, are approximately optimal for fi-
nite nand can provide an effective institution for group success with large
groups, at least on the order of thousands of members, even in environ-
ments where the limiting probability of success with extremely large
groups approaching infinity would be zero. This observation may help ex-
plain why numerous cases of successful collective action have been doc-
umented, even if collective action is not a panacea for all social problems.

Regarding the limitations to the power of weak organizations, our
n — oo results have implications about solving collective action problems
in very large societies—for example, on the scale of nation states with tens
of millions of citizens. An extremely large society, even one that is ideally
organized in a way that respects HO constraints, will perform no better in
providing public goods than an identical society operating under autarky,
with no organization at all. Voluntary behavior, even if guided by a per-
fectly designed organization to coordinate activity, is not sufficient to pro-
vide a satisfactory solution to collective action problems for arbitrarily
large societies. In these cases, what is required is the establishment of in-
stitutions (e.g., a government) that are enabled with the authority of ex
post coercive powers to implement and enforce individual compliance
with the outcomes imposed by a strong mechanism.

These implications are confirmed and strengthened when we endo-
genize the formation of an organization, as we do in section VI. That anal-
ysis suggests that even when successful collective action is possible only
with an organization, we should observe the formation of organizations
only for values v larger than a threshold v(n), increasing in n.

Related literature—O]lson (1965) was arguably the first to highlight the
importance of an organization in solving collective action problems, pro-
viding a first informal description of the features of an organization useful
to solve them.” Formal analysis of this issue, however, had to wait for the
development of the theory of optimal mechanisms in Bayesian environ-
ments. Our work follows this tradition, departing from it in two ways: first,
because we assume no transfers; second and most importantly, because we
require the optimal mechanism to be HO as discussed above. Most previ-
ous theoretical research on optimal mechanisms for public-good provision
in Bayesian environments consider only strong organizations, which allow
unlimited side payments and interim IR constraints, ignoring the obe-
dience constraint (Mailath and Postlewaite 1990; Ledyard and Palfrey

> Other factors for the success of collective action that have been emphasized by Olson
(1965) and the following literature include the cohesiveness of the preferences of the
group’s members, the elasticity of their cost function as a function of the contributions,
and the degree of excludability of the common goal’s benefits. For important works on
these dimensions, see Chamberlin (1974) and more recently Esteban and Ray (2001).
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1994, 1999, 2002; Hellwig 2003).° As far as we know, the problem of opti-
mal public-goods mechanisms in Bayesian environments that satisfy obe-
dience has never been studied. The first three groups of authors have pre-
sented negative results of strong organizations assuming constant returns
to scale, showing that limit probabilities converge to zero with or without
an optimal IC and interim IR mechanism. Hellwig (2003) has shown that
with increasing returns, limit probabilities equal to one are feasible with
an optimal IC and IR mechanism with unlimited transfers—indeed, al-
ways achieved when the demand for the public good is bounded above.
When we consider an HO mechanism, results are very different, both
with and without constant returns. Allowing for increasing returns, we ex-
tend the insight that organizations are not useful in the limit, since we
show with HO mechanisms that they can obtain the same limit probabil-
ities of success as unorganized groups only as n — oo; with sufficiently in-
creasing returns, however, this probability may be one both with and with-
out an organization, a case that we precisely characterize. With constant
returns, we also show that the failure of organizations in the limitis a more
severe phenomenon than previously believed, since it extends to cases in
which the total societal value of the collective action goal is strictly higher
than the cost of achieving success in the worst-case scenario—that is,
un > m, ¢, where ¢ represents the maximum possible cost. In contrast, suc-
cess is guaranteed with strong organizations in this worst case.”
Following Olson (1965), a significant literature has also studied or-
ganizations for collective action from a positive perspective, providing
empirical studies of the type of organizations that emerge in concrete ex-
amples, using both case studies (e.g., Ostrom 1990) and laboratory exper-
iments (van de Kragt et al. 1983; Braver and Wilson 1986; Ostrom and
Walker 1991; Palfrey and Rosenthal 1991; Ostrom, Walker, and Gardner
1992; Palfrey, Rosenthal, and Roy 2017, among others). Several of these
experimental papers study public-good games similar to ours, by allowing
players to communicate before the contribution stage and ruling out

° Other research on Bayesian mechanism design with public goods analyzes “super-
strong” organizations that require IC but allow for unlimited side payments and no partic-
ipation constraints (d’Aspremont and Gerard-Varet 1979; Crémer and McLean 1988;
d’Aspremont, Crémer, and Gérard-Varet 1990; Ledyard and Palfrey 1999, 2002).

7 The limits of organizations for collective action are also explored by Dixit and Olson
(2000), who focus on the study of incentives to join organized groups. They take a cooper-
ative perspective, assuming that organizations achieve the efficiency frontier through
Coaseian bargaining; agents, however, have incentives to stay out, free riding on those who
join the organization (for a similar approach in a dynamic setting, see also Battaglini and
Harstad 2016). Passarelli and Tabellini (2017) present a model of political unrest that incor-
porates psychological rewards for activism. Besides the contributions cited above, moreover,
arecentsignificant literature has studied the limits of organizations in Bayesian mechanisms.
See, e.g., Healy (2010), Bierbrauer and Hellwig (2016), Bierbrauer and Winkelmann (2020),
and Goldlucke and Troger (2020).
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coercion, and they report the endogenous emergence of mechanisms
similar to the VBO mechanism that we show to be asymptotically optimal.

II. The Collective Action Model
A, Setup

A group with n members, I = {1,2, ..., n}, desires an outcome generat-
ing a total value of W,, with each member in the group receiving a per-
sonal, direct benefitof v = W,/n € (0, 1) that is independent of n.* The
policy is obtained if and only if atleast m, > 1 out of the n > m, members
of the group are active. The fraction of agents that are required to be ac-
tive for success is denoted by «, = m,/n € (0, 1).

Different members have different activity costs, and we denote by ¢
the cost of being active for member i. Member ¢’s payoff is given by

w; = 01if 71is not active and fewer than m, members are active,
= vpif 7is not active and at least m, members are active,
= —g¢; if 7is active and fewer than m, members are active,
= v — ¢ if iis active and at least m, members are active.

Costs are independent and identically distributed (i.i.d.) and distributed
in [0, ¢} according to a distribution F(c) with density f(c). We normalize
without loss of generality ¢ = 1 > v and assume that 0 < f(c¢) < [ for
some bound f <0 and all ¢ > 0.°

We do not need to assume that m, is monotonic in »n, though typically
we expect it to be nondecreasing with m, — o as n — c0.'” We refer to the
case in which m, = an for some fixed constant « € (0, 1) as the constant
returns to scale case, since it represents a situation in which the fraction of
active members required for success, m,/n, is constant in n (or equiva-
lently converges to a constant). We refer to the case in which m,/n— 0
as the increasing returns to scale case, since in this case the average cost of
the common goal declines in 7.

There are two basic forms of organization of the group. The first is no
organization at all. In this case, each member decides to be active or to
free ride independently, given rational expectations about the other
members’ activity decisions. This corresponds to a pure voluntary partic-
ipation game with a threshold.

% It is straightforward to extend the analysis to the case in which we have a value v, de-
pending on n and v, — v as n— oo,

? The analysis directly extends to more general environments. We discuss alternative as-
sumptions about the cost distribution in sec. VIIL.

' We give an example in the next section of a case where m, is a constant for all n — .
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The second form is an organized group. We are interested in studying
the benefits from organizing even when the organization has very limited
tools at its disposal. To this end, we assume that the organization cannot
directly observe the types of its members, cannot exert any form of coer-
cion on the members’ actions, and cannot even commit to monetary trans-
fers. We refer to such organizations as weak organizations. The organized
group can design only an optimal communication mechanism. In such a
mechanism, group members send messages to the mechanism, then the
mechanism sends each member a recommended action, and then each
member independently chooses an action. While the set of such mecha-
nisms can be very large, Myerson (1982) has shown that the characteriza-
tion of the set of all Bayesian Nash equilibria of all such communication
mechanisms can be accomplished by considering only HO direct commu-
nication mechanisms."' In section ILB, we provide a formal characteriza-
tion of this class of mechanisms and its relationship to the class of IC and
IR mechanisms.

In section VI, we describe a stronger form of organization in which only
IC and interim IR is required. This class of mechanism is a useful bench-
mark since the previous literature has focused on these mechanisms in
the form presented here or in close variants (Rob 1989; Mailath and Post-
lewaite 1990; Ledyard and Palfrey 1994, 1999, 2002; Hellwig 2003). We re-
fer to these as strong organizations.

B.  Weak Organizations: HO Communication Mechanisms

In the absence of monetary transfers, a direct communication mech-
anism is fully characterized by a mapping from the set of possible type
profiles into the set of probability distributions over the subsets of I,
p:[0,1]" — A(2"), where we call p either the mechanism or the activity func-
tion, A2'is the set of probability distributions over subsets of /, and we de-
note by u,(c) the probability that the activity function selects subset g & 1
of the group to be active at type profile c. Members independently report
their types to the mechanism; given the messages ¢ the mechanism selects
a coalition g to activate according to p,(c) and sends the corresponding
recommended action to each member; then each member observes their
own recommendation and decides whether to comply.

In the following, it is sometimes useful to denote a coalition g S I as an
n-dimensional vector of zeros and ones, in which the ith component, g,
is equal to one if ¢ € g and equal to zero if ¢ & g. In this notation, (g_,, 0)
is a coalition with g_; that excludes ¢and (g_; 1) is the coalition of g_; plus
i. We denote |g] = 2,g.

""" This set is closely related to the set of correlated Bayesian equilibrium outcomes of the
game.
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Define I, = {g S I|i € g} as the subsets of [ containing i, and define
I = {g S I||g| = m,} as the set of subsets containing at least m, mem-
bers. Given an activity function, p, the probability that ¢ is active at type
profile cis given by A;(¢; p) = Z,.,p,(c), and the probability that enough
members are active that the group is successful is given by P(c;u) =
e pg(c). A mechanism is balanced if and only if, for all ¢, p,(c) >
0 < |g| = m,. A mechanism has undercontribution at c if p,(c) > 0 for
some |g| < m,, and a mechanism has overcontribution at ¢ if p,(c) > 0 for
some |g| > m,. Thus, a mechanism is balanced if and only if it never has
overcontribution or undercontribution.

For any mechanism p, define its reduced-form mechanism by the func-
tions pi(¢;) = E. [P((¢, c-;); p)] and ai(a;) = E. [Aia, c-;); p)], which are,
respectively, the expected probability of success and the expected prob-
ability that ¢ is active, conditional on ¢’s cost. We assume without loss of
generality that the mechanism is symmetric—that is, for any 4,j € I,
¢ €0,1], pi(c) = pi(c), and a;(c) = a(c)."” To simplify notation, we drop
the member subscripts and write these reduced-form functions as simply
p:[0,1]—10,1] and a:[0,1] —[0,1]. We call a reduced-form mecha-
nism, (p, a), feasible if and only if there exists an activity function p that
generates (p, a). Given any activity function, u, the interim expected util-
ity for type ¢ who reports to be a type ¢ is denoted by U(¢, ¢) = vp(c') —
ca(c), with U(c) = U(e, ¢).

In Myerson (1982), a coordination mechanism is HO if it provides in-
centive to reveal the true type and to follow the recommendations of the
mechanism. Define x(g) as the success indicator function when a coali-
tion g C I is activated, so x(g) = 1 if |g| = m, and x(g) = 0 if |g| < m,.
Given this, the utility for agent i with cost type ¢ when the activated coa-
lition is g can be written as

vx(g) —cifgel,
vx(g) if g ¢l

Using this notation, condition (HO) requires that

U(e) = E. E/Lg(C, C*i)ué(c) ENOS E/Lg(c',cf,-)u;,”@(g)(c) (HO)

g1 gcI

'* To see that the restriction to symmetric mechanisms is without loss of generality, con-
sider any HO asymmetric mechanism, p. For any permutation, p, of the member indexes,
define the mechanism p, by pi(¢; p,) = poi(¢; 1) and ai(c; p,) = a;)(¢; p). Now define the
symmetric mechanism, g, by uniformly randomizing among all possible such permuta-
tions. Linearity of the member utility function will guarantee that g is also HO, and it gen-
erates the same total surplus as p.
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forany: = 1,..., n,¢ ¢ € [0, 1] and any function §,(g) mapping g to {0, 1}.
If we fix 6;(g;) = g, (HO) implies the standard interim (IC) condition:

Ule) = U(c,¢) = E. [g p.g(c’,ci)ué(c)l (I1C)

for any ¢, ¢ € [0, 1].
If we fix ¢; = ¢, (HO) implies the following interim moral hazard (IMH)
condition:

E. .

> el Cf)“éna«g,)(c)]- (IMH)

g<1I

S el c;)u;(c)] > max F.

g<1I

This inequality states that members find it optimal to follow the mecha-
nism’s recommendation on the equilibrium path in which types are
truthfully revealed. However, condition (HO) also rules out joint devia-
tions, in which a member misreports his or her type and then disobeys to
the recommendation that follows the misreport.

Condition (IMH) has two implications. First, since the right-hand side
is nonnegative and the lefthand side is U(¢) = E. [U(c, c-;)], AMH) im-
plies interim individual rationality (INTIR):

U(c) = E. [U(¢c,c-;)] = 0. (INTIR)

It follows that an HO mechanism is also an IC and INTIR mechanism.
Second, condition (IMH) implies that

c>v=>alc) =0, (1)

since U((g-:,0),¢) > U((g-i, 1), ¢) for any g; if ¢ > v. Condition (1) is
not required in an IC and INTIR mechanism, so an IC and INTIR mech-
anism is not generally an HO mechanism (as we see in sec. IIL.B)."?

III. Two Benchmarks

Before characterizing optimal HO mechanisms, it is natural to consider
two polar benchmarks. The first is completely unorganized groups, which
provides a lower bound on the success of HO mechanisms. While HO
mechanisms correspond to the set of all correlated Bayesian equilibria
of the game, completely unorganized groups have no means of communi-
cation, so the equilibrium outcomes correspond to the set of symmetric

¥ An alternative assumption for the participation constraint is ex post individual rational-
ity (EXIR). It is interesting to note that EXIR implies neither IMH nor HO. An example is
presented in sec. IIL.B, where we show conditions under which the optimal IC and INTIR
mechanism is EXIR but fails IMH and HO.
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uncorrelated Bayesian equilibria. Thus, the gains from HO organizations
can be measured in terms of the improvement over the best symmetric
Bayesian equilibrium for unorganized groups. We show that this lower
bound is essentially complete failure, unless the returns to scale are suffi-
ciently high. With constant returns to scale or sufficiently small returns to
scale, no member ever participates and the group never succeeds except
for groups with very few members.

The second benchmark is strong organizations, which relaxes two of
the constraints imposed by HO mechanisms, monetary transfers and obe-
dience, with the latter constraint replaced with INTIR. It is a natural
benchmark because it corresponds to the standard approach taken in
the public-good mechanism design literature (Mailath and Postlewaite
1990; Ledyard and Palfrey 1994, 1999; Hellwig 2003). We show that under
fairly weak conditions, the optimal mechanism succeeds 100% of the time.

A, Unorganized Groups

For an unorganized group, the payoff function and distribution of costs
described above define a Bayesian game where each member simulta-
neously chooses whether to be active. We consider only symmetric equi-
libria of the game. The symmetry assumption reflects the idea that an
asymmetric equilibrium implicitly requires some degree of organization
or communication.

1. Equilibrium with Unorganized Groups

Denote by p the probability that a member is active in the voluntary con-
tribution game. Given any value of p € [0, 1], each member has a best re-
ply that is characterized by a cut point, &Y (p), with the property that mem-
ber i is active if and onlyif ¢; <¢Y(p). If success requires at least m, of the n
members to be active, then an equilibrium cut point must satisfy

& (p) = vB(m, = 1,n — 1,p), (2)

where B(m, —1,n —1,p) = (mﬁ _ % ) P =p represents the
probability of being pivotal. In equilibrium, it must be that p coincides
with the probability that a member has ¢; < ¢/ (p), which is simply equal
to F(Y(p)). Hence, the following condition is necessary and sufficient
for ¢ to be an equilibrium cut point:

¢ = vB(m, — 1,n— 1,F(c)). (3)

An equilibrium exists, trivially, because ¢ = 0 is always a solution to
equation (3) when m, > 1. Itis possible that there are also equilibria with
¢V € (0, v). In all the analysis that follows, ¢! always refers to the largest
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solution to equation (3); this is without loss of generality since we simply
intend to find an upper bound to the effectiveness of unorganized
groups.

An unorganized group succeeds with positive probability only if there
is a strictly positive solution ¢!. Given a ¢! > 0 and associated p; > 0, the
equilibrium probability that an unorganized group is successful is

Pl (pi o) = > Bk, n, p). (4)
k=m,

It is relatively straightforward to see that in the case with constant re-
turns to scale—that is, m, = an for some « € (0, 1)—large groups com-
pletely fail for sufficiently large n, in the sense that no member is ever ac-
tive, including members with arbitrarily small costs: formally, there is a
finite 7y such that pf = ¢ = 0 for all n > 7. To see this point, suppose
for simplicity that Fis uniform in [0, 1], consider any ¢/ € (0, v], and mul-
tiply both sides of equation (3) by (1 — ¢')/(vc!) and substitute an = m,
to obtain

1- c}z} — ((1 B C()’ﬂ + 1> ( n — 1)(6U)an‘2(1 _ CU)(]’O‘)"*]. (5)

v an — 1 an — 2

The left-hand side of equation (5) is greater than or equal to (1 — v)/v
for all n, and the right-hand side converges to ((1 — «)/a)B(an — 2, n —
1, ¢!'), which converges to zero. Hence, there exists 7, such that for all
n > ny the only solution to equation (3) is ¢! = 0.

2. Unorganized Equilibrium in Large Groups:
The Effect of Returns to Scale

While it is natural to assume that m, increases in n, it is also natural to
expect that it grows slower than n. This opens the question of whether
and to what extent an unorganized group can achieve success if m, grows
sufficiently slow. The following example shows that at least in the polar
extreme case where m, is constant in n, group success is achieved in the
limit. This is a particularly extreme example of increasing returns to
scale of activism, in which the ratio of required participation to popula-
tion, m,/n, declines at the speed of 1/n.

Example 1: the volunteer’s dilemma.—Assume that I'(¢) is uniform in [0,
1], and consider the so-called volunteer’s dilemma, in which only one
volunteer is required, regardless of group size, so m, = 1. Will the
group be able to send one volunteer as n — o0? It is straightforward to

'* This is stated and proved more generally as theorem 1 in the next section.
' The volunteer’s dilemma is not consistent with our assumption that m, > 1, which
is assumed to hold throughout the rest of the paper, but it is an illustrative boundary
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see that the answer is yes. From equation (3), a cut point equilibrium
solves ¢/ = v(1 — ¢)"™", which has a unique positive solution ¢! for all
n, with lim, _ ¢/ = 0. The probability of success, from equation (4), is

, , N
PU=1-(1-d) =1- <_>

(%

so lim,.PY =1 — ((lim,_.cY)/v) = 1. QED

Can the logic of the volunteer’s dilemma be generalized to the more
realistic case in which m, grows without bound? We say that m, grows
slower (respectively, faster) than a sequence s,—that is, m, <s, (respec-
tively, m, > s,) if m,/s, — 0 (respectively, m, /s, — ). We say that m, grows
at the same speed as s,—thatis, m, = s, if m,/s, — p, for some finite p > 0.'
The following theorem establishes that, independently of the shape of F,
there is an equilibrium in which unorganized groups are successful with
probability one in the limit as n — o if m, < n*/?
cessful in the limit in all equilibria if m, > n*/*.

THEOREM 1. With an unorganized group, for all v € (0, 1), the fol-
lowing hold:

and are completely unsuc-

1) If m, < n*?, then lim,_ P’ = 1.
2) If m, > n*/*, then there exists 7y such that the unique equilibrium
is ¢ = 0 for all n > 7y and hence PY = 0 for all n > 7ny.

Proof.  See appendix section Al.

Theorem 1 shows that we do not need constant returns for a group to
fail in large finite groups; when the rate of growth of m, is sufficiently high—
thatis, m, > n**—the probability of success in the unorganized group col-
lapses to exactly zero for all sufficiently large n. The resultis stronger than
a limiting result: failure always occurs with large finite unorganized
groups. Perhaps more significantly, however, the theorem also shows that
the negative results on collective action cannot generalize to all cases in
which m, grows slower than n. Even with no organization, the group can
achieve a limit success probability of one, but the no-organization case
can be seen as a trivial HO mechanism, so full success is also possible
in the limit in an optimal HO mechanism when m, < n?/?.

Figure 1 illustrates part 1 of theorem 1, the case where m, < n??. The
diagonal line in the figure shows the left-hand side of equation (3), and
the two single-peaked curves show the right-hand side of equation (3),

case. The argument presented here generalizes to the case in which m, is constant and
equal to any integer M > 1.

' We also use the notation m, = s, (respectively, m, =<s,) for the case in which m, does
not grow slower (respectively, faster) than a sequence s,.
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F16. 1.—Intuition for equilibria with positive limit probability of success in unorganized
groups: v = 0.6; n = 10,60; m, = [ 0.5n° 1.

for v = 0.6, m, = 0.5n°°, F uniform, and two different group sizes, n =
10, 60. An unorganized group equilibrium is any value of ¢ where the
single-peaked curve intersects the diagonal. An increase in » has two ef-
fects on the right-hand side of equation (3). First, it pushes the peak
down, since the probability of exactly m, — 1 active agents goes down; this
makes it harder to have a positive intersection. Second, since m, < n, it
shifts the peak of the curve to the left since the share of required active
agents o, = m,/n is also reduced. As n increases, the probability of suc-
cess remains bounded above zero and eventually converges to one as long
as the sequence of intersections ¢, remains sufficiently higher than the se-
quence of thresholds «, (i.e., F(¢,) > «,). From figure 1, we see that a nec-
essary condition for this is that for all » sufficiently large, the right-hand
side of equation (3), evaluated at «,, is higher than the 45° line and thus

higher than F~'(«,)—that is,"”

vB(m, —1,n—1,a,)
— > 1. (6)
F~ (o)
7 The function of ¢, F(vB(a,n — 1,n — 1, ¢,)) has a maximum at ¢, = (a,n — 1)/(n —

1) < a,, and it is increasing (respectively, decreasing) in ¢ for ¢ < (a,n — 1)/(n — 1) (re-
spectively, ¢ > (a,n — 1)/(n — 1)).
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When this is the case, the highest intersection point, ¢,, remains on the
right of the threshold «,. The proof of theorem 1 uses Stirling’s approx-
imation formula to show that, for any choice of F, a necessary and essen-
tially sufficient condition for this to happen is that m, increases at a rate
slower than n**. In that case, the lefthand side of (6) diverges to infinity;
when m, increases at a rate faster than »n*?, the left-hand side converges
to zero so the probability of success also converges to zero, violating (6).
Referring back to figure 1, m, < n*? ensures that the second effect of in-
creasing n (shifting the peak to the left) dominates the first effect (shift-
ing the peak down).

The logic behind the “magic number” 2/3 in theorem 1 can be heu-
ristically explained as follows. Let us first see why, when m, > n*?, the ex-
pected share of volunteers in equilibrium F(¢!') falls short of the thresh-
old «, for all n sufficiently large, thus leading to a limit probability of
success equal to zero. As n— o, ¢/’ — 0, so F(c!') = f(0)c’. We therefore
have «, < F(c!') only if

=a, < F(¢)) = f(0)e! = vf (0)B(m, — 1,n — 1,F(c)), (7)

where the last equality follows from the equilibrium condition for ¢!
Since B(m, — 1,n — 1, F(c!)) is maximized at the value of ¢ such that
F(¢) = (o, = 1/n)/(1 = 1/n) = a,, in the limit B(m, — 1, n — 1, F(c!)) <
B(m, — 1,n — 1,a,), so (7) is implied by vf(0)-B(ee,n — 1, n — 1, )/
o, > 1. The binomial probability of o,n — 1 successes converges to zero
at the slowest rate when the probability of success is «,, and this rate is on
the order of 1/,/a,n. This implies that

Bla,n —1,n — 1,F(¢])) < Blayn — 1,n — 1,a,) = m, ",

where =< here means that the right-hand side converges to zero at the
same or a slower rate than the left-hand side. A necessary condition
for (7), therefore, is that m,/n converges to zero faster than mn_w, but
this condition cannot hold if m, > n**. When m, < n**, we have «, <
F(vB(m, —1,n — 1,a,)) for all n sufficiently large. Since F(vB(m, — 1,
n—1,1)) = 0 <1, continuity implies that there is a solution ¢! > a,
for all n sufficiently large. Indeed, the proof of theorem 1 establishes
that this solution remains sufficiently larger than «,, so that the proba-
bility of success converges to one. When instead m, > n*?, then «, >
F(vB(m, — 1,n — 1, «,)) for all n sufficiently large. Again, the proof of
theorem 1 establishes that the only solution of ¢! = vB(m, — 1, n — 1,
F(cl)) is actually zero in this case for nsufficiently large, so that the prob-
ability of success is zero for n sufficiently large.
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B.  Strong Organizations

The standard Bayesian mechanism design approach to study collective ac-
tion and public-good provision is to characterize the optimal direct mecha-
nism allowing for monetary transfers, requiring IC and INTIR (see Rob
1989; Mailath and Postlewaite 1990; Ledyard and Palfrey 1994, 1999). We
refer to a mechanism with transfers requiring IC and INTIR as a strong or-
ganization, since in both cases they need to satisfy weaker constraints than in
the weak organization defined in section IL.B and thus they can achieve more.

The best IC and IR mechanism can be characterized as the solution of
the following maximization problem, where the interim expected mon-
etary payment of type ¢ is denoted by ¢(¢) = E. [t'(¢,c_))]:

male U(c) dF (c)

pa o
s.t. up(c) — cale) — t(c) = vp(c) — ca(d) — () Ve ¢ €]0,1] (8)
up(c) — ca(c) — t(c) 20 V ¢ e ]0,1]
b, a, t feasible,

where the first constraint is the (IC) constraint, the second is the (INTIR)
constraint, and the third is the feasibility constraint discussed in sec-
tion II with the additional feasibility condition that monetary transfers
balance: 27_,#(c) = 0 for all c. Following standard methods, the (IC)
constraint is equivalent to requiring that U’'(¢) = —a(c) and that a(c)
is nonincreasing. Substituting (IC) into the objective function and simpli-

fying gives
[ 1 — F(¢)
pr(gizf){vp(O) La(c)if(c) dc}
s.t. U'(¢) = —al(c), a(c) € [0, 1] and nonincreasing, ©)

U(c) >0V ¢e€[0,1],and p, a, t feasible.

To solve (9), consider a relaxed version in which we ignore the (INTIR)
constraint. In appendix section A2, we prove that when F{(¢) satisfies the
monotone hazard rate assumption (MHRA) the optimal way to solve this
relaxed problem is to keep a(¢) flat. Intuitively, when I(¢) satisfies MHRA,
then in the objective function a(c) is weighted by an increasing function,
=[(1 = F(c¢))/f(¢)]. In this case, if a(c) is strictly decreasing, then it is op-
timal to shift the probability of activation a(c) from lower to higher values
of ¢. Since a(c¢) must be nonincreasing, the best way to do it satisfying fea-
sibility is to keep a(¢) and (by IC) p(¢) constant: a,(¢) = a,and p,(¢) = p,.
In the absence of INTIR, itis efficient for the group to always be successful
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as long as (m,/n) - E(¢) < v, we have p, = 1, and a, is chosen to be the
smallest possible, so a, = m,/n for all c. The solution of the relaxed prob-
lem is implemented (without any need to report types) by simply select-
ing exactly m, agents at random to be active. We call this the random mech-
anism. This mechanism is also a solution to the full problem with INTIR
(9) as long as (m,/n)-1 < v, which guarantees that INTIR is not violated
for the highest cost type, ¢ = 1. With constant returns to scale, this holds
Jorallnif o < v. With increasing returns, it holds as long as nis sufficiently
large (n > n* = min{n|(m,/n) < v}).
THEOREM 2. For all v € (0, 1), the following hold:

1) If m, < n, then there exists a critical group size, n”, such that for
n > n* the random mechanism satisfies IC and INTIR and
achieves a probability of success equal to one. If Fsatisfies MHRA,
the random mechanism is optimal.

2. If m, = an and a < v, then, for all n, the random mechanism sat-
isfies IC and INTIR and achieves a probability of success equal to
one. If Fsatisfies MHRA, the random mechanism is optimal.

Proof. See appendix section A2.

Theorem 2 is relevant for two reasons. First, because it shows that the
optimal IC and IR mechanism generally violates obedience. This can be
seen from the fact that it requires all types to be active with positive prob-
ability, but this directly violates (1) since no type with ¢ > v would find it
optimal to be active. The mechanism satisfies (INTIR) since the probabil-
ity of being activated is small, so v(1 — a,(¢/v)) > 0 even if ¢ > v; but this
guarantees only interim participation in the mechanism, not that a type
¢ > v will obey a recommendation to be active. Second, theorem 2 is rel-
evant because it highlights the need to study more realistic HO mecha-
nisms: by ignoring moral hazard, the optimal mechanism achieves com-
plete success as n — oo. To understand why collective action can be only
partially successful in more realistic environments, we need to integrate
the obedience constraint into the analysis of the optimal mechanism.

Note that the MHRA in theorem 2 is used only for the characterization
of the shape of the optimal mechanism, not for the substantive result that
there is an IC and INTIR mechanism that achieves success with probabil-
ity one for n large when m, < n.

Note also that theorem 2 is not in conflict with the main result in
Mailath and Postlewaite (1990), where it was shown that the probability
of success converges to zero in the best IC and INTIR mechanisms
(even allowing for monetary transfers).'® That earlier result relied on an

% The random mechanism that succeeds with probability one does not use transfers. Hence,
the gain from strong mechanisms is entirely due to the violation of obedience. The considerable
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assumption that the total benefit of success, nv, is strictly lower than the
cost of obtaining it in the worst-case scenario where all members have cost
equal to one." In our setting, this assumption reduces to v < m,/n = «,,
which is not satisfied for large n when m, < n or for the case of constant
returns if v € (o, 1). Requiring that v < «, for all nis essentially the same
as assuming constant returns to scale with o = lim inf, _,.c,. Indeed,
there are many situations in which itis natural to assume that v > «,, such
as situations where the “sacrifice” of a small share of population is all thatis
needed to guarantee group success. As we see in the next two sections,
with HO mechanisms, v > «, does not imply success even though strong
organizations with sufficiently many members will succeed with probabil-
ity one. The failure or success of collective action in HO mechanisms with
large n depends only on the returns to scale and is the same for all
ve(0,1).

The observation that when we relax that assumption then the collective
good can be financed in an IC and INTIR mechanism with monetary
transfers is not completely new, as it was previously made by Hellwig
(2003) in a more general environment in which the public good can
be chosen as a continuous variable. Theorem 2 differs from Hellwig’s re-
sultin two ways: it shows that unlimited monetary transfers are not neces-
sary, and it provides a full characterization of the optimal mechanism,
even for large but finite », as a simple random mechanism.

IV. The VBO

As discussed in the previous section, strong mechanisms that require only
IC and INTIR are not a good description of organizations for collective
action because they ignore the obedience constraint, implicitly allowing
the mechanism to coerce high-cost members to be activated or, alterna-
tively, for all members to commit ex ante to obey any recommendation.
An optimal strong organization, moreover, cannot explain collective
action as an empirical phenomenon, since it either predicts complete suc-
cess of any group when m, < n or if m, = an and « < v or predicts com-
plete failure otherwise. The result for the other benchmark, unorganized
groups, is as negative as the results from strong organizations are positive.
Unorganized groups suffer complete failure, even in relatively small groups,
except for the case where returns to scale are very high.

The key question then is: Where does the performance of optimal HO
mechanisms fall in the very wide range between these two benchmarks?

group benefits from a strong organization are achieved via ex post coercion—by sacrificing the
sovereignty of individual high-cost members of the group.

' Formally, the key assumption in Mailath and Postlewaite (1990) is assumption iv in
their theorem 2. Translating it to our notation, it is equivalent to requiring that there exists
€ > 0 such that nv + ne < na,,.
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What type of HO organization is optimal, and what type should one ex-
pect to see in practice? In this section, we identify a simple and natural
communication mechanism called a volunteer-based organization (VBO).
In a VBO, which is obviously HO, members self-identify as either volun-
teers (low cost) or free riders (high cost) and the mechanism coordinates
the activity of volunteers to activate a minimal coalition for success if
there are enough self-reported volunteers. It turns out that the VBO is
an approximately optimal HO mechanism for large n, as we show in this
section.

A, Unique HO VBO

In a VBO, each member reports his or her type: if the reported type is
higher than some threshold ¢ > 0, the agent is excused and not asked
to be active, irrespective of what the other members report; if the type
is less than or equal to ¢, then the agentis deemed a volunteer and is ac-
tivated with positive probability, determined by the following rule. If the
number of volunteers is greater than m,, then a coalition of exactly m, vol-
unteers is randomly selected and activated, resulting in group success. If
the number of volunteers is fewer than m,, then no volunteer is activated
and the group is unsuccessful. In the case that the group activates m, vol-
unteers, all volunteers have the same probability of being included. Us-
ing the notation introduced in section II.B, a VBO is defined formally
as follows:*’

DEFINITION 1. For any ¢ € [0,1] and any profile of types, c, let
k(c; ¢) = |{j € I|¢ < ¢}|. For any given m, and n, a simple VBO mecha-
nism is defined by a volunteer cutoff ¢! € (0, v) such that (1) A;(c) = 0
for all ¢ and for all i such that ¢ > ¢?; (2) k(c; ¢f) < m, = P(c) = 0 and
Ai(c) = 0 for all 4 and (3) k(c;¢?) > m, = P(c) =1 and A;(c) = m,/
(k(c; ¢?)) for all i such that ¢; < ¢?.

We first establish some properties of the VBO mechanism. The follow-
ing result characterizes the unique I1C VBO. Define the function:

vB(m, — 1,n — 1, F(c))

) S G+ D) Bl n — 1, F(0) o

ProrosiTION 1. For any v, m,, and n the following hold:

1) The function Y, is strictly decreasing in ¢ and has a unique fixed
point ¢ € (¢!, v).

# The definition requires that ¢f > 0. If ¥ were exactly equal to zero, then IC implies no

restriction on cost reports: all types are indifferent between all cost reports, including re-
porting ¢ = 0. Choosing ¢/ is obviously never optimal.
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2) AVBO is HO if and only if it has the volunteer cutoff ¢ that sat-
isfies ¢ = Y,(c?).

Proof.  See appendix section A3.

Condition (10) provides a simple way to compute the equilibrium
threshold ¢ and characterize its qualitative properties. Proposition 1 also
makes clear why it is natural to refer to such a mechanism as “volunteer
based.” The HO VBO can be implemented as a simple modification of
the participation game with an unorganized group. In this implementa-
tion, each member is asked to choose to be either a volunteer or a free
rider. The group is successful if the number of volunteers is greater than
or equal to m,, in which case exactly m, of them are randomly selected to
be active. If the number of volunteers is less than m,, then no member is
activated.

Volunteers are always willing to follow a recommendation to be active,
since they have types ¢; < ¢? < vand they know that, conditional on re-
ceiving such a recommendation, the mechanism has also activated ex-
actly m, — 1 other volunteers so they are pivotal. At the interim stage,
however, an agent might still have an incentive to misreport, since it
would prefer some other agent to be called in case of k > m, + 1. The cost
of misreporting as a free rider is that there are indeed exactly m, — 1 vol-
unteers in the rest of the group, so the misreport would be pivotal in in-
ducing the group’s failure. The expected value of this cost is vB(m,—
1,n — 1,F(c)), essentially the same as in the unorganized group in
(3). The critical difference for the organized group is that volunteers
are called to action not indiscriminately but only if they are needed,
and never in excess. These qualifications are reflected in the denomina-
tor of (10), which is instead simply equal to one for unorganized groups.
Hence, ¢ > ¢!, and the probability that a member volunteers is F(c¢) >
F(c!). Therefore, there are three improvements of the VBO relative to an
unorganized group: (1) nobody contributes if the threshold is not
reached, (2) no more than m, members contribute, and (3) the thresh-
old is reached more often because F(c) > F(cY).

B.  The Performance of VBO in Large Groups: The Effect
of Returns to Scale

Condition (10) establishes that for any finite n, the VBO outperforms an
unorganized group by a combination of eliminating waste and increas-
ing the equilibrium probability of group success. We might expect that
the presence of an organization that allows for coordination, increases
the probability of success, and eliminates wasteful participation makes
it possible to achieve higher-limit probabilities of success in large groups,
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at least for some parameterizations. However, as we show below, this
conjecture is incorrect: the limiting performance of the VBO is the same
as the limiting performance of unorganized groups.

To evaluate how a group performs using the HO VBO when 7 is large
requires evaluating how the solution to condition (10), ¢?, converges as
n — 0. The next result has important implications for the probability of
success of the organized group and the welfare of its members.

ProposiTION 2. With an organized group using the HO VBO, for all
v < 1 we have the following:

e If m, = an, then ¢ = lim,_,.¢? > 0.
* If m, < n, then ¢ = 0 and lim, . .F(¢?)/a, > 1.

Proof.  See the online appendix.

The first bullet point establishes that the share of volunteers is always
strictly positive in a VBO with constant returns; this implies that the prob-
ability of success in a VBO, PP is positive with constant returns for any
finite n. In contrast, p” = F(0) = 0 for large enough finite unorganized
groups, so the relative success of the VBO compared with unorganized
groups is infinite for large enough finite groups. The intuition for the fact
thatlim,_ ..¢? > 01is that the numerator and the denominator of the ratio
on the right-hand side of (10) both converge to zero at the same rate, and
indeed the ratio is strictly positive in the limit. The following result high-
lights this property but qualifies it, showing that this is not enough to
guarantee positive probability of success for the VBO in the limit:

CoroLLARY 1. With an organized group using the HO VBO and con-
stant returns (i.e., m, = an), there exists n (e, v) such that for all n >
ny(a, v), PY/P? = 0. Despite this, we have that P = lim,_ P’ = 0.
Proof.  See the online appendix.

The second bullet point of proposition 2 is that, when m, < n, then,
while the equilibrium participation rate converges to zero as n — oo, it
does so at the same (or a slower) rate as the threshold fraction «,, since
lim, . (F(¢?)/ew,) = 1. If lim,, _,.(F(c¢?)/ew,) > 1, then obviously P? = 1,
but if lim, . (F(c¢?)/e,) = 1, then it depends on exactly how F(c¢?)/a,
converges to one. If F(¢!)/a, converges from below and convergence
is slow, then the probability that the number of volunteers passes the
threshold converges to zero; if convergence is fast or F(c?) /o, converges
from above, then the probability of success of the group will be strictly
positive even for an arbitrarily large number of activists. Does the fact that
¢f remains bounded or converges to zero at the same speed of «, imply
that if m, < n we can get strictly positive probability of success even with
large or arbitrarily large groups, and/or we can achieve a higher-limit
probability of success than without an organization? The answer is no:
the conditions for the limiting probability of success for a VBO in large
groups are exactly the same as the result for unorganized groups.



ORGANIZING FOR COLLECTIVE ACTION 000

THEOREM 3. With an organized group using the HO VBO, for all
v € (0, 1) the following hold:

o If m,<n*?, then lim, .P¢ = 1, so lim,_,.(PY/P?) = 1.
o If m, > n*?, then lim,_.P° = 0, but there is an n; such that for all
n > Ny, P,gv/Py,O = 0.

Proof. See appendix section A4.

As we show in the next section, theorem 3 holds generally for all HO
mechanisms. Surprisingly, the limit probability of success is the same
with a VBO or in an unorganized group. When m, < n**, a limit proba-
bility of success is one, but this was also true for an unorganized group;
when m, > n*?, the limit probability of success is zero with a VBO, once
again, just as in an unorganized group. With a VBO, however, the prob-
ability of success is positive for any n even when m, > n*?, a feature that
is not shared by the equilibrium in an unorganized group (where the
probability is exactly zero after a finite n), so for sufficiently high =, as
highlighted by the second bullet point, P/ /P? = 0. This can imply a sig-
nificant benefit of adopting a simple VBO compared with having an un-
organized group. As we show in the next section, where we quantify by
numerical methods the success probability in a VBO, for reasonable pa-
rameter values groups with VBO can achieve high probabilities of success
even for large groups, even if m, > n*>.

It is useful to go over the intuition of theorem 3 since, suitably gener-
alized, it will also help with understanding the extension to general HO
mechanisms in the next section. The expected share of volunteers does
not fall short of the threshold for success only if o, < F(¢?). Since ¢f — 0,
we have F(¢) = f(0)c?, implying that

Bla,n —1,n — 1, a,
S = V() < Y (@) = D a(an) =

5

where a,(a,) = 2320 1 (c,n/(k + 1))B(k, n — 1, a,) and < denotes that
the left-hand side converges to a value less than or equal to the right-
hand side. The second inequality, Y(c¢?) < Y(F '(,)), follows from
the fact that Y(-) is a decreasing function, by proposition 1. Hence,

Bla,n —1,n—1,a,)

(2%

a(et,) S vf (0) - (11)

If m, > n**, we know from the proof of theorem 1 that the right-hand
side of (11) converges to zero. Condition (11) therefore implies that
a?(o,) must also converge to zero. However, it is intuitive to see that this
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is impossible. Note that a,(«,) is the probability that a volunteer is acti-
vated when the threshold used by the other members for volunteering
is «,. But when this is the case, for large n there will be a share of volun-
teers roughly equal to «,. In this case, the probability that a volunteer is
activated cannot be arbitrarily small since, even conditioning on having
atleast a share «,, of volunteers, the share of volunteers will almost surely
be only marginally greater than «,, which is the minimal requirement for
success.

C. The Value of a VBO with Finite n

While the limit probability of success is the same for a VBO as for an un-
organized group, the VBO mechanism has three improvements of the
VBO relative to an unorganized group: (1) nobody contributes if the
threshold is not reached, (2) no more than m, members contribute,
and (3) the threshold is reached more often because ¢f > ¢!. These pro-
perties have an immediate positive impact on the willingness to volun-
teer, which leads to a higher probability of success of the group. Alterna-
tively, ¢ = 0 for finitesized unorganized groups. As a result, a VBO
performs infinitely better than an unorganized group, as shown above.

The following result confirms these results and shows that limit results
understate the potential value of a VBO, because when m,, > 7% the limit
probability with an organized group converges to zero slowlz. The next
result bounds below this rate of convergence. We say that P, converges
at a strictly slower rate than exponential if P:/e’v" — oo forany vy > 0. We
have the following:

ProPOSITION 3. For any m, > n*?, P? converges to zero at a rate that
is strictly slower than exponential.

Proof. See appendix section Ab.

The example illustrates how this slow rate of convergence implies that
a VBO can lead to group success with high probability, even for medium-
and large-sized groups, while unorganized groups are unsuccessful.

Example 2: comparison of VBO and unorganized groups—v = 0.8, m, =
0.2n, F ~ U[0, 1].

In this example, we compare the equilibrium in the VBO mechanism
and the equilibrium for the unorganized group for different group sizes
and different rates of increase in m,. From proposition 1, the organized
group’s optimal threshold satisfies ¢ = Y,(¢?, a,, v), where we make ex-
plicit the dependence of Y, on «,, v for convenience:

B(m, —1,n —1,¢?)
T/ (h+ ))B(n— 1,0

Y.(e!, anv) =0

(12)
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Fic. 2.—Comparison of VBO mechanism (solid lines) and unorganized group equilib-
rium (dashed lines). v = 0.8; m, = 0.2n°; F(¢) uniform. A, Equilibrium cut points. 3 = 1.
Equilibrium cut points are located at the intersection of each curve (n = 10 [darker shade]
and n = 80 [lighter shade]) with the diagonal. B, Probability of success. n = 10, ..., 10,000;
B = 0.65 (top curve), 0.80 (middle curve), 0.85 (bottom curve).

With no organization, the equilibrium condition is ¢! = Z,(¢!, o, v),
where

Z(¢) e, v) = vB(m, — 1,n—1,¢)). (13)

The equilibrium probabilities of success for the unorganized and or-
ganized groups are, respectively,

Pl(c!, a,) = > B(k, n, ¢t )and P)(c, a,) = > B(k, n, ).
k=m, k=m,

Figure 2A illustrates the ¢! = Y,(¢?, a,, v) and ¢! = Z,(¢!, o, v) equi-
librium conditions for groups with 10 and 80 members, with v = 0.8,
m, = 0.2n, and F ~ U[0, 1]. The downward-sloping solid black curve is
Yio(¢, 0.2, 0.8), and the downward-sloping solid gray curve is Y5 (¢, 0.2,
08), corresponding to the righthand side of equation (12) for the VBO.
The respective equilibrium cut points, ¢ and ¢, are given by the intersec-
tion of these two Y(-) curves with the diagonal (black). The black dashed,
single-peaked curve is Z,(¢, 0.2, 0.8), and ¢, is given by the highest inter-
section of this curve with the diagonal. The gray dashed, single-peaked
curve is Zs (¢, 0.2, 0.8), which does not intersect the diagonal at any posi-
tive value, so the unique equilibrium for the unorganized groupis ¢, = 0,
with zero participation.”

Figure 2B illustrates the equilibrium probability of success for orga-
nized (solid curves) and unorganized (dashed curves) groups for group
sizes up to 10,000, with v = 0.8, F ~ [0, 1],and m, = 0.2%° for three values

' Since m > 1, there is always a solution at ¢/* = 0. When = is sufficiently small, there
can also be positive equilibrium cut points for the unorganized group.
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of B < 1. One can see that for 8 = 0.65 < 2/3, both unorganized and or-
ganized groups can achieve success with probability that is high even for
small groups and converges to one. For 3 > 2/3, the probability of success
instead converges to zero, and groups without an organization fail com-
pletely after reaching a threshold size that is decreasing in 8. In contrast,
organized groups obtain a much higher probability of success, and this
success declines slowly in group size. For 8 = 0.85, while the probability
of success in a VBO eventually converges toward zero as n — o, the probabil-
ity of success is more than 20% even for groups with more than 10,000 mem-
bers. In contrast, for unorganized groups and 8 = 0.85, the probability of
success is exactly zerofor all n > 200. This illustrates the importance of con-
sidering finite n even when the limit probability of success is zero.

V. Asymptotic Optimality of the VBO

The previous section illustrated thata group of large finite size can achieve
significant (albeit imperfect) levels of success even when n is large by or-
ganizing with a very simple HO mechanism. Theorem 3 established that
the advantage of the VBO is not in the limit probability of success that
can be achieved with infinitely large groups, which is equal to the limit
probability obtainable without an organization. However, this leaves open
the possibility that there is an even better HO mechanism that achieves
higher probability of success than in an unorganized group, even in the
limit, and a positive limiting probability even when m, > n*?.

In this section, we prove two key results that demonstrate that the lim-
iting result in theorem 3 applies not only to VBO but to all HO mecha-
nisms. First, we formalize the optimization problem for HO mechanisms.
Second, we show that, exactly like the VBO, the optimal HO has a limiting
probability of success equal to zero if m,>n*? and equal to one if
m, < n**. Thus, theorem 3 holds for any HO mechanism (including the
unorganized group, the VBO, and the optimal HO mechanism).

A, Optimal HO Mechanisms

Formally, the optimal HO mechanism is defined as the solution " (¢),
p*(c) of the following problem:**

1
max J U(c) de
(o). 1) Jo (14)

s.t. (HO) and a(c¢), p(c) feasible,

* Whenever it does not create confusion, as here and when we take 7 as given, we omit
. . .y . . * * £
the subscript n in the equilibrium variables a. (¢), pn (¢), c..
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where (HO) is the honest and obedient constraint specified in section I1.B.
As discussed in section II, the (HO) constraintimplies (IC), (INTIR), and
condition (1). In the following, we first study the solution of a relaxed
problem in which only (IC) and (1) are considered; we then prove that
this solution satisfies the omitted constraints and thus solves (14). By stan-
dard methods, one can rewrite the problem as

max)g[o’l]{vp(O) - Jla(c) 1= Flo) dc}

PO)El0.1]a(c 0 f(e)
s.t. U'(¢) = —a(c) with a(c) nonincreasing (15)
a(c) = 0 for ¢ > ¢*, where ¢* = min{c < v|vp(c) — ca(c) < vp}
and p, a feasible,

where p, represents the (constant) expected probability of success for all
types ¢ > ¢*.In (15), we derived the objective function using the (IC) con-
straint in a way similar to that in (9). The constraint in the second line
of (15) is a monotonicity constraint implied by IC, also present in (9);
the constraint in the third line follows from (1) and IC, and it is new to
(15).* Note that in the problem above we have no (IR) constraint; IR,
however, follows from the monotonicity of U(¢) and the definition of 2

The HO optimization problem in (15) appears to be very similar to the
problem in (9) for strong organizations. In fact, the objective functions
are identical, the only difference being the new ¢ constraint, which re-
places INTIR. We showed above that the optimal strong mechanism for
any m, < n can be easily characterized when n is large by observing that
one can improve the objective function in (9) without violating the con-
straints by “flattening” the mechanism—that is, by making the mecha-
nism less sensitive to an agent’s type ¢. If n is sufficiently large, then the
optimal mechanism flattens the mechanism completely, the group is al-
ways successful, and all types are asked to be activated with positive prob-
ability and randomly selected with the same probability: p(¢) = 1 and
a(c) = a,. IC is trivially satisfied, and INTIR is satisfied for n large since
the probability of being activated, «,, converges to zero and so is eventu-
ally smaller than any v > 0.

The same logic cannot be applied to (15). Here too the objective func-
tion (which is the same in [9] and [15]) improves if we “flatten” the
mechanism; however, now flattening the mechanism may affect the obe-
dience constraint. To see this, note that a mechanism in which all types
are activated with positive probability is certainly impossible, since no

* For details on how it follows from (1) and IC, see the proof of proposition 5.
# Indeed, U(c) = U(c*) = vp = 0 for all ¢ € [0, ¢*].
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type with ¢ > v will ever accept to be activated even if it is INTIR to com-
mit to participate in the mechanism. In the optimal HO mechanism,
there will necessarily be a maximal type o <uv< 1, who is indifferent be-
tween volunteering and free riding. By flattening the mechanism, we
now necessarily require higher expected participation from this type
¢r, which would break that indifference. Having a flatter mechanism
therefore involves a trade-off: on the one hand, for a given ¢, , it improves
the objective function since it relaxes the IC constraint; on the other
hand, however, it may imply lower participation, in the form of a lower
¢r. Hence, the shape of the mechanism could depend on the trade-off
between the benefit of keeping the volunteer cutoff high (a higher ¢ ),
which produces a larger pool of volunteers, and keeping the mechanism
flat, which relaxes IC.

B.  Optimal HO Mechanisms for Large Groups

In this section, we show that the performance of an optimal HO mech-
anism is no better than the performance of the VBO in the limit as
n —> 0. Thus, in the limit, with infinitely sized groups, voluntary organiza-
tions for collective action accomplish nothing relative to unorganized
groups.

The result is established in three steps. First, define a mechanism as
binary if it allows the agents to send at most two messages (volunteer
or not volunteer), and define a mechanism as binary HO if it is honest
and obedient and binary. We show that the optimal binary HO mechanism
is a straightforward generalization of the VBO. Second, we show that the
optimal binary HO mechanism has the same limiting performance as
the optimal HO mechanism, as n — c. Third, we show that the optimal
binary HO mechanism has a limiting probability of success equal to zero

if m, > n** and equal to one if m, < n*”.

1.  Optimal Binary HO Mechanisms:
The Generalized VBO

For the first step, we introduce a class of mechanisms that generalizes the
VBO. A generalized VBO is defined by a threshold k¢ > m, and a volunteer
cutoff ¢f. A k¢-generalized VBO with a threshold k¢ greater than or equal
to m, works as follows. If there are more than k¢ volunteers, then the
mechanism selects and activates exactly m, volunteers, each with equal
probability, thus guaranteeing that the group succeeds. If there are fewer
than k¢ volunteers, then the mechanism selects zero volunteers and the
group fails. If there are exactly & volunteers, then the mechanism selects
and activates exactly m, volunteers with some probability ¢, € (0, 1] and
selects exactly zero volunteers with probability 1 — ¢,. Thus, the simple
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VBO analyzed above corresponds to the special case kY = m, and ¢ = 1.
The random mechanism that in section III.B we showed solves problem
(8) for the best IC and IR mechanism when n is large can also be seen as
a VBO with kY = m,, ¢ = 1,and ¢ =

DErFINITION 2. For any ¢ € [0,1] and any profile of types, ¢, let
k(c;c) = |{j € I|¢ < ¢}|. For any given m, and n, a generalized VBO
mechanism is defined by a volunteer cutoff ¢ € (0, v) and a critical mass
threshold k¢ > m,, such that (1) A;(c) = 0 for all ¢ and for all i such that
¢ > ¢ (2) k(c; ¢f) < k¢ = P(c) = 0and A,(c) = Oforall i (3) k(c; ¢f) =
kS = P(c) = 1 and Ai(¢) = m,/(k(c; ¢¥)) for all i such that ¢ < ¢¢; and
(4) k(c; ¢f) = kY = P(c) = g € (0,1] and A;(c) = g (m,/(k(c; ¢f))) for
all i such that ¢; < ¢f.

The following proposition establishes that the optimal binary HO
mechanism is a generalized VBO.

ProrosITION 4. For any v € (0, 1), m, and n, there exists ¢, € (0, 1),
kb > m,, and ¢} such that a k!-generalized VBO mechanism with volun-
teer cutoff ¢! and critical mass threshold k! is an optimal HO binary
mechanism.

Proof.  The proofis carried outin two steps. In step 1, we establish that
the optimal binary mechanism is nonwasteful, meaning that it activates
only zero or m, agents. In step 2, we show that if the optimal binary mech-
anism activates m, agents with positive probability with kvolunteers, then
itmust activate m, agents with probability one when there are more than k&
volunteers. This implies that the optimal binary mechanism is character-
ized by a threshold £} as specified in definition 1. For details, see appen-
dix section A6. QED

One might conjecture that the unique VBO characterized by equa-
tion (10) would be the optimal HO binary mechanism—that is, the group
succeeds if and only if there are enough volunteers (at least m,). Using a
higher threshold than m, seems wasteful and is ex post suboptimal since it
implies that there are events in which the group fails even though the
number of volunteers is known (by the mechanism) to exceed the mini-
mum number required for success. However, in principle, it could be ex
ante optimal for the mechanism to commit to failure in some such events
(e.g., kY = m, + 1) to create better incentives for the agents to self-identify
as volunteers and more generally relax the (HO) constraint. This could
happen if increasing kS above m, leads to a higher volunteer cutoff, cS.

2. Asymptotic Optimality of Generalized
VBO Mechanisms

In an optimal binary mechanism, the mechanism does not use detailed
information regarding the type of the agent, only whether the agent is
willing to be a volunteer. The optimal binary mechanism is therefore
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asymptotically optimal if the best HO mechanism also does not use de-
tailed information regarding the types ¢ and instead treats all low-cost
members (volunteers) approximately the same and treats all high-cost
members (free riders) essentially the same. The following lemma estab-
lishes this property:

LemMa 1. Let ai (¢), pu (¢) be an optimal HO mechanism. For any two
types ¢ and ¢ with ¢ > ¢ > 0, pu (¢') — pa (") = O0and a (¢') — an (") — 0
as n— .

Proof.  See the online appendix.

To see the intuition of this result, note that by IC, pf (¢) is nonincreas-
ingin ¢s50 pu (¢') < pu(c < ¢)and pu (") = pu (¢ > ¢"), where pu (¢ < ¢) and
pu(c > ¢") represent the interim probabilities of success conditioning on
¢ < ¢ and ¢ = (", respectively. Then we have

E3

PV.L (C S C/) = TO,n*IPI;L + (1 - Tov”’I)POn’

where 7., represents the probability that, out of the remaining » — 1
agents, there is at least one type ¢ > ¢”; Py represents the expected prob-
ability of success conditioning on the presence of atleasta type ¢ > ¢” and
atype ¢ < ¢; and Py represents the expected probability of success condi-
tioning on the presence of at least a type ¢ < ¢’ and the absence of a type
¢ > ¢". Similarly, we have

pf(c > =7,P + (1 — 11,,0)P,

where 71,1 represents the probability that, out of the remaining n — 1
agents, there is at least one type ¢ < ¢’ and P/ represents the expected
probability of success conditioning on the presence of at least a type ¢ >
¢" and the absence of a type ¢ < ¢. But then we have

0 < pi(c) = pul)

< (To,n,—l - Tl,n,—l)PI? + (1 - To,n—l)Po" - (1 - Tl,n—l)P1"~

As n— o0, both 7, ; and 7, ,,-; converge to one. Since P}, P, and Py are
all bounded, we have that for any & > 0 there is an n, such that p. (¢') —
pi(c") <eforall n> n,.

An implication of lemma 1 is that when nis large, the optimal mecha-
nism is characterized by a ¢, such that for ¢ > ¢, the required participa-
tion a, (¢) is zero and for ¢ < ¢, participation is a nonincreasing function
that is approximately flat, even when the probability of success converges
to a positive value. The next result shows that the utility obtained in such a
mechanism converges to the utility that can be obtained in a binary mech-
anism. This fact combined with proposition 4 implies that the optimal
VBO is asymptotically optimal. Let V,¢ and V," represent the expected
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welfare generated in, respectively, the optimal binary HO mechanism
(generalized VBO) and the optimal HO mechanism when the number
of agents is n. Putting this all together, we have the following:

PROPOSITION 5. lim, ., V¢ = lim, ..V,

Proof:  See appendix section A7.

This proposition allows us to rule out situations in which the limit
probability of success is positive in the optimal HO mechanism but is
zero in the optimal VBO. An implication of this is that whenever the
limit probability of the optimal VBO converges to zero, then it converges
to zero in every HO mechanism. We use this fact in the next section to
show that the limit probability in the best HO mechanism is the same
as in the unorganized case.

3. The Irrelevance of Organizations in the Limit
as n— o

In our earlier analysis of the simple VBO mechanism (theorem 3), we
proved that in the limit large groups succeed with probability one if
m, < n*”* and large groups fail with probability one if m, > n**. However,
that left open the question of whether the optimal HO mechanism might
succeed with positive probability for some values of m, > n*®. Since the
simple VBO is not necessarily optimal, it could be the case that the optimal
mechanism does much better than a simple VBO in large groups. In this
section, we prove that the limiting properties of the simple VBO are
shared by the optimal HO mechanism.

Let P, denote the probability of success in the optimal HO mecha-
nism as a function of n, for a given threshold m, and value v. We have
the following:

THrOREM 4. For any v € (0, 1), the following hold:

e If m, < n*?, then lim,_ P, =lim,_..P¢ =1lim,_.P° = lim,_.P’ =
1.
q . * . y . .
e If m, > n*?, thenlim,_ P, =lim,_.,P¢ =lim,_.P° = lim,_.P’ =

0.

Proof.  The first bullet point follows immediately, since the VBO achieves
success with probability one in the limit and is approximately optimal.
The second bullet point is proved in two steps. The first step establishes
that if m, > n*?, then the probability of success in the generalized VBO
converges to zero, again using Stirling’s approximation of the binomial
distribution as in the proofs of theorems 1 and 3. The second step applies
proposition 5 to show that the probability of success in the optimal HO
mechanism also converges to zero. For details, see appendix section AS8.
QED
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We conclude this section discussing three implications of theorem 4.
The first implication, which we view as positive, is that a very simple
and natural HO mechanism—the VBO—is approximately optimal. Fur-
thermore, as illustrated in section IV.C, the VBO produces large gains
over unorganized groups in finite groups, even when # is large. Thus,
the free rider problem can be significantly (though not entirely) mitigated
by voluntary organizations that do not require coercion or taxes. The sec-
ond implication is that the moral hazard problem is much worse than one
might have thought for extremely large groups—that is, in the limit. If
mechanisms must satisfy HO and operate voluntarily without coercion,
then in the limit case of arbitrarily large groups such organizations are
no more successful than unorganized groups. When m, > n*? this occurs
even if the total benefit is strictly higher than the total cost in the worst
scenario in which ¢, = 1 for all players. In contrast, strong organizations
that allow for coercion and taxes/transfers (or even only coercion) will
always achieve success as long as the total benefit for society V, = nv is
larger than the cost in the worst-case scenario in which ¢; = 1 for all
¢ € I, regardless of the returns to scale. In our environment, this situation
arises when «, < v, so it holds for large groups if there are any positive re-
turns to scale and in all groups if there are constant returns to scale and
o < v; in other environments, such a situation would arise, for example,
when total demand for a public good is bounded above (Hellwig 2003).
Hence, a third implication is that for extremely large groups (call them
societies), overcoming the free rider problem requires some form of coer-
cion or taxation, except in those cases where the free rider problem dis-
appears so fast (m, < n**) that no organization whatsoever is needed for
success to be achieved.

VI. Endogenous Organizations: When Do Groups
Choose to Organize?

The key insight in Olson (1965) is that we should expect successful col-
lective action only when the free rider problem is not too severe—that
is, for a given value v of the public good, when the number of interested
agents n is not too large, or for a given n, when the value of the public
good v is sufficiently large.* These observations motivate his claim that
small groups with strong individual incentives will be much more effec-
tive than large groups in which individuals have weak incentives.

The results obtained above have implications that relate to these con-
jectures and also some additional insights about when one might expect
successful groups to arise endogenously. On the one hand, the marginal
impact of v or n on the probability of success depends on whether the

# See the discussion in chaps. 1 and 2 of Olson (1965).
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group is organized and the extent to which the underlying technology
displays increasing returns to scale; for example, without an organiza-
tion, the marginal impact of v and 7 is exactly zero when 7 is large—it
is positive only with an organization. So we cannot understand the true
impact of individual preferences and the size of the population without
first specifying their impact on the presence and quality of a group’s
organization.

On the other hand, whether the group might become organized de-
pends on the underlying fundamentals of the economy and thus on v
and 7 as well. We can evaluate the importance of these variables for the
success of a group only when we include in the analysis their impact on
the presence and effectiveness of an organization. To explore this idea,
in this section we capitalize on the previous analysis to endogenize the
presence of an organization and study how its endogeneity affects the im-
pact of vand n on the ultimate success of a group.

We model the process of formation of an organization in a stylized yet
general way. Suppose that the agents composing a group evaluate the op-
portunity of establishing an organization ex ante, before they know their
individual costs of activism ¢. AVBO is formed if the increase in expected
utility with the organization is larger than a given organizational fixed
cost, k: AVy = VO — VU > k(n), where V,? and V! respectively represent
the expected utilities with and without an organization and «(n) repre-
sents the per-person cost of forming and operating an organization with
these n agents. We assume that x(2) > 0, and lim, _ .k(n) = x > 0.

The expected utility in a VBO with cutoff ¢? can be written as

V= olF(e))pra(el) + (1 = F(e)))pon(el)] = F(e)E(e ) ar,  (16)

where pi,(cf) and py,(c!) represent the probability of success for an
agent, conditioning on being a volunteer and not being a volunteer, re-
spectively; and E(¢; ¢') represents the expected ¢, conditioning on not be-
ing larger than ¢. In a VBO, we must have Car = V(pia(ed) = ponled));
the expected utility with an optimal organization can therefore be writ-
ten as

* This simple model is intended to capture a variety of environments. Consider these two
polar examples. First, assume perfect substitutability and that there is an elite of / < n agents,
each of whom can form the organization paying a fixed cost k. The organization is created if
at least one member of the elite pays the cost; if the organization is formed, the members of
the elite capture ashare v < 1 of the total surplus »AV*. In this case, there is an equilibrium in
which each member of the elite pays the cost with probability ¢ < 1 and the condition for the
establishmentis AV* > k, withk = &/[nB(0, [ — 1, ¢)v]. The elite members internalize only a
share of the benefit because they themselves may face a free rider problem. Second, assume
perfect complementarity in the technology for the formation of the organization, so that
each member of the elite needs to pay a cost k. In this case, the organization forms if and only
if AV# > k is satisfied, with k = k/nv, as described in the main text.
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() (1 - L{fo)) B(m, — 1,n — 1, F(c%))

Cy

+ VB>, n — 1, F(cl))

j=m,

(17)

Following similar steps, the expected utility without an organization
can be written as

F(e) (1= 25 B, — 10— 1)

+ 3 B(j,n— 1,F(c)))

The effect of non AV, is complicated by the fact that n indirectly affects
the thresholds for equilibrium participation ¢/ and ¢! Still, from the con-
tinuity of the functions in the brackets with respect to ¢! and ¢!, and the
fact that we know for nlarge enough ¢! = 0 and ¢! — 0", we deduce that
no organization will ever be formed for arbitrarily large groups:*’

ProrosITION 6. There is an 7, > 0 such that a VBO is formed only if
n < .

A'similar discontinuity as highlighted above is generated by a change in
vif we keep n constant. Again, signing the comparative statics in full gen-
erality is difficult because it involves evaluating how the mechanism cut-
off for volunteers, ¢?, changes relative to ¢! as we change v. However, the
effect can easily be signed when nis sufficiently large. We have the following:

PROPOSITION 7. There is an n* > 0 such that for any n > n*, AV, is
strictly increasing in v, so an organization is formed only if vis larger than
a threshold v, .

Proof.  See appendix section A9.

Propositions 6 and 7 are interesting because they suggest why the two
factors highlighted by Olson (size and individual incentives) matter for a
group’s effectiveness. Itis not simply that as n increases or vdecreases we
have a more severe free rider problem that depresses the probability of
success. If it were only this, the probability of success would change very
little. A more important point is that the group organizes only for n < n,
and this has important implications for effectiveness.*® As n passes n,, ef-
fectiveness collapses to almost zero, since without an organization the
probability of success is extremely small and insensitive of vand n. Prop-
osition 6 also explains why we should expect a dichotomy of organiza-
tions: the small, organized, and effective groups on the one hand and
the large, unorganized, and ineffective groups on the other hand. What

(18)

27 Note that the fact that ¢! and ¢? converge to zero does not imply that the terms in
parentheses converge to zero; indeed, as we know from theorem 3, they both converge
to zero if m, > n** and converge to one if m, < n*>.

2 The size threshold, n,, as well as the value threshold, vf, both vary with the returns to
scale. In principle, n, could be quite large.
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creates the dichotomy is the decision to organize that transforms a con-
tinuous effect in a discrete drop in effectiveness.

VII. Variations and Discussions
A.  On High-Value Environments (v > 1)

An assumption that we have maintained throughout the analysis is that
v < 1, where one is the highest possible cost ¢. This assumption is stan-
dard and, for the constant returns to scale case, implied by the stronger
assumption requiring that the total benefit of success vn is less than the
marginal cost an in the worst-case scenario in which all types have a cost
of one, so that v < « (see, e.g., Mailath and Postlewaite 1990). The case
with v > 1, however, has an interesting peculiarity that is worth discuss-
ing. If v > 1, then for weak organizations we obtain a result similar to the-
orem 2, because randomly selecting a group of size m,, regardless of in-
dividual costs, does not violate the obedience constraint for any type.
Specifically:

ProrosiTioN 8. If v>1, MHRA is satisfied, and either m,<n or
m, = an for some fixed a < 1, then for all n the optimal direct mecha-
nism satisfying (IC) and (IMH) is a random mechanism in which each g
such that |g| = an is activated with probability 1/ (JZL ) and each gsuch
that |g| # m, is activated with probability zero. The probability of success
equals one.

When v > 1, however, the limit probability of success in the symmetric
equilibrium of an unorganized group remains zero when m > n**. An im-
plication of proposition 8, therefore, is that the limit equivalence of the
probabilities of success in organized and unorganized groups is not valid
anymore when v > 1. In this case, moral hazard is nota problem; the only
strategic problem faced by the members is coordination. Coordination
can be easily solved by an HO mechanism butis unsolvable in a symmetric
equilibrium without an organization.*

B.  On the Divisibility of Tasks

In the previous analysis, we assumed that the decision to contribute is di-
chotomous: agent ¢ either contributes at a cost ¢, or not. For example, an
agent participates in a rally or not, signs a petition or not, joins a union or a
committee or not. However, there are cases in which the contribution can
be split up. For example, suppose that an agent has up to 1 day to donate

* Of course, we can design an asymmetric equilibrium that achieves success with prob-
ability one in an unorganized group, but such an equilibrium would implicitly assume a
solution of the coordination problem by ex ante selecting the “volunteers.”
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to a cause—say, the organization of a charity. However, if the agent cannot
donate 1 day, perhaps the agent can donate less—say, 1 hour. It is easy to
see that the analysis can be easily extended to this case, though the results
are interesting only when we assume some economies of scale, if the task
cannot be “atomized” too much relative to the cost of providing the effort—
in this case, the obedience constraint becomes moot (and the optimal
mechanism becomes too powerful to generate plausible predictions).

To see this, assume that now a contribution can be divided into A parts:
when A = 1, the contribution is, say, 1 day; when A = 24, itis 1 hour; and
so on. Now the mechanism can ask each agent to contribute any discrete
amount x € {0, 1/\, 2/\, ..., 1}—say, from 0 to 24 hours. Assume that we
need a total of m, contribution units to achieve the collective goal, and
recall that the costs are distributed in [0, ¢] and ¢ can possibly be larger
than one; now we can require m, agents providing one unit or up to
Am, agents providing 1 hour. If we can choose N so large that ¢/\ < v
and Am < n, then we can achieve the common goal with probability one
with amechanism equivalent to the optimal (IC) and (INTIR) mechanism
of theorem 2. In this case, we simply ask Am, agents at random to contrib-
ute 1/\ each. If m, < n, then for any A such that ¢/\ < v, itwill be true that
Am, < n for large n, so success with probability one is feasible for n large
enough. In many plausible environments, however, economies of scale
make it unrealistic to assume that divisibility is fine enough to guarantee
that all types, including the most extreme, would be willing to obey it if
asked. If we assume that there is a A satisfying ¢/\ > v, then the obedience
constraint will always be binding as in the analysis presented above. For in-
stance, this is always true for any \, for ¢ large enough.

The analysis in previous sections carries over to this case where contri-
butions can be discretely divisible rather than simply dichotomous. In the
dichotomous case, a (reduced-form) mechanism specifies a probability
of success p(¢) and a probability of contributing a(c), where a(c) € [0, 1]
and nonincreasing in ¢. As before, a mechanism specifies an interim prob-
ability of success p(¢) and an interim expected contribution a(c), where again
a(c) € [0, 1] and is nonincreasing in ¢. The analysis is completely analo-
gous. Indeed, the same logic as in section V suggests that, for finite n, a(c)
will be nonincreasing and positive up to a threshold ¢* = min{c <
up(c*) — ¢*a(c*) < vp(e)} and then a(c) = 0 for ¢ > ¢*, just as above.
Moreover, a(c) will become flat as n— o, so a VBO with a(c) > a for
“volunteers” and zero for free riders with a higher ¢ will be asymptotically
optimal, just as in the previous analysis.

C. Alternative Cost Distributions

While we allow for general distributions of the players’ costs, three as-
sumptions are maintained throughout the analysis. The first assumption
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is that there is a positive density of zero cost types—that s, f(0) > 0. This
assumption is standard in the literature and has been adopted in classic
pivotal agent models to study voter turnout and candidate competition
(e.g., Ledyard 1984; Myerson 2000). Relaxing this assumption has no im-
pact on the result for m, > n**, as well as for all the results concerning
strong organizations. When m, < n*?, the existence of a sequence of equi-
libria with the probability of success converging to one may depend on the
rate at which f(¢) converges to zero as ¢ — 0.

A second assumption is that F(0) = 0—that is, there are no types that
actually like to contribute. With negative cost types (i.e., F(0) > 0), it is
trivial to see that the probability of success equals one for any increas-
ing returns—that is, if m, < n, with or without an organization—since
a, < F(0) for sufficiently large n, except if the distribution of types also
depends on n and becomes sufficiently small as n increases (i.e., £,(0) <
m,/n for n sufficiently large). The results for constant returns to scale
with HO mechanisms are essentially unchanged as long as F(0) < c.

A third assumption is that there is a continuum of types. The analysis
can be extended to allow for an arbitrary finite number of types. More
can be said in the extreme case where there are only two types, ¢, and
¢, as studied in Ledyard and Palfrey (1994). For this case, Battaglini
and Palfrey (2023) have shown that a simple VBO is exactly optimal for
finite nif ¢, /v < (1 — (¢/w.))/(1 — ¢), where ¢ € (0, 1) is the probability
of the low type.

VIII. Conclusions

We have developed a model of collective action in which a group can or-
ganize by constructing communication mechanisms to elicit private in-
formation and coordinate the actions of its members. We have stressed
the importance of requiring the mechanism to be obedient, besides the
more familiar requirements of IC and IR. Mechanisms that are only IC
and IR make sure that members are willing to join a group and reveal their
types, but they require members to commit to carry out the mechanism’s
recommendations, thus assuming away a key aspect of the moral hazard
problem. Obedience is not generally included in classic mechanism de-
sign problems, since in these applications mechanisms map vectors of type
profiles to allocations; in collective action problems, on the contrary,
mechanisms map vectors of type profiles only to recommendations: allo-
cations are the decentralized results of the members’ individual actions.

Strong mechanisms that satisfy interim IC and IR but omit the obedi-
ence constraint can fully solve a group’s problem, achieving success with
probability one even with no side payments. Moreover, regardless of how
fast m, grows, success is always guaranteed when the total benefit of the
group is larger than the cost in the worst-case scenario (in which all
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members have maximal costs). The predicted success of optimal HO
mechanisms is typically much more modest, which highlights the impor-
tance of realistic moral hazard or obedience constraints, and at the same
time suggests that interim individual rationality is too weak a condition.
We showed that when m, grows slower than 1%, success is achievable with
certainty, with or without an organization. When m, grows faster than n*3,
however, success is impossible in the limit even if total benefit is always
larger than total cost. Nonetheless, organizing a group with a simple
HO institution gives a group a key advantage even in large groups. The
real benefit of an organization is that even when the probability of success
of the optimal HO mechanism converges to zero, it does so at a much
slower rate than without an organization (which is exactly zero after a fi-
nite 7). The rate of convergence of the probability of success when m,
grows faster than n*? is always strictly slower than exponential.

There are numerous ways the theory might usefully be extended. In
our analysis, we have relied on a very simple base model of collective ac-
tion, a classic threshold public-good game. It may be possible to explore
the themes described above in much more general economic environ-
ments in which the size of the common goal that can be chosen by the
collectivity is a continuous variable—as, for example, when the group
chooses not only to build a bridge but also the bridge’s quality and capac-
ity. In addition, we have studied a completely static model. Many collec-
tive action problems are dynamic. The ideas presented here could be em-
bedded in dynamic environments to extend previous work that has
studied contribution games in dynamic environments with no organiza-
tions (see, e.g., Matthews 2013; Battaglini et al. 2014).

Another direction that we have begun to explore is the study of how
multiple groups, each facing their own potentially competing collective
action projects, strategically interact with each other. Groups may strate-
gically interact because their respective goals are substitutes, as when
there is a budget constraint that allows only a subset of projects to be re-
alized. Or they can interact in environments with complementarities,
which leads to “a collective action problem in a collective action prob-
lem”; that is, the groups need to solve a collective action problem be-
tween themselves in the face of common goals but each group also needs
to solve its own internal collective action design problem for the group to
elicit contributions.

The theory presented here also provides inspiration for new empirical
questions that can be studied with laboratory experiments and possibly
fieldwork. We mentioned a significant literature in experimental eco-
nomics that has studied contribution games with structured and unstruc-
tured preplay communication. Most of this literature has focused on en-
vironments with complete information or with only a few players. We
leave for future research an empirical investigation of the effectiveness
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of the VBOs characterized in this paper and the comparison of their per-
formance with unorganized groups.

Appendix
Al.  Proof of Theorem 1

In step 1, we show that m, < n** implies that F(c!') is sufficiently larger than «,
for all n sufficiently large and in the limit. In step 2, we show that this guarantees
that lim, ..PY = 1. In step 3, we show that if m, > n*?, then PY = 0 for n suffi-
ciently large.

Step 1—We first show that m, < n** implies that F(¢!) > a, for any nsufficiently
large. Recall that the threshold, ¢/, is the largest solution for ¢ € [0, 1] to the fol-
lowing equation: ¢ = vB(a,n — 1,n — 1, F(c)). Therefore, F(c!) > o, for any n
large if, for sufficiently large n, we have

o, < F(uB(la,n —1,n— 1,a,)).

This condition guarantees that there is an intersection on the right of «,. See fig-
ure 1. The following lemma will prove useful in the argument.

Lemma AL, If m, < n*?, then B(a,n — 1,n — 1, o) /at,, — 005 if m,, > n*?, then
Blayn—1,n—1,a,) /e, > 0.

Proof.  'We can approximate the binomial combinatorial term for large » using

Stirling’s formula: () = /n/(2xk(n — k))(n"/(k'(n — k)"™*)). First, note that

n—1 _ (n— 1) _on n!
an — 1 (oym — 1) (n — a,n)! n a,n (a,n — 1) (n— a,n)!

n
=, .
a,n

Applying Stirling’s formula yields

n—1 1 1 !
= aﬂ b
o,n — 1 27, (1 = e)n | (e,)* (1 — a,)" ™)

where ~ means that the two sequences converge to zero at the same speed. Thus,
an approximation of B(a,n — 1, n — 1, o) is given by

n—1 ) ()™ (1 —a)"™]" 1

o,n — 1 a, B 2ma, (1 — a,)n

Bla,n—1,n—1,a,) = (
We therefore have

1
2m (o) (1 — o) m

Bla,n—1,n—1,a,)
oy,

1
Qy

We have B(a,n — 1,n — 1, a,)/a, > if(mn/n)g(l — (m,/n))n—0as n— o, a
condition satisfied if m,/n** —0 or m,<n**; we have B(a,n—1,n—1,
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a,)/a, —0 if (m,/n)’(1 = (m,/n))n—o© as n—o, a condition satisfied if
m,/n** — 0 or m, > n**. QED

We can now prove that m, < n** implies that F(c) > o, for all n sufficiently
large. To this goal, note that as n— o, vB(a,n — 1, n — 1, ,) = 0, so we can
write

FlvB(a,n —1,n — 1,a,)] = vf(0)-Bla,n — 1,n — 1, ,,)
+ o(Bla,n — 1,n — 1,,)),

where o(B(a,n — 1,n — 1,a,))/a, = 0 as n — 0. It follows that

[ Blo,n —1,n — 1, )
FlvB(a,n — 1,n — 1, )] Y (0)- a,
lim ’ ’ = lim
oS o, n—w N o(Bla,n — 1,n — 1, a,))
oy
I of (0
. S0 Bla,n—1,n—1,a,)
= }ng}c +0(B(oz,,n— IL,n—1a,) p
L Bloa,n —1,n— 1,a,) !
Bla,n—1,n—-1,a,
— o (O)lim B = Ln = L)
n—w o,

We conclude that whenever B(a,n — 1,7 — 1, «,) /v, converges to zero or di-
verges at ©, so does FluB(a,n —1,n— 1,a,)]/o,. This implies that when
m, < n*%, then FlvB(a,,n — 1,n — 1, &,)] /o, — o0, implying that o, < F[vB(e,n —
1,n—1,a,)],s0 F(c!) > a,.

Step 2—We now prove that if m, < n** the probability of success for the group
converges to one. We proceed in two substeps.

Step 2.1—Assume first that F(c!')/a, — 1. We have

2/3

Bla,n — 1,n— 1, F(c)) =

o,n —

("_1>[W%%W1H¢me
1

( . > [(e)* (1 = @) " [(F(e))" (1 = F(e£)) ]’
ol “" () (1= @)™’

2<n—1>ﬁ%wu—%yﬂf

2n =

a,n — 1 a,

But note that by the definition of ¢, &, = vf(0)c!, and the fact that m, < n** we
must have

| = vB(a,,n — 1,72— 1, F(c)) = of(0) B(a,n — 1,n — 1,F(c!))

Cp oy

_ Y0 1 e
a, \2m(e)(l —a)
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a contradiction. We must therefore have that in equilibrium, F(c¢!)/a, — § > 1,
with { possibly arbitrarily large.
Step 2.2—1It follows from step 2.1 that we can assume that F(c!')/a, — ¢ > 1.

Note that the probability of failure is equal to the probability that fewer than
a,n agents volunteer and thus it can be bounded above by

Pr(k < a,n) = Pr(g <) = Pr(% < F(a) = F(a))(1 - F?‘"I)))
Cn
< Pr(% < F(e)) = dF(c))) < Pr[S— F(e) EBF(cf)}
_pr ko \/F )(1 = F(c))) /ndF(cl)
" v - P )
=Pr F(e))| 2 0'(5) DV ) L-Fle)))
0 )| 2 0 —| < — .
n (1= F(c))) I/ nF(c,)

where in the second line we used «,, /F(¢') < 1,s0 (1 — /F ,l'))) > ¥ for some
9 > 0; in the fourth line we define o, (k/n) = F(c,f)( F(c'))/y/n and used

Chebyshev’s inequality; and in the last step of the fourth line (—), we used the
fact that no, = m, — .

Step 3—We now show that if m, > n*?, then lim,_,,PY = 0. We first establish
that lim,_.(p!/o,) = 0. Assume not, so lim,_.(p!/a,) = ¢ for some ¢ > 0.
From the equilibrium condition, we must have

py = F(voB(a,m — 1,n — 1,p)).

Note, however, that

-1 U\ _ pU\l—e, "
Bla,n—1,n—1,p)) = ( " ) [(p)™ (1 = p)']

o
a,n — 1

I

- E 2ma, (1 — an)n[gn}n’

with &, = ((pf)* (1 — ) /()™ (1 = oz,,)l*“”) < 1forany n (since for any p;/,
(pVY*(1 = p9)' ™ < (« ) (1 — @,)' ™). So, bylemma A1, we have that for large n,
| = FBlayn = 1,n = 1,p)) _ of(0)(£.)" 1

~ 0
P a, 27, (1 — an)n_)

>
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where in the second step (~) we used the fact that p! = {«, and in the last step
(—) we used the fact that (1/a,)/1/(27e, (1 — a,)n) — 0 since m, > n** and
(£,)" < 1. This is a contradiction, implying that lim,_(p"/a,) = 0. We next
use this to show that p = 0 for large n. By definition, we have

P = F(uBloawn — 1,n — 1, 1)) = ¥(a,, n, p). (AD

Note that since we do not have an equilibrium [)ﬁ/ > 0 on the right of «,, we must
have an equilibrium p, >0 on the left of «, with ¥(a,, n, p!) <1, where
Y (o, n, p') denotes the derivative of V(a,, n, pY) with respect to pf for a given
o, and n. Note that for any constant e > 0 arbitrarily small, there is an n, such that
for n > n, ¥Y(a,, n,pl) > vf(0)(1 —€)B(c,n — 1,n — 1, p{), where B'(a,n —
1,n — 1, pY) denotes the derivative of B(a,n — 1, n — 1, p) with respect to p{
for a given «, and n. We can write

7 7 n -1 - Oy
B’(a,,n—l,n—l,pﬁ)=B(a”n—1,n—1,pﬁ’){an, - “”}

P 1—=p)
. pY [a,,n -1 n- oz"n] _ (= p)n =1+ pl
O 1=p) F0)o(1 = p))

_ (= e, = (01 = pt)/n)
FO)u(1 = p1)

(0= /) = (L= p) )]
JO)u(=41) SO

where the equilibrium condition (Al) and the fact that

F(vB(ayn — 1,n — 1,p7)) = f(0)oB(c,n — 1, m — 1, pY)

for nlarge is used in the second line, and the last line follows from the earlier re-
sult that pY /e, — 0 when m, > n*® and m, — . This leads to a contradiction,
since it implies that for n large at any positive intersection ¥ (o, n, p) is arbi-
trarily large. We conclude that the only equilibrium is p; = 0. QED

n

A2. Proof of Theorem 2

The paragraph immediately before the statement of theorem 2 already proved
that the random mechanism satisfies (IC) and (INTIR) under the conditions
of parts 1 and 2 of the theorem, and it obviously achieves a probability of success
equal to one. Here we show that if, in addition, FFsatisfies MHRA, then it is also
the optimal mechanism.

For a given n, consider the relaxed problem

sl o 5241

s.t. a(¢) is nonincreasing with a(c) € [0, 1]

(A2)

and p, a feasible
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derived from (9) by eliminating the (INTIR) constraint, and let u,(c) with asso-
ciated reduced-form mechanism a,(¢), p,(¢) be its solution. We proceed in three
steps. In step 1, starting from p,(c) we present a perturbed mechanism p’(c) and
show that it is IC and feasible. In step 2, we show that such a perturbation strictly
improves the relaxed problem (A2) if a,(c) is strictly decreasing. In step 3, we
show that the solution of the relaxed problem is p,(¢) = 1, a(c) = «,. Moreover,
when m, < n and v > o, or when m, < n and = is large, then this solution is a so-
lution of the full problem (9).

Step 1.—Since the argument is true for any n, here we omit the subscript » for
simplicity. Let p represent any feasible and IC mechanism. Consider the following
“flattening” perturbation of the mechanism. After a profile of reports c, the per-
turbed mechanism is defined by a new activity function that uses p(c) with probabil-
ity 1 — v and p(¢) with probability y, where ¢ is a vector in which all components
¢; > 0 are replaced with ii.d. realizations in (0,1] from /x) (and components
¢ = 0 are left unchanged). Let @ = [, a(x)f(x) dx and p = [, p(x)f(x) dx. This
new allocation generates a reduced-form mechanism:

p'(a) =vp+ (1 = y)pla) and @’(¢) = ya + (1 = y)ala)

for ¢; € (0,1] and p7(0) = p(0), a*(0) = a(0). Note that since a(0) > a(c;) and
p(0) = p(c;) forall ¢; € [0, 1], we must have that a(0) > @ = [, a(x)f(x) dx and sim-
ilarly p(0) > p.

The new reduced-form allocation is clearly feasible since we have shown the
feasible activity function that generates it. It also does not change p(0). Note that
after the change IC is satisfied since @”(¢;) is nonincreasing in [0, 1], and after the
change we have

U'(x) = y[vp — ax] + (1 — v)[vp(x) — a(x)x]

up'(x) — a'(x)x.

For ¢ > 0 and ¢ > 0, we have

vp(e) = @(c)e = y[vp = ad + (1 = ¥)[vp(e) = a(e)]

2 y[op — ad + (1 = )[vp(c) — a(¢)]
= up'() — a'()ec.

Moreover, a type 0 does not want to imitate a type ¢ > 0:

p"(0) = y[op] + (1 = )[vp(0)] = v[vp] + (1 = 7)[up(c)] = vp' (<),

where the first inequality follows from the fact that p(0) > p. Given IC, by the usual
argument, we have

(U (x) = —va = (1 = 7)d(x) = —a'(c),

so the change is feasible in the relaxed problem.

Step 2—To see that it increases the objective function, we need to show that
— [y a*(x)(1 = F(x)) dx increases in v, since up(0) is unchanged by the change.
We can write it as
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where G(x) = —((1 — F(x))/f(x)) and @ s [, a(x)f(x) dx. Note that a?(x)f(x)/a
is a density since @ (x)f(x)/a > 0 and [, (a?(x)f(x)/a) dx = 1. By MHRA, G(x) is
monotone nondecreasing in x, so the result is proven if we prove that an increase
in v implies a firstorder stochastic dominance improvement in (a"(x)/a)f(x).
Define I'"(¢) = [;(a(x)/@)f(x) dx. We prove the resultif oI"(¢)/0y < 1 forall ¢ <
1. We have

—iwu>:§[fjwa+u—v><nﬂmm]

” } x)dx=F(t){1*%} <o,

where the last inequality follows from the fact that a(x) is nonincreasing in x. It
follows that increasing vy improves the relaxed problem, which is maximized at
v = 1. When v = 1, feasibility and the IC are satisfied, so y = 1 is optimal for
the original problem as well.

Step 3—From step 2, we know that the optimal mechanism solving the relaxed
problem is independent of ¢ a}, p;. It is easy to see that this mechanism will al-
ways activate a coalition of size m,. Assume not. Three cases are possible. First,
the mechanism activates a coalition of size larger than m,; second, the mecha-
nism selects a nonempty coalition of size smaller than m,. In the first case, simply
modify the mechanism by imposing that all activated coalitions are reduced to a
size m, by randomly selecting agents to drop; in the second case, modify the
mechanism by imposing that coalitions that are smaller than m, are not selected
and a coalition of size m, is selected instead, with equal probability on all coali-
tions of size m,. This leaves p; unchanged and reduces a;. No constraint is vio-
lated, and the objective function is increased—a contradiction. The third case
is that the mechanism always selects a coalition of size m, but with probability
pi < 1. Itis easy to see that this is not optimal since by increasing p; we obtain
amarginal improvement in utility equal to 1 — «,(¢/v). We conclude that the op-
timal solution of the relaxed problem is p§ = 1 and a4} = «,.

A3, Proof of Proposition 1

We first prove that for any «,, 7, Y, (¢) has a unique fixed point c?. We then prove
that a simple VBO is IC if and only if the volunteer cutoffis ¢, and ¢/ € (¢!, v).
Finally, we establish that the VBO is HO. The following lemma will prove useful.

Lemma A2. Bla,n—1+j,n—1,p)/Bla,n—1,n—1,p) = [[ie1((n — aun —
1= B)/(aun — 1+ 1) -(p/(1 = p)).

Proof.  See the online appendix. QED

We now proceed in three steps.

Step 1.—For any «,, n, Y,(¢) is defined as

vB(a,n — 1,n — 1, F(c))
S (en/(G+ 1)B(j,n = 1, (F(c)

Yi(e) =
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We can rewrite it as

v

T3 (en/(+ D)(B(.n— LE0)/Blawn — Ln - 1,F(c)))

Y.()

- F(l + 2/":‘“”(11,,11/(]' +o,n))(Bla,n — 1+ j,n—1,F(c))/Bla,n — 1, n — 1,F(0)))>'

We now show that

e aq,n Bla,n — 1+ j,n—1,F(c))
& jtamnm Bla,n—1,n—1,F())

is strictly increasing in ¢, so Y,(¢) is continuous and strictly decreasing in ¢. By
lemma A2, we have

B(oz,,n—1+j,n—1,F(C)):Hi ”_O‘ﬂ”Jrl_i.( F(e) ))j.

B(a,n — 1,n — 1, F(c)) = — 14
It follows that

*E“" a,n Bla,n—1+j,n—1,F(c))
“jtan Blan—1,n—1,F()

g qp onsentloi (KO Y
jt+oamn oan =1+ 1=F())”

j=1

which is increasing in ¢. Moreover, it is easy to see that Y,(0) = F(v) > 0 and
Y,(v) = 0 < v. Hence, Y,(¢) has a unique fixed point ¢ in (0, v).

Step 2—I1C requires that U(c) = vp?(c) — cal(c) = vp?(c') — cal () for all
¢, ¢ €[0,1], where p?(c), al(c) represents the reduced-form direct mechanism
described by the VBO. We now show that the mechanism is IC when the thresh-
oldis ¢? such that ¢! = Y,(c?). Given ¢/, we let p, denote the (constant) interim
probability of success for all types ¢ < ¢?, let pf, denote the (constant) interim
probability of success for all types ¢ > ¢, and let af denote the (constant) in-
terim probability of being activated for all types ¢ < ¢f. From the definition of
a VBO, p?,, p9,, and afare given by the following formulas:

1,n>

0= S M B 1, F()) (A3)
a, = kz%f[,g + 1 , n > Cy >
n—1
o= Blk,n—1,F(c))), (A4)
k=a,n—1
n—1
9, = B(k,n — 1,F(c0)). (Ab)



000 JOURNAL OF POLITICAL ECONOMY

The equilibrium condition for IC is
acv{l) = v(ljl(,)n - p;n)~ (A6)

By substituting equations (A3), (A4), and (Ab) into equation (A6) for any n, we
obtain an expression for ¢(v), the VBO volunteer threshold cost as a function of
group size and the value of success:

B(a,n — 1,n — 1, F(c?))
o (ean) (k4 1)B(k,n — 1, (L))’

k=a,n—1

(A7)

(v) =v

where the numerator on the right-hand side is p, — p¢, and the denominator is
a?, the probability that a volunteer is activated. It is easy to see that (A7) implies
the statement in the proposition. Moreover, we get ¢! > ¢! because Y,(c¢) >
vB(m, — 1,n — 1, F(c)) for all ¢, v, m,, n. It follows that ¢ € (¢!, v), as stated.

Step 3—To establish that the VBO is HO, first observe that all group members
whose recommended action is to free ride will obey the recommendation be-
cause, if all other members are obedient, then either zero or exactly m, other
members will volunteer. Hence, their participation will not affect success or fail-
ure so they are better off free riding. Second, all members with type ¢; whose rec-
ommended action is to activate will obey the recommendation if ¢; < v because,
if all other members are obedient, then exactly m, — 1 other members have been
recommended to activate and will do so. Hence, their payoff is zero if they dis-
obey the recommendation to activate and v — ¢; > 0 if they obey. It follows that
all types ¢; < v find it optimal to obey no matter what type they have previously
reported. Types ¢; > v instead always find it optimal to free ride regardless of
the recommendation. Therefore, they cannot strictly improve their payoff by
reporting ¢/ # ¢;. Formally: I [/, (¢, c-i)up(¢)] 2 B [Zgerpg (T, €)1 ) (¢)]. This
condition and (IC) imply that

Ec,

> uelei cf)u;.(c)] >E,

gel

Dbl G c,-)ué,(c)} (A8)

gel

> Ec,,

E/"'g(zi’ Ci)u;(g)(ﬂ):| (A9)

gel

forany i =1,...,n, ¢,¢ € [0,1] and any function £;(g) mapping g to either
{g.g\{i}}if g € Lior {g, g U {i}}if g & I. QED

A4.  Proof of Theorem 3

The first part of theorem 3 follows from proposition 1 and part 1 of theorem 1: for

any n, the probability of success of an organized group using a VBO mechanism is

greater than or equal to the probability of success of an unorganized group. Since

the probability of success of an unorganized group converges to one when

m, < n*?, the same must be true for an organized group using a VBO mechanism.
For the second part, we now proceed in three steps.
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Step 1—We first prove that there is a constant a,, > 0 such that

n—1lLa,) = a.
21+k , Q) = a4

k=a,n—1

n— o

The details of this step of the proof are in the online appendix.

Step 2—Given that lim,_ .22} -1 (a,n/(1 + k))B(k,n — 1,a,) = a, > 0, we
can now prove that there is a constant § < 1 such that lim, _..(F(¢?)/a,) < 4.

The details of this step of the proof are in the online appendix.

Step 3—Note that by step 2, a, — F(¢?) = (1 — $)ev, for some § < 1. Following
standard steps (see, e.g., the proof of theorem 1), we have

k
Pr(k > a,n) < Pr{f -
n

F(e))| = (1 - S)an}

o (4). LU0 ] (A FE) o
) VEU=FE)] T\ Ve = 9)

where o,0(k/n) = \/F(c])(1 — F(c.))//n. This proves the result. QED

< Pr||-—F(c)

n

A5. Proof of Proposition 3

We can bound the probability of success in an optimal HO mechanism as follows.
Let D(k/n)||p) = (k/m) log(k/(np)) + (1 = (k/m)) log((1 — k/m)/(1 = p)) rep-
resent the Kullback-Leibler divergence, or relative entropy, from p to k/n.
We can write

limP; = lim 2 B(k,n, pi) = imP? = 3 B(k, n, pf)
Jmbe = ST 2

1 .

> lim —exp(an<m

M B = ) "

7).

where in the last line we used the lower bound on the tail of a binomial distribu-
tion (lemma 4.7.2 in Ash 1990). By proposition 2, lim,,_,..(p¢/(m,/n)) > 1, so for
any e > 0, there exists n, such that for n > n,, we have D((m,/n)| p) < /2. Thus,

. P i (1/\/8%;) exp(inD((mrz/n)||p:))

n—ow @ n—w

1 m,
0 ~ i (7 D( n
)) lim S exp(—nD(—

e[m»xp( w0 ((m,/m)pY) ) le/2m
= lim > lim = 0.
n—o 8m, n—w»+/8m,

So for any e > 0, P.’ converges strictly faster than ¢". We conclude that P, con-
verges to zero at a rate that is strictly slower than exponential. QED

A6.  Proof of Proposition 4

We omit n here as a subscript for simplicity whenever it does not create confusion.
Let p” represent an optimal binary mechanism, let ¢’ represent the volunteer cut
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pointassociated with u’, and let ¢, represent the corresponding probability of suc-
cess when there are kvolunteers. We prove the result thatif ¢, > 0 for some k > m,
then ¢,; = 1forj > 0. Thisimplies that there isa & such that ¢ = 0forj < k’and
¢; = 1forj > k’and atmost atone kwe have ¢y € (0, 1). Thus, the optimal binary
mechanism is a #-VBO except at most for an event with probability that con-
verges to zero as n — O—that is, when there are exactly &’ volunteers.

We proceed in two steps. In step 1, we establish that the optimal binary mech-
anism is nonwasteful, meaning that it does not ever activate more agents than
necessary; step 2 shows that it is characterized by a threshold #".

Step 1.—We first show that the optimal HO binary mechanism must be non-
wasteful in the sense that whenever a group is activated, there are exactly m mem-
bers in the activated group. We prove this by contradiction by supposing that u"
is wasteful at a positive measure set of profiles and then showing that it can be
improved. First, define a new mechanism, g, that is exactly the same as p for all
coalitions of size m but eliminates all waste by reducing all activated successful
coalitions to a size m by randomly selecting agents to drop out and by not activat-
ing unsuccessful coalitions that are smaller than m. This leaves ¢, p, and p) un-
changed and reduces @' to @ < ¢*. This implies that a*' ¢ < v(p} — p), so some
cost types in a neighborhood above ¢ are strictly better off volunteering, which
violates IC. Now, for any ¢ > ¢’, consider a modified version of u’, denoted by @',
that has the same success probabilities, { ¢}, as p’ except that all members with
¢ < ¢ are volunteers, so there is a bigger pool of volunteers. This increases p} and
P to pi' > pi and pi > pi and changes @ to @'. Denote by @ > ¢’ the first such
value of ¢ > ¢’ such that @'¢" = v(p{ — p'). (Such a point exists by the intermedi-
ate value theorem.) Denote by u(¢ ¢) the interim expected utility of a member
with cost cunder g, and denote by u(¢; ¢*) the interim expected utility of a member
with cost ¢ under the modified mechanism, i/, with volunteer cutoff ¢* > ¢’. Be-
cause p§ > pi, we know that u(e; @) = u(e';2) > u(e; ¢*) for all ¢ > @, so these
members are strictly better off. For ¢ € (¢’, ¢), we have u(c; ¢") > u(e’; ¢) > u(c; ),
so these members are also better off. Finally, for all ¢ € [0, ¢") (the volunteers un-
der p), members are better off because for each k£ > m for which ¢, > 0 there isa
positive measure of additional profiles ¢ with exactly k volunteers and, for each
such additional profile, the ¢type member in [0, ¢’) gets a conditional expected
utility of (v — (m/k)c)g, > 0. (Such members receive the same conditional ex-
pected utility for all other profiles.) Hence, u(c; ¢*) > u(c; ¢”) for all ¢ < ¢* and
so all agents are better off under g’ than under u. All constraints are satisfied,
and the objective function is increased—a contradiction. Hence, the optimal
mechanism is nonwasteful.

Step 2—1f ¢, > 0 for k > m and ¢; < 1 for j > 1, then there must be a ¥ such
that ¢y > 0 for ¥ > m and ¢+, <1, so we need to prove the result only for the
case of j = 1.

Assume by contradiction that ¢, > 0 for some k > m and ¢+, < 1. Let ¢’ repre-
sent the minimum cost above which an agent is activated with probability zero.
Then IC is binding at ¢ if ac® = v(p} — p), where

S = Bn— L= LE() g + SB—1,n— 1, F(c")
— Blkn—LF()g
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and

n—1

m
a = 2 mB(k, n — l,ﬁ‘(cb))qk+].

k=m—1

We can marginally reduce ¢, by —dg, < 0 and marginally increase ¢+, by dg,+, >
0 so that the (IC) constraint is unchanged, thus keeping ¢’ constant. This re-
quires that

b m b m iy A
—_ — J— + —
¢ kB(k 1,n—1,F(c")) g lB(k,n 1, F(¢")) da. dg,
—(B(k = 1,1 = L,F()) = B(k n — 1, F(¢))) (A10)
= qu.
+B(kn—1,F(") — Bk + 1,n— 1,F(d’))$
qk
Note that we can write
pf — j)ﬁ =B(n—1,n~— l,F(cb))q,,
n—1 n (All)
+ > [Bk—1,n— 1,F(c") — Blkyn — 1, F(")]q. = > 01,
k=m k=m

where we denote
®, =B(n—1,n—1,F(")),
®,=Bk—1,n—1,F(")) — Blk,n—1,F(c") fork =n—1,...,m.

We can rewrite the previous expression as

®,=B(k—1,n—1,F(")) — B(k,n — 1, F(c"))

ko 1—F(c"

:an—LFW»n—k_ﬁﬁ_

— 1|

Similarly, we have

Oy = B(k,n —1,F(c") — B(k + 1,n — 1, F(c"))

:@ﬁ%g%éﬂﬂﬂﬂﬁu—Fwnﬂﬂ
(n—1)!

TH D0 kg P T R
k+11-F()

:BM+Ln—LFU»n_k_1 )

— 1|

Substituting into (A10) gives
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qu+ 1

-2 b m )
T Bl Ln = LE() + o= Bl n = LEF
¢ k B(k n—1,F(c)) P (kyn — 1, F(c") o da
Blk—1,n—1,F(c")) — B(k,n — 1, ("))
dg,., | d
1( ))_B(k'i‘l,n—l,p(cb))k G
dg,
m k 1- F(Cb) ’
B 1. F(¢
b kn—k F() (k,m JF(cY) d
qr
m k+1 1-F() i
+1,n—1F
E1—F()
—-B 1. F(¢ B
(k,n 5 ( )) |:’ﬂ_ k F(Cb) :|
) F dq.

Bk+1,n— l,F(fb)){nf k=1 F()

It follows that

qu+l , m k+1 I—F(Cb) J
; -1 +1[Bk+1,n—1,F(
dq, {<(k+1 >n—k—l F(c) (k+ Ln = LE(E)

= [(cb% - 1) n—ﬁkl;(iib()d) + 1}3(1@, n—1,F(c"))

o Y4 _ 1= (1= c"Om/k))(k/(n = k))((1 = F(c")/F(c"))
dge 1= (1= (m/(k+1)((k+1)/(n = k= 1)((1 = F("))/F("))
B(k,n — 1,F(c")) - B(k,n — 1,F(c"))
Blk+1,n—1,F())  "Bk+1,n-1,F))’

where

I = 1= (1= (m/R) (k/(n — (1 = F())/F())

L= =(m/(k+ 1) ((k+1)/(n—k=1)((1 = F(")/F("))
k—cdm k—cm+1

> 1 < > c'm.
& — o onTm

After this change, the probability of success increases—indeed, we have

ar, = [—B(k, n—1,F")+ Bk+1,n— 1,F(C”))d3—;“ g
k

B(k,n — 1,F(c"))
Bk+1,n—1,F(c"))

{—B(k, n—1,F(") + Bk +1,n—1,F(c")-T,, dg,

> (T, — 1)B(k,n — 1, F(c")) - dg, > 0.

Since the probability of success increases but the average probability of partic-
ipation remains constant (since ¢’ is unchanged), we must increase welfare,
ceteris paribus. This implies that the original mechanism was not optimal—a
contradiction. QED
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A7. Proof of Proposition 5

As discussed in section V.A, we derive the objective function in the relaxed prob-
lem (15) using the (IC) constraint in a way similar to that in (9). The constraint
in the second line of (15) is only the implication of IC, also present in (9). The
constraint in the third line of (15) follows from the following lemma. For sim-
plicity, we omit the subscript » in the expressions of lemma A4.

Lemma A4, If (IC) and (1) hold, then a(¢) = 0 for ¢ > ¢*, where

¢* = min{c¢ < v|vp(c) — ca(c) < vp}.

Proof. By (1), ¢ > v implies that a(¢) = 0. Consider any ¢ € [¢*, v]. By the defi-
nition of ¢*, U(¢) < U(v), and (IC) implies that U(c) > U(v),so U(c) — U(v) = 0
for ¢ € [¢*,v]. This implies that [a(x)dx = [ U'(x)dx = U(c*) — U(v) = 0.
Since a(c) is nonnegative, we get a(c) = 0 for ¢ > ¢*. QED

Let V. (¢) denote the expected value for a type ¢ in an optimal mechanism
that solves the relaxed problem (15), and let V. = E{V,"(¢)} denote the value
of the objective function in (15). Note that Vi > Vi, where Vi represents the
optimal mechanism in an HO mechanism, since (15) is a relaxed version of (14).

Define an e-bounded mechanism, ii,(c), and associated reduced-form mechanism
@ (c), pi(c) as follows. It solves the problem for the optimal mechanism (15) but
with an additional condition:

4 () > 0= p,(0) = pulo) <.

The value for a type cand the expected values of this mechanism are V;(¢) and V¢,
respectively. When ¢ = 1 (or larger), the additional constraint is slack, so Vi =
V.. When ¢ = 0, g (c) is a binary mechanism—that is, there is a ¢ such that
Pi(c) = pi(0) for ¢ < ¢ and pi(c) = pi(1) for ¢ > &. Moreover, IC implies that
a;(c) = @, (0) for ¢ < ¢ and a;(c) = 0 for ¢ > ¢. We denote a binary mechanism
as follows: p),(c) and associated a;(c), pi(c) with values V/(¢) and V..

We proceed in two steps:

Step 1.—For any 7, there exists n, such that n > n, = VP> Vi - 1 and hence
V!> V)" — n. Consider D, = V,"" — V! = V,"* — V. There are two possibilities.

1) lim,_.D, = 0. In this case,
ook

limD, = lim (V" — V) = lim (V.

n—o n— o n—o

- Vi) =0,

where V represents the value in the optimal generalized VBO and we are
finished.

2) lim,_..D, = D> 0. In this case, let € (0, D), and for any such 5 and any
n, define ¢(n, 1) as

‘/nb — f/,.::(n,n) _ 1’/2

Note that &(n,n) € (0,1) for any n. It follows that lim,_ .&(n,7) exists and
lim, . .&(n,m) = &(y) € [0, 1].
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Suppose thatg(n) > 0. Then for any ¢’ < g(n), there is an n, such that for n > n;
we have V! > V¢ — n/2. From lemma 1, we know that there is an 7} such that
for n > n? we have Ve = ‘/n**, since the additional constraint in the e-bounded
mechanism becomes slack. We conclude that for n > max{n}, n?}, V! > /A
n—a contradiction, with the assumption that lim, _,..D, = D > 0. We conclude
that we must have ¢(n) = 0.

The rest of the proof of step 1 relies on the following lemma:

LemMa A5, If lim,_.e(n, ) = 0, then for any arbitrarily small ¢ € (0, 9/2)
there is an n, such that for n > n,, we have V""" < V + ¢.

Proof.  See the online appendix. QED

Take € <n/2. From lemma Ab, there is an %, such that for n>n, V! =
Vi — < VP + e — n/2 < V!—a contradiction. From the fact that we obtain
a contradiction for any &(n) > 0, we conclude that lim, _..(V," — V) = 0. QED

Step 2—We can now put together step 1 and proposition 4 to argue that a
VBO is approximately optimal for large n. Since V; < Vi', step 1 implies that
|V — Vi'| = 0 as n— oo. Proposition 4, moreover, shows that the optimal binary
mechanism is a generalized VBO with threshold k.. Let VBO(k,) represent a
VBO with threshold k = k, and no mixing for k = k.. The VBO(k:) generates
utility that converges to the utility of the generalized VBO with threshold kn
since the probability of exactly k = k. volunteers converges to zero. Since the
generalized VBO is equivalent to an optimal binary mechanism that generates
utility V!, we have |V — y,yBot (b |—> O Hence, we have that for any 7 there is
an n, such that for n > n, V, "> V' — g for some threshold k., which implies
the result. QED

VBO(. k

A8.  Proof of Theorem 4

Here we focus on the second bullet point of the proposition. We prove the result
in two steps:

Step 1.—We first prove that lim, _,(p/6,) < 1, where p% = F(c&) and ¢ rep-
resents the cutoff for participation with 6,. In equilibrium, we must have

pﬂ,‘ _— vB(G,,n —1,n— 1’1)3) .
' E;l 0171 1( /(] + 1))3(], n — l,pZ')

Consider the right-hand side. By the mean value theorem, we can write

) vB(@,n — 1,n—1,p%) ) vB(0,n —1,n— 1, p})

F 1 . - = F(0) + uf (& n—1 - - ’
(ENMKWNJ+UWUW—1wH OO S G G+ DVBG,n— 1.7

where £ € [0,vB(0,n — 1,n—1,p%) /(2% 1 (m,/(j + 1))B(j, n — 1, p%))] and
the last term uses the residual in the Lagrange form. Thus, if we define f =
maxre[(b,]lf(c), we have

vB(0,n ,n—1,ph) - vB(0,n — 1,n—1,p%)
F ) < p)- : : . (AI2
<2ﬂnxm¢1+m>0m1¢n><(” S /G DBG -1y AP

since F(0) = 0. We now prove that there is a constant $ <1 such that
lim, (% /6,) < 3. Assume not, so lim, _..(p4 /6,) = ¢ > 1. Following an argument
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very similar to that in step 1 of theorem 3, we can prove that there is a constant
a, > 0 such that /%', (0,/(j + 1))B(j. n — 1, p) > a.. We therefore have
n—1 m, 0 a,

R TS 0,n — 6y O
2 ]+1 (]’ 1517%)_9 2 . B(]’” l’p")_en'

j=0,n—1

Following an argument very similar to that in step 2 of theorem 3, we can prove
that

B(O,,n - 1, n — l,pz") < B(Gnn - 1, n — l;l’n l
P a §0, 0, \/ 270,(1 = 6,)n 0%

Using these facts, we now note that in equilibrium we must have

Lo F( BB, — 1,n — 1,p) _ ol 0, BB~ 1, n =1, pf)
)y

0 (7

o ot (m /(G4 D)B(j,m = 1,p1) )~ e, 2
YL
Qs (017,)20nn

where the last step follows since (,)*0,n = (a,)*(0,/c,)n > ()’ m, which con-
verges to infinity if m, > n** as assumed. We therefore have a contradiction.
We conclude that there is a constant ¢ < 1 such that lim,_,..(p /6,) < 9. Using
this fact, the result follows from the same argument as in step 3 of theorem 3.

Step 2—We now show that if the probability of success in the optimal binary
HO mechanism (which is a general VBO) converges to zero, then the probability
of success in a fully optimal HO mechanism converges to zero as well. This im-
plies that the expected welfare in the two mechanisms converges to the same
value. For this we use proposition 5—that the generalized VBO is an approxi-
mately optimal HO mechanism.

Suppose by contradiction that the probability of success in the optimal mech-
anism P, (not necessarily binary or VBO) converges to some positive value
P* >0, but the probability of success in the optimal generalized VBO mecha-
nism P converges to zero. Let W, and W represent the expected per capita
welfare in the optimal mechanism and in the optimal VBO, respectively. Note
that for any ¢, there is an n,, such that for n > n,

G
we = vP,?(l - E(“ (c) ﬁ)) < WP < g/2,
v

G
P n
since by assumption P — 0. Moreover, for any ¢, there is an n,, such that for n > ns,,

E3
Wy = vP:‘(l - E(””’(,,f) i)) > 0Pt — £/2 > 0,
v

n

since (a) for all ¢ < v, a(c)(c/v) < pi(c) — pu(v) =0, as proved earlier, and
(b) P} — P* > 0. It follows that for any ¢, there is an n, = max{n,, ns,} such that
for n > n, W, — WS > vP* — e

By proposition 5, for any arbitrarily small 1 > 0, there is an n, such that for
n>n, |W, — WE| <n, where W, and WS represent the expected per capita



000 JOURNAL OF POLITICAL ECONOMY

welfare in the optimal mechanism and in the optimal VBO, respectively. It fol-
lows that for large n, n + ¢ > |W:* — W] = vP*, which is a contradiction since
7 and ¢ are both arbitrarily small and vP" is bounded away from zero. QED

A9. Proof of Proposition 7

If m, > n*?, ¢¢ > 0 for all nand ¢! = 0 for sufficiently large n, so AV s propor-
tional to v and thus clearly increasing in v. If instead m, < n*?, then both
F(c?) > m,/n and F(c!) > m,/n, so the first terms in the brackets of (17) and
(18) converge to zero faster than the second terms, and hence it can be ignored
for large n. For large enough n, we therefore have

n—1 n—1
EUy(c0) — EUy(c]) = v > B(j,n—1, ) — > B(j,n—1, e,

J=aun j=a.mn

which is strictly increasing in v since 2/~ ,B(j, n — 1, ¢) is strictly increasing in
cand ¢! > ¢ by proposition 1. QED
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