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Plastic strain-induced phase transformations (PTs) and chemical reactions under high pressure are
broadly spread in modern technologies, friction and wear, geophysics, and astrogeology. However,
because of very heterogeneous fields of plastic strain E” and stress o tensors and volume fraction ¢ of
phases in a sample compressed in a diamond anvil cell (DAC) and impossibility of measurements of o
and EP, there are no strict kinetic equations for them. Here, we develop a kinetic model, finite element
method (FEM) approach, and combined FEM-experimental approaches to determine all fields in
strongly plastically predeformed Zr compressed in DAC, and specific kinetic equation for a-w PT
consistent with experimental data for the entire sample. Since all fields in the sample are very
heterogeneous, data are obtained for numerous complex 7D paths in the space of 3 components of
the plastic strain tensor and 4 components of the stress tensor. Kinetic equation depends on
accumulated plastic strain (instead of time) and pressure and is independent of plastic strain and
deviatoric stress tensors, i.e., it can be applied for various above processes. Our results initiate kinetic
studies of strain-induced PTs and provide efforts toward more comprehensive understanding of

material behavior in extreme conditions.

In comparison with hydrostatic loading, plastic straining drastically
decreases pressure for PT'™ (and chemical reactions’”, which are not
central part of the current work), produces new phases, alters PT kinetics
from time-dependent to plastic strain dependent, replaces reversible PTs
with irreversible, and produces nanostructured materials'™*"". That leads
these PTs into a special category, strain-induced PTs"”". In contrast to
traditional pressure-induced PTs, which originate at pre-existing defects
that cause stress concentration, strain-induced PTs initiate at defects gen-
erated during plastic flow. The only existing defect that can reduce PT
pressure by one to two orders of magnitude or up to 70 GPa (observed for
graphite-diamond PT?) is a dislocation pileup, as confirmed by analytical',
atomistic'’, and phase field'*"” modeling. While there are successful in-situ
studies of strain-induced PTs under compression in DAC (Fig. 1)*'*'*'%"
and torsion in rotational DAC*'*'"'*", there is one major challenge: no strict
kinetic equations for strain-induced PTs. The reason for the lack of funda-
mental equations is that since they occur under the action of 6 components

each of plastic strain EP and stress ¢ tensors, the corresponding kinetics
should depend on E? and o, amounting to 12 variables in total; however,
neither Ef nor ¢ are experimentally measurable. There are only simplified
empirical expressions. For example, in ball milling, kinetics of trimerization
reaction is determined in terms of number of balls’ impacts”. During high-
pressure torsion, the volume fraction ¢ of w-Zr during a-w PT was deter-
mined as a function of shear strain (defined by a simplified equation) for one
of the radii’, in which ¢ was measured postmortem after unloading.
Moreover, the effect of pressure p was not included, and it was not verified
whether the proposed kinetics is valid for other radii. In recent in-situ
measurements for compression in DAC and torsion in rotational DAC, the
kinetic equation dc/dq = f(g,p,c) for a-w PT in Zr (where q is the accumu-
lated plastic strain) was based on data at the sample symmetry axis only"’.
While radial ¢ and p distributions were measured as an average over the
sample thickness, the averaged g could only be approximately evaluated at
the sample symmetry axis. There, one can assume homogenous ¢, p, and g
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fields along the sample thickness, implying that material is under uniaxial
compression. However, such equation was not checked for finite radii,
where significant and heterogeneous shears are present, because g cannot be
strictly evaluated without simulations. Also, fields of ¢ and q are found to be
strongly heterogeneous along the symmetry axis too, see below. Another
global problem is that all constitutive (including kinetics) equations should
be determined for material points (i.e, Lagrangian view of the motion).
However, the X-ray measurements are performed in spatial points (i.e.,
Eulerian description), and due to large plastic flow, different material points
pass through the X-ray beam at different loads. Independently, theoretically
derived kinetics'” was used for FEM simulations of the processes in
traditional”*** and rotational”*** DAC but with some model parameters.

Results and discussion

Generally, kinetic equation for strain-induced PTs should have a form dc/
dq=f(Ef, o, c). Recently, we developed coupled experimental-analytical-
computational approaches for finding fields of E and ¢ in the entire DAC
Zr sample'®. Part of this method, coupled experimental-analytical (CEA)
approach, was utilized for determining the distribution of the friction stress
between sample and diamond. PT was not modeled, and the field of ¢
averaged over the sample thickness from experiments was used as input data
uniformly along the thickness. Here, we develop a new Combined
Experimental-FEM approach (CE-FEM), which includes modeling a-w PT
and determining E?, o, and ¢ fields in a strongly plastically predeformed Zr
sample and kinetic equation for a-w PT. This is done by iteratively solving
an inverse problem on determining 6 material parameters §; and k in the
kinetic Eq. (1). Zr sample was subjected to multiple rolling until its hardness,
grain size, and dislocation density no longer changed'** with further
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Fig. 1 | DAC schematic.

straining, which excludes their effects on PT and thereby, significantly
simplify the problem.

We use the same experimental data for the strongly pre-deformed Zr
sample, contact friction stress distribution between diamond anvils and
sample determined by CEA method from'®. The flowchart for the developed
CE-FEM approach is presented in Fig. 2.

The complete system of equations for coupled elastoplastic flow and
strain-induced PTs is presented in Eq. (2)-(20). FEM formulation is pre-
sented in the method section. Distribution of friction shear stress at the
contact between sample and diamond obtained from'® in addition to elas-
toplastic properties are used as the input data. While mechanical part is the
same as in our previous large-strain models'*”, a new kinetic equation

[

© _d
= K1+ 8,)(1 + 8:p)(1 = 6,0) i (205)

H(p—p?); pl=0,+dsq,

dc

dq

)

is included and coupled to the mechanical equation, which results in a
generalization in comparison with'”. Here, p{ is the pressure for initiation of
pressure-induced PT under hydrostatic loading (p¢ = 5.4 GPa), p is the
minimum pressure for initiation of the plastic strain-induced PT, p(q) is the
loading path, 07, and o7, are the yield strengths of the a and w phases under
ambient pressure, respectively, g, is the value of g at the beginning of PT, i.e.,
at p = p since g,=const after the PT starts, p at each material point is
heterogeneously distributed constant during PT.

Equation (1) reduces to the theoretically derived physics-based kinetics
in%, if §, = §; = 8; = 0 and 8, = 1, which was used in previous FEM
simulations'**'™**, It is based on assumption that, instead of tensorial vari-
ables F? and o, their scalar counterparts, g and p, can be used. This
assumption greatly simplifies theory and will be justified by experiment.
Figure 3a, b shows comparison of the FEM simulated and experimental
radial distributions of ¢ for the case with §; = §; = §; =0, 5, = 1, and
p? =2.70 GPa. Despite the significant deviations, the general trends (i.e., the
main physics) are described satisfactorily. To achieve improved quantitative
correspondence, we employed two ways.

(a) Assuming &5 = 0, i.e., constant p¢ as claimed in'*'*, we found the
simplest linear dependence of the proportionality factor on p and ¢q, and
slightly corrected dependence on c, as well as slightly corrected value of p¢.
Condition 8, = 1 implies that dc/dq = 0 for ¢ = 1, which is not the case for
Zr. Thus, despite introducing 6 fitting parameters, obtained kinetic Eq. (1)
remains the physics-based. After FEM modeling of sample loading in
experiments with different material parameters in Eq. (1), actual parameters
have been chosen from the cumulative error Er minimization in Eq. (15)
between theoretical and experimental volume fractions of w-Zr averaged
over the sample thickness for all loadings and radii. The optimal set of
material parameters is found as k = 0.75,8, = 12.0,8, = 0.925,§; =
—0.048, andp? = 2.65 GPa with Er = 1.19. Figure 3c, d shows comparison
of the calculated and experimental radial distributions of ¢ averaged over the
sample thickness for 12 different loads. Correspondence between calculated
and experimental curves is good for all cases as the difference Ac,,,, < 0.1 in
the volume fraction for all the radial points and load cases but one. The

18,19

Fig. 2 | The flowchart of the interaction between
experimental and FE methods.
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maximum of difference between experimental and calculated value of ¢ is
Ac,, =0.132 at the edge of a sample for the case p, .. = 5.58 GPa.

(b) Much smaller Ac,,,, with smaller Er can be reached within a
simpler model with §; = &, = 0 if we weaken the strict statement in'*"
that p¢ is getting steady and independent of plastic strain, and assume
weak linear dependence of p? on g, with small non-zero 8. Mini-

mization of the Er for such model resulted in k = 5.0, §, = 0.775,

8, =8, =0.0,8, =3.07,8; =-1.0 with Er = 0.869 and Ac,y,, = 0.08.1f
instead of Er we minimize Ac,,,, we obtain k =5.2, §, = 0.803,
6, =8, =0.0, 8, = 3.07, 65 = —1.0 with close Er =0.871 but slightly
better Ac,,,, =0.07. Figure 4 shows comparison of the calculated and
experimental radial distributions of ¢. Figure 5 presents a comparison
between experiments and FEM simulations for ¢ versus p for different
radii for these two cases.
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Fig. 5 | Comparison between FEM and experimental volume fractions C averaged over the sample thickness versus p for different radii. Small horizontal shifts of points

with respect to experiments show small pressure differences for different models.

The fact that we claimed in'*"* that p? is independent of E and E? path,
and here we used a weak linear dependence of p? on g, is not contradictory.
Independence of p¢ of E” and E? path in'*" is a correct statement to within
some scatter, based on data averaged over the sample thickness, and also
should be understood asymptotically with increasing plastic strain. Much
more precise method with a weak linear dependence of p? on g, allowed a
better correspondence with much larger data set. Still, for some applications
this dependence of p? on g, can be neglected. Also, minimum pressure for
strain-induced PTs is determined by the dislocation pileup with the largest
stress concentrator (i.e., with largest number of dislocations N), i.e., by tail in
distribution of N in different pileups in the representative volume. Max-
imum local N may reach steady state at larger plastic strain than the aver-
age value.

Figure 6a, b demonstrates a good correspondence between experi-
ments and FEM simulations for the thickness profile of the sample, and

radial and azimuthal elastic strains averaged over the sample thickness. This
shows that not only PT kinetics but also stresses and elastic strains and
vertical displacements are well described, and they are mutually consistent.
Results for 3 above sets of material parameters are very close and are shown
for the model with minimum Ac,,,, =0.07 only.

Due to plastic incompressibility conditions, three of four components
of the plastic strain tensor for an axisymmetric formulation, normal E£,, E,,
and shear EY, are independent. Note that we characterize the straining path
in terms of components of the Lagrangian plastic strain tensor E? because, in
contrast to its Eulerian counterpart, it is independent of the rigid-body
rotations of material particles. For selected material points (Fig. 7a), Fig. 7b, ¢
(from the start of loading to the end of PT) and Fig. 7d, e (from the end of PT
to the end of the loading) show two 2D projections of the 3D straining
trajectory. Variation of pressure along each path is also given. One can see a
broad variety of magnitudes and loading paths in 4D space E?, E%,, Ef,, and

npj Computational Materials | (2024)10:290


www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-024-01491-4

Article

Fig. 6 | Comparison of simulated and experi- a) b)
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p before, during, and after the PT. While straining trajectories after PT are
irrelevant for the current study, they justify the large varieties of E” and E?
paths for which rules obtained in™ (i.e., pressure-dependent yield strength,
dislocation density, and crystallite size are independent of E” and E? path)
are valid. Points along the symmetry axis and plane have zero shear strain, as
expected. Trajectories with maximum plastic shear strain are located at the

Thus, the robust kinetic equation for a-w PT in Zr is determined, which
depends on accumulated plastic strain and pressure and is independent of
plastic strain and deviatoric stress tensors. It is valid for a broad range of 3D
plastic strain tensor and pressure magnitudes and loading paths (resulting in
variety of the corresponding stress deviators), as well as 2D pressure and
accumulated plastic strain loading paths (shown in Fig. 8a for selected

contact surface. Large shear strain generates tensile strain E, . because the  material points). This means that it can be applied for modeling and analyses

length of the vertical lateral sides of a material cube increases after its
shearing to the parallelopiped with the same height.

P2z

of various processes involving strain-induced PTs under high pressure.
Moreover, 2D volume fraction evolution versus accumulated plastic strain
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Fig. 8 | 2D projections of the 3D plastic strain— a) b)
pressure—volume fraction trajectories for the 8k 7 1.0 7 — —
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superposed by pressure for various selected material points is shown in
Fig. 8b.

Evolution of the fields of components of the tensor E?, ¢, g, and p in the
sample is presented in Fig. 9; evolution of the fields of components of the &
are shown in Fig. 10a-c; none of them can be measured experimentally. The
distribution of p across the sample is shown in Fig. 10d. Unexpectedly, local
maximum of plastic strain E_ is observed at the center of sample, which
results in the maximum of q. In combination with the maximum normal
stresses and therefore, pressure at the center of sample, PT starts there.
While there are other zones with larger local maximum of g at the contact
surface close to the edge of the diamond culet and at the symmetry plane at
the end of the culet, pressures in them are initially well below the minimum
PT pressure pf ,and therefore PT does not start. With further loading, these
regions partially or completely flow outside the culet region not studied
experimentally. With further compression, w-Zr zone grows from the center
to the periphery and contact surfaces anisotropically, and volume fraction in
the zone increases. Much faster growth towards the periphery is partially
due to radial flow of the already transformed regions. Evidently, very het-
erogeneous distributions of g and c along the thickness at the symmetry axis
is obtained, violating the main assumption for the derivation of the kinetic
equation in'*".

Note that since we found that for each radius PT starts at the
symmetry plane, where shears are zero, independence of p? of E? and
straining path can be strictly claimed for zero shears only. However,
due to averaging of experimental data over the thickness, and since
away from the center, the boundary between transformed and non-
transformed regions are close to vertical, data from the regions with
shears contribute as well. This is not the case for the symmetry axis.
Our results suggest that the statement in'*"” of the independence of p?
of the plastic strain tensor and its path after severe plastic deformations
requires further justification with larger strains and shear components.
Torsion in rotational DAC can significantly extend classes of straining
paths. Also, one may need to distinguish between the relatively small
increment of monotonous deformation in DAC and preliminary severe
deformation by rolling at normal pressure. While rolling has already
produced steady crystallite size, dislocation density, and hardness,
under high-pressure compression in DAC, another steady state was
reached with smaller steady crystallite size and larger dislocation
density™.

To summarize, a CE-FEM method is developed including (a) kinetic
model; (b) FEM modeling of a-w PT and coupled plastic flow; (c) experi-
mental input in terms of pressure-dependent elastoplastic properties and
friction condition between sample and diamond, and (d) determination of
E?, 0, and c fields and kinetic equation for strain-induced a-w PT in a
strongly plastically predeformed Zr sample as an important example
material. This is done by iteratively solving an inverse problem on deter-
mination of 6 material parameters in the physics-based kinetic equation. In

such a way, the common issue in high-pressure research - the strong het-
erogeneity of all fields - is reframed as a direction for development. Very
good correspondence between calculated and experimental curves is
observed for the volume fraction of w-Zr and radial and azimuthal elastic
strains averaged over the sample thickness, as well as thickness profile of the
sample. Obtained broad variety of magnitudes and loading paths in 4D
space EP, E, F’. and p (and corresponding varieties of the stress deviator
paths) in a sample proves that the kinetic equation is independent of plastic
strain and deviatoric stress tensors and also justifies the large varieties of Ef
and E? paths for which rule obtained in* (i.e., that pressure-dependent yield
strength, dislocation density, and crystallite size are independent of E” and
EP path) are valid. We found that p¢ is a weakly decreasing linear function of
g; this refines the rule found in'*"’ that with increasing plastic strain and
within some scatter, p¢ is asymptotically independent of g, E?, and E? path.
Since it is found in* that during a-w PT in Zr, dislocation density and
crystalline size are unique functions of the volume fraction of w-Zr inde-
pendent of E? and E’ path, and p, we can immediately obtain explicit
kinetics for these parameters using Eq. (1). Generalization of our approach
and Eq. (1) for the case when both direct and reverse PTs occur
simultaneously'?, e.g,, for strain-induced PT in Fe”, represents the next step
of its development. Obtained results initiate quantitative kinetic studies of
strain-induced PTs and promise to bring efforts in the above fields to a
qualitatively higher level. Similar methods can be applied for other mate-
rials, and also extended for annealed materials and high strain rates, and for
finding kinetics for other parameters, like dislocation density and crystallite
size, including materials without PTs. For many numerical treatments of PT
in elastoplastic materials™ ™, kinetic Eq. (1) can substitute simplified
kinetics used in these publications.

Kinetic equation of the type of Eq. (1) can be used for quantitative
modeling and optimization of the processes involved in (a) defect-induced
synthesis of nanostructured materials, phases, and nanocomposites by
severe plastic deformation with high-pressure torsion'*"" and ball milling™,
(b) friction and wear” ™, (c) surface processing (polishing, turning,
scratching, etc.)™, (d) high-pressure geology (mechanism of the deep-focus
earthquakes, microdiamond appearance, and study of multiple PTs during
plastic flow, which are currently described as pressure-induced)>**”*, and
(e) astrogeology®’.

Methods

FEM modeling and simulations

A large elastoplastic strain model for mixture of a- and w-Zr using the
mixture rule for all properties coupled with modeling plastic-strain induced
PT kinetics is advanced. The characterization of the kinetic Eq. (1) is done by
iteratively running the FEM simulations such that the difference between
experimental and simulated volume fraction minimizes the residual errors
at all loads and radial points. The robustness of the FEM model is enhanced
by using the shear stress at the sample-diamond contact surface from the
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Fig. 9 | Distributions of various fields in a sample for the case with parameters
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and contact surface are marked on the contours. d Distribution of p? in the sample.

CEA method in ref. 18. In the culet portion, the shear stress from CEA is
used as the boundary condition for modeling contact between sample and
the diamond. At the inclined portion of the sample-anvil contact surface, the
critical friction stress is determined by the minimum between the shear
stress from the CEA method and Coulomb friction. The elastic constitutive
response of polycrystalline Zr is modeled using 3rd order Murnaghan
potential. Pressure-dependent von-Mises yield equation for isotropic per-
fectly plastic polycrystal is used to model the plastic response of the sample.
Associated flow rule in deviatoric stress space is used along with plastic
incompressibility. Kinematic compatibility is enforced by decomposing the
total deformation gradient multiplicatively into elastic, plastic, and trans-
formation components. The elastic response of the diamond is modeled
using 4th order elastic potential for cubic crystal averaged over azimuthal
direction to keep the axial symmetry. The complete system of equations is
given below.

Complete system of equations for FEM simulations?
We summarize all mechanical equations derived in* in the form used in our
simulations and also the physics-based plastic-strain induced kinetic
equation. Vectors and tensors are represented in boldface type, e.g.,
A = Ajye;e;, where A;; are the components in the Cartesian system with unit
basis vectors e; and summation over repeated indices is assumed. The
expression e;e; denotes the direct or dyadic product of vectors, representing
the second-rank tensor. Let A - B = A;Byee; and A: B=tr(A-B) =
,] B; denote the contraction (or scalar product) of tensors over first and
second nearest indices, respectively. Here, tr represents the trace operation
(the sum of the diagonal components) and AlkBk] denotes the matrix
product. Additionally, A, =: 434" and A, =: 454 are respectively the
symmetric and anti- symmetrlc components of A, where “ t “ in the super-
script de51gnates the transpose operation defined as A’ = Ajee;,
given A = Ajee;
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The complete system of equations
The multiplicative decomposition of the total deformation gradient.
F into elastic F, and inelastic F; contributions:

F=2=F, F,
o
=R,-U,-R;-U,
=R,-R,-R.-U,-R;- U,
=R,-U,-U; )
:Fe'Ui
=V, R,-U;
R,=R,-R; U,=R/-U,-R; F,=R,-U,=V, R;
B,=05(F,-F.—I)=0.5(V>—1)

Here, r and r,, represent the position vectors of a material point in the
current and undeformed configurations, respectively; R, and U, are
respectively the elastic right stretch and elastic proper orthogonal ten-
sors from the polar decomposition of F,; R; and U, are respectively the
inelastic right stretch and inelastic proper orthogonal tensors from the
polar decomposition of F;; V, and R, are respectively the elastic left
stretch and elastic proper orthogonal tensors from the polar decom-
position of F,; B, denotes the elastic Eulerian strain tensor and I the unit
tensor.

Since transformation strain is assumed to be pure dilatational, we
obtain for transformational U, and plastic U, deformation right stretch
tensors

_ U,
U, = (1+¢g0)I; U,= m; Ui=0U,-U, (3
Here, g, = —0.0158 denotes the volumetric transformation strain for « —

w Zr and c is the volume fraction of w — Zr. We utilize Lagrangian elastic E°
and plastic EP strains
E°=0.5(F.-F,—1I)

=R B R; F=05(U,U,~I)

4)

where using superscripts for E° and E? instead of subscripts is convenient for
presenting components of these tensors in the main text.

The decomposition of the deformation rate d into elastic, plastic, and
transformation com-ponents:

v
d= Be : Ve_2 + Z(d . Be)u : Ve_z + y + EtO‘."I (5)

Here, ge =B, —2(w- Be)s denotes the Jaumann time derivative of B,; w is
the antisymmetric part of the velocity gradient in the current configuration,
and y signifies the plastic part of the deformation rate.

The third-order Murnaghan potential:

A+2G I+ 2m

y(B,) = 2 —2GI, + ( B —2mI I, + n13> (6)

where A, G, I, m, and n represent the Murnaghan material constants of the
mixture, while I}, I,, and I; are the invariants of B,, defined as:

I, = tr(Be) = B,;; + By + Bass;
I =1 [(0(,)) - u(B))] )
- Bgzs + B, B.s; — 3513 + BB — B§125

=1
- zBeZZBeSS

I, = det(B,)

A simple mixture rule is used to obtain the Murnaghan constants of the
mixture

A=QQ—-0A +cdy;G=(1 -G, + Gy;m= (1 —cym; + cm,
I=01=09 +cy;n=(1—-0n +cn,.
®)
Here, the subscripts 1 and 2 designate « - and w — Zr.
Elasticity rule for the Cauchy (true) stress:
=J; (2B, +1)- 3%
=17 (2B, +1) - (M1 +2GB, + (If} — 2mI,)1 + n 5 + 2mI,B,)
©)

where J, = detF denotes the Jacobian determinant of F,. Compact

expressions for 2 aB , gf;, and are
all—r o _ B, + I,I; 813—3 B, —I,B, + LI
aBe_ ) aBe_ e 1+ aBe_ e e 1%e 2
(10)

Yield surface:

=/3/2s:s— (J),D—O—bp) =0; 0,0 = (1 — Aoy, + coyy; b= (1-c)b, +cb,

(11)

Here, s represents the deviatoric part of the Cauchy stress ¢; p denotes the
pressure; 07, and o7, are the yield strengths in compression of the a - and w -
Zr@p = 0, respectively; b, and b, are their respective linear pressure-
hardening coefficients.

Plastic flow rule:

yl=@:p°° (12)

=yl yln;
y YF Y

In the elastoplastic region (§(s, p, ¢) = 0), |y| is determined from the
consistency condition ¢(s, p, ¢) = 0; whereas |y| = 0 in the elastic region
((/J(s,p, c)<0 or ¢(s,p,c) =0 and (b(s,p, )< O). Equation (12) is an
associated flow rule in the deviatoric stress and plastic strain rate spaces but a
non-associated flow rule with the yield surface Eq. (11) in the whole stress
and plastic strain rate spaces. Associated flow rule with the pressure-
dependent yield condition (11) produces plastic dilatation, which is sup-
pressed by high pressure. Equation (12) results in plastic incompressibility,
which is justified for a void-free material under high pressure.

Accumulated plastic strain:

1=/
q= 3)’

Pressure-dependence of the yield strengths of « - and w — Zr :

(13)

0, =0.82+0.19p(GPa) and oy = 1.66 + 0.083p (GPa).

They were estimated using the peak broadening method™ near the
center of a sample’®,
Plastic-strain induced kinetic equation:

© _d
G =k(1+0,9)(1+0:p) (1~ zc)m(ngg)*pﬁl{(p_pf);
P? =0, + 659,

(14)

Here, p{ is the pressure for initiation of pressure-induced PT under
hydrostatic loading; p is the minimum pressure for initiation of the plastic
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strain-induced PT;p(q) is the loading path; o}, and o}, are the yield
strengths of the « and w phases under ambient pressure, respectlvely, q, is
the value of q at the beginning of PT; k is the kinetic coefficient; §,, 8,, 5, 84
and §; are the material parameters; H(x) is the Heaviside function, such that
H(x) =1 for x>0 & H(x) = 0 for x < 0. The parameters 6, , §,, 85, §, and &5
are obtained using minimization of cumulative error Er in ¢(r) for all
loadings and radii between FEM and experiment:

- -2
Er(k7 81762783584785) = Z Z (Cexp - CFEM) (15)
all load cases |/ all radial points
An alternative error indicator is the difference Ac,,,,, in the for all the

radial points and loads. For the minimization process, Er or Ac,,, is
approximated with a quadratic function in k, é,, 8,, 65, §,, and §;.
Equilibrium equation:

V.e=0 (16)
Geometry and boundary conditions
Figure 1 illustrates the geometry of the DAC. An axisymmetric problem
formulation is considered. The geometry of the sample and the anvil, along
with the boundary conditions, are the same as in'®. The culet size is 500 pm.
The pavilion angle of the diamond anvil is 38.65°. The sample is subjected to
axialloads of 50 N, 100 N,150 N, 170 N, 190 N, 210 N, 230 N, 250 N, 270 N,
290N, 310N, 330N, 350N, 400N, 450 N, 500 N, 550 N, 600 N, 650 N,
700N, 750N, 800N, 850N, 900N, 950N, and 1000 N and the corre-
sponding measured thicknesses at the center respectively are 165 um, 164
um, 163 um, 154 um, 143 um, 128 um, 118 um, 112 um, 105 um, 96 um, 91
um, 87 um, 80 um, 76 um, 68 um, 58 um, 54 um, 48 um, 46 um, 43 um, 39
um, 37 um, 33 um, 31 um, 30 um, and 28 ym. Simulations employ quad-
rilateral 4-node bilinear axisymmetric finite elements (CGAX4R), com-
monly used for large-deformation axisymmetric problems”. Our
simulations utilize a mesh with 3958 elements.

Friction model

At the culet portion of the diamond r < r_, the contact shear stress is given by
Teon = m(1)T, (p) forr<r, (17)

where the distribution of m(r) is obtained from the CEA approach descri-

bed in*.

At the inclined portion of the sample-diamond contact surface, the
critical shear stress is governed by the combined Coulomb friction 7, =
14(0 o) Ocon and m(r,) 7,(p), where g, is the contact normal stress. There
is complete cohesion between the sample and the anvil unless the shear
stress 7, reaches the critical value 7, ie.,

Teon < Tep = MIN[p(0 )0 o, M(re)T,(p)] — cohesion (18)
and when the friction stress reaches 7,, contact sliding occurs, i.e.,
Ty = T, = Min [;4 (Teon) Teons m(rc)ry(p)} — sliding  (19)

Nonlinear elastic equations and material properties for single-
crystal diamond anwvil
The constitutive response of diamond is modeled using fourth-order non-
linear anisotropic elastic potential energy v (E,) given in".

Based on the elasticity law, the Cauchy stress in the diamond can be
obtained using:

ole 81//

7 3E -F (20)

Here, F, is the elastic deformation gradient, and J, = det(F,) is its Jacobian
determinant.

All the elastic constants of diamond are from' and explicitly given
below (all in GPa):

¢ = 1081.9,¢;, = 125.2,¢,, = 578.6
€y = —7611, ¢y, = —1637, c53 = 604,

Crag = —199, €15 = —2799, €55 = —2799
Cyse = —1148,¢)yy, = 26687, ¢;,, = 9459, an
Clip = 6074, ¢ 1py = —425

Crig = —1385,¢1155 = 10741, ¢ pss = —264,

Crags = 8192, €145 = 487
Capga = 11328, Cppos = 528

Elastic properties of polycrystalline

a-and w — Zr
The elastic constitutive response of polycrystalline Zr is modeled using

the third-order nonlinear Murnaghan potential given in Eq. (6). Among the
5 elastic constants in the Murnaghan potential, Lame constant A and shear
modulus G are associated with the quadratic terms in B,, while the
remaining constants /, m and #, are associated with the cubic terms in B,.
These constants are calibrated using the bulk modulus K and its pressure
derivative %€ @p = 0, and the shear modulus G and its pressure-derivative
46 %@ =0. K @p =0 and ‘”; @p = 0 are obtained from fitting pressure-
volume data, obtained in hydrostatic DAC experiments, into the 3rd order
Birch-Murnaghan equation of state (EOS). G@p = 0 and 4¢ p @p =0 are

taken from the experimental results*"** The expresswns relatlng the Mur-
naghan constants A, G, I, m, n and K, G,4 and @p = 0 are as follows:

7dp
K 3/1+2G7 dK K,:_2(9l+n); d_G:G,:—2G—6K—6m+n
3 dp 9K dp 6K

(22)

It can be observed that there are only 2 equations to solve for the 3
third-order constants. Therefore, there is an indeterminacy of degree 1.
However, it can be easily demonstrated that for any pressure, when the
deviatoric part of the superposed deformation is small, the stresses and
energy can be completely expressed in terms of K, G, K’, and G’ only.
Hence, one of the constants, [, m, or n, can be arbitrarily chosen, and the
other two are determined from Eq. (22). The constants used are (all in GPa):

A =68.11,G = 36.13,] = —147.01,m = —122.75,n = —100 fora — Zr
A=7233,G=451,l=—149.56,m = —179.53,n = —4 forw — Zr
(23)

Some FEM implementation detail

A computational algorithm similar to that in** was implemented as a user
material subroutine UMAT in the FEM code ABAQUS. Due to the highly
complex and strongly nonlinear boundary-value problem, various diver-
gence of the solutions issues been encountered. Divergence typically arises
due to mesh distortion, convergence problems in the iterative solver of
global equilibrium equations, or failure of the algorithms (including radial
return-mapping algorithm) for solving local non-linear constitutive equa-
tions. The following methods embedded in ABAQUS have been
implemented:

1. Mesh Distortion: This issue was addressed by implementing an initial
mesh configuration (pre-curvature) that maintains mesh quality after
deformation, considering that material flows radially outward during
compression.

2. Adaptive Time-Stepping: To handle non-linearity originating from
material models (e.g, nonlinear elasticity, plasticity with pressure
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hardening, and PT), boundary conditions, contact mechanics between the
sample and anvils, and phase transformation kinetics, adaptive time-
stepping was employed. Smaller load increments were used to manage
nonlinearity more effectively, thereby improving convergence behavior.

3. Consistent Tangent Moduli: The correct derivation and program-
ming of consistent tangent moduli (see””) were crucial for solving the dis-
cretized governing equations accurately, enhancing the solution’s stability
and convergence.

Materials
The material studied in this paper is the same as that used by Zhilyaev et al*.
and was purchased from Haines and Maassen (Bonn, Germany). It is
commercially pure a-Zr (with Fe: 330 ppm; Mn: 27 ppm; Hf: 452 ppm; S:
<550 ppm; Nd: < 500 ppm). The initial sample slab, with a thickness of 5.25
mm, was cold rolled to achieve a final thickness of approximately 165 pm,
resulting in a plastically pre-deformed sample with saturated hardness. The
Vickers microhardness test method was utilized to characterize the hardness
of the sample at various stages during cold rolling. A 3 mm diameter disk
was punch-cut from the obtained thin-rolled sheet for unconstrained
compression experiments in a diamond anvil cell (DAC). For hydrostatic
compression experiments, small specks approximately 20 um in size were
chipped off from the plastically pre-deformed sample using a diamond file.
The hydrostatic high-pressure X-ray diffraction measurements were
conducted to estimate the equation of state, bulk modulus, and its pressure
derivative at ambient pressure using the same DAC as was used for non-
hydrostatic DAC experiments. For these experiments, small Zr specks of
approximately 20 um in size, as already mentioned, were loaded into the
sample chamber along with silicone oil and copper chips, serving as the
pressure transmitting medium and pressure marker, respectively. The
sample chamber was prepared by drilling a hole ~ 250 um in diameter in
steel gaskets pre-indented using diamond anvils, reducing their initial
thickness from ~ 250 um to about 50 pm. Hydrostatic high-pressure
experiments were conducted in small pressure increments of around
0.2 GPa, up to a maximum pressure of 16 GPa.

Experimental techniques and methodology

Unconstrained plastic compression experiments were conducted by
applying various compression loads to a plastically pre-deformed Zr sample
loaded into the DAC without the use of any constraining gasket. The sample
was subjected to an axial load ranging from 50 N to the maximum of 1000 N
with 26 increments.

In situ XRD experiments were performed at the 16-BM-D beamline of
HPCAT, Sector 16 at the Advanced Photon Source, utilizing focused
monochromatic X-rays with a wavelength of 0.3096(3) A and a size of
approximately 6pm x 5 pm (full width at half maximum (FWHM)). For
each load condition, the sample was radially scanned across the entire culet
diameter (500 pm) in steps of 10um, and 2D diffraction images were
recorded using a Perkin Elmer flat panel detector. Thus, determined elastic
strains are averaged over two points for each radius. At each load step, an
X-ray absorption scan was also recorded in the same 10pm steps to obtain
the thickness profile of the sample under the given load condition, see
details in".

The 2D diffraction images were converted to a 1D diffraction pattern
using FIT2D software™*, and subsequently analyzed through Rietveld
refinement'*”” using GSAS 11" and MAUD" software. This analysis aimed
to obtain lattice parameters, phase fractions and texture parameters for both
a and w- Zr. The different angular dependence of the grain size and
microstrain contributions to the diffraction peak broadening allows for their
separation. We employed a whole powder pattern fitting approach using the
modified Rietveld method, as implemented in MAUD software™, which
accounts for texturing and stress anisotropy.

In axial geometry (i.e., when the incident X-ray beam is directed
along z-axis) (Fig. 1), diffraction condition is satisfied primarily for
crystallographic planes that are nearly parallel (with plane normal per-
pendicular) to the load axis. Therefore, the observed shifts in diffraction

peaks can be practically utilized to estimate strains in the radial and
azimuthal directions viz. E{, = E;, and E;, = E, averaged over the
sample thickness. Ideally, the angle between the load axis and diffraction
vector () should be 90°to accurately estimate these strain components.
However, since achieving a 90°angle between the load axis and the dif-
fraction vector is not possible in axial geometry, we can instead use the
diffraction peak with the smallest diffraction angle, 6. In our experiments
with a-Zr, the (100) diffraction peak appears at 8 = 3.18°for the X-rays
used (A =3.1088 A) at ambient pressure. This corresponds to y = 86.82°
and can be used to estimate the strain components E;, and Eg,. Note that
the (100) peak corresponds to the a lattice parameter because the c-axis of
a-Zr is predominantly aligned along the loading direction, as determined
by our texture analysis.

For w-Zr, the (001) diffraction peak appears at § = 2.85°gy/ = 87. 15()
and can be used to estimate the strain components Ef, and Egq. The (001)
peak of w-Zr corresponds to the c lattice parameter, and according to texture
analysis, the c-axis of w-Zr is predominantly perpendicular to the loading
direction of the DAC.

Thus, strain components E,, and Eg, for a and w phases of Zr have
been obtained for each loading condition at each scanning position using the
following equations:

Fora — Zr :

E = 0.5( iy ao — 1 |using ¢ = 0° sector of(100) diffraction ring

For w — Zr :
2

E_ =0. 5< Cooe/ co — 1 | using ¢ = 0°sector of(001) diffraction ring

2

Egy = 05((% 90° /Co -1

Egy =05 < (a¢ o000/ ao 1) using ¢ = 90° sector of(100) diffraction ring
)using ¢ = 90°sector of(100) diffraction ring

(24)
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