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Quantitative kinetic rules for plastic
strain-induced α -ω phase transformation
in Zr under high pressure
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Maddury Somayazulu2 & Nenad Velisavljevic2,4

Plastic strain-induced phase transformations (PTs) and chemical reactions under high pressure are
broadly spread in modern technologies, friction and wear, geophysics, and astrogeology. However,
because of very heterogeneous fields of plastic strainEp and stress σ tensors and volume fraction c of
phases in a sample compressed in a diamond anvil cell (DAC) and impossibility of measurements of σ
and Ep, there are no strict kinetic equations for them. Here, we develop a kinetic model, finite element
method (FEM) approach, and combined FEM-experimental approaches to determine all fields in
strongly plastically predeformed Zr compressed in DAC, and specific kinetic equation for α-ω PT
consistent with experimental data for the entire sample. Since all fields in the sample are very
heterogeneous, data are obtained for numerous complex 7D paths in the space of 3 components of
the plastic strain tensor and 4 components of the stress tensor. Kinetic equation depends on
accumulated plastic strain (instead of time) and pressure and is independent of plastic strain and
deviatoric stress tensors, i.e., it can be applied for various above processes. Our results initiate kinetic
studies of strain-induced PTs and provide efforts toward more comprehensive understanding of
material behavior in extreme conditions.

In comparison with hydrostatic loading, plastic straining drastically
decreases pressure for PT1–4 (and chemical reactions5–7, which are not
central part of the current work), produces new phases, alters PT kinetics
from time-dependent to plastic strain dependent, replaces reversible PTs
with irreversible, and produces nanostructured materials1–3,8–11. That leads
these PTs into a special category, strain-induced PTs12–14. In contrast to
traditional pressure-induced PTs, which originate at pre-existing defects
that cause stress concentration, strain-induced PTs initiate at defects gen-
erated during plastic flow. The only existing defect that can reduce PT
pressure by one to two orders of magnitude or up to 70 GPa (observed for
graphite-diamond PT2) is a dislocation pileup, as confirmed by analytical12,
atomistic15, and phase field16,17 modeling. While there are successful in-situ
studies of strain-induced PTs under compression in DAC (Fig. 1)4,11,14,18,19

and torsion in rotationalDAC4,10,11,14,19, there is onemajor challenge:no strict
kinetic equations for strain-induced PTs. The reason for the lack of funda-
mental equations is that since they occur under the action of 6 components

each of plastic strain Ep and stress σ tensors, the corresponding kinetics
should depend on Ep and σ, amounting to 12 variables in total; however,
neither Ep nor σ are experimentally measurable. There are only simplified
empirical expressions. For example, in ball milling, kinetics of trimerization
reaction is determined in terms of number of balls’ impacts20. During high-
pressure torsion, the volume fraction c of ω-Zr during α-ω PT was deter-
mined as a functionof shear strain (definedby a simplified equation) for one
of the radii8, in which c was measured postmortem after unloading.
Moreover, the effect of pressure p was not included, and it was not verified
whether the proposed kinetics is valid for other radii. In recent in-situ
measurements for compression in DAC and torsion in rotational DAC, the
kinetic equation dc/dq = f(q,p,c) for α-ω PT in Zr (where q is the accumu-
lated plastic strain) was based on data at the sample symmetry axis only19.
While radial �c and �p distributions were measured as an average over the
sample thickness, the averaged �q could only be approximately evaluated at
the sample symmetry axis. There, one can assume homogenous c, p, and q
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fields along the sample thickness, implying that material is under uniaxial
compression. However, such equation was not checked for finite radii,
where significant and heterogeneous shears are present, because q cannot be
strictly evaluated without simulations. Also, fields of c and q are found to be
strongly heterogeneous along the symmetry axis too, see below. Another
global problem is that all constitutive (including kinetics) equations should
be determined for material points (i.e., Lagrangian view of the motion).
However, the X-ray measurements are performed in spatial points (i.e.,
Eulerian description), and due to large plasticflow, differentmaterial points
pass through the X-ray beam at different loads. Independently, theoretically
derived kinetics12 was used for FEM simulations of the processes in
traditional21,22 and rotational23,24 DAC but with some model parameters.

Results and discussion
Generally, kinetic equation for strain-induced PTs should have a form dc/
dq = f(Ep, σ, c). Recently, we developed coupled experimental-analytical-
computational approaches for finding fields of Ep and σ in the entire DAC
Zr sample18. Part of this method, coupled experimental-analytical (CEA)
approach, was utilized for determining the distribution of the friction stress
between sample and diamond. PT was not modeled, and the field of �c
averagedover the sample thickness fromexperimentswas used as input data
uniformly along the thickness. Here, we develop a new Combined
Experimental-FEM approach (CE-FEM), which includesmodeling α-ω PT
and determining Ep, σ, and c fields in a strongly plastically predeformed Zr
sample and kinetic equation for α-ω PT. This is done by iteratively solving
an inverse problem on determining 6 material parameters δi and k in the
kinetic Eq. (1). Zr samplewas subjected tomultiple rolling until its hardness,
grain size, and dislocation density no longer changed19,25 with further

straining, which excludes their effects on PT and thereby, significantly
simplify the problem.

We use the same experimental data for the strongly pre-deformed Zr
sample, contact friction stress distribution between diamond anvils and
sample determinedbyCEAmethod from18. Theflowchart for the developed
CE-FEM approach is presented in Fig. 2.

The complete system of equations for coupled elastoplastic flow and
strain-induced PTs is presented in Eq. (2)–(20). FEM formulation is pre-
sented in the method section. Distribution of friction shear stress at the
contact between sample and diamond obtained from18 in addition to elas-
toplastic properties are used as the input data. While mechanical part is the
same as in our previous large-strain models18,22, a new kinetic equation

dc
dq ¼ kð1þ δ1qÞð1þ δ3pÞ 1� δ2c

� � σωy0
cσαy0þ 1�cð Þσωy0

pðqÞ�pdε
pdh�pdε

� �
H p� pdε
� �

; pdε ¼ δ4 þ δ5q0

ð1Þ

is included and coupled to the mechanical equation, which results in a
generalization in comparisonwith12. Here, pdh is the pressure for initiation of
pressure-induced PT under hydrostatic loading (pdh ¼ 5:4GPa), pdε is the
minimumpressure for initiation of the plastic strain-induced PT, p(q) is the
loading path, σαy0 and σ

ω
y0 are the yield strengths of the α andω phases under

ambient pressure, respectively,q0 is the value of q at the beginningof PT, i.e.,
at p ¼ pdε ; since q0=const after the PT starts, pdε at each material point is
heterogeneously distributed constant during PT.

Equation (1) reduces to the theoretically derived physics-based kinetics
in12, if δ1 ¼ δ3 ¼ δ5 ¼ 0 and δ2 ¼ 1, which was used in previous FEM
simulations13,21–23. It is based on assumption that, instead of tensorial vari-
ables Ep and σ, their scalar counterparts, q and p, can be used. This
assumption greatly simplifies theory and will be justified by experiment.
Figure 3a, b shows comparison of the FEM simulated and experimental
radial distributions of �c for the case with δ1 ¼ δ3 ¼ δ5 ¼ 0; δ2 ¼ 1, and
pdε ¼ 2.70 GPa.Despite the significantdeviations, the general trends (i.e., the
main physics) are described satisfactorily. To achieve improved quantitative
correspondence, we employed two ways.

(a) Assuming δ5 ¼ 0, i.e., constant pdε as claimed in18,19, we found the
simplest linear dependence of the proportionality factor on p and q; and
slightly corrected dependence on c, as well as slightly corrected value of pdε .
Condition δ2 ¼ 1 implies that dc/dq = 0 for c = 1, which is not the case for
Zr. Thus, despite introducing 6 fitting parameters, obtained kinetic Eq. (1)
remains the physics-based. After FEM modeling of sample loading in
experimentswithdifferentmaterial parameters inEq. (1), actual parameters
have been chosen from the cumulative error Er minimization in Eq. (15)
between theoretical and experimental volume fractions of ω-Zr averaged
over the sample thickness for all loadings and radii. The optimal set of
material parameters is found as k ¼ 0:75; δ1 ¼ 12:0; δ2 ¼ 0:925; δ3 ¼
�0:048; andpdε ¼ 2:65GPawith Er = 1.19. Figure 3c, d shows comparison
of the calculated and experimental radial distributions of�c averagedover the
sample thickness for 12 different loads. Correspondence between calculated
and experimental curves is good for all cases as the difference �Δcmax< 0.1 in
the volume fraction for all the radial points and load cases but one. The
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Fig. 1 | DAC schematic.

Fig. 2 | The flowchart of the interaction between
experimental and FE methods.
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maximum of difference between experimental and calculated value of �c is
�Δcmax ¼0.132 at the edge of a sample for the case �pmax = 5.58 GPa.

(b) Much smaller �Δcmax with smaller Er can be reached within a
simpler model with δ1 ¼ δ3 ¼ 0 if we weaken the strict statement in18,19

that pdε is getting steady and independent of plastic strain, and assume
weak linear dependence of pdε on q0 with small non-zero δ5: Mini-
mization of the Er for such model resulted in k ¼ 5:0; δ2 ¼ 0.775,

δ1 ¼ δ3 ¼ 0:0; δ4 ¼ 3.07, δ5 ¼ –1.0 with Er = 0.869 and �Δcmax ¼ 0.08. If
instead of Er we minimize �Δcmax; we obtain k ¼ 5:2; δ2 ¼ 0.803,
δ1 ¼ δ3 ¼ 0:0; δ4 ¼ 3.07, δ5 ¼ −1.0 with close Er = 0.871 but slightly
better �Δcmax ¼0.07. Figure 4 shows comparison of the calculated and
experimental radial distributions of �c. Figure 5 presents a comparison
between experiments and FEM simulations for �c versus �p for different
radii for these two cases.

Fig. 3 | Comparison of simulated and experi-
mental radial distributions of

--
c for the 6 lower

and 6 higher loadings marked with averaged
through the thickness pressure at the symmetry
axis

--
pmax. Panels (a, b) for the model in which

kinetic equation formulated in12 is calibrated with
parameters δ1 ¼ δ3 ¼ δ5 ¼ 0; δ2 ¼ 1; k ¼ 5:87,
and pdε ¼ δ4 ¼ 2:70GPa18. Panels (c, d) for the
model with parameters δ1 ¼ 12, δ2 ¼ 0:925; δ3 ¼
δ5 ¼ 0; k ¼ 0:75, and δ4 ¼ pdε ¼ 2:65 GPa in the
kinetic equation and minimized error Er = 1.19.
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Fig. 4 | Comparison of simulated and experi-
mental radial distributions of

--
c for the 6 lower

and 6 higher loadings marked with averaged
through the thickness pressure at the symmetry
axis

--
pmax. a, b for the model with parameters

δ1 ¼ δ3 ¼ 0; δ2 ¼ 0:775; k ¼ 5:0, and pdε ¼ 2:65�
q0 � 0:42
� �

in the kinetic equation and minimized
error Er ¼ 0:869. Panels (c, d) for the model with
parameters δ1 ¼ δ3 ¼ 0; δ2 ¼ 0:803; k ¼ 5:20, and
pdε ¼ 2:65� ðq0 � 0:42Þ in the kinetic equation and
minimized error �Δcmax = 0.071.
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The fact thatwe claimed in18,19 thatpdε is independent ofE
p andEp path,

and here we used a weak linear dependence of pdε on q0 is not contradictory.
Independence of pdε of E

p and Ep path in18,19 is a correct statement to within
some scatter, based on data averaged over the sample thickness, and also
should be understood asymptotically with increasing plastic strain. Much
more precise method with a weak linear dependence of pdε on q0 allowed a
better correspondencewithmuch larger data set. Still, for some applications
this dependence of pdε on q0 can be neglected. Also, minimum pressure for
strain-induced PTs is determined by the dislocation pileup with the largest
stress concentrator (i.e., with largest number of dislocationsN), i.e., by tail in
distribution of N in different pileups in the representative volume. Max-
imum local N may reach steady state at larger plastic strain than the aver-
age value.

Figure 6a, b demonstrates a good correspondence between experi-
ments and FEM simulations for the thickness profile of the sample, and

radial and azimuthal elastic strains averaged over the sample thickness. This
shows that not only PT kinetics but also stresses and elastic strains and
vertical displacements are well described, and they are mutually consistent.
Results for 3 above sets of material parameters are very close and are shown
for the model with minimum �Δcmax ¼0.07 only.

Due to plastic incompressibility conditions, three of four components
of the plastic strain tensor for an axisymmetric formulation, normalEp

rr ,E
p
zz ,

and shear Ep
rz are independent. Note that we characterize the straining path

in termsof components of theLagrangianplastic strain tensorEp because, in
contrast to its Eulerian counterpart, it is independent of the rigid-body
rotationsofmaterial particles. For selectedmaterial points (Fig. 7a), Fig. 7b, c
(from the start of loading to the endof PT) andFig. 7d, e (from the endof PT
to the end of the loading) show two 2D projections of the 3D straining
trajectory. Variation of pressure along each path is also given. One can see a
broad variety ofmagnitudes and loading paths in 4D space Ep

rr ,E
p
zz ,E

p
rz ; and
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p before, during, and after the PT. While straining trajectories after PT are
irrelevant for the current study, they justify the large varieties of Ep and Ep

paths for which rules obtained in25 (i.e., pressure-dependent yield strength,
dislocation density, and crystallite size are independent of Ep and Ep path)
are valid. Points along the symmetry axis andplanehave zero shear strain, as
expected. Trajectories with maximum plastic shear strain are located at the
contact surface. Large shear strain generates tensile strain Ep;zz because the
length of the vertical lateral sides of a material cube increases after its
shearing to the parallelopiped with the same height.

Thus, the robust kinetic equation forα-ωPT inZr is determined,which
depends on accumulated plastic strain and pressure and is independent of
plastic strain and deviatoric stress tensors. It is valid for a broad range of 3D
plastic strain tensor andpressuremagnitudes and loadingpaths (resulting in
variety of the corresponding stress deviators), as well as 2D pressure and
accumulated plastic strain loading paths (shown in Fig. 8a for selected
material points). Thismeans that it canbe applied formodeling andanalyses
of various processes involving strain-induced PTs under high pressure.
Moreover, 2D volume fraction evolution versus accumulated plastic strain

Fig. 6 | Comparison of simulated and experi-
mental radial distributions of elastic strains and
thickness for the model with parameters
δ1 ¼ δ3 ¼ 0; δ2 ¼ 0:803, k ¼ 5:20, and pd

ε ¼
2:65� q0 � 0:42

� �
in the kinetic equation.

a Comparison of the elastic radial �Ee
rrðrÞ and the

hoop �Ee
θθðrÞ strains in a mixture averaged over the

sample thickness. b The sample thickness profiles
from the X-ray absorption and FEM.
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superposed by pressure for various selected material points is shown in
Fig. 8b.

Evolution of the fields of components of the tensorEp, c, q, and p in the
sample is presented in Fig. 9; evolution of the fields of components of the σ
are shown in Fig. 10a–c; none of themcan bemeasured experimentally. The
distributionof pdε across the sample is shown inFig. 10d.Unexpectedly, local
maximum of plastic strain Ep

rr is observed at the center of sample, which
results in the maximum of q. In combination with the maximum normal
stresses and therefore, pressure at the center of sample, PT starts there.
While there are other zones with larger local maximum of q at the contact
surface close to the edge of the diamond culet and at the symmetry plane at
the end of the culet, pressures in them are initially well below theminimum
PT pressure pdε , and therefore PT does not start.With further loading, these
regions partially or completely flow outside the culet region not studied
experimentally.With further compression,ω-Zr zone grows from the center
to the periphery and contact surfaces anisotropically, and volume fraction in
the zone increases. Much faster growth towards the periphery is partially
due to radial flow of the already transformed regions. Evidently, very het-
erogeneous distributions of q and c along the thickness at the symmetry axis
is obtained, violating the main assumption for the derivation of the kinetic
equation in18,19.

Note that since we found that for each radius PT starts at the
symmetry plane, where shears are zero, independence of pdε of E

p and
straining path can be strictly claimed for zero shears only. However,
due to averaging of experimental data over the thickness, and since
away from the center, the boundary between transformed and non-
transformed regions are close to vertical, data from the regions with
shears contribute as well. This is not the case for the symmetry axis.
Our results suggest that the statement in18,19 of the independence of pdε
of the plastic strain tensor and its path after severe plastic deformations
requires further justification with larger strains and shear components.
Torsion in rotational DAC can significantly extend classes of straining
paths. Also, one may need to distinguish between the relatively small
increment ofmonotonous deformation inDAC and preliminary severe
deformation by rolling at normal pressure. While rolling has already
produced steady crystallite size, dislocation density, and hardness,
under high-pressure compression in DAC, another steady state was
reached with smaller steady crystallite size and larger dislocation
density25.

To summarize, a CE-FEM method is developed including (a) kinetic
model; (b) FEM modeling of α-ω PT and coupled plastic flow; (c) experi-
mental input in terms of pressure-dependent elastoplastic properties and
friction condition between sample and diamond, and (d) determination of
Ep, σ, and c fields and kinetic equation for strain-induced α-ω PT in a
strongly plastically predeformed Zr sample as an important example
material. This is done by iteratively solving an inverse problem on deter-
mination of 6 material parameters in the physics-based kinetic equation. In

such a way, the common issue in high-pressure research – the strong het-
erogeneity of all fields – is reframed as a direction for development. Very
good correspondence between calculated and experimental curves is
observed for the volume fraction of ω-Zr and radial and azimuthal elastic
strains averaged over the sample thickness, as well as thickness profile of the
sample. Obtained broad variety of magnitudes and loading paths in 4D
space Ep

rr , E
p
zz , E

p
rz; and p (and corresponding varieties of the stress deviator

paths) in a sample proves that the kinetic equation is independent of plastic
strain and deviatoric stress tensors and also justifies the large varieties of Ep

andEp paths forwhich rule obtained in25 (i.e., that pressure-dependent yield
strength, dislocation density, and crystallite size are independent of Ep and
Ep path) are valid.We found that pdε is aweakly decreasing linear function of
q; this refines the rule found in18,19 that with increasing plastic strain and
within some scatter, pdε is asymptotically independent of q, Ep; and Ep path.
Since it is found in26 that during α-ω PT in Zr, dislocation density and
crystalline size are unique functions of the volume fraction of ω-Zr inde-
pendent of Ep and Ep path, and p, we can immediately obtain explicit
kinetics for these parameters using Eq. (1). Generalization of our approach
and Eq. (1) for the case when both direct and reverse PTs occur
simultaneously12, e.g., for strain-induced PT in Fe27, represents the next step
of its development. Obtained results initiate quantitative kinetic studies of
strain-induced PTs and promise to bring efforts in the above fields to a
qualitatively higher level. Similar methods can be applied for other mate-
rials, and also extended for annealedmaterials and high strain rates, and for
finding kinetics for other parameters, like dislocation density and crystallite
size, includingmaterials without PTs. Formanynumerical treatments of PT
in elastoplastic materials28–32, kinetic Eq. (1) can substitute simplified
kinetics used in these publications.

Kinetic equation of the type of Eq. (1) can be used for quantitative
modeling and optimization of the processes involved in (a) defect-induced
synthesis of nanostructured materials, phases, and nanocomposites by
severe plastic deformation with high-pressure torsion10,11 and ball milling20,
(b) friction and wear33–35, (c) surface processing (polishing, turning,
scratching, etc.)36, (d) high-pressure geology (mechanism of the deep-focus
earthquakes, microdiamond appearance, and study of multiple PTs during
plastic flow, which are currently described as pressure-induced)2,33,37,38, and
(e) astrogeology6,7.

Methods
FEMmodeling and simulations
A large elastoplastic strain model for mixture of α- and ω-Zr using the
mixture rule for all properties coupled withmodeling plastic-strain induced
PTkinetics is advanced.The characterizationof the kinetic Eq. (1) is doneby
iteratively running the FEM simulations such that the difference between
experimental and simulated volume fraction minimizes the residual errors
at all loads and radial points. The robustness of the FEMmodel is enhanced
by using the shear stress at the sample-diamond contact surface from the

Fig. 8 | 2D projections of the 3D plastic strain—
pressure—volume fraction trajectories for the
model with parameters δ1 ¼ δ3 ¼ 0; δ2 ¼ 0:803,
k ¼ 5:20, and pd

ε ¼ 2:65� q0�0:42
� �

in the
kinetic equation. a Pressure-accumulated plastic
strain-volume fraction loading path trajectories and
(b) evolution of volume fraction c of ω� Zr as a
function of accumulated plastic strain superposed
by the pressure (in GPa) from the start of PT to the
end of PT for various material points in Fig. 7a.
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Fig. 9 | Distributions of various fields in a sample for the case with parameters
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pressure p for three loadings characterized by �pmax. d–f Fields of components of
Lagrangian plastic strains for three loadings characterized by �pmax.
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CEA method in ref. 18. In the culet portion, the shear stress from CEA is
used as the boundary condition for modeling contact between sample and
thediamond.At the inclinedportionof the sample-anvil contact surface, the
critical friction stress is determined by the minimum between the shear
stress from the CEAmethod and Coulomb friction. The elastic constitutive
response of polycrystalline Zr is modeled using 3rd order Murnaghan
potential. Pressure-dependent von-Mises yield equation for isotropic per-
fectly plastic polycrystal is used to model the plastic response of the sample.
Associated flow rule in deviatoric stress space is used along with plastic
incompressibility. Kinematic compatibility is enforced by decomposing the
total deformation gradient multiplicatively into elastic, plastic, and trans-
formation components. The elastic response of the diamond is modeled
using 4th order elastic potential for cubic crystal averaged over azimuthal
direction to keep the axial symmetry. The complete system of equations is
given below.

Complete system of equations for FEM simulations22

Wesummarize allmechanical equations derived in22 in the formused in our
simulations and also the physics-based plastic-strain induced kinetic
equation. Vectors and tensors are represented in boldface type, e.g.,
A ¼ Aijeiej, whereAij are the components in theCartesian systemwith unit
basis vectors ei and summation over repeated indices is assumed. The
expression eiej denotes the direct or dyadic product of vectors, representing
the second-rank tensor. Let A � B ¼ AikBkjeiej and A : B ¼ trðA � BÞ ¼
AijBji denote the contraction (or scalar product) of tensors over first and
second nearest indices, respectively. Here, tr represents the trace operation
(the sum of the diagonal components), and AikBkj denotes the matrix
product. Additionally, As ¼: AþAt

2 and Aa ¼: A�At

2 are respectively the
symmetric and anti-symmetric components of A, where ‘ t ‘ in the super-
script designates the transpose operation defined as At ¼ Ajieiej,
given A ¼ Aijeiej.
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Fig. 10 | Distributions of components of Cauchy stress in a sample with para-
meters δ1 ¼ δ3 ¼ 0; δ2 ¼ 0:803; k ¼ 5:20, and pd

ε ¼ 2:65� q0 � 0:42
� �

in
the kinetic equation for three loadings. a Results for almost pure α� Zr at �pmax ¼

2:75GPa. bResults for amixture ofα - andω� Zr at �pmax ¼ 4:74GPa. cResults for a
mixture of α - andω� Zr at �pmax ¼ 8:20 GPa. The symmetry plane, symmetric axis,
and contact surface are marked on the contours. dDistribution of pdε in the sample.
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The complete system of equations
The multiplicative decomposition of the total deformation gradient.
F into elastic �Fe and inelastic Fi contributions:

F ¼ ∂r
∂r0

¼ �Fe � Fi

¼ �Re � �U e � Ri � U i

¼ �Re � Ri � Rt
i � �U e � Ri � U i

¼ Re � U e � U i

¼ Fe � U i

¼ Ve � Re � U i;

Re ¼ �Re � Ri; U e ¼ Rt
i � �U e � Ri; Fe ¼ Re � U e ¼ Ve � Re;

Be ¼ 0:5 Fe � Ft
e � I

� � ¼ 0:5 V2
e � I

� �

ð2Þ

Here, r and r0 represent the position vectors of a material point in the
current and undeformed configurations, respectively; �Re and �U e are
respectively the elastic right stretch and elastic proper orthogonal ten-
sors from the polar decomposition of �Fe;Ri and U i are respectively the
inelastic right stretch and inelastic proper orthogonal tensors from the
polar decomposition of Fi;Ve and Re are respectively the elastic left
stretch and elastic proper orthogonal tensors from the polar decom-
position of Fe;Be denotes the elastic Eulerian strain tensor and I the unit
tensor.

Since transformation strain is assumed to be pure dilatational, we
obtain for transformational U t and plastic Up deformation right stretch
tensors

U t ¼ 1þ �εt0c
� �

I; Up ¼
U i

1þ �εt0c
� � ; U i ¼ U t � Up ð3Þ

Here,�εt0 ¼ �0:0158 denotes the volumetric transformation strain forα !
ωZr and c is the volume fraction ofω� Zr.We utilize Lagrangian elasticEe

and plastic Ep strains

Ee ¼ 0:5 Ft
e � Fe � I

� � ¼ Rt
e � Be � Re; Ep ¼ 0:5 Up � Up � I

� �
ð4Þ

whereusing superscripts forEe andEp insteadof subscripts is convenient for
presenting components of these tensors in the main text.

The decomposition of the deformation rate d into elastic, plastic, and
transformation com-ponents:

d ¼ B
∇
e � V�2

e þ 2ðd � BeÞa � V�2
e þ γþ �εt0 _cI ð5Þ

Here,B
∇
e ¼ _Be � 2 w � Be

� �
s denotes the Jaumann timederivativeofBe;w is

the antisymmetric part of the velocity gradient in the current configuration,
and γ signifies the plastic part of the deformation rate.

The third-order Murnaghan potential:

ψ Be

� � ¼ λþ 2G
2

I21 � 2GI2 þ
l þ 2m

3
I31 � 2mI1I2 þ nI3

� �
ð6Þ

where λ;G; l;m, and n represent the Murnaghan material constants of the
mixture, while I1; I2, and I3 are the invariants of Be, defined as:

I1 ¼ tr Be

� � ¼ Be11 þ Be22 þ Be33;

I2 ¼ 1
2 tr Be

� �� �2 � tr B2
e

� �h i
¼ 1

2Be22Be33 � B2
e23 þ Be11Be33 � B2

e13 þ Be22Be11 � B2
e12;

I3 ¼ det Be

� �
ð7Þ

Asimplemixture rule is used to obtain theMurnaghan constants of the
mixture

λ ¼ ð1� cÞλ1 þ cλ2;G ¼ ð1� cÞG1 þ cG2;m ¼ ð1� cÞm1 þ cm2

l ¼ 1� cð Þl1 þ cl2; n ¼ 1� cð Þn1 þ cn2:

ð8Þ
Here, the subscripts 1 and 2 designate α - and ω� Zr.

Elasticity rule for the Cauchy (true) stress:

σ ¼ J�1
e 2Be þ I
� � � ∂ψ

∂Be

¼ J�1
e 2Be þ I
� � � λI1I þ 2GBe þ lI21 � 2mI2

� �
I þ n ∂I3

∂Be
þ 2mI1Be

� �
ð9Þ

where Je ¼ det Fe denotes the Jacobian determinant of Fe. Compact
expressions for ∂I1

∂Be
, ∂I2∂Be

, and ∂I3
∂Be

are:

∂I1
∂Be

¼ I;
∂I2
∂Be

¼ �Be þ I1I;
∂I3
∂Be

¼ Be � Be � I1Be þ I2I

ð10Þ
Yield surface:

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2s : s

p
� σy0 þ bp

� �
¼ 0; σy0 ¼ 1� cð Þσαy0 þ cσωy0; b ¼ 1� cð Þb1 þ cb2

ð11Þ

Here, s represents the deviatoric part of the Cauchy stress σ; p denotes the
pressure;σαy0 and σ

ω
y0 are the yield strengths in compressionof theα - andω -

Zr@p ¼ 0, respectively; b1 and b2 are their respective linear pressure-
hardening coefficients.

Plastic flow rule:

γ ¼ jγj sffiffiffiffiffiffiffiffi
s : s

p ¼ jγjn; jγj ¼ ðγ : γÞ0:5 ð12Þ

In the elastoplastic region ðϕðs; p; cÞ ¼ 0Þ; jγj is determined from the
consistency condition _ϕðs; p; cÞ ¼ 0; whereas jγj ¼ 0 in the elastic region
ϕðs; p; cÞ < 0�

or ϕðs; p; cÞ ¼ 0 and _ϕðs; p; cÞ < 0�. Equation (12) is an
associatedflowrule in thedeviatoric stress andplastic strain rate spaces but a
non-associated flow rule with the yield surface Eq. (11) in the whole stress
and plastic strain rate spaces. Associated flow rule with the pressure-
dependent yield condition (11) produces plastic dilatation, which is sup-
pressed by high pressure. Equation (12) results in plastic incompressibility,
which is justified for a void-free material under high pressure.

Accumulated plastic strain:

_q ¼
ffiffiffi
2
3

r
γ
		 		 ð13Þ

Pressure-dependence of the yield strengths of α - and ω� Zr :

σαy ¼ 0:82þ 0:19p ðGPaÞ and σωy ¼ 1:66þ 0:083p ðGPaÞ:
They were estimated using the peak broadening method39 near the

center of a sample18.
Plastic-strain induced kinetic equation:

dc
dq ¼ k 1þ δ1q

� �
1þ δ3p
� �

1� δ2c
� � σωy

cσαy0þ 1�cð Þσωy0
p qð Þ�pdε
pdh�pdε

� �
H p� pdε
� �

;

pdε ¼ δ4 þ δ5q0
ð14Þ

Here, pdh is the pressure for initiation of pressure-induced PT under
hydrostatic loading; pdε is the minimum pressure for initiation of the plastic
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strain-induced PT; pðqÞ is the loading path; σαy0 and σωy0 are the yield
strengths of the α and ω phases under ambient pressure, respectively; q0 is
the value of q at the beginning of PT; k is the kinetic coefficient; δ1; δ2; δ3, δ4
and δ5 are thematerial parameters;HðxÞ is theHeaviside function, such that
H(x) = 1 for x > 0&H(x) = 0 for x ≤ 0. The parameters δ1; δ2; δ3; δ4 and δ5
are obtained using minimization of cumulative error Er in �cðrÞ for all
loadings and radii between FEM and experiment:

Er k; δ1; δ2; δ3; δ4; δ5
� � ¼ X

all load cases

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
all radial points

ð�cexp � �cFEMÞ2
s

ð15Þ

An alternative error indicator is the difference �Δcmax in the for all the
radial points and loads. For the minimization process, Er or �Δcmax is
approximated with a quadratic function in k; δ1; δ2; δ3; δ4, and δ5.

Equilibrium equation:

∇ � σ ¼ 0 ð16Þ

Geometry and boundary conditions
Figure 1 illustrates the geometry of the DAC. An axisymmetric problem
formulation is considered. The geometry of the sample and the anvil, along
with the boundary conditions, are the same as in18. The culet size is 500 μm.
The pavilion angle of the diamond anvil is 38.65°. The sample is subjected to
axial loads of 50N, 100N,150N, 170 N, 190 N, 210N, 230N, 250 N, 270N,
290N, 310N, 330 N, 350N, 400N, 450 N, 500N, 550 N, 600N, 650N,
700N, 750 N, 800N, 850N, 900N, 950 N, and 1000 N and the corre-
sponding measured thicknesses at the center respectively are 165 μm, 164
μm, 163 μm, 154 μm, 143 μm, 128 μm, 118 μm, 112 μm, 105 μm, 96 μm, 91
μm, 87 μm, 80 μm, 76 μm, 68 μm, 58 μm, 54 μm, 48 μm, 46 μm, 43 μm, 39
μm, 37 μm, 33 μm, 31 μm, 30 μm, and 28 μm: Simulations employ quad-
rilateral 4-node bilinear axisymmetric finite elements (CGAX4R), com-
monly used for large-deformation axisymmetric problems40. Our
simulations utilize a mesh with 3958 elements.

Friction model
At the culet portion of the diamond r ≤ rc, the contact shear stress is given by

τcon ¼ m rð Þτy p
� �

for r ≤ rc ð17Þ

where the distribution ofmðrÞ is obtained from the CEA approach descri-
bed in18.

At the inclined portion of the sample-diamond contact surface, the
critical shear stress is governed by the combined Coulomb friction τcr ¼
μ σcon
� �

σcon andm rc
� �

τyðpÞ, where σcon is the contact normal stress. There
is complete cohesion between the sample and the anvil unless the shear
stress τcon reaches the critical value τcr , i.e.,

τcon < τcr ¼ min½μðσconÞσcon;mðrcÞτyðpÞ� ! cohesion ð18Þ

and when the friction stress reaches τcr , contact sliding occurs, i.e.,

τcon ¼ τcr ¼ min μ σcon
� �

σcon;m rc
� �

τyðpÞ
h i

! sliding ð19Þ

Nonlinear elastic equations and material properties for single-
crystal diamond anvil
The constitutive response of diamond is modeled using fourth-order non-
linear anisotropic elastic potential energy ψ Ee

� �
given in18.

Based on the elasticity law, the Cauchy stress in the diamond can be
obtained using:

σ ¼ 1
Je
Fe �

∂ψ

∂Ee
� Ft

e ð20Þ

Here,Fe is the elastic deformation gradient, and Je ¼ det Fe

� �
is its Jacobian

determinant.
All the elastic constants of diamond are from18 and explicitly given

below (all in GPa):

c11 ¼ 1081:9; c12 ¼ 125:2; c44 ¼ 578:6

c111 ¼ �7611; c112 ¼ �1637; c123 ¼ 604;

c144 ¼ �199; c166 ¼ �2799; c155 ¼ �2799

c456 ¼ �1148; c1111 ¼ 26687; c1112 ¼ 9459;

c1122 ¼ 6074; c1123 ¼ �425

c1144 ¼ �1385; c1155 ¼ 10741; c1255 ¼ �264;

c1266 ¼ 8192; c1456 ¼ 487

c4444 ¼ 11328; c4455 ¼ 528

ð21Þ

Elastic properties of polycrystalline
α - and ω� Zr

The elastic constitutive response of polycrystalline Zr ismodeled using
the third-order nonlinearMurnaghan potential given in Eq. (6). Among the
5 elastic constants in the Murnaghan potential, Lame constant λ and shear
modulus G are associated with the quadratic terms in Be, while the
remaining constants l;m and n, are associated with the cubic terms in Be.
These constants are calibrated using the bulk modulus K and its pressure
derivative dK

dp @p ¼ 0, and the shear modulus G and its pressure-derivative
dG
dp @p ¼ 0:K@p ¼ 0 and dK

dp @p ¼ 0 are obtained from fitting pressure-
volume data, obtained in hydrostatic DAC experiments, into the 3rd order
Birch-Murnaghan equation of state (EOS). G@p ¼ 0 and dG

dp @p ¼ 0 are
taken from the experimental results41,42. The expressions relating the Mur-
naghan constants λ;G; l;m; n and K;G; dKdp and

dG
dp @p ¼ 0 are as follows:

K ¼ 3λþ 2G
3

;
dK
dp

¼ K 0 ¼ � 2 9l þ nð Þ
9K

;
dG
dp

¼ G0 ¼ �2G� 6K � 6mþ n
6K

ð22Þ

It can be observed that there are only 2 equations to solve for the 3
third-order constants. Therefore, there is an indeterminacy of degree 1.
However, it can be easily demonstrated that for any pressure, when the
deviatoric part of the superposed deformation is small, the stresses and
energy can be completely expressed in terms of K;G;K 0, and G0 only.
Hence, one of the constants, l, m, or n, can be arbitrarily chosen, and the
other two are determined fromEq. (22). The constants used are (all inGPa):

λ ¼ 68:11;G ¼ 36:13; l ¼ �147:01;m ¼ �122:75; n ¼ �100 forα� Zr

λ ¼ 72:33;G ¼ 45:1; l ¼ �149:56;m ¼ �179:53; n ¼ �4 forw� Zr

ð23Þ

Some FEM implementation detail
A computational algorithm similar to that in22 was implemented as a user
material subroutine UMAT in the FEM code ABAQUS. Due to the highly
complex and strongly nonlinear boundary-value problem, various diver-
gence of the solutions issues been encountered. Divergence typically arises
due to mesh distortion, convergence problems in the iterative solver of
global equilibrium equations, or failure of the algorithms (including radial
return-mapping algorithm) for solving local non-linear constitutive equa-
tions. The following methods embedded in ABAQUS have been
implemented:

1.MeshDistortion:This issuewas addressed by implementing an initial
mesh configuration (pre-curvature) that maintains mesh quality after
deformation, considering that material flows radially outward during
compression.

2. Adaptive Time-Stepping: To handle non-linearity originating from
material models (e.g., nonlinear elasticity, plasticity with pressure
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hardening, and PT), boundary conditions, contact mechanics between the
sample and anvils, and phase transformation kinetics, adaptive time-
stepping was employed. Smaller load increments were used to manage
nonlinearity more effectively, thereby improving convergence behavior.

3. Consistent Tangent Moduli: The correct derivation and program-
ming of consistent tangent moduli (see22) were crucial for solving the dis-
cretized governing equations accurately, enhancing the solution’s stability
and convergence.

Materials
Thematerial studied in this paper is the same as that used byZhilyaev et al43.
and was purchased from Haines and Maassen (Bonn, Germany). It is
commercially pure α-Zr (with Fe: 330 ppm; Mn: 27 ppm; Hf: 452 ppm; S:
<550 ppm; Nd: < 500 ppm). The initial sample slab, with a thickness of 5.25
mm, was cold rolled to achieve a final thickness of approximately 165 μm,
resulting in a plastically pre-deformed sample with saturated hardness. The
Vickersmicrohardness testmethodwasutilized to characterize thehardness
of the sample at various stages during cold rolling. A 3 mm diameter disk
was punch-cut from the obtained thin-rolled sheet for unconstrained
compression experiments in a diamond anvil cell (DAC). For hydrostatic
compression experiments, small specks approximately 20 μm in size were
chipped off from the plastically pre-deformed sample using a diamond file.

The hydrostatic high-pressure X-ray diffraction measurements were
conducted to estimate the equation of state, bulk modulus, and its pressure
derivative at ambient pressure using the same DAC as was used for non-
hydrostatic DAC experiments. For these experiments, small Zr specks of
approximately 20 μm in size, as already mentioned, were loaded into the
sample chamber along with silicone oil and copper chips, serving as the
pressure transmitting medium and pressure marker, respectively. The
sample chamber was prepared by drilling a hole ∼ 250 μm in diameter in
steel gaskets pre-indented using diamond anvils, reducing their initial
thickness from ∼ 250 µm to about 50 μm. Hydrostatic high-pressure
experiments were conducted in small pressure increments of around
0.2 GPa, up to a maximum pressure of 16 GPa.

Experimental techniques and methodology
Unconstrained plastic compression experiments were conducted by
applying various compression loads to a plastically pre-deformedZr sample
loaded into theDACwithout the use of any constraining gasket. The sample
was subjected to an axial load ranging from50N to themaximumof 1000N
with 26 increments.

In situ XRD experiments were performed at the 16-BM-D beamline of
HPCAT, Sector 16 at the Advanced Photon Source, utilizing focused
monochromatic X-rays with a wavelength of 0.3096(3) Å and a size of
approximately 6μm× 5 μm (full width at half maximum (FWHM)). For
each load condition, the sample was radially scanned across the entire culet
diameter (500 μm) in steps of 10μm, and 2D diffraction images were
recorded using a Perkin Elmer flat panel detector. Thus, determined elastic
strains are averaged over two points for each radius. At each load step, an
X-ray absorption scan was also recorded in the same 10μm steps to obtain
the thickness profile of the sample under the given load condition, see
details in19.

The 2D diffraction images were converted to a 1D diffraction pattern
using FIT2D software44,45, and subsequently analyzed through Rietveld
refinement46,47 using GSAS II48 and MAUD49 software. This analysis aimed
to obtain lattice parameters, phase fractions and texture parameters for both
α and ω- Zr. The different angular dependence of the grain size and
microstrain contributions to thediffractionpeakbroadening allows for their
separation.We employedawhole powderpatternfitting approachusing the
modified Rietveld method, as implemented in MAUD software50, which
accounts for texturing and stress anisotropy.

In axial geometry (i.e., when the incident X-ray beam is directed
along z-axis) (Fig. 1), diffraction condition is satisfied primarily for
crystallographic planes that are nearly parallel (with plane normal per-
pendicular) to the load axis. Therefore, the observed shifts in diffraction

peaks can be practically utilized to estimate strains in the radial and
azimuthal directions viz. �Ee

11 ¼ �Ee
rr and �Ee

22 ¼ �Ee
θθ averaged over the

sample thickness. Ideally, the angle between the load axis and diffraction
vector ðψÞ should be 90° to accurately estimate these strain components.
However, since achieving a 90° angle between the load axis and the dif-
fraction vector is not possible in axial geometry, we can instead use the
diffraction peak with the smallest diffraction angle, θ. In our experiments
with α-Zr, the (100) diffraction peak appears at θ ¼ 3:18° for the X-rays
used (λ = 3.1088 Å) at ambient pressure. This corresponds to ψ ¼ 86:82°
and can be used to estimate the strain components �Ee

rr and �Ee
θθ . Note that

the (100) peak corresponds to the a lattice parameter because the c-axis of
α-Zr is predominantly aligned along the loading direction, as determined
by our texture analysis.

Forω-Zr, the (001) diffraction peak appears at θ ¼ 2:85° ψ ¼ 87:15°
� �

and can be used to estimate the strain components �Ee
rr and �Ee

θθ . The (001)
peak ofω-Zr corresponds to the c lattice parameter, and according to texture
analysis, the c-axis of ω-Zr is predominantly perpendicular to the loading
direction of the DAC.

Thus, strain components �Ee
rr and �Ee

θθ for α and ω phases of Zr have
beenobtained for each loading conditionat each scanningpositionusing the
following equations:

For α� Zr :

�Ee
rr ¼ 0:5 aϕ¼0o=a0

� �2
� 1

� �
using ϕ ¼ 0o sector of ð100Þ diffraction ring

�Ee
θθ ¼ 0:5 aϕ¼90o=a0

� �2
� 1

� �
using ϕ ¼ 90o sector of ð100Þ diffraction ring

For ω� Zr :

�Ee
rr ¼ 0:5 cϕ¼0o=c0

� �2
� 1

� �
using ϕ ¼ 0osector of ð001Þ diffraction ring

�Ee
θθ ¼ 0:5 cϕ¼90o=c0

� �2
� 1

� �
using ϕ ¼ 90osector of ð100Þ diffraction ring

ð24Þ
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Source data are provided with this paper.
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