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Abstract. As multimodal interactions between humans and comput-
ers become more sophisticated, involving not only speech, but gestures,
haptics, eye movement, and other input types, each modality introduces
subtleties which can be misinterpreted without a deeper understanding
of the agent’s mental state. In this paper, we argue that Simulation The-
ory of Mind (SToM) [23], interpreted within a model of embodied HCI
[41,42], can help model the capacity to attribute beliefs and intentions
to oneself and others. We adopt a version of Dynamic Epistemic Logic
that admits of degrees of belief, reflecting changing evidence available to
an agent [5,6]. This model is able to address the complexities of mutual
perception and belief, and how a dynamic common ground is constructed
and changes [15]. To demonstrate this, we apply the SToM model to the
problem of Common Ground Tracking (CGT) in multi-party dialogues,
focusing here on a joint problem-solving task called the Weights Task,
where participants cooperate to find the weights of a set of blocks.

Keywords: Theory of Mind · HCI · Epistemic Updating · Common
ground tracking · multimodal dialogue · simulation · Embodiment

1 Introduction

Theory of Mind (ToM) refers to the cognitive capacity that humans have to
attribute mental states such as beliefs (true or false), desires, and intentions to
oneself and others, thereby predicting and explaining behavior [39,56]. Within
the domain of Human-Computer Interaction (HCI), this concept has recently
become more relevant for computational agents, especially in the context of
multimodal communication [15]. As multimodal interactions involve not only
speech, but gestures, actions, eye gaze, body posture and other input types
(cf. Fig. 1), each modality introduces subtleties which can be misinterpreted
without a deeper understanding of the agent’s mental state. As a result, ToM’s
role becomes important, ensuring that agents grasp both the overt and covert
nuances of human communication. For multimodal HCI, a computational agent
needs to incorporate both the ability to reason about the beliefs of other agents
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Kurosu and A. Hashizume (Eds.): HCII 2024, LNCS 14684, pp. 205–225, 2024.
https://doi.org/10.1007/978-3-031-60405-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60405-8_14&domain=pdf
http://orcid.org/0009-0000-6597-7275
http://orcid.org/0000-0003-3234-6797
http://orcid.org/0000-0003-2870-7019
http://orcid.org/0009-0009-2162-3307
http://orcid.org/0000-0002-9126-4276
http://orcid.org/0009-0009-4374-7263
http://orcid.org/0000-0003-0449-4418
http://orcid.org/0000-0001-7878-7227
http://orcid.org/0000-0003-2233-9761
https://doi.org/10.1007/978-3-031-60405-8_14


206 Y. Zhu et al.

Fig. 1. Example of a multimodal annotated situation red arrows denote co-gazing blue
arrows symbolize leaning towards the table. (Color figure online)

and their intentions, while also knowing what beliefs can be assumed or taken
for granted in a specific context.

In this paper, we argue that Simulation Theory of Mind (SToM) [23,24],
encoded as an evidence-based dynamic epistemic logic (EB-DEL), can help
model these complexities [5,6]. We develop this view within a model of embodied
HCI [41,42], where simulation theory is inherent in both the semantics of the
model as well as the implementation of situated meaning and action. Specifi-
cally, we apply this model to the problem of Common Ground Tracking (CGT)
in multi-party dialogues, focusing here on a joint problem-solving task called the
Weights Task, where participants cooperate to find the weights of a set of blocks.
In such task-oriented interactions, successful communication hinges not only on
understanding the immediate intent but also on a shared context and knowledge
of the actions and experiences of the agents. Theories of Common Ground posit
that for effective communication, interlocutors must have a mutual understand-
ing of the task at hand and the context in which it is situated [4,16]. In HCI,
this translates to the system and the user operating with aligned expectations
and shared knowledge about the ongoing task.

Unlike Dialogue State Tracking (DST), which is the ability to update the
representations of the speaker’s needs at each turn in the dialogue by taking into
account the past dialogue moves and history [28], Common Ground Tracking
(CGT) identifies the shared belief space held by all of the participants in a
task-oriented dialogue. While ToM enables a system to “read” another person’s
mental states, Common Ground Tracking ensures that this reading is anchored
in a shared context, making interactions more coherent and goal-directed.

Within the framework of SToM and Embodied HCI adopted here, we present
a method for automatically identifying the current set of shared beliefs and
questions under discussion (QUDs) of a group with a shared goal, the Weights
Task. The task involves triads collaborating to determine the weights of five
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blocks using a balance scale [29]. We track the shared knowledge of participants
in a co-situated environment, which involves interpreting the communications
over multiple modalities, and integrating these channels into a coherent model
of the common ground.

We believe that models of belief and intent in multimodal HCI can be signifi-
cantly enriched by integrating principles of ToM and Common Ground, allowing
interactive systems to not only react to user inputs but interpret them in a
shared context, making interactions more predictive, context-aware, and aligned
with user expectations. By integrating ToM and common ground tracking into
conversational agent architectures [19,51], we can better model the beliefs of par-
ticipants by exposing unspoken assumptions of the participants or disagreements
among them. Enhancing the epistemic modeling capabilities of multimodal HCI
with ToM also has the potential to inform research in both Affective Computing,
such as automatic Emotion Detection, by providing more contextualized inter-
pretations of cognitive states and emotions in dialogue [46], as well as providing
support for those with functional impairments [20].

In the final section, we provide detailed evidence assessing the contribution
of each feature type from different channels toward successful construction of
common ground relative to ground truth, and show how the combination of
modalities results in a higher-fidelity prediction of both cognitive states of the
participants and propositions implicitly or explicitly expressed.

2 Related Work

There is a significant tradition of research on Theory of Mind in philosophy and
its application to questions of epistemic awareness within developmental psy-
chology [25,39,55,56]. One view that is particularly relevant to the approach
taken here is Simulation Theory [24], which models the process of understand-
ing another agent’s intentions as mental simulations from one’s own perspective.
Simulation Theory, as developed in philosophy of mind by Goldman and others,
has focused on the role that “mind reading” plays in modeling the mental repre-
sentations of other agents and the content of their communicative acts [24,26,27].
Simulation semantics as adopted within cognitive linguistics [17,36], argues that
language comprehension is accomplished by means of such mind reading opera-
tions. Similarly, within psychology, there is an established body of work arguing
for “mental simulations” of future or possible outcomes, as well as interpreta-
tions of perceptual input [3]. These simulation approaches can be referred to as
embodied theories of mind. The goal here is to create a semantic interpretation
of an expression or action by embodying it in a simulation.

Goldman’s theory of mind [24], viewed from the perspective of simulation
theory, provides a mechanism for how individuals understand and predict the
behaviors of other agents. By constructing a simulation, an agent can gener-
ate hypotheses about others’ mental states and intentions, anticipate possible
future actions, and even empathize with their emotional states. SToM can be
seen as consisting of three major components: (a) Mental Simulation, where an
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agent simulates the mental processes of others; (b) Perspective Taking, where
an agent adopts another person’s Epistemic Frame of Reference; and (c) Shared
Mental Processes, the view that others’ mental states involve the same cognitive
mechanisms as one’s own.

Within HRI, the question of epistemic awareness and social appropriateness
of robot behavior has been a concern since the foundation of the discipline [12].
Similarly, the modeling of first-order beliefs in HRI has been addressed within
the modeling and reasoning community [49], while the application of Dynamic
Epistemic Logic itself to planning has resulted in significant developments within
the area of epistemic planning [8], and subsequent work [4,9].

But fundamental capabilities involving inferencing over others’ beliefs as well
as an agent’s metacognitive abilities have been less studied. This problem is
addressed in [15], where false-belief scenarios are encoded within the version of
Dynamic Epistemic Logic introduced by Bolander [7]. This model accounts for
an agent’s false belief regarding a changing environment, as well as the ability
of other agents to recognize and reason about this agent’s incorrect epistemic
state. While not adopting Bolander’s specific model of DEL here, our research
aligns squarely with their approach to modeling the dynamics of belief updating
in HRI and HCI contexts. Since we are focusing on integrating the semantics
associated with distinct channels of communication (speech and gesture) as well
as actions and perceptions, we need to integrate semantic content derived from
these distinct channels into a common format and data structure. This involves
adopting a more expressive model for how common ground is constructed and
updated, as discussed below in Sect. 4. We also account for epistemic content
held individually and in common within a group, with an evidence-based model
of DEL as introduced in [5,6].

There has been considerable work on simulating both physical and cogni-
tive processes carried out by agents, human and computational [30,44,59]. Of
particular relevance to the research reported here is the simulation framework,
VoxWorld [34]. VoxWorld supports embodied HCI, where artificial agents con-
sume different sensor inputs for awareness of not only their own virtual space but
also the surrounding physical space. It brings together the notion of simulation
systems from computer science as well as that mentioned here, in the context of
Simulation ToM. VoxWorld is a collaborative creation of the VoxML modeling
language [40] and its real-time Unity interpreter, VoxSim [32], culminating in
an environment meticulously defined interaction semantics. Such an architec-
tural framework readily facilitates the interpretation of action annotations, as
descriptions converted to linguistic entities within VoxML exhibit an explicit cor-
respondence within the simulation context. Within the VoxWorld ecosystem, the
Diana agent emerges as a pivotal interface designed to discern user speech and
gestures [31], setting itself apart from other Intelligent Virtual Agents (IVAs)
through its capacity for reasoning and acting upon a diverse array of objects
endowed with a well-defined affordance structure.
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3 A Multimodal Dataset for Common Ground Tracking

The Weights Task, as described in [29], embodies a collaborative problem-solving
task wherein groups of three participants engage in a concerted effort to infer the
unknown weights of different blocks. This inference is achieved through compar-
ative analyses of the blocks’ weights with a balance scale. Each group is equipped
with a scale and five blocks with different colors, sizes, and weights. Participants
are informed of the weight of a singular block and are tasked with discerning the
weights of the remaining blocks and the algebraic relation between them (the
Fibonacci Sequence). Due to the co-situated nature of the task and its inclusion
of physical objects and reasoning about their properties, the communication
in this task can be annotated in several ways: speech with dense paraphrasing
[52], gesture [10], as well as non-verbal behaviors that communicate intent such
as gaze [35], body postures [43], facial expression [45]. Additionally, we label
all actions performed [50], and collaborative problem solving (CPS) indicators
according to the framework of [48]. Each group successfully deduces the accurate
weights of the blocks, thereby establishing a uniform and reliable endpoint for
evaluating our models.

First-order epistemic statements represent what an agent believes or knows
about their environment, while second-order epistemic representations express
what an agent believes or knows about other agents’ beliefs and knowledge of
the environment. One avenue for studying ToM in collaborative interactions
is to track the propositional context expressed by verbal actions (explicitly or
implicitly uttered), already embedded in common ground. Another avenue with
not much exploration is tracking information results not only in speech but
also gesture: non-verbal actions and gestures contained individual consenting an
agreement including mere perception of the action itself [7], as well as false-belief
scenarios within the version of Dynamic Epistemic Logic.

Fig. 2. Gaze and posture, P1, P2, P3 co-
attending, P2 lean in

Fig. 3. Dialogue in 2.

Consider the joint activity shown in Fig. 2 among three participants; Partic-
ipant 3 (P3) has a public announcement and P1 signals his consent. The figure
has a blue arrow to highlight P2 leaning in to have a closer look at the scale after
he heard the dialogue between P1 and P3. Figure 3 presents their dialogue in the
context of joint activity. In this situation of a multi-agent task interaction, there
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are several elements constituting the common ground among the three partic-
ipants. These elements include reference to: the agents, shared beliefs, shared
goals, and shared perception of objects, including that the scale is balanced.

4 Constructing Multimodal Common Ground

4.1 Epistemic Modeling in ToM

The notion of common ground is a fundamental concept in HCI, growing out of
a rich tradition in philosophy and cognitive science, focused on exploring how
individuals coordinate and establish shared understanding to facilitate mean-
ingful conversations [1,11,47]. For HCI, common ground is crucial for design-
ing interactive systems and technologies that can effectively communicate with
users by anticipating their needs, understanding their context, and responding
to their inputs in an intuitive manner. With the presence of a common ground
during shared experiences, embodied communication assumes agents can under-
stand one another in a shared context, through the use of co-situational and
co-perceptual anchors, and a means for identifying such anchors, such as ges-
ture, gaze, intonation, and language. In this section, we develop a computational
model of common ground for multimodal communication.

Within the context of multimodal interactions, the notion of common ground
relies on identifying three key aspects of the interaction:

1. Co-situatedness of the agents, such that they can interpret the same situation
from their respective frames of reference;

2. Co-perception and co-attention of a shared situated reference, which allows
more expressiveness in referring to the environment (i.e., through language,
gesture, visual presentation);

3. Co-belief of the agents regarding the goals as well as the steps involved towards
accomplishing this goal.

Within this context, common ground emerges in one of the following ways during
social interactions [16]:

• by public announcement, through either speech or gesture;
• by common witnessing of an event;
• by combinations of the above (indirect co-presence, cultural co-presence).

In order to characterize the many dimensions of human-computer interac-
tions, we introduce an approach to evaluating interactions drawing on the most
relevant parameters in co-situated communicative interactions. By introducing
a formal model of shared context, we are able to track the intentions and utter-
ances, as well as the perceptions and actions of the agents involved in a dialogue.
The computer, either as an embodied agent distinct from the viewer, or as the
totality of the rendered environment itself, presents an interpretation (mind-
reading) of its internal model, down to specific parameter values, which are often
assigned for the purposes of testing that model.



Modeling Theory of Mind in Multimodal HCI 211

We assume a model of discourse semantics as proposed in [13], as it facilitates
the adoption of a continuation-based semantics for discourse. In the present
work, however, update functions will be limited to dialogue-based moves, and
we will not focus on the sentence-level update semantics. We adopt the SToM
model of VoxWorld (discussed in Sect. 2) [34], a framework for modeling HCI and
human-human multimodal interactions as embodied simulations. In this model,
participants are embodied agents endowed with intentions, goals, beliefs, and the
knowledge to complete simple tasks involving multimodal interactions with co-
participants. Each agent’s state in the dialogue is continuously updated through
encoding the changes in the environment shared by the interacting agents [41,42].

As mentioned in Sect. 1 above, our investigation involved a triad of co-
situated students collaborating to solve a weights task for five blocks, using
only a balance scale. The task is particularly relevant because the participants
naturally engage in the different modalities that are so crucial for understand-
ing multimodal HCI: namely, speech, gesture, gaze, pose, and of course joint
actions. Hence, from a dialogue state tracking perspective, there are several dis-
tinct action types and their effects that need to be accounted for and tracked:

(1) a. Ontic actions; interactions with and movements of the objects in the
shared space; i.e., blocks and the balance scale;

b. Epistemic actions; changes to the epistemic state of one or more of
the participants in the interaction.

Before showing how this is done, we spell out the cognitive capabilities of the
participants as computational agents performing these various actions.

We begin with the cognitive architecture adopted and developed in VoxWorld
[41,42], and enrich the model capabilities to more systematically account for epis-
temic updates in the common ground. We assume an embodied computational
agent has the following capabilities.

(2) a. Perception: perceptual sensors and interpreters.
b. Action: action effectors and planning.
c. Belief: a Dynamic Epistemic Logic with updating.

For the present discussion, we focus on those aspects of the architecture that are
relevant to demonstrating the role ToM plays in tracking communicative content
and intent. For this reason, we concentrate mainly on the role of perception and
belief, and subsequent epistemic updating.

Let us first consider the role of an agent’s perception of their environment.
As discussed in [41], VoxWorld models an agent a’s vision as sets of accessibil-
ity relations between situations (defined as Sa), where there are two kinds of
perception reports: of a proposition, ϕ; or of an object, x, coerced to the propo-
sitional content of “x exists in the situation.” The modal expression, Saϕ, is
interpreted as a direct (veridical) perception of agent a of proposition, ϕ. Hence,
modal axiom T holds, where Saϕ → ϕ.

In VoxWorld, this impacts the way beliefs are updated, where it has the
effect of introducing the axiom below (where the modal Ba represents belief of
an agent a):
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(3) Seeing is Believing: Saϕ → Baϕ (veridical perception)

For the multimodal interactions and experiments performed within VoxWorld
to date, veridical perception was both required as well as a computational asset.
However, in the context of the experimental configuration introduced by the
Weights Task, we see a different role being contributed by an agent’s perception,
relative to the completion of the task: namely, an appreciation of the natural role
that perception plays in arriving at evidence for a belief [18,53]. This requires
distinguishing two types of “seeing”, both direct and indirect, the latter which
is implicated in forming belief, to which we now turn.

In terms of epistemic modeling, while the VoxWorld platform from [34]
encodes an agent’s belief for a dialogue state, the mechanisms used for updating
epistemic values resulting from actions during the dialogue are linked to specific
moves and transitions in the dialogue state machine [33]. As a result, identifying
general axioms for epistemic updating across situations can be difficult.

To overcome both of these shortcomings, we adopt here an implementation
of evidence-based Dynamic Epistemic Logic (DEL) as developed in [5] and [37].
Where epistemic attitudes toward propositions are graded, according to the evi-
dence available to the agent. As the dialogue progresses, information becomes
available, weakening or strengthening propositional content present in the situ-
ation. This affords a more nuanced encoding of how perception relates to belief,
and a more general mechanism for belief updating, as we shall see.

Given a set of agents, engaged in a cooperative task with a specific goal, the
scope of unknowns is delineated by how an answer to each one contributes to the
task solution. As a result, cooperative and interactive engagement brings about
evidence both for and against how to answer these unknowns, in the hope of solv-
ing a problem. To this end, the role of both direct and indirect evidence of a propo-
sition is crucial to an agent being confident to believe it. Hence, following [37], we
will assume a model for evidence-based belief as a tuple, M = (W,E, V ), where:

(4) a. W is a non-empty set of worlds;
b. E ⊆ W × ℘(W ) is an evidence relation;
c. V : At → ℘(W ), is a valuation function.

We will distinguish two sources of evidence. Let E(w) denote the set {X | wEX},
the worlds accessible to w through the general evidencing relation, E. Beyond
this, we distinguish between two sources of evidentiality: EP , a perceptually-
sourced evidence; and EI , evidence derived through an inference over current
common ground data. Accordingly, let EP (w) denote the set {X | wEP X}, the
worlds accessible to w through the “evidence through seeing” relation, EP ; and
let EI(w) denote the set {X | wEIX}, the worlds accessible to w through the
“evidence through inferencing” relation, EI .

The evidence-based epistemic-perceptual language, Lp, will be the set of
formulas generated by the grammar below, for any arbitrary agent:

(5) a. p | ¬ϕ |ϕ ∧ ψ | [EI ]ϕ | [EP ]ϕ | [B]ϕ | [K]ϕ | [S]ϕ | [CEP ]ϕ | [CS]ϕ | [CB]ϕ
b. EI(w) ⊆ E(w) and EP (w) ⊆ E(w)
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We distinguish the situation where an agent has “evidence in favor of” a proposi-
tion ϕ, as [E]ϕ. Because an agent can have evidence for propositions that convey
contradictory information, she can consider both [E]ϕ and [E]¬ϕ. This corre-
sponds to an agent having multiple neighborhoods, X, that are each evidenced
in their unique way by w. However, consider the set of non-contradictory worlds
as a unique subset of X, one which has what [6] refer to as the finite intersection
property (fip). This property allows us to identify a neighborhood of accessible
worlds with non-contradictory propositional content. When this occurs, we say
an agent has belief in a proposition, [B]ϕ. Following [37], the universal modality
is considered “knowledge” of a proposition, [K]ϕ. Finally, veridical perception
of a situation ϕ, is expressed as [S]ϕ. In conjunction with individual modal rela-
tions, we incorporate the concept of joint activity to denote a modal relation
that is jointly shared by two or more participants. This is already assumed in
our definition for common belief, see below. For direct perception and evidence,
this will be indicated by [CS{a,b}]ϕ, and [CEP{a,b} ]ϕ, where a pair of agents, a
and b are jointly seeing or evidencing ϕ to be the case. We define the expression
of shared belief and shared perception in ϕ by a group, g, as and CBgϕ and
CEP gϕ respectively.

(6) a. M,w |= CBgϕ iff ∀v ∈ W , if w(
⋃

j∈A Rj)∗v, then M,w |= ϕ.
b. M,w |= CEP gϕ iff ∀v ∈ W , if w(

⋃
j∈A EP j)∗v, then M,w |= ϕ.

With the model adopted here, we are able to distinguish between direct “veridical
perception” and “evidencing through perception”, where �ϕ → ϕ holds for S
but not for EP .

While we have a formal distinction in the modal force associated with each
mode of seeing (direct or evidential), we have not identified the conditions under
which they are applicable. In our current experimental setup, the distinction is
brought out very clearly as a function of what propositions are under discussion
for verification. For the Weights Task, these are any propositions relating to the
weights of specific blocks, their relative weights, and then how they algebraically
relate to each other. Such propositions contribute to the solution of the problem
the participants are engaged in solving. Hence, they are both “under discussion”
and subject to degrees of evidential reasoning. This is accounted for by our
distinction between a direct perception of an object or an event and an evidential
perception of a proposition under discussion.

4.2 Common Ground in Dialogue

Given the model of Dynamic Epistemic Logic presented above, together with the
mechanisms for encoding perception and evidence-based belief, let us formalize
our assumptions about the common ground, cg, within a dialogue. We define the
minimal structure of a task-oriented interaction as a sequence, D, of dialogue
steps, where each move in the dialogue takes it into another situation or state.
When considering multiple modalities of communication, along with the modal-
ity of action itself, we can generalize D to a multimodal dialogue (DM ). We will
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define the transitioning step from one situation to the next, as a generalization
of a dialogue step. Let Ag = {p1, p2, p3}, be the participants in our Weights
Task triad-based dialogue. From any situation sk, we define a DM move, mi,
as mi = (pj , Cj , sk+1): participant pj performs a communicative act Cj , bring-
ing the multimodal dialogue into situation sk+1. The DM can be defined as the
sequence of these moves, DM = m1, . . . ,mn, where m: M ⊆ S × A × P × S and
A is the set of actions.

Here our interest is in tracking the situation content resulting from each
move: the set of propositions that captures the current state of the world, the
current progress towards a goal, or the status of a task. In addition, we are
interested in capturing the current questions under discussion and beliefs in the
dialogue.

Given these considerations, we identify three components for tracking com-
mon ground in dialogue: a minimal static model of degrees of belief; a data struc-
ture distinguishing the elements of the agents’ common ground that are being
tracked [41]; and a dynamic procedure which updates this structure, when new
information and evidence is available to the agents. We adopt Ginzburg’s [22]
notion of Dialogue Gameboard (DGB), the public information associated with a
state in a dialogue or discourse, modeled as a state monad, modified to corre-
spond to the following elements in the dialogue state: DGB = (Ca, Ag, CG, E):

(7) a. The communicative act, Ca, performed by an agent, a: 〈S,G, F, Z, P,A〉,
a tuple of expressions from the diverse modalities involved. This includes
the modalities conveying propositional content (language S and ges-
ture G); nonverbal modalities conveying emotional engagement (facial
expressions F and posture P ); nonverbal behaviors indicating perceptual
attention (gaze Z); and an explicit action, A.

b. Ag: the agents engaged in communication;
c. CG: the common ground structure;
d. E : The embedding space that all agents occupy in the interaction.

We will focus on how actions impact the common ground, CG, such that
it is dynamically updated throughout the dialogue. Following [21,22], modified
to reflect the varying degrees of evidence associated with propositions under
discussion, the common ground, cg, is a triple, (QB,EB,FB), consisting of:

(8) a. QBank (qb): these are “questions under discussion”, a set of topics or
unknowns that need to be answered to solve the task [21];

b. EBank (eb): these are evidenced propositions, those for which there is
some evidence they are true;

c. FBank (fb): the set of propositions believed as true by all participants.

4.3 Epistemic Updating

Let us now examine how the epistemic state of each agent and the group
they form is updated throughout the task-oriented dialogue associated with the
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Weights Task. These are the personal DGBs for each agent and the joint DGB
for the group. The task is a triad joint activity, with agents, Ag = {p1, p2, p3},
who are co-situated in the embedding space, E . Our domain of objects contains
five colored blocks and a balance scale: {r, y, b, g, p, s}.1

At the outset of the task, the block weights are unknown to the participants.
Hence, both the EBank and the FBank are empty, since there is nothing evi-
denced or known. Because finding the value of each block weight is part of the
goal, these unknowns constitute the propositions known as “Questions under
Discussion” (QUDs), and what we also refer to here as QBank. For all objects in
the domain relating to the task, questions are generated for each relation impli-
cated in the task for that object. Because the weight of a block ranges between 10
and 50 g, in 10-gram intervals we have five possible values, expressed as yes/no
questions. The initial value of the QBank results in the following set:

(9) QBank = {Eq(r, 10)?, . . . , Eq(r, 50)?, . . . . . . Eq(p, 50)?}
As the task proceeds, the participants try weighing different blocks and dis-

cuss their relative weights. When they make observations through their actions,
they discover evidence in favor of propositions that are marked as questions in the
QBank. As mentioned above, the mechanism available for updating the agents’
common ground are through either a public announcement or by witnessing an
action. We consider each of these in turn.

Public Announcements. Following [38] and subsequent developments of Pub-
lic Announcement Logic [2], the operator !φ is used to represent the action of
announcing φ publicly. The effect of such an announcement is that all agents
update their knowledge states by eliminating worlds (possible states of affairs)
where φ does not hold. If [!ϕ] represents the act of announcing ϕ, then [!ϕ]ψ
means “after ϕ is announced, then ψ is believed to be the case.” When a par-
ticipant, Pi, in a group activity makes a statement relating to an observation,
we say that Pi publicly announces M |= [!ψ]φ if and only if M, w |= φ, where
M|ψ is the model M restricted to the worlds where ψ is true.

Witnessing of Events. When a participant, Pi, performs an act resulting in ϕ,
in the co-presence of another participant, Pj , we say that Pi performs a publicly
perceived act and result, ϕ. If αi is an act performed by Pi, then [αi]ϕ means
“after i performs α, ϕ is the result.” Hence, if multiple agents are co-attentive
(co-perceptive) to the act, α, then a public witnessing is brought about by an
act being performed, where the co-perception is represented as Si,j [α]ϕ.

In order to distinguish perceptual evidence for ϕ from belief in ϕ, we relativize
the impact of a statement to the perceptual or inferential context within which
it is uttered. Let us interpret [!ϕ]ψ as follows.

(10) a. Update with Evidence:
[!ϕ][E]ψ: Given the announcement of ϕ, there is evidence for ψ;

1 The blocks are uniquely colored as: red (r), yellow (y), blue (b), green (g), and purple
(p). The scale is denoted as s.
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b. Update with Belief:
[E]ϕ → [!ϕ][B]ψ: Belief in ϕ is conditionalized on ϕ’s announcement in
the prior context of evidence for ϕ.

c. Seeing provides Evidence: If a participating agent, i, perceives an action,
a, occur, then i has some evidence, EP , that a has occurred, 〈a〉ϕ.
[Si]〈a〉ϕ → [EPi

]ϕ
d. Non-contradictory Evidence provides Belief: If a participating agent, Pi,

has multiple non-contradicting evidences, E, for an action, a, occurring,
〈a〉ϕ, then Pi believes ϕ.
([E]〈a〉ϕ ∧ fip) → Bφa

Fig. 4. P2, P3 co-perceive the laptop, P1

perceives scale/blocks. Green arrow sym-
bolizes gazing, red arrows denotes co-
gazing. (Color figure online)

Fig. 5. P1, P2 co-perceive the scale/
blocks, P3 perceives the laptop. (Color
figure online)

Semantically, an update represents the state of affairs after an announcement.
This entails transforming the current model by removing all states where the
announced formula is false. With evidence distinguished from belief/knowledge,
we also update the evidence function, where [!ϕ]:

(11) a. Updates the worlds: W ′ = W ∩ ϕ
b. Updates the Evidence function: E′(w) = E(w) ∩ ϕ
c. (M,w) |= ϕ implies (M |ϕ, w) |= [E]ψ

This update actually changes the underlying evidence sets themselves. The
announcement is taken as a piece of direct evidence. Hence, to capture that
the announcement of ϕ becomes evidence and not just belief, the evidence sets
for each agent get restricted (or updated) to reflect the worlds where ϕ is true.
Subsequently, the belief function will then naturally adjust based on the new
evidence sets.

Operationally, after (10a) is run, the model is relativized to evidencing neigh-
borhoods, where ϕ is true. This corresponds to moving a proposition from the
QBank to the EBank. Then, if the same proposition is “announced” again, as
with an ACCEPT move, then (10b) promotes that proposition from the EBank
to the FBank.
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5 Common Ground Tracking

To illustrate the effect of the epistemic and evidential update functions outlined
above, let us consider a joint activity scenario in Figs. 4, 5, 6, 7, 8 and 9. In Figs. 4
and 5, P1 places the blue block on the left scale and the red block on the right
scale. Subsequently, all three participants observe the equilibrium of the scales
(Fig. 6). P3 then issues a public declaration regarding the balanced state of the
scales (Fig. 7), followed by a concurring public declaration from P1 (Fig. 8).

Fig. 6. P1, P2 and P3 co-perceive scale/
blocks. (Color figure online)

Fig. 7. P1, P2 and P3 co-perceive scale/
blocks. (Color figure online)

Fig. 8. P1, P2 and P3 co-perceive scale/
blocks. (Color figure online)

Fig. 9. P1,P2 and P3 co-perceive scale/
blocks. P2 leans towards table. (Color
figure online)

Now assume that b refers to “the scales are balanced”. Then, since Sp1b,
Sp2b, Sp3b we have a co-attention, CS b. Grounded in the axiom “Seeing pro-
vides Evidence,” this observation serves as perceptual evidence for all three
participants, manifested as EPp1

b, EPp2
b, EPp3

b, thus constituting a collective
evidence of perception, denoted as CEP b. Subsequently, Participant P3 publicly
announces that the scales are balanced ([!b]), providing further for b being true.
Given the interpretive nature of announcements as indicative of belief, this dec-
laration also implies that P3 believes b, expressed as Bp3b. This announcement
is subsequently publicly affirmed by Participant P1, indicating not only posses-
sion of evidence for this proposition, but also belief in it, articulated as Bp1b. P2

abstains from expressing public concurrence or objection to P3’s announcement,
yet his active engagement in the collaborative endeavor implies a lack of con-
tradictory evidence against CEP b. Relying on the axiom “Non-contradictory
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Evidence provides Belief,” this participatory posture, coupled with the absence
of contradictory evidence, leads to the inference that P2 also subscribes to the
belief in b. Consequently, a shared belief among all participants ensues, denoted
as CBP b.

The entirety of this process also contributes to the updating of common
ground banks. Prior to the placement of the blocks onto the scale by P1, all
three participants maintained a shared belief that the red block weighed 10 g,
thereby establishing its inclusion within the Fbank. Meanwhile, the weight of the
blue block remained a query within the Qbank. Upon their observation of the
balanced scale, each participant acquires a new piece of evidence, which is sub-
sequently updated within the Ebank. The public announcement by P3 and the
subsequent public agreement by P1 signify not only the possession of evidence
supporting their respective statements but also a belief in said statements. Fur-
thermore, as elucidated previously, P2 also subscribes to the belief in b. Through
inference that the scale is balanced and that the red block occupies one side while
the blue block occupies the other, a logical deduction emerges: the weight of the
blue block equals that of the red block, thereby also amounting to 10 g. This
inference constitutes evidence for each participant, denoted as EIp2

(b = 10),
EIp1

(b = 10), and EIp3
(b = 10), where b = 10 signifies the proposition that the

weight of the blue block is 10 g. This shared belief among the three participants
is subsequently updated within the Fbank.

6 Annotations

6.1 Annotating Multimodal Modalities

Gesture Annotation. Gesture AMR is employed for the detailed annotation
of gestures within our study. Each instance of Gesture AMR systematically cate-
gorizes content-bearing gestures into four distinct “gesture acts”: deictic, iconic,
emblematic, and metaphoric. Additionally, it meticulously records the gesturer,
addressee, and semantic content conveyed by each gesture. In our methodology,
we utilize the ELAN [57] software platform2 where distinct tracks are designated
for each speaker, facilitating the systematic analysis of gesture interactions. For
instance, in Fig. 1, P1 is observed directing attention of P2 and P3 towards the
blocks and scale by means of pointing. The representation of this gesture is also
within the figure.

Speech Annotation. The process of speech annotation encompasses transcrip-
tion, speaker diarization, and segmentation into discrete utterances. The utter-
ances are systematically integrated into corresponding tracks within ELAN, with

2 ELAN serves as an annotation tool designed for the enhancement of audio and
video recordings. It facilitates users in incorporating an extensive array of textual
annotations onto audio and/or video recordings. These annotations may encompass
sentences, individual words or glosses, comments, translations, or descriptions of
observed features within the media.
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distinct tracks designated for each speaker. Additionally, these speech transcripts
underwent further refinement through dense paraphrasing [52], wherein sentence
information and action annotations are amalgamated to enhance clarity by sub-
stituting pronouns with more explicit references within the original sentences
(see Fig. 7).

Action Annotation. The actions executed by participants are systemati-
cally annotated within our study. We operate within a distinctly limited set
of predicates suitable for modeling participant actions, primarily encompassing
“putting” and “lifting.” Additionally, we employ prepositions such as “on,” “in,”
or “at,” which delineate specific spatial relations within the VoxML framework
[50]. For instance, in Fig. 4, P1 is observed placing the red block on the right
scale, and the annotation is put(Red, on(RightScale)).

Gaze Annotation. The orientation of eye gaze represents a pivotal marker
demarcating the focal point of an individual’s attentional engagement [14]. Con-
sequently, we incorporate eye gaze direction as an additional source of evidence
to discern whether a participant is attentively engaged in the experimental pro-
cedure or experiencing distraction. In Fig. 2, we use red arrows to indicate that
P1, P2 and P3 are all gazing at the scale/blocks.

Body Posture Annotation. Body postures represents a fundamental compo-
nent of nonverbal communication, serving as conduits through which profound
insights into people’s internal states, such as, their engagement towards a joint
activity [58]. Consequently, we integrate body posture within our multimodal
annotation framework to discern whether participants are actively engaged in
the experimental task, or experiencing boredom or agitation. In Fig. 2, the uti-
lization of a blue arrow symbolizes P2’s inclination forward, indicative of a delib-
erate effort to scrutinize the scale closely. This behavior suggests an increased
level of engagement with the experiment of the participant.

6.2 Common Ground Annotation

Building upon the multimodal annotations gathered in the preceding section,
we conducted move-by-move tracking of the group’s collective view of evidence
and acceptance of task-relevant facts by introducing an additional layer of “com-
mon ground annotations” (CGA). The annotation process within the dialogue
entails the identification of categories pertaining to participants’ cognitive states,
actions, and beliefs pertaining to the task at hand. These categories encompass:
(a) observation: participant Pi has perceived an action, a; (b) inference:
deduction from ϕ; (c) statement: announcement of evidence ϕ; (d) question:
introducing an interrogative role relating to ϕ; (e) answer; supplying a filler
to question about ϕ; (f) accept: agree with evidence ϕ; (g) doubt: negative
evidence for ϕ.
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Fig. 10. Scenario: 3 participants engaged in determining weight of blue block.

Figure 10 illustrates an interaction depicted in Figs. 4, 5, 6, 7, 8 and 9, where
s1, s2, and s3 denote discrete states within the real world, with corresponding
frames below each state, depicting the mental states of the three participants. P1

places the blue and red blocks on opposing sides of the scale, resulting in a col-
lective observation by all three participants of the scale balancing. Subsequently,
they collectively extract a singular piece of information from this observation in
the second mental state. Following this, the public announcements made by both
P3 and P1 reflect their beliefs in the balanced state of the scale. As described
in Sect. 4, in the absence of overt verbal or nonverbal cues indicating dissent
towards P3’s announcement, P2 conforms to the beliefs posited by both P1 and
P3. Consequently, a common ground is established. The annotation of the com-
mon ground within the scenario is depicted in Fig. 11:

Fig. 11. Common Ground Annotation of Fig. 10

Common ground annotation focuses on propositions describing situations or
facts contributed to the formation of shared belief among participants of a joint
activity and the evidence for them as the dialogue progresses. Hence, in Fig. 11,
action annotation is excluded from the common ground annotation. Instead,
observations, inferences providing evidence for updating common ground, and
statements incorporating propositions describing situations are all encompassed
within the common ground annotation framework.
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7 Classification of Belief in Multimodal HCI

In the example sequence given in Figs. 4, 5, 6, 7, 8 and 9, we can see how different
modalities contribute to reviewing of pieces of evidence and the implicit and
explicit construction of common ground.

1. In Fig. 4, P1 puts the red block on the right side of the scale (from the
perspective of the camera). At this time, both P2 and P3 are co-attending to
the laptop, and may not have seen this action take place, or its result (the
tilt of the scale).

2. Fig. 5. P1 concludes the action from above (put(Red, on(RightScale)), but
now P2’s gaze direction has shifted to the scale and the blocks. Under
the assumption that gaze direction automatically equates to observing all
visual content within the field of view, all three participants are now able
to make the observation that the red block is on the right side of the scale
(on(Red,RightScale)).

3. Fig. 6. P1 puts the blue block on the left side of the scale. All three participants
are now co-attending to the blocks and scale, and so all make the observation
(on(Blue,RightScale)). It is important to note that at this step, according
to our model, no evidence has been reviewed and no inference has yet been
made.

4. In Fig. 7 all three participants, still co-attending to the scale, are able to
observe that it is not leaning substantially to either side. P3 makes this explicit
with his utterance “It [the scale] seems pretty balanced”, which is considered
to be a statement of the proposition red = blue, and elevates this proposition
into the EBank, as something that is evidenced but not yet agreed upon.

5. Subsequently (Fig. 8), P1 says “Yeah”, which is taken to be agreement with
the above statement, thus elevating red = blue to the FBank.

6. No one says anything in Fig. 9, but under a model where transitive closure
takes place, an inference can be made that blue=10, even though the numer-
ical value is never explicitly stated in the dialogue. This is in fact confirmed
by the next utterance in the sequence (not shown), in which P1 says, “Okay,
so now we know that this [blue block] is also ten.”

A couple of points should be noted regarding parameters of the model that
affect when and how different kinds of evidencing is conducted. Many philo-
sophical schools debate the level of epistemic validity to be assigned to direct
perception vs. inference. Here we assume both to be equally valid (see Sect. 4),
meaning that the inference in Fig. 9 would be directly elevated to FBank, but
under other specifications of the model, this may not be the case. Additionally,
we make an assumption here that gaze direction automatically means observa-
tion of content under that gaze, but under certain other assumptions (e.g., such
as one in which all participants are not assumed to be paying close attention
unless otherwise indicated), this would be softened. Finally, in Fig. 8, P2 could
have disagreed but didn’t, and subsequently leans in toward the experimental
apparatus. This is taken to be implicit agreement with P1/P3’s positioning, but
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this need not always be the case, and other models may require explicit accep-
tance by all parties to elevate a proposition from EBank to FBank.

8 Conclusion and Future Work

In this paper we have argued for the importance of Simulation Theory of Mind
(SToM), encoded as an evidence-based dynamic epistemic logic (EB-DEL) for
HCI particularly in the context of a multimodal task-oriented joint activity.
We outlined a theory of perceptually-driven belief updating for multi-agent
cooperative task completion. We extended the evidence-based dynamic epis-
temic logic from [6] to account for how perceptual evidence and inference inter-
act and can cascade into strengthening an agent (or group) epistemic attitude
towards a proposition, for updating the common ground. This subsequently pro-
vides situation-based epistemic data for tracking the common ground through
a dialogue, by integrating the contributions of different modalities toward mod-
eling the cognitive states of the group. Namely, by extracting the proposi-
tions expressed, and building common ground structures as the group proceeds
through the task, our model holds potential for deployment in the creation of
artificial agents proficient in simulating real-world situational settings. These
agents would be adept at recording, adhering to, and comprehending common
ground within collaborative activities. Such agents could find application in envi-
ronments such as classrooms, where they can effectively monitor the collective
knowledge of a group and foster productive collaborations [54].

By integrating ToM and common ground tracking into conversational agent
architectures, we can better model the beliefs of participants by exposing unspo-
ken assumptions of the participants or disagreements among them. Enhancing the
epistemic modeling capabilities of multimodal HCI with ToM may also inform
research in both Affective Computing, e.g., automatic emotion detection, by pro-
viding more contextualized interpretations of cognitive states and emotions in dia-
logue, and in providing support for those with functional impairments.
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