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Faraday Rotation Measurements in

High-Energy-Density Plasmas

Using Shaped Laser Beams

P.-A. Gourdain , A. Bachmann , I. N. Erez, F. Garrett, J. Hraki, S. McGaffigan,

I. West-Abdallah, and J. R. Young

AbstractÐ Magnetic fields play an important role in plasma
dynamics, yet it is a quantity difficult to measure accurately
with physical probes, whose presence disturbs the very field they
measure. The Faraday rotation (FR) of a polarized beam of light
provides a mechanism to measure the magnetic field without
disturbing the dynamics and has been used with great success
in astrophysics and high-energy-density plasma science, where
physical probes cannot be used. However, the rotation is typically
small, which degrades the accuracy of the measurement. Since
polarization cannot be measured directly, detectors rely on a
polarizer to measure a small change in beam intensity instead.
In this work, we show how beam shaping can improve FR mea-
surements using an optical derivative setup. Since the rotation
measurement is now strictly proportional to the beam shape and
intensity, the system allows to improve the measurement accuracy
simply by increasing the laser beam power.

Index TermsÐ Plasma measurements.

I. INTRODUCTION

F
ARADAY rotation (FR) [1], the change of light polariza-

tion caused by a magneto-ionized gas, thereafter called a

plasma, has found applications in a wide range of disciplines

over the years, from laser engineering [2] to astrophysics [3].

The landmark experiment, done by Michael Faraday in 1845

[4], showed that the polarization of an electromagnetic wave

can be affected by a magnetic field parallel to the direction

of propagation. The magnetic field triggers a birefringence
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inside the material, which, in turn, changes the polarization

angle θFR as

θFR = V BL

where B is the magnetic field strength, projected along the

direction of propagation of the electromagnetic wave, L is

the propagation length in the birefringent medium, and V

is the Verdet constant. A similar effect caused by magnetic

fields transverse to the direction of propagation is called the

Cotton±Mouton effect. While the Verdet constant can be dif-

ficult to compute for materials, it is relatively straightforward

for a plasma [5]

θFR(x, y) =
e3λ 2

8π2ϵ0m2
ec3

∫

L

ne(x, y, z)B(x, y, z) · dz (1)

where e is the fundamental charge, λ is the laser wavelength,

ϵ0 is the vacuum permittivity, me is the electron mass, and

ne is the plasma electron number density. We supposed here

that the light travels along the z-axis of our coordinate

system, the x-axis being horizontal and the y-axis vertical.

This dependence allows us to compute the magnetic field Bz ,

provided that the electron density ne is already known. This

effect has been used intensively to measure the magnetic field

strength of the interstellar medium [6] by using background

polarized sources, generating synchrotron radiations across a

variety of wavelengths in the radio range [7]. FR was also used

actively to highlight how bipolar jets spawned from accretion

disks [8] are sensitive to the Hall effect [9], an effect [10]

also found in high-energy-density plasma jets produced in

the laboratory [11], [12]. Recently, the use of FR to measure

magnetic fields in laboratory plasmas has become much more

common in both low- [13], [14] and high-energy-density

plasmas [15], [16], [17].

However, using FR to measure magnetic fields in the labo-

ratory has proved challenging when using a visible laser [15]

rather than microwaves [18] since (1) is a function of λ 2.

For instance, if we used common parameters of laboratory

astrophysics experiments done on MA-class machine [19],

we get rotations on the order of 10 mrad for electron densities

on the order of 1019 cm−3 and magnetic fields on the order

of 100 mT, when using a green laser. The laser wavelength

is a scaling factor in front of the integral of (1). As the

wavelength becomes smaller, the cut-off density becomes
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Fig. 1. Two- f system uses two identical lenses of focal length f . (a) S-waveplate is cyan and its effective polarizing angle, where red is −π and blue is
+π . (b) Neutral density filter with spatial distribution. The location of the filter is on the focal plane and its plate holder is shown in green. Both plates are
drawn thicker for clarity. In reality, the thickness of the plates will be much smaller than f .

larger and deeper regions of the plasma can be probed [15].

However, the FR angle is now greatly reduced and becomes

difficult to measure. In practice, this scaling factor acts as an

attenuation factor.

In this article, we show that an S-waveplate combined with

a neutral density filter with a radial variation scan be used

to amplify the FR signal. In general, the S-waveplate [20]

utilizes polarization to convert a linearly polarized Gaussian

beam into a radially or azimuthally polarized beam [21]. It is

complementary to the vortex plate [22], [23], [24], which

affects the phase of the light rather than its polarization.

The vortex plate achieves this by using a helical cavity with

increasing depth corresponding to the azimuthal angle of the

plate, changing the incoming phase of light azimuthally from

0 to 2 mπ , where m is the plate charge. In contrast, the

S-waveplate uses nanogratings with their alignment rotating

with the plate’s azimuthal angle to change the incoming

polarization azimuthally from 0 to 2 mπ , also using m as the

plate charge. The proposed system gives the spatial derivative

of the FR rotation signal, de facto removing the bias light

from the probe beam. With the bias gone, the laser intensity

can be increased, improving the signal-to-noise ratio of the

measurement.

II. OPTICAL DERIVATIVE OF A POLARIZED BEAM

When a light beam travels through the experimental setup

shown in Fig. 1, its spatial constituents transform into its spec-

tral (i.e., spatial frequency) constituents at the focal plane of

the initial lens. This procedure finds mathematical expression

through the utilization of the Fourier transform

U ( fx , fy) =
∫ +∞

−∞

∫ +∞

−∞
u(x, y)e−i2πx fx e−i2πy fy dxdy

where U ( fx , fy) is the intensity representing the Fourier

transform of the light on the focal plane of the lens [25].

A. Description of the S-Waveplate Using Jones Matrix

The description of the S-waveplate can be effectively real-

ized through the application of Jones matrices [26], [27].

This element can be divided into a retarder introducing a

phase delay of ϕ = π and a rotation matrix that imparts a

rotation determined by the orientation φ of the nanogratings.

Mathematically, the explicit expression for S takes the form

S = e
−iϕ

2

[

cos2φ + eiϕsin2φ (1 − eiϕ) cos φ sin φ

(1 − eiϕ) cos φ sin φ eiϕcos2φ + sin2φ

]

which can be simplified to

S (x, y) = −i

[

cos 2(x, y) sin 2(x, y)

sin 2(x, y) − cos 2(x, y)

]

. (2)

Here, the local polarizing angle 2(x, y) is twice the nanograt-

ing angle φ(x, y).

B. Beam With Variable Intensity and Constant Linear

Polarization

We start with a linearly polarized laser beam having a

constant polarization angle θ relative to the polarization of

the S-plate. Any electric field with a stable polarization in the

object plane can be expanded into a discrete summation of

sine and cosine functions using the discrete Fourier transform

as

E(x, y) =
A0

2
+

+∞
∑

n=1

cos(kn · r)An + sin(kn · r)Bn (3)

where kn · r = kx,n x + ky,n y, An = An cos θ x + An sin θ y,

and Bn = Bn cos θ x + Bn sin θ y. Note that An and Bn can be

complex. To illustrate the operation done in the Fourier plane

by the S-waveplate, we examine each component of E(x, y)

individually. We denote the component of E corresponding to

k ∈ {k1, . . . , kn, . . . ,+∞} as Ek(x, y) = Ak cos(kx x +ky y)+
Bk sin(kx x + ky y). The Fourier transform of Ek is given by

Ek( fx , fy)

=
[

πδ

(

kx

2π
− fx

)

δ

(

ky

2π
− fy

)

+ πδ

(

kx

2π
+ fx

)

× δ

(

ky

2π
+ fy

)]

Ak

+
1

i

[

πδ

(

kx

2π
− fx

)

δ

(

ky

2π
− fy

)

− πδ

(

kx

2π
+ fx

)

× δ

(

ky

2π
+ fy

)]

Bk.
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When introducing an S-waveplate at the Fourier plane

( fx , fy) where the orientation of the local polarizing angle 2

varies azimuthally from 0 to 2π , the Jones matrix S of (2)

can be expressed in term of the frequencies fx and fy as

S ( fx , fy) = −i













fx
√

f 2
x + f 2

y

fy
√

f 2
x + f 2

y

fy
√

f 2
x + f 2

y

−
fx

√

f 2
x + f 2

y













.

Now, we combine the S-waveplate with a neutral density filter

whose transmission varies linearly with the radius ρ and is

defined as [28]

ρ( fx , fy) =
√

f 2
x + f 2

y . (4)

In practice, the transmission cannot exceed 1. While a scaling

factor could be used, it is omitted here. The S-waveplate and

the neutral density filter collectively constitute a new element

denoted as T , with a Jones matrix given by

T ( fx , fy) = −i

[

fx fy

fy − fx

]

.

Upon performing the inverse Fourier transform of EkT ,

we obtain on the image plane [28]

E′
k(x, y) = −R(−θ)∇[Ak cos(k · r) + Bk sin(k · r)] (5)

where ∇ is the gradient operator and

R(θ) =
[

cos θ − sin θ

sin θ cos θ

]

(6)

is the 2-D rotation matrix for an angle θ . Since the main results

of the article focus on intensities, we will drop the minus sign

in (5) from later equations. As a result, the total electric field

on the image plane is given by

E′(x, y) = ∇−θ E(x, y) (7)

where the electric field E(x, y) is the electric field along the

polarization direction θ , that is,

E(x, y) =
A0

2
+

+∞
∑

n=1

An cos(kn · r) + Bn sin(kn · r)

and ∇θ is the rotated gradient operator given by

∇θ = R(θ)∇ or ∇θ =
[

cos θ ∂x − sin θ ∂y

sin θ ∂x + cos θ ∂y

]

.

The resulting electric field of (7) is the gradient of the initial

electric field along the polarization direction θ . However, its

polarization is along the −θ -direction now. Note that for a

beam with a polarization angle θ = 0 (polarization along the

x-axis), ∇θ becomes the usual gradient operator ∇. In this

case, the S-waveplate/neutral density filter gives the gradient

along two perpendicular polarization axes, allowing to measure

∂x E and ∂y E independently. This is a departure from the

vortex plate setup [28] where the derivative along x and y

were combined together.

C. Beam With Variable Intensity and Polarization

We again start with a linearly polarized laser beam with

constant initial polarization angle θi with respect to the

S-waveplate polarization. However, the electric field E(x, y)

has now acquired a variable polarization θFR(x, y) from a

magnetoactive medium. We are dropping the coordinates x

and y hereafter for the terms on the RHS of most equations.

After exiting the medium, the electric field is given by

E(x, y) = E

[

cos θ

sin θ

]

(8)

where θ = θi + θFR. Since a spatial change in polarization

simply corresponds to a change in intensity of the x- and

y-polarization components of the beam, we can use (7) for

each polarization independently to find the electric field at the

exit of the augmented two- f system

E′(x, y) = ∇0(E cos θ) + ∇−π/2(E sin θ)

which we can write explicitly as

E′(x, y) =
[

∂x (E cos θ) + ∂y(E sin θ)

∂y(E cos θ) − ∂x (E sin θ)

]

. (9)

If θ is constant, then (9) is simply (7).

III. IMPLEMENTATION OF AN FR MEASUREMENT

A. Standard FR Measurement

It is typical to start with a y-polarized (i.e., vertically polar-

ized) beam. The beam then passes through the magnetoactive

medium, impinging an FR θFR to the polarization (see Fig. 2).

At this point, a polarizer at π/4 from the vertical direction

yields a new electric field

Eπ/4(x, y) = E cos(α) (10)

where α = π/4−θFR and E(x, y) is the electric field strength.

Now (10) can be turned into

Eπ/4(x, y) =
1

√
2

E[cos(θFR) + sin(θFR)]. (11)

The intensity can be written as

Iπ/4(x, y) =
1

2
E2[cos(θFR) + sin(θFR)]2. (12)

As θFR ≪ 1 in most low-density magnetoactive media such

as plasmas, we can do a Taylor expansion of (12) up to the

first-order leading to

Iπ/4(x, y) ≃
1

2
E2(1 + 2θFR). (13)

While this approach increases the measurement sensitivity

compared to using a cross-polarizer downstream of the mag-

netoactive medium, the bias light [represented by the factor 1

in (13)] really reduces the signal-to-noise ratio.
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Fig. 2. Typical example of an FR measurement yielding an intensity that is
proportional to (1 + θFR) using a polarizer that is rotated by π/4 compared
to the initial laser beam polarization.

B. FR Measurement With Homogeneous Beams

We look first at the case where the laser intensity is

homogeneous, that is, E(x, y) ≃ E0. We can choose θi = 0.

In this case, the electric field of (9) has a component along

the x given by

E ′
x (x, y) = E0

(

∂x cos θFR + ∂y sin θFR

)

(14)

for the x-polarization and

E ′
y(x, y) = E0

(

∂y cos θFR − ∂x sin θFR

)

(15)

for the y-polarization. Since θFR ≪ 1 the zeroth order of (14)

is

E ′
x (x, y) ≃ E0∂yθFR. (16)

In this case, the zeroth order of the intensity of the

x-polarization is

I ′
x (x, y) ≃ |E0|2∂yθ

2
FR. (17)

Following the same line of thinking, (15) gives

E ′
y(x, y) ≃ −E0∂xθFR (18)

with an intensity

I ′
y(x, y) ≃ |E0|2∂xθ

2
FR. (19)

We clearly see that the sensitivity of the measurement is

reduced compared to (13) as we are looking at the square of

the FR angle derivative. However, while the FR signal is still

proportional to E2 in (17) and (19), the bias signal of (13) has

now disappeared. So, the sensitivity can be recovered simply

by increasing the power of the input laser.

C. FR Measurement Using Beam Shaping

Most high-power laser beams can have some degree of

controlled heterogeneity [29]. In this case, (9) yields

E′(x, y)

= E

[

cos θ∂x E/E − sin θ∂xθ + sin θ∂y E/E + cos θ∂yθ

cos θ∂y E/E − sin θ∂yθ − sin θ∂x E/E − cos θ∂xθ

]

.

(20)

To recover the sensitivity obtained by the setup of Fig. 2,

we take θi = 0. In this case, again supposing θFR ≪ 1, (20)

simplifies to

E′(x, y) ≃ E

[

∂x E

E
+ ∂yθFR

]

x + E

[

∂y E

E
− ∂xθFR

]

y (21)

providing that ∂x,yθFR/θFR ≫ ∂x,y E/E . This condition is ful-

filled when the magnitude of E is excessively large compared

to its derivative. Using a polarizing beam splitter, we can

record the intensity of the x-polarization given by

I ′
x (x, y) ≃

∣

∣E∂x E
[

∂x E/E + 2∂yθFR

]∣

∣. (22)

We see that the measurement of the FR derivative is now

similar to the standard measurement of Section III-A. The bias

is ∂x E/E rather than the ª1º seen in (13) and the FR has been

replaced by its derivative. So, a high-power beam with small

spatial dependence will amplify the FR ∂yθFR while reducing

the inherent bias ∂x E/E . Both will improve the signal-to-noise

ratio substantially. Since the intensity of the y-polarization is

I ′
y(x, y) ≃

∣

∣E∂y E
[

∂y E/E − 2∂xθFR

]∣

∣ (23)

we can draw a similar conclusion.

IV. NUMERICAL SIMULATIONS

In the rest of the article, we use ray tracing [30] with vector

Rayleigh±Sommerfeld (VRS) diffraction [31] to compute the

effect of each optical element on the intensity and polarization

of FR measurements. We used here parameters that can be

used to study the magnetic field inside a high-energy-density

plasma with similar hardware used in [16] and [17]. The laser

beam will span a total of 5 cm with some beam variation that

can be controlled by spectral dispersion (e.g., [32]) with a

wavelength of 532 nm. The lenses are 2 cm in diameter with

a focal length of 25 cm.

A. Quasihomogeneous Beam

We use a laser beam profile in a large region of the

ray-tracing domain that is mostly homogeneous and given by

E(x, y) =
E0

4

[

1 + tanh

(

x0 −
|x − xc|

σ

)]

×
[

1 + tanh

(

y0 −
|y − yc|

σ

)]

where xc and yc correspond to the beam center and σ the

transition width to 0. With the given parameters the full-

width half-maximum is 2x0 along the x-axis and 2y0 along

the y-axis. Due to the effect of boundary conditions, we keep

2x0 and 2y0 on the order of 75% of the computational domain

width along the respective directions. The spatial dependence

of E is shown in Figs. 3 and 4. The FR given by

θFR(x, y, M) = Mπ

[

x − xmin

xmax − xmin

−
1

2

]2

+ Mπ

[

y − ymin

ymax − ymin

−
1

2

]2

(24)

where the scaling factor M allows to switch between large and

small rotation, xmin and xmax are the domain limits along the
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Fig. 3. Electric field of the laser beam downstream of the setup of Fig. 1 along the x-axis for the y-polarization (left) and along the y-axis for the x-polarization
(right) for M = 1 computed using VRS diffraction. The analytic values of the field are plotted using dotted lines. The magnitude of the initial electric field
is indicated in blue.

Fig. 4. Electric field of the laser beam downstream of the setup of Fig. 1 along the x-axis for the y-polarization (left) and along the y-axis for the
x-polarization (right) computed using VRS diffraction. The analytic values are represented with dotted lines for small rotation angle (i.e., M = 10−3), they
are approximately ∂xθFR for the y-polarization (left) and −∂yθFR for the x-polarization (right). The magnitude of the initial electric field is indicated in blue.

x-axis, while ymin and ymax are the domain limits along the

y-axis. This analytical expression will help to identify the FR

feature unequivocally in the downstream beam and verify (9).

For M large (i.e., 1), the downstream electric field should

follow (14) and (15), as plotted in Fig. 3. For small rotation

angle (i.e., M = 10−3), we expect a signal given by (16)

and (18). Indeed, we recover the linear dependence of the

derivative along the x-axis, shown on the left-hand side of

Fig. 4, and the quadratic dependence of the derivative along

the y-axis, shown on the right-hand side of Fig. 4.

Here, we scaled the analytical value of the solution given

by (14) and (15) to the x-polarization of the output beam

profile of Fig. 3 and kept this scaling constant throughout the

simulation section.

B. Shaped Beam

As (22) and (23) show, it is possible to recover the sensi-

tivity of the standard method given by (13). However, this

can only be achieved if the beam has well-defined spatial

variations. In fact, these variations should be as simple as

possible to allow for an easy measurement of the rotation.

While we are using a laser for getting large intensities allowing

us to amplify the rotation signal, the coherence of the beam

is not primordial as the S-waveplate affects the phase signal

only by adding a constant. As a result, the beam profile can be

controlled using engineered diffusers [29] with an extremely

high level of precision. We need to use here a diffuser that

scrambles the phase rather than the polarization. To this end,

we now add a small, linear variation to the previous beam, for

example,

E(x, y) =
E0

4

[

1 + tanh

(

x0 −
|x − xc|

σ

)]

×
[

1 + tanh

(

y0 −
|y − yc|

σ

)]

×
[

|αx x + xbias| + |αy y + ybias|
]

(25)

and shown in Fig. 5(a). We also show the impact of the

waveplate only [Fig. 5(b)] and the neutral density only in

Fig. 5(c). If the variation is too large, then we could be back

with a case similar to (13), where the bias decreases the signal-

to-noise ratio. However, if this is deemed necessary, we can

reduce the impact on the FR signal simply by increasing the

base electric field. In this case, the bias terms ∂x E/E and

∂y E/E in (22) and (23) can be made small compared to the FR

signal, while the amplification terms E∂x E and E∂y E can be

made large, de facto amplifying the FR signal. Using the same

FR profile of (24), Fig. 6 shows that ray tracing confirms (21).

While not plotted, numerical simulations confirm both (17)

and (19).

C. Noisy Shaped Beam

It is now time to see what can be done about the beam

noise. Clearly, this is an open problem so far, at least for the

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:31:14 UTC from IEEE Xplore.  Restrictions apply. 



GOURDAIN et al.: FR MEASUREMENTS IN HIGH-ENERGY-DENSITY PLASMAS USING SHAPED LASER BEAMS 5613

Fig. 5. (a) Shaped beam with polarization given by (25). The shaped beam after the 2 − f setup using (b) waveplate only and (c) neutral density filter only.

Fig. 6. Electric field of the laser beam downstream of the setup of Fig. 1 along the x-axis for the y-polarization (left) and along the y-axis for the x-polarization
(right) computed using VRS diffraction. The analytic values are represented with dotted lines for a small rotation angle (i.e., M = 10−3). The initial electric
field is indicated in blue. The horizontal dashed line is used to highlight the variation of the electric field of the initial beam.

Fig. 7. Electric field of the laser beam downstream of the setup of Fig. 1 along the x-axis for the y-polarization (left) and along the y-axis for the
x-polarization (right) using VRS. The expected values are plotted using dotted lines for a small rotation angle (i.e., M = 10−3). The initial electric field is
indicated in blue and has a noise amplitude of 10%.

low-frequency noise. Yet, several techniques have shown good

mitigation. For instance, low-frequency noise can be removed

using spectral dispersion [32], [33] or microlens arrays [34],

[35]. Polarization smoothing [36] cannot be used here since

we are measuring polarization.

High-frequency intensity noise can be removed more easily.

This is simply done by placing an aperture in the Fourier plane

of the setup shown in Fig. 1 [37]. This can be combined

directly inside the neutral density filter of (4), setting the

transmission to zero at the filter periphery. Fig. 7 shows that a

high-frequency noise up to 10% has almost no impact on the

FR measurement, once filtered optically.

V. CONCLUSION

This work shows that the combination of an S-waveplate

with a linearly varying neutral density filter allows to compute

the spatial derivative of the FR angle. The y-polarization

exiting the setup will carry the partial derivative along the

x-axis, while the x-polarization will carry the partial derivative

along y. In a standard setup, where the FR signal appears on

top of the beam carrier, increasing the beam energy does not

necessarily improve the FR signal, except if the background

light from the medium (i.e., the continuum) is relatively bright.

In this case, larger intensities reduced the impact of the

background noise. In the proposed setup, the FR derivative
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is proportional to the beam energy. So, the laser acts as an

amplifier, allowing to increase the signal simply by increasing

the beam energy. In real-life situations, the spatial variation

of the beam now adds to the FR signal, as shown by (9).

So, it is imperative to smooth the beam to increase the

signal-to-noise ratio. One method is simply to expand the

beam, possibly beyond the optical system, to reduce unwanted

gradients as much as possible near the optical axis. However,

high-frequency noise can be removed using spatial filtering,

providing that the FR signal varies much more slowly than

the beam noise. Further difficulties arise from the high power

required to improve the signal-to-noise ratio because of the

parasitic plasma light. The high-power laser will be focused

directly onto the waveplate and the neutral density filter could

get damaged. This problem can be limited by setting the 2− f

system in a vacuum. It is also possible to move the neutral

density filter closer to the first lens. As we move the filter

away from the focal point, the light intensity will decrease.

Now, because the filter is not located at its optimal position,

it will not perform as predicted. However, we can perform a

correction on the filter by doing a partial Fourier transform

of the filter [38]. Another option is to use a lower-power

laser coupled to an intensified ICCD so that the plasma

light can be greatly decreased by reducing the exposure time.

Furthermore, as the plasma light is broad geometrically, most

of the light will be near the focal point in the 2 − f system.

Since the neutral density filter has little transparency for low

wavenumbers, we expect an improvement in the signal-to-

noise ratio compared to the traditional FR technique.
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