IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 52, NO. 12, DECEMBER 2024

5581

Neural Network Reconstruction of the Electron
Density of High Energy Density Plasmas From
Under-Resolved Interferograms

P.-A. Gourdain

Abstract— Interferometry can accurately measure the electron
density of a high energy density plasma by comparing the phase
shift between a laser beam passing through the plasma and
a reference beam. While the actual phase shift is continuous,
the measured shift has discontinuities, since its measurement is
constrained between —x and =z, an effect called “wrapping.”
Although many methods have been developed to recover the
original, ‘“unwrapped” phase shift, noise and under-sampling
often hinder their effectiveness, requiring advanced algorithms to
handle imperfect data. Analyzing an interferogram is essentially
a pattern recognition task, where radial basis function neural
networks (RBFNNs) excel. This work proposes a network archi-
tecture designed to unwrap the phase interferograms, even in
the presence of significant aliasing and noise. Key aspects of this
approach include a three-stage learning process that sequentially
eliminates phase discontinuities, the ability to learn directly from
the data without requiring a large training set, the ability to mask
regions with missing or corrupted data trivially, and a parallel
Levenberg-Marquardt algorithm (LMA) that uses local network
clustering and global synchronization to accelerate computations.

Index Terms— Artificial intelligence, interferometry, plasma
measurements.

I. INTRODUCTION

SUALLY, interferometry (see [1], [2], [3]) is used to

measure the properties of a system (e.g., elevation and
electron density) that would be impractical to measure oth-
erwise [4]. However, the phase shift ¢gr, or “ground truth,”
between the two paths cannot be measured directly. Rather,
only the wrapped phase shift [5] ¢w, bounded between —m
and mw, can be computed from the interferogram. Note that
the rest of this article, we will use phase instead of phase
shift. As the wrapped phase ¢y cannot be used directly, the
data need to be unwrapped, a task deceptively challenging,
especially in the presence of noise. To further complicate

Received 18 September 2023; revised 24 February 2024, 7 September 2024,
and 23 November 2024; accepted 10 December 2024. Date of publication
30 December 2024; date of current version 28 January 2025. This work
was supported by the NSF CAREER Award under Grant PHY-1943939.
The review of this article was arranged by Senior Editor E. Schamiloglu.
(Corresponding author: P.-A. Gourdain.)

P-A. Gourdain is with the Department of Physics and Astronomy and
the Laboratory for Laser Energetics, University of Rochester, Rochester,
NY 14627 USA (e-mail: gourdain@pas.rochester.edu).

A. Bachmann is with the Department of Physics and Astronomy, University
of Rochester, Rochester, NY 14627 USA, and also with the Depart-
ment of Physics and Astronomy, University of California at Los Angeles,
Los Angeles, CA 90024 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TPS.2024.3519032.

Digital Object Identifier 10.1109/TPS.2024.3519032

and A. Bachmann

matters, large chunks of phase data might be missing due to
the presence of strong signal cutoff (often seen in magnetic
resonance imaging [6]) or under-sampling, as in the dense
plasma interferometry [7]. Furthermore, datasets have grown
extremely large, straining serial algorithms used in phase
unwrapping (e.g., functional MRI [8], interferometric synthetic
aperture radar [9], shape reconstruction [10], or fringe projec-
tion profilometry [11]). Regardless of the problem, the phase
unwrapping procedure must find an approximate phase ¢, that
is, such that ¢ = ¢gr + o(¢gr). The ground truth must be
extracted from the intensity / given by

I(x,y) = A(x,y) + B(x, y) cos” pgr(x, y). (1

Note that in the ideal case, where A 0 and B 1,
we effectively measure the wrapped phase ¢y = W(dgr),
where W is the wrapping operator defined as follows:

W(¢) = ¢ — 2km with k € Z such that W (¢) €] — &, 7].
2)

In this work, we turned the intensity given by (1) into a
computed phase ¢y, which is bounded between —7 and =,
from the filtered Fourier transform used on the interfero-
gram [12], [13], [14]. The bounds +x are defined by the
Fourier transform operation, which is not capable of recov-
ering the “unwrapped” phase.

When the phase ¢gr is well-behaved (i.e., continuous, noise
free, and over-sampled) then phase unwrapping is straightfor-
ward [15]. However, when the phase is corrupted by noise
or under-sampled (i.e., aliasing), unwrapping becomes diffi-
cult [16] and a variety of methods have been developed to
overcome this issue. Early methods used branch-cuts [17],
[18], [19], least-square algorithm [20], [21], or polynomial
phase approximation [22], [23]. However, they also did not
react well to noise, leading to the development of algorithms
capable of handling high noise levels [24], [25], [26], [27],
[28], [29] using Kalman filters [30], [31]. Machine learning
algorithms were equally successful, using artificial neural
networks [32], then deep learning [33], [34], [35], [36], [37]
and finally convolutional networks [38], [39]. Unlike previous
techniques, which tend to use the grid given by the natural data
layout, machine learning is usually not relying on the physical
data structure to perform the unwrapping. Compared with
other phase-based measurements, high-energy density plasma
interferometry [40], [41], [42] has its set of unique challenges.
Typically, external noise levels are relatively low since most

0093-3813 © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-3272-2193
https://orcid.org/0000-0002-9470-6404

5582

interferometers use a laser beam [43] that is extremely bright
(=100 MW/cmz). However, diffraction can generate artifacts
that degrade beam quality. Furthermore, these plasmas have
energy densities on the order of 1 kJ/cm?, and the continuum
light they produce as a result can cause large-scale intensity
blotches embedded inside the interferogram. High energy
density plasmas can also be surrounded by complex structures,
which blocks part of the beam and create regions free of
interference fringes. The shape of these structures is often
complex [44], [45] and must be removed from the input data.
Finally, with electron density gradients relatively large, the
interferometry data are often under-sampled, creating zones
where the interference pattern is not directly usable [46].

To deal with such practical considerations, we developed
a parallel neural network architecture capable of unwrapping
phase data following staged supervised learning. Paralleliza-
tion is obtained by clustering neurons across contiguous
regions, where overlapping neurons, called ghost neurons [47],
are used to synchronize different networks. Unlike previ-
ous methods using Levenberg—Marquardt algorithms (LMAs)
[48] or spatial derivatives [49], the proposed radial basis
function neural network (RBFNN) architecture uses the well-
documented neural networks [50]. However, the optimization
procedure has been modified to unwrap the phase obtained
from an imperfect interferogram, where noise and under-
sampling are caused by inadequate digitization or data
compression. Since radial basis functions are good interpolants
for smooth functions [51], they guarantee that the RBFNN
can interpolate [52] a phase that is smooth enough using
one hidden layer. While we have not investigated multilayer
perceptrons [53], [54], they are known to be excellent approx-
imators [55] and are not that different in practice [56], [57].
The main reason we chose radial basis functions in this work
hinges on keeping the Jacobian matrix, used in gradient-based
training, as sparse as possible. While multilayer perceptrons
use sigmoid-like functions, which are not compact, we can use
compact radial basis functions [58], leading to RBFNN with
sparse Jacobian matrices.

While most methods expect the phase data to be noisy,
dealing with corrupted or missing phase data is not a trivial
task. Removing the corrupted phase from the learning process
is especially challenging when the region to exclude is geomet-
rically complex. Furthermore, the wrapped phase data can have
different sizes. Therefore, the method proposed here does not
use a training dataset containing wrapped and unwrapped data
as it is the case in machine learning (see [37]). Rather, we train
the RBFNN only on the wrapped phase data that the RBFNN
is trying to unwrap. Therefore, every new unwrapping is also
a new training operation. However, based on the consideration
just listed above, this approach gives the most flexibility when
successive acquisitions yield phase data that is fundamentally
different from the previous ones both in size and shape, as it
is often the case in plasma electron density measurements.

II. TRAINING OF THE STAGED NEURAL
NETWORK ARCHITECTURE
A. Preliminary Remarks

1) Condition to Detect Aliasing: Super-resolution imaging
uses numerical or physical techniques that allow to effectively

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 52, NO. 12, DECEMBER 2024

increase the resolution of an image [59], [60]. This technique
is required when the phase was wrapped more than once across
two pixels in interferometry data. This phenomenon is known
as aliasing [16], [61]. It can present itself as a series of swift,
consecutive jumps, a case relatively easy to detect when noise
levels are low. It can also be completely inconspicuous. For
instance, a phase which varies as ¢gr(n) = £ —m and ¢gr(n+
1) = &+ m, where 0 < £ <« 1, would yield a seemingly
constant wrapped phase ¢w (n) = £ —m and ¢y (n+1) = &—m.
As a lower bound, we can see that aliasing is present when
|0¢pgT| > 27, then W (d¢pgr) has jumps inside | —m, w]. While
this is only a necessary condition, it becomes sufficient when
dar is continuous, as we will see later, allowing us to detect
the presence of aliasing inside the data.

2) Key Property of Periodic Functions: When any phase ®
is discretized, we can define its left derivative as d;, ®(n) =
®(n)—d(n—1). Using (2), we get F (3. pgr(n)) = F(dpw (n)—
ow(n — 1) + 2(k, — k,—1)m) for any 2m-periodic function F.
As a result, F(9.¢gr(n)) F(@r¢pw(n)). This is true
for the whole domain if we use the linear extrapolation to
define the left derivative at the left boundary as 9, ®(1) =
—®(1) +29(2) — ®(3). For the right derivative, defined as
Igd(n) = ®d(n + 1) — ®(n), we use the same reasoning
to get F(oppgr(n)) = F(Orpw(n)). This is valid across
the whole domain if we now use the linear extrapolation
of the right derivative at the right boundary as dx®(N) =
—O(N—-2)4+20(N—1)—D(N). This property does not extend
to the central derivative dc®(n) = (1/2)[P(n+1)—D(n—1)]
since F(dcpgr(n)) = F(dcopw(n) + (kpy1 — kp—1)7) is equal
to F(dc¢w(n)) only when k, — k,_; is even, but not when it
is odd. In the end, we find

FOr,r¢pw) = F(Or.rG1)- 3)

It happens that the second derivative 3°® = ®(n + 1) —
2®(n) + ®(n — 1) is also invariant since F(3’pgr(n)) =
Flown+1)=2¢wn)+odwn—1)+2(k, 11— 2k, +k, 1)) =
F(@%pw (n)). If we linearly extrapolate the second derivatives
to the domain boundaries as 3%¢ (1) = ¢ (1) =3¢ (2)+3¢p(3)—
¢(4) and 3°¢(N) = ¢(N —3)—=3¢(N—=2)+3p(N—1)—¢(N),
then this result is still valid for the whole domain and we get

F(@*¢w) = F (9 ¢cr). 4)

Applying the same reasoning using (3) and (4), we can easily
show that

W(Or,rpw) = W(9L rPcT) ®)
also known as the Itoh condition [15], and
W (@*pw) = W (9 ¢ar). (6)

3) Restriction on the Ground Truth: An important restric-
tion arises when unwrapping the phase using RBFNNs. Since
the output layer is a sum of radial basis functions, which are
smooth, the output is also smooth. Therefore, the RBFNN can
only unwrap a phase in which ground truth is smooth. The
continuity criterion is defined by the interferometer resolution
here. If the ground truth, while continuous, varies too quickly
for the interferometer to measure the change, there will be a
discontinuity in the signal, and the ground truth will “appear”
discontinuous. However, when few discontinuities are present,

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



GOURDAIN AND BACHMANN: NEURAL NETWORK RECONSTRUCTION OF THE ELECTRON DENSITY

they can be hidden relatively easily from the RBFNN using
a mask. This condition is usually not restrictive for interfero-
grams generated by high energy density plasmas. If we work
with a phase ¢gr that is twice-continuous and not aliased,
i.e., or popgT €] — 7, 7], (5) gives

W(0L,rpw) = 0 RPGT-

As a result, W (9, r¢w) is continuous since 9. g¢gr 1S con-
tinuous, regardless of how many phase jumps are present in
aL,r@w [15].

Since our goal is to deal with aliased phase, we can use the
much less restrictive assumption 3%¢gr €] — 7, 7], and (6)
gives

W (*pw) = 3> pr. (7)

Furthermore, if 32¢gr is continuous across the whole domain
then W (3¢w) is also continuous everywhere. We will look
at both assumptions in the rest of this article.

B. Construction of the Input Layer

While ¢w has jumps, we have shown that W (9, r¢pw) and
W (8%¢w) are continuous if ¢gr is twice continuous. Yet,
we cannot match the RBFNN output ¢—¢gr using gradient-
based optimization since the wrapping operator W, which
turns ¢gr into ¢y, is not differentiable. We will use here a
gradient-based methods even if gradient-free methods [62],
[63], [64], [65], [66], [67] have been used successfully in
machine learning. Equations (3) and (4) show that we can
use the differentiable sine and cosine functions instead of W,
where differentiability is required. As long as ¢gr is twice
continuous, these functions remove the spurious discontinu-
ities otherwise present in 9, r¢w and d?¢y at every phase
jump of ¢y .

1) Input Layer to Achieve Super-Resolution: We can now
,,,,, 12, where all the data are con-
tinuous. At every location inside the interferogram, we can
get

iy = cos(pw)

ir = sin(¢w)
i3 = cos(dy.Pw)
iy = Sin(dy.Pw)
is = cos(d,.Pw)
ic = sin(dyr Pw)
i7 = cos(d, xw) ®)
is = sin(dyrPw)
i9 = cos(dyrPw)
i10 = sin(dyrPw)
in = W(0..:0w)
in = W(0,,¢w)

5583

We can now compare the input layer with the RBFNN output
¢ using the following set of equations:

01 = cos(¢)
0y = sin(¢)
03 = c0s(0,¢)
04 = sin(0, @)
05 = c0s(d,¢)
06 = sin(d,¢)
07 = c08(d;¢)
0g = sin(0,¢)
09 = c0s(d,¢)
019 = sin(d,¢)
011 = 0xx @

012 = dyy

9

Note that, while i;; and ij, are still using the wrapping
operator, this operator is not present in the equations used
to compare the input layer and the RBFNN output because
we restricted the second derivative to be between —7 and 7.
As the wrapping W has no effect on the RBFNN output, it has
completely disappeared from o0;; and 05, and we can now
take their derivatives. However, this operator is still required
on the left-hand side of i;; and i}, to remove the phase jumps
in 32¢y. Also note that we have dropped the subscripts L and
R for the first derivatives of the output of the RBFNN, since
it is a sum of analytical functions, which derivatives can be
computed exactly.

2) Input Layer When Super-Resolution Is Not Required:
The training can be substantially simplified when super-
resolution is not required, i.e., d¢gr €] — 7, w]. In this case,
we can replace (8) with

iy = W(0dw), is = W(drdw)
iy = W0y dw), ig = W(0yrow)

i) = cos(pw),
i, = sin(¢w),

and (9) with

] (10)

0, = cos(¢),
0, = sin(¢),

g5 = 8"¢]. (11)

s 06 = 0y

B
I

C. Activation Function

Throughout this article, the RBFNN will use a compact
Wendland function [58] as the activation function. Such func-
tions can be constructed easily starting from

(1—-r)P, forO0<r<l1

0, forr > 1

Ypor) =1 -nf = [

and using

for0<r <1

wp.q(r) = jqu,()y

to increase the function smoothness. Here, p, ¢ € N. The
operator J above is defined as T f (r) = froo f(®)tdt for 0 <r.
Wendland functions are C¥ and can be computed analytically.
They yield a strictly positive definite matrix in RY, where

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



5584

d < p and k = 2q. The subscripts of v, , will be dropped in
the rest of this article. Each neuron (x,, y,) in our 2-D dataset
is activated using such radial basis functions [50], [68]. In this
article, we use exclusively the Wendland function ¢ given by
1
3

3

(1 —=r°[B5r+18)r +3], for0<r<1

V() =

for r > 1
(12)
obtained for p =3 and g = 2.

D. Output Layer

The output layer ¢ is expressed as the sum of radial basis
functions v, (x, y) = ¥ (r,) centered on each neuron n located
at (x,, y,) and scaled by the weight w,,. The output layer of an
RBFNN with N neurons is continuous and defined as follows:

N
P(x.y) = D wa(x, MY (ra(x, ) (13)
n=1

with

Fay) = O = 20202 + (v = 3202,

where p,, and p,, are the activation distance inverses for
the nth neuron along the x- and y-directions, respectively.
The analytical expression of the Jacobian matrix is greatly
simplified when using the inverse of the activation distance.
As discussed later in this article, we need to match five
constraints to give the neural network architecture super-
resolution, i.e., ¢gr, PG, 8},¢GT, OxxPgr, and ayy¢GT~
To match five constraints, we need to inject three degrees of
freedom inside the weights as follows:

wn(x’y):an +bn(x_xn)+cn(y_yn)' (14)

Together with p,, and p, , we now have five degrees of
freedom per neuron. Note that the weights w, are now local
linear [69], [70] in x and y.

E. Definition of the Objective Function

1) Objective Function With Super-Resolution: We can now
define the objective function F'(e), used by the training process
to minimize the error vector e = [ey, ..., ey]” for all neurons
nefl,...,N}

N 12

F(e) =e'e= Zze?n,

n=1 j=I1

with €jn = Ojn —ijn. (15)
The error ej, is the difference between the jth input layer
value computed at the location (x,,y,), i.e., ij,, and the

Jjth output layer value computed at the same location, i.e., 0j,.

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 52, NO. 12, DECEMBER 2024

We expect the total error to remain high, even after full
convergence, since the training will never match the left and
right derivatives simultaneously. Therefore, we need to define
another error € to estimate when our network is fully trained

(16)

where €, = 0, — i jn» and, as shown in the equation at the
bottom of the page.

2) Objective Function Without Super-Resolution: The
objective function for interferograms where super-resolution
is not needed is defined as F(e) and should be used to
minimize the error vector € = [e,, ..., ey]? for all neurons
nefl,...,N}

F(e) =e'e

N 6

2 . .
2.2 G Withe, =0, —i;. (7
n=1 j=1

As we did earlier, we can define the error € to better assess
the actual convergence error

N 8
AT o A2
ee= E E €in (18)
n=1 j=1
where ¢;, =0;, —i;,, and
n N . N 1 . . N 1 . .
L=l L=k h=50+) L=50+i)]
91 =91, =0, 93 = 03, 94 =9y

3) Regularization: Simple Bayesian regularization [71],
or more complex variants such as using Markov chain Monte
Carlo [72], have been proposed to avoid over-fitting noisy data,
and it is necessary in the presence of noise

N 12 N
Fr@ =D, +Q> (a2 +b>+c2+p +p2).
n=1 ]=l n=1
(19)

We found that Q2 should be 1 during the first and second
training stages since the noise has the largest impact on the
second derivative of the wrapped phase. Regularization is
typically not necessary during the last stage of the training
and we can use 2 = 0. When super-resolution is not needed,
we use

N 6 N
Fr@=2 > &, +QD (a3 +by+c+p +0).

n=1 j=1 n=1

(20)

~

i =i, i =i,

n 1 ~ 1

is = —(is +1i9), ¢ = =(is+1i10),
A2 ' ~ 2
01 = o0y, 02 = 02,
05 = 05, 06 = 0¢,

~ 1 A 1
i3 = E(is +i7), 4= §(i4 +ig)

i7 =111,

ig =i
03 = 03, 04 = 04
07 = 011, 0g = 012

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



GOURDAIN AND BACHMANN: NEURAL NETWORK RECONSTRUCTION OF THE ELECTRON DENSITY

5585

W@ w) W (0L, réwW )- ow. W (9L, row ).
w > >
W (02w ) W (0% pw)
A A
vn, i, = Vn, i, = vn, i, =
211n,112n]T [i3ns - -+ G12n]" [i1n, .., i12n]"
— Vn, 0, = Vn, 0, = vn, 0, =
>
[011n,012n]" [03n; .-, 012n]" [01n;- .-, 0120]"
) L ] 7
| | L cEe| | =
! s s l PT l
Iz S S e =
— & o o = 5 3
[/ g S > q
3 e S yes | e S yes €< 3
J ) Initial | " 4 S 4 5 5 Q‘j
< - .Qé: = .Q; = s & &
& & &S 5 ° S s
5 < s 9 ne A " S5 %
- ket > a =
SN = = > g &
> g — g — s &
Y| ) | 3 (] ) [
. = = q:bq:¢q,Pzq:Pyq 0
~
5 -
dlag, bq, cq]T = dlag, bq, Cq]T = dlag, bg; cq, pqu qu]
— (T3 + A1) e (T3 4+ A1)t e (T3 + A1)~
[ Phase Unwrapped ]

Fig. 1.

F. Multistage Training

1) Staged LMA: The minimization procedure needs to
find the values of the basis function weights u,
(@n, by, ¢y, px,, py,) for all neurons n € {1,..., N} using a
gradient-based algorithm. We used here a standard LMA [73],
[74], which minimizes the error e (not €) in the sense of
the least square using the Jacobian matrix J. The solution
is found by successive iterations, advancing the vector u =
[uy, ..., uyn]" such that u™¥ = u — du with

du= (J"J+ A1) "' J"e.

The procedure to find A follows a standard Levenberg—
Marquardt (LM) optimization method specific to RBFNN
training [75], [76], [77], [78]. This procedure can be altered,
avoiding the storage of complete Jacobian matrices [79].
Regardless of the method used, the first two stages can be
seen as an initialization of the weights of the RBFNN in the
presence of wrapped input data. The last stage corresponds
to the true optimization procedure. Since different stages are
following a conventional LM optimization using the appropri-
ate inputs and Jacobian matrices, we only summarize here the
goals of the three training stages.

1) Matching the Second Derivatives of ¢w: The error vec-
tor is defined as e, = [e}1,, 8]2,,]T = [011n — i11n> O120 —
i1,]T. We only train the neural network architecture
to optimize the radial basis function weights w, at
this stage using u, = [uy,, oy, uz,]" = [an, by, c,]".
We have found that optimizing the activation distance
early on does not really improve the quality of the output
at this stage. The quality of convergence at this stage is
crucial to super-resolution. This stage is shown in blue
in Fig. 1.

Staged training of the super-resolution RBFNN with the first stage in blue, the second stage in red, and the last stage in green.

2) Matching the First and Second Derivatives of ¢w: The
error vector is now redefined as e, = [es,, . . ., e1o,]T =
[03n — i3ps ..., 0120 — i12,]". Here again, we train the
neural network architecture to optimize the radial basis
function weights w, using w, = [uy,, U, un}]T
[@y, by, c,]T. This stage propagates the super-resolution
information to the first derivatives of the phase. This
stage is shown in red in Fig. 1.

Matching ¢w as well as the First and Second Deriva-
tives of ¢w: The error vector is defined as e,
[elnv ceey elZn]T = [Oln —py e, 0127 — i12n]T- We now
optimize the neutral network to find the basis function
weight w, and the inverse activation distances at this
stage so u, = [uyy,, ..., uSn]T = lan, by, cn, P, ;Oy,,]T-
This stage unwraps the phase globally, in one single
sweep. This stage is shown in green in Fig. 1.

3)

When super-resolution is not needed, the training will only
try to match the first left and right derivatives, together with
the wrapped phase using only two training stages.

1) Matching the First Derivatives of ¢w: The error vector
is first defined as e, = [e;,,..., €, = lo;, —
I3ps-v-2 06, — Lbn]T. Here again, we train the neural
network architecture to optimize the radial basis function
weights w,, using w, = [Uy,, Uz, tn,]T = [an, b, ca]".
This stage propagates the super-resolution information
to the first derivatives of the phase. This stage is shown
in blue in Fig. 2.

Matching ¢w as well as the First Derivatives of ¢w:
The error vector is defined as e, = [e,,, ..., ¢€q,]"
(01, — Q1> -0y — ig,)"- We now optimize the neu-
tral network to find the actual basis function weight
w, and activation distances at this stage so u,
(Wins ooy tsy]" = [an, by, Cu, px,» Py, 1" This stage

2)

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



5586

vn, i, =
3 5 T
[Esnv---vlsn]
T vn, 0, =
T
(0375 %6n]
=
Q
=
Il :w
el =
o I kS
= =S
S | mitial | 7§
2 . T
S S e
;& N
S <
> S
& S,
o =
&
T _
dlag, bq, cq]” =
N J T =1 4T
I+ Jle

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 52, NO. 12, DECEMBER 2024

vn, o0, =
[T Oen]

o
Il
=
|
e
—/

yes

lag, bg, anpmqvpyq]T

=
Il

lag, bq, cq; paq; qu]T -
dlag, bqch:quxﬂyq]T -

[ [8aq,bq,c,q,pmqvﬂyq QP] }

dlag, bg, cq; Paq; qu]T =
@3+ A1)~ e

—nJ

[ Phase Unwrapped

}7

Fig. 2. Staged training of the RBFNN without super-resolution. The first stage is in blue, and the second stage is in red.

unwraps the phase globally, in one single sweep. This
stage is shown in red in Fig. 2.
2) Computation of the Jacobian Matrix With Super-
Resolution: The Jacobian matrix used in the last stage of the
training is given by

0u, €1 Ouy el
I=| : : @1
8uleN 8uNeN
where
Baqo],, 3bq01p acqolp 39("01]7 8/0,\2,0117
0y, €p = :

8aquZp a17,1012[7 8cqol2p 8/)&1012[7 8py(IOIZp

Here, the matrix 9, e, corresponds to the partial derivative
of the error e, between the output layer and the input layer
computed at the pth neuron with respect to the weights u,
of the gth neuron. Since the input layer does not depend
on any neuron weights, the input values i;,—i12, have been
dropped inside the partial derivatives, and only the output
values 01,—012, were retained. To form the smaller Jacobian
matrix matrices necessary for the first two stages, we just need
to drop the corresponding terms in the full matrix d,,e, for
the first stage

_ | 9a,011p B, 011p O, 011p
Ouep =15 9 9
aqOIZp hq012p chIZp_
and the second stage
aaq 03p abq 03p acq 03p
8"‘qu = .
04,012p  Op,012p 0, 012p |

All the functions used in 0;,—01,, are analytical and can be
differentiated, since the wrapping operator W was dropped
from o;;, and o0y, using the condition 3¢ €] — m, 7).
We can now compute the Jacobian matrix elements taking
the partial derivative on every term in (9) with respect to

w € {aq’ bq’ C(]’ IOXq7 ,qu}

awol = _aw¢ Sln(¢)
0,02 = 00 cos(9)

aw03 = _8xw¢ Sin(8x¢)
8w04 = axwd) cos(8X¢>)
0,05 = —0y,¢ sin(0y¢)
0006 = Oy COS(y¢h)
0,07 = — e SiN(0:)) 22

0,08 = O0x® COS(0¢))

8(009 = _ayw¢ Sin(ayd))

0,010 = ayw¢ COS(3y¢)
aa)Oll = 8xxw¢
0,012 = ayyw¢

The values of the partial derivatives used in (22) are listed in
the Appendix.

3) Computation of the Jacobian Matrix Without Super-
Resolution: 'When dropping super-resolution, the Jacobian
matrix J of Fig. 2

aulgl T 8MN €

: : (23)
aulgN 8”N§N
can be computed in a similar manner. Here, the error Buq ep
given by
—aaq 03 p

9,03,  0c,03,

Ug=p —

L 3aq 96p 3b(, 96p 8c,, 96p

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



GOURDAIN AND BACHMANN: NEURAL NETWORK RECONSTRUCTION OF THE ELECTRON DENSITY

for the first stage, and

%, 01p 0,01, 0,01, Ip, 01, 0

allqu =

aaqgﬁp abq 26[) 8Cq 96[7 aptq Q()p ap)’q g6p

for the second stage.

4) Masking and Clustering Strategies: We now focus on
the initialization of our network, looking at masking, neuron
clustering, and receptor connections. The mask should be
chosen before the training starts and should remain the same
throughout the training. Most interferometry data carries noise,
discontinuities, and regions that should be dropped from the
interferogram. The mask should keep only the data that can
be unwrapped with minimal error propagation. The mask over
discarded data should slightly overlap with useful data. This
strategy allows to compute properly phase derivatives at the
mask boundary rather than using extrapolations. Furthermore,
the mask should neither split the data into separate regions nor
have constricted regions.

The optimal number of receptors is integrated into the
optimization procedure and does not have to be computed
beforehand. Since we are using compact radial basis functions,
any input p such that g = [(x,—x4)* 03 +(vp—¥y)* 05 1'% >
1 will not be connected to the neuron g. The training process
is initialized by choosing arbitrary values for p,, and py, , and
these values should be chosen carefully. In regions with rapid
phase changes the activation distance inverses should be large.

Some neural networks can use a clustering method, such
as k-means [80], [81], to improve the quality and speed of
the training. However, in our case, the data pattern is rather
inextricable a priori without super-resolution, which is only
gained a posteriori. As a result, the shape of the mask and
the distance between neurons, rather than the data inside the
input layer, truly shape neuron clustering in this work. This
greatly simplifies the clustering procedure, which now boils
down to a straightforward graph partitioning [82] based on
nearest-neighbor connections.

G. Parallel Training

Parallelization becomes necessary for moderately large
datasets [83], [84], as the size of the Jacobian matrix J, even
sparse, could be difficult to handle on today’s supercomputers.
This is especially true for high-resolution 2-D interferograms
obtained when measuring the electron density of high energy
density plasmas. The basic clustering strategy described above
can be used to split the main network into K nonoverlapping
networks. As it is often the case with parallel codes, we intro-
duce ghost neurons [47], which are duplicated neurons shared
by exactly two networks. Since the training of each network
is now done independently, a synchronization step is required
to make sure that all output layers match seamlessly.

We used a single-nearest-neighbor search to define a single-
layer of ghost neurons at the boundary between each cluster,
allowing for some overlap between networks so that output
layers can match seamlessly after synchronization. However,
the synchronization procedure needs to keep very few of these
ghost neurons to “stitch” the domains together.

5587

1) Output Layer: The synchronization uses a constant
phase ®;, which is added to the output layer of the network
ke{l,..., K} as follows:

Ny Nk
G, ) =i+ D we(rg) + D wew(ry) (24
q=M; q=Mg

where the neurons {My, ..., N} are the neurons only owned
by the kth network, while the neurons {Mg, ..., Ng} are the
ghost neurons of the kth network, owned by the neighbors of
the kth network. The last two terms of (24) are the nonsyn-
chronized outputs of the RBFNNs obtained using (13), and
their weights are computed using the Levenberg—Marquardt
procedure highlighted above. However, under such conditions,
the Jacobian matrix is a block matrix given by

Ji

Jx

All the missing elements are 0. Here, J; is the Jacobian matrix
of (21), but restricted to the k™ network, where the error e
is defined by (15), also restricted to the kth network. As a
result, JTJ is the block diagonal, and the LMA can be solved
in parallel using

due = (T + ML) "I Ter, for ke {1..... K},

If super-resolution is not needed, we will use the Jacobian
matrix of (23) instead of (21). Once the training is over,
we need to synchronize the output layers across all networks.
As the synchronization focuses solely on ®;, the network
parameters ay, by, cx, px,, and p, are constant, so the last
two terms of (24) are now two constants and do not need to
be computed again throughout the synchronization procedure.

2) Input Layer: For any ghost neuron g shared with
the network k but owned by the network labeled [y, the
value ¢ (x,, y,) might be initially different from the value
&, (x4, yq) when the staged training is over. Yet, we can syn-
chronize the output layers across different networks by simply
defining the synchronization input layer of the kth network as
follows:

Lok = &1, (xq, Yq) (25)
with the corresponding output value
Ogi = dr(xq, Yq)- (26)

There is no need to use wrapping functions like sine or cosine
here. We are dealing with a phase that has been unwrapped
successfully for each separate network at this point. However,
it remains out of synchronization across the domain. Now, the
error to minimize is given by

K  Ng
E'E = Z Z El..  with Eg = Og — Iyt 27

k=1 g=Mg;

The error E,; is the squared difference of the input layer
value from (25) computed at the location (x4, y,) inside the
kth cluster, i.e., I, and the output layer value computed at
the same location, i.e., Ogy.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



5588

3) Synchronization LMA: We use again the LMA to min-
imize the error E in the sense of the least square using the
synchronization Jacobian matrix

00, Enm,, 0oy Em,,

Js (28)

8<I>]EN3K 8¢KENgK

Here, we cannot drop the input values /, from the Jacobian
matrix since the input layer for the kth network may depend
on a phase bias &, when ghost neurons in the network k are
owned by the network k’. We are now using a standard LMA
to solve this problem. One final parallel three-stage training
can be done after the synchronization procedure to eliminate
any residual errors, while keeping all ®; constant.

III. ACCURACY OF THE STAGED NEURAL NETWORK
USING SYNTHETIC PHASE

This section presents the performance of the neural network
architecture for different types of synthetic phase variation
with strong local aliasing. The first test looks at a smoothly
varying phase. Then, we focus on phase that varies randomly.
The nonmonotonic nature of the phase variation creates a new
set of challenges on the top of phase aliasing, especially in
the presence of a fragmented mask and high noise levels.
We looked at the accuracy of the neural network architecture
by computing the error between the ground-truth phase and
the output layer, €(x, y) = |¢gr(x, y) — ¢ (x, ¥)|/(2m), which
is given in units of 2r rather than radians and represents the
normalized error with respect to the wrapped phase ¢w, which
spans an interval of 27. Each network is trained until the
maximum error goes below 1073 or when the overall error
cannot be improved.

A. Quasi-Monotonic Phase

The quasi-monotonic phase is given by

x?+y?

¢cr(x, y) =Ol(X+y)+ﬁeXp(—T)- (29)
Fig. 3(a) and (b) shows the initial ground-truth phase and
the digitized wrapped phase with strong aliasing, respectively,
all in radians. The neural network output layer is virtually
identical to ¢gr. However, the very high accuracy is obtained
only after removing a constant bias that exists between the two
phases. This bias is not an error. Rather it comes from a lack of
absolute reference because we are measuring a phase shift and
not an absolute phase. Since this bias cannot be determined
from the wrapped phase shown in Fig. 3(b), we computed
this bias to make the average of network output equal to
the average of the ground truth, and the recovered phase is
shown in Fig. 3(c). In reality, we would not have access to
this information when measuring the phase. However, this
limitation is physical rather than imposed by the method
presented here. For 8 < 40, the RBFNN recovers ¢gr from
the digitized phase with an error well below 1073, The error
becomes quickly worse with larger values of S. After this
correction, Fig. 3(d) shows that the maximum error between
the RBFNN and the phase from (29) is less than 0.1%.

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 52, NO. 12, DECEMBER 2024
10
40
< 30
20
0
y 10
_5 0
(@-10
—3.2
—34
—3.6
—3.8
-10 -5 0 5 10
X

(b)
Fig. 3. (a) Ground-truth phase, (b) digitized wrapped phase, (c) RBFNN

40
| 20
0
10 -5 0 5 10 (d)
X
output, all in radians, and (d) output phase error on the log,, scale.

ot

(©)—10

B. Random Phase With Masked Data

When the phase varies randomly across the domain, the
neural network architecture cannot exploit any trend to recover
the ground truth @gr. If aliasing is introduced, then it becomes
very difficult to even attempt the task manually. While
Fig. 4(a) shows that ¢gr does not vary wildly, the digitized,
wrapped phase in Fig. 4(b) shows that a randomly varying
phase is in fact relatively difficult to unwrap. Yet the output
of the neural network shown in Fig. 4(c) matches well ¢gr,
with an error below 0.1% shown in Fig. 4(d). The large masked
regions in Fig. 4 could represent regions with low contrast or
local loss of signal. The error is more homogeneously dis-
tributed compared with the quasi-monotonic phase presented
in the previous section, mostly caused by global (rather than
local) aliasing. There is very little change in the overall error
compared with the unmasked case (not shown). Fig. 5(a)
shows that aliasing is large enough to cause several sections
of the wrapped phase to increase smoothly, while the ground-
truth phase actually decreases. This happens in regions where
the first derivative of ¢gr, as shown in Fig. 5(b), is smaller
than —m, causing W(d¢w) to wrap around. Note that this
wrapping is not problematic since we are using the sine and
cosine functions when training our neural network on first
derivatives, which continuously vary throughout phase jumps.

Since the neural network architecture is trained on a dataset
that contains the first and second derivatives of the phase,
we can take the derivatives of the neural network architecture
output to estimate the derivatives of the phase. Fig. 5(b)
shows an excellent agreement with the ground-truth phase
derivative. We clearly see here that the RBFNN cannot match
the left and right first derivatives simultaneously, since they
have different values. Rather the RBFNN matches the average,
which is the central first derivative. As shown in (8), the neural
network architecture uses the left and right derivatives of ¢w
to compute the weights used in the output layer. Therefore,
the derivative of ¢, which also matches the derivative of ¢gr,
is located in between the left and right derivatives of ¢y,

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



GOURDAIN AND BACHMANN: NEURAL NETWORK RECONSTRUCTION OF THE ELECTRON DENSITY

(¢)—10-

Fig. 4. (a) Ground truth of a randomly generated phase. (b) Wrapped
phase with asked regions. The mask is just used to demonstrate the RBFNN
capabilities rather than hiding poorly resolved regions here. (c) Phase obtained
by the RBFNN. (d) Error on the log,, scale.

as expected [see Fig. 5(b)]. As a result, using the error €
given in (18) makes more sense than using e. Based on the
assumptions that ¢gr €] —m, ] and ¢gr is continuous, we see
that W (d2¢w) has no jump since W (32pw) = d2¢gr.

Fig. 5 clearly shows how the neural network architecture can
recover the ground truth ¢gr, without explicitly unwrapping
it. The output of the neural network and its derivatives are
continuous by construction, since they are the sum of contin-
uous radial basis functions. At the end of the first stage of the
training, the second derivative of the neural network matches
directly the second derivative of the wrapped phase, which is
continuous since W (92¢w) = 82¢gr and 32dgr is continuous.
At the end of the first stage, the output of the neural network
is continuous since the output is continuous by construction.
At the end of the second stage, the network output matches the
first derivatives of the wrapped phase via the sine and cosine
functions. This approach hides the phase jumps created by the
wrapping operator W when aliasing exists. Again, at the end
of this stage, the output of the neural network architecture is
also continuous since it is the sum of continuous functions.
During the third stage, where the network is trained to match
the wrapped phase values via the sine and cosine functions,
its output again remains continuous. Therefore, the training
process forced the output of the neural network architecture to
match the sine and cosine of the wrapped phase, and the radial
basis functions used to build this network forced the output to
be continuous, allowing to remove the jumps of the wrapped
phase.

C. Random Phase With Noise

When there is no aliasing, the noise can be removed
from the wrapped phase using standard filtering techniques
specifically developed for interferograms, such as the fringe
smoothing approach [85], local fringe frequency estima-
tion [86], windowed Fourier filtering [87], [88], or Gabor filter
local frequency [89]. Any of these techniques can be applied

5589

10

Phase

—10

—20

First derivative
=)

—2
—4

)
§=

s
o
=

=

o

]
v —1

1073 .................. e

&

O

<

|
=

2

o0

2

(d)
104 : : : :
—10 -5 0 5 10
X

Fig. 5. (a) Ground-truth phase, neural network output phase, and wrapped

phase of Fig. 4 along the x-direction, together with their (b) first and (c) second
derivatives along the x-direction. (d) Output phase error on the log,, scale.

to the wrapped phase before feeding it to the neural network
architecture. When filtering the wrapped phase, we can detect
locations with noisy data by computing the phase residues
and mask out locations where the residues lead to a noncon-
servative result [90], providing that the ground-truth phase is
conservative (e.g., interferogram of topographic data). Filtering
can also be done during the unwrapping procedure [91], [92],
[93], [94], [95] but cannot be applied here as the filtering
procedure is deeply dependent on the unwrapping method.
However, when aliasing is present, direct filtering becomes
more problematic. For one, the method of residue cannot be
used reliably. Furthermore, aliasing can act like noise and it
becomes difficult to differentiate between good data that was
wrapped multiple times and noisy data.

To look at the impact of noise on the neural network
performance for the strongly aliased phase, we added noise

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



5590

(©) —10

Fig. 6. (a) Ground-truth phase, (b) digitized wrapped phase, (c) RBFNN
output, all in radians, and (d) phase error on the log;, scale with a noise level
y = 0.1% or 10% of the maximum value of the wrapped phase.

N(x,y) € [—1, 1] to the wrapped phase as follows:
dw(x,y) = W(ggr(x, y)) + yrN(x,y)

where y is a constant controlling the maximum noise level.
Fig. 6 shows that the neural network architecture recovers the
ground truth ¢gr with an error that is on the order of the
noise level added to the wrapped phase. The neural network
architecture tends to perform well for y < 0.1, but tends to
develop O(1) error when y > 0.1. Similar results are found
with masked data. Therefore, without a specific noise filtering
strategy working on the aliased wrapped phase, we find that
the neural network remains reliable for noise levels below
10% of the wrapped phase. Larger noise levels will require
some filtering beforehand. Fig. 7 shows how the regularization
avoids over-fitting of the network output, limiting the impact
of the noise on unwrapped phase.

(30)

D. Comparison With Other Methods

Since the proposed RBFNN gives excellent results com-
pared with cases where the phase is quasi-monotonic or
random, with or without noise, it is worth comparing it to
standard methods used in the literature. The comparison done
here is clearly not exhaustive. Furthermore, we are not trying
to show that the RBFNN is superior to other methods. Each
method is usually designed with a particular application in
mind and a method working well in a given set of conditions
can have subpar results when faced with another. Overall, our
method requires large Jacobian matrices and should be used
when the phase has been heavily digitized or when regions
have missing or corrupted phase.

Fig. 8 shows that the RBFNN performs as well as the
discrete cosine transform (DCT) of [16] just before super-
resolution is needed, at which points the DCT method fails.
Note that the precision of the RBFNN can be improved up
to an error of 10~* by reducing the limit of the convergence
error, while there is no mechanism to decrease the error of the

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 52, NO. 12, DECEMBER 2024

20

Phase
o

—20 @)

I W(dn-L¢u']
— Wd.rgw)

First derivative
o

—- 2
- a.%ff‘sr

— W(@kpw)

Second derivative
o

=

O

<

1102
=

2

o0

2

—3 -- -- —
10 ! td)
—10 -5 0 5 10
X

Fig. 7. (a) Ground-truth phase, neural network output phase, and wrapped

phase of Fig. 6 along the x-direction with a noise level y = 0.1% or 10%
of the maximum value of the wrapped phase. Their (b) first and (c) second
derivatives along the x-direction. (d) Output phase error on the log,, scale.

DCT method, except by increasing the resolution. However,
the DCT is extremely fast and returned a solution in 38 ms.
The RBFNN required 48 s on hardware with 48 cores at
2 GHz and for a 50 x 50 grid to arrive at an error on the
order of 1073. The RBFNN was written in python which
can substantially slow down computations. However, all the
functions were accelerated using Numba, and the LMA was
done in parallel. Further acceleration could be gained using
GPUs.

We also compared our results against a convolutional long
short-term memory (LSTM) network described in [39]. This
deep-learning method is one of the best performers with phase
unwrapping algorithms according to the authors. The LSTM
took 229 s to create the learning set, 1894 s to train on this set,
and 1 s to compute the solution on a 256 x 256 grid. Note

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



GOURDAIN AND BACHMANN: NEURAL NETWORK RECONSTRUCTION OF THE ELECTRON DENSITY

== Prornn /,-\\
_____ p / \\
DCT
201 / \
— ¢w / \
2 / \
g / \
£ 10 / \
\
/ \
o] — AN A
‘ . ‘ ‘ ®
— RBFNN
= — DCT
S
<103 - B —— -
|
=
2
o0
2
(b)
104 . ‘ ‘ ;
—10 —5 0 ) 10
X
Fig. 8. (a) Phase unwrapped in radians using the DCT of [16] and the

proposed RBFNN, together with the wrapped phase. (b) Output phase error
on the log;, scale.

that the network can actually be trained an order of magnitude
faster by using GPUs, but we used CPUs here to keep the same
hardware in both tests. Fig. 9(a) shows the initial wrapped
phase, part of the test deck of the LSTM network python
notebook, together with the unwrapped phase done by both
methods. Fig. 9(b) shows that the LSTM network gave a
much higher error for the standard parameters coming with
the code. We believe that the higher error does not come from
an inherent issue of the LSTM network but from the fact than
the training set included a noisy phase. The proposed RBFNN
took 220 s for a grid that was 64 x 64 using the hardware
described above.

Once we move to noisy data, the two methods follow ¢gr
in a similar fashion, as shown in Fig. 9(c), the error is noise
limited [see Fig. 9(d)]. It is important to note that the LSTM
algorithm requires that the size of the grid of the phase to be
unwrapped matches the size of the training dataset phase. Also,
there is no provision to allow for masking regions where the
phase is not usable. As a result, if each new phase unwrapping
requires a different mask, the LSTM network has to go through
a new learning step.

IV. ACCURACY OF THE STAGED NEURAL NETWORK ON
EXPERIMENTAL INTERFEROGRAMS

We now use the staged training on real interferograms
generated by the interaction of a green laser beam with
a high energy density plasma [97]. The phase shift corre-
sponds to the line-average electron density [98] of the plasma.
The plasmas were generated by using a multipin radial foil
configuration [96] connected to the electrodes of a pulsed-
power driver [99]. In this case, we do not know the ground
truth. Therefore, we assessed the quality of the unwrapping
procedure by looking at the difference between the measured
wrapped phase and the neural network output layer. The final

5591

10
0
)
|72}
<
5
s Iy g — Psm
== ¢rernn — ¢w (2)
= —— RBFNN — LSTM
-1
) 10
hsS
\
ﬁ 10—3
(=)
—
& W WA N MAA A~
= ()
ST 5 0 5 10
o 109 ---— dor — Qistm
g == prernn — ¢w
=
<= 0
EE
;gf ~10
2w (©
100
_E —— RBFNN — LSTM
O 1071
ASS
\ _
< 102
= 103
a0 10— ¥ v L v U
Qo
2 ! i I
—4
10 —10 —5 0 5 10
X
Fig. 9. (a) Phase unwrapped in radians using the LSTM network of [39]

and the proposed RBFNN, together with the wrapped phase. (b) Output phase
error on the log; scale. (c) Another phase unwrapping when noise is present.
(d) Corresponding error.

error, €(x,y) = [W(@w(x,y)) — W(@(x, y)[)/(27), is given
in units of 2. It is the normalized error with respect to the
wrapped phase ¢y, which spans an interval of 2.

The interferogram is presented in Fig. 10(a). The mea-
surement is based on shearing [7] rather than Mach—Zehnder
interferometry. The former uses a single reference path which
is insensitive to mechanical vibrations, greatly affecting the
fringe pattern. It is possible to use a reference phase, without
plasma, and subtract it from the measurement done when a
plasma is present. The difference in phase is proportional to
the line-average electron density. Starting with the region of
interest shown in Fig. 10(a), the Fourier transform gives a
spectrum that is symmetric with respect to the origin since
the phase data are real-valued. We use a single square filter to
isolate the dominant modes, but excluding the origin, where
the dc component is located. The inverse Fourier transform
is now complex valued since the filter broke the symmetry
with respect to the origin. The phase of each complex values
corresponds to the wrapped phase measured by the interfero-
gram [12], [13], [14] and shown in Fig. 10(b).

The data are then down-sampled by a factor of 6 x 6 to
compress the interferogram [as shown in Fig. 10(c)].

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



5592

1.00

0.75

0.50

0.25

0.00

(b) *

100

o

—100

0

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 52, NO. 12, DECEMBER 2024

-

oS

‘ﬁ%\i{;

\\
)

i

i
[

AN

W

@ © 50

0

50 100 0

X

Fig. 10.

50

100 ® 0 100

X

(a) Normalized interferogram of the left side of a hollow plasma jet. The jet is symmetric with respect to the right axis. (b) Wrapped phase after

applying Fourier filtering to keep the dominant modes. (c) Digitized down-sampled phase with the mask to hide the regions where phase data should not be
used. (d) Actual output ¢ of the RBFNN. (e) log;, error between the wrapped phase ¢w and W(¢). (f) Wrapped RBFNN output is given for reference. All
phase data are in radians. The zoomed panels highlight the region with the strongest aliasing. Note that the radius at the base of the jet is 1 mm (see [96],

for more information on the jet geometry).

Using this data, we get a total of 150 x 140 neurons
in the output layer. The input layer has a total of
12 x 150 x 140 inputs when super-resolution is needed (8)
and 6 x 150 x 140 inputs where it is not (10). The only sam-
ple in the training set is the data itself, as given in Fig. 10(c).
While the compression is not necessary to demonstrate the
efficacy of the RBFNN, this compression created a region with
strong aliasing [the zoomed portion of Fig. 10(c)]. In reality,
a strongly under-resolved interferogram may have a fringe
count so high that some regions will have very low contrast.
The Fourier filtering used to turn the experimental data,
which form follows (1), into phase data cannot handle this
high-density low-contrast situation. Note that, if the second
derivative of the phase falls outside of ] — 7, ], the RBFNN
will also fail regardless of the quality of the filtering. The
mask drops the data where fringes could not be resolved
clearly, some edge data corrupted by the Fourier filtering (see
Fig. 10(b) near the x-axis), and under-resolved fringes, partly
caused by the Fourier filtering. We hid the data using a disk-
shaped mask. We then trained the neural network architecture
with super-resolution. The output of the network is presented
in Fig. 10(d). The bump in electron density caused by the
plasma jet appears clearly in the figure. The error between the
measured wrapped phase of Fig. 10(c) and the wrapped value
of the output of the RBFNN of Fig. 10(d) is shown in (e).
This error is on the order of 10%, leading to an average error
that is comparable to the noise recorded by the interferometer
and clearly visible in the insert of Fig. 10(b). We see two
types of error larger than 10% in this figure. The error that

is randomly distributed throughout is caused by a local phase
jump when the noise of the wrapped phase is close to —m or
7. This noise is not present in the output of the network due
to regularization. The second type of error is closer to a true
error, as the RBFNN has some difficulty to unwrap the phase
accurately [region shown in the zoomed insert of Fig. 10(e)].
This error is coming from the 6 x 6 compression ratio, which
has aliased the phase slightly beyond the capabilities of the
RBFNN. However, this error is reduced down to noise error
if we use a 5 x 5 compression ratio. It is important to note
that this error did not propagate to the neighboring neurons.
If we consider the low, average error level of Fig. 10(e) and
the smoothness of the output, the RBFNN unwrapped the
phase successfully. The wrapped output is shown in Fig. 10(f)
and can be compared with the measured phase in Fig. 10(c).
Without super-resolution, the RBFNN was not able to unwrap
the phase.

Since the shearing interferometer is mechanically stable,
we can measure accurately the density of the jet by subtracting
the background phase from Fig. 10(d). Following the exact
same procedure, we can process the same region of the
interferogram without any plasma. In this case, the fringe
pattern is relatively periodic, as shown in Fig. 11(a). We get
the wrapped background phase using the same Fourier filter
as the one used for the interferogram with plasma. Since the
pattern of the interferogram is clearly resolved, we trained
the RBFNN without super-resolution, leading to the output
presented in Fig. 11(b). It is interesting to note that the error
between the wrapped output layer and the data, as shown

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



GOURDAIN AND BACHMANN: NEURAL NETWORK RECONSTRUCTION OF THE ELECTRON DENSITY 5593
150 1.0
08 50 —0.5
100
0.6 0 —1.0
y
0.4
50 —50 —1.5
0.2
—100 : a
0 ; : " f w " —
@ 0 5 100 0-0 %) 0 5 100 ©0 5 100 2.0
X X X
Fig. 11. (a) Normalized interferogram with no plasma present, (b) RBFNN output in radians ¢, and (c) log;, error between the wrapped phase ¢w and W (¢).
150 iy S e A A
60 ' o
‘v{. o N T
\ e —1
: J ::. o« ~
100 40 2 1 -
y o ~ »
—2
20 0 :
‘ A Ao
fl - N
05 0 '
@ -0 20 100 ® 0 50 100 © 0 20 100
X X
Fig. 12. (a) Line average phase shift and its derivatives along (b) horizontal and (c) vertical directions for a hollow plasma jet. The line average density is

directly proportional to the line average phase shift. The axes units are arbitrary.

in Fig. 11(c), is similar to the error when the plasma is
present. This indicates that the error is mostly caused by noise.
Once the background phase is removed from the phase with
plasma, we get the line average density of the jet presented in
Fig. 12(a). While noise is present in the density measurement,
its source has been filtered by our earlier Fourier transform.
We believe that the density fluctuations seen in the RBFNN
output derivatives shown in Fig. 12(b) and (c) do not carry any
physical information of the density itself. As a result, an Abel
inversion technique that is robust to significant noise levels
(see [100]) should be used to compute the volume electron
density. We can note the difference in smoothness between
domains due to the optimization of the activation distance
during the last stage.

V. CONCLUSION

The proposed RBFNN incorporates the functions necessary
to deal with aliased interferograms by combining: 1) scat-
tered neuron placement, allowing to discard relatively easily
corrupted data while keeping data carrying high fidelity infor-
mation; 2) the use of a mask to hide external geometries, which
are often present in phase measurement; and 3) a regularization
scheme which can filter noise very effectively. The RBFNN
can unwrapped the phase extracted from an interferogram
by comparing measurements with the output of the RBFNN
through sine and cosine functions. These functions hide the
existence of any discontinuity in the wrapped phase from the

training set. Taking into account that the RBFNN output is
continuous by construction, the neural network architecture
yields a phase that is fully unwrapped once the error between
the input and output layers has been minimized. As the
network is trained to match the first and second derivatives
of the phase, high-fidelity gradients can be computed directly
from the RBFNN output since the impact of noise was limited
by regularization. The network structure allows a clustering
strategy where parallelization is easy to implement. It trans-
forms a dense matrix into a block diagonal matrix, speeding
up the training substantially.

This work did not attempt to do any filtering in the pre-
learning stage, except from a Fourier filter, which was mostly
used to get the complex amplitude field, allowing to compute
the wrapped phase readily. However, filtering techniques can
be used in conjunction with the proposed algorithm. While
regularization does filter data by limiting over-fitting, it should
not be considered a very effective filter. First, the regularization
parameter is global. Second, the regularization is static, and
there is no mechanism in place in our training that can
optimize it.

While the RBFNN presented here requires more memory
and computational power than a more basic phase unwrapping
algorithm (see [20]), errors are relatively easy to detect and
remain local, as shown in Fig. 10(e). Combined with the
proposed parallelization strategy, the unwrapping time can be
reduced substantially. While the training procedures with and
without super-resolution are clearly separated in this work, it is

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



5594

possible to use phase derivative averages to find regions where
super-resolution is required (i.e., |W(¢,)| > m) and regions
where it is not (i.e., |W(¢,)| < m). The Jacobian matrix
can be adapted locally to each method seamlessly. However,
this criterion is not absolute and super-resolution should be
used as much as possible. While we have not discussed local
interferogram defects, such as branch cuts or line splitting,
they can be masked and easily removed from the original
dataset, allowing the neural network to perform the phase
unwrapping without much difficulty.

APPENDIX

This section lists the analytic functions necessary to
compute the Jacobian matrices used in this article. The

output layer is ¢(x,y) = Z;\;l we¥(ry) with ry, =
(= xg*p5, + (v = 39)°p5, + €)%, Furthermore, y' =

(d/dr)y and " = (d?/dr®)y. € is used in computations
to avoid a possible division by 0, which only happens numeri-
cally. The problematic terms w, /r, found below are multiplied
by ¥’ and lim, oy o r, for radial basis functions.

A. Fartial Derivatives With Respect to the RBFNN
Parameters

B, = V(1)
O, ¢ = (x — xg) ¥ (rg)
e, = (v = yg) ¥ (ry)
Wq (X _xq)szq l
., ¢ = Tl/f ()
apy’q(p (y _ryq) = I'h/(rﬂl)
q
B. Partial Derivatives Along x
N w, (x — x,)p2 ¥'(r
ax(ﬁ:qulp(rq)—{— q( j.) q (q)
q=1 1
w+bxx ,02 wxxz,o;‘
o Z[ b)), o) q}ﬁ,m
Tq q
we(x —xqg)7p5,
T %w (ry)
q
X = %)Ps,
3mq¢ = %w (rq)
Tq
pr (x—x,) p? x—x,) pt
Orva, P = r_q_( :3) Y (rg) ( rqz) Ly (ry)
q q q

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 52, NO. 12, DECEMBER 2024

(x - xfI)zpi,

0, =W (rg) + ————¥'(rg)
4
3(x —X )p2 (x —X )3,04 )
axqu¢ = , AR FZ o W (rq)
q q
3 4
X —x4) P}
Ay
q
(x = xg) (y = yq)p8,
Duc, ® ()
2 4
Y = YVq)Px X =X Y = Yq)Py
Oure, b = ( rq) k) £3 2L ¥'(ry)
9q q
(x=x)" (= va)el,
q r2 q xqw (rq)
q
C. Fartial Derivatives Along y
al wy (¥ — yq) 02
dy¢p = Zcfﬂ/’(”q) + w‘/’/(rq)
q=1 1
2
. ZN: (wg +cg(y = 3g))p5,  waly —4)
y ry 3
q=1 q
2 4
wy (y = v4) 05,
)+ 2 B
q
2
Y = Yq)Py,
Bya, @ = %V/(Q)
2 2 4 2.4
oy (v=va)?ey | (v =v4)0y,
Iyya, ® = [ﬁ_ rqs yq:|¢ (rq) + rZ “ (rq)
q q
2
x —xq)(y = yq) 05
aybq¢— ( ‘1)( ‘]) Yq 1//’(rq)

c=x)r (—x) =)l ]
3yth¢ |: f/ q ~ q Yq Iﬂ (rq)
q
" x _xq y Yq) p;:

V,? ‘””(rq)
(v —va)?05,
ey = W/ (ra) + v (rs)
3y —yg)oy,  (y=yg)ey ] |
Ayye,® = , Lan r;I - 1/’(”4)
q q
(y =)0}
%W(rq).
q
REFERENCES

[1] F. Jahoda and G. Sawyer, “Optical refractivity of plasmas,” Methods
Exp. Phys., vol. 9, pp. 1-48, Jan. 1971.

[2] C. M. Vest, Holographic Interferometry. Hoboken, NJ, USA: Wiley,
1979.

[3] P. Hariharan, Basics of Interferometry. Amsterdam, The Netherlands:

Elsevier, 2010.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



GOURDAIN AND BACHMANN: NEURAL NETWORK RECONSTRUCTION OF THE ELECTRON DENSITY

(4]

[3]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,”
Proc. IEEE, vol. 69, no. 5, pp. 529-541, May 1981.

J. Blackledge, Quantitative Coherent Imaging. London, U.K.: Aca-
demic Press, 1989.

S. Witoszynskyj, A. Rauscher, J. R. Reichenbach, and M. Barth, “Phase
unwrapping of MR images using ®UN—A fast and robust region
growing algorithm,” Med. Image Anal., vol. 13, no. 2, pp. 257-268,
Apr. 2009.

G. S. Sarkisov, “Shearing interferometer with air wedge for electron
plasma diagnostics in a dense plasma,” Instrum. Exp. Techn., vol. 39,
no. 5, pp. 110-114, 1996.

O. W. Stanley, A. B. Kuurstra, L. M. Klassen, R. S. Menon, and
J. S. Gati, “Effects of phase regression on high-resolution functional
MRI of the primary visual cortex,” Neurolmage, vol. 227, Feb. 2021,
Art. no. 117631.

H. Yu, Y. Lan, Z. Yuan, J. Xu, and H. Lee, “Phase unwrapping in
InSAR: A review,” IEEE Geosci. Remote Sens. Mag., vol. 7, no. 1,
pp. 40-58, Mar. 2019.

S. Zhang, X. Li, and S.-T. Yau, “Multilevel quality-guided phase
unwrapping algorithm for real-time three-dimensional shape recon-
struction,” Appl. Opt., vol. 46, no. 1, pp. 50-57, Jan. 2007.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we
are?” Opt. Lasers Eng., vol. 48, no. 2, pp. 133-140, Feb. 2010.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of
fringe-pattern analysis for computer-based topography and interferom-
etry,” J. Opt. Soc. Amer., vol. 72, no. 1, pp. 156-160, 1982.

W. W. Macy, “Two-dimensional fringe-pattern analysis,” Appl. Opt.,
vol. 22, no. 23, p. 3898, Dec. 1983.

C. Roddier and F. Roddier, “Interferogram analysis using Fourier
transform techniques,” Appl. Opt., vol. 26, no. 9, p. 1668, May 1987.
K. Itoh, “Analysis of the phase unwrapping algorithm,” Appl. Opt.,
vol. 21, no. 14, p. 2470, 1982.

D. C. Ghiglia and M. D. Pritt, Two-dimensional Phase Unwrapping:
Theory, Algorithms, and Software, 1st ed., Hoboken, NJ, USA: Wiley,
1998.

R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune
phase-unwrapping algorithm,” Appl. Opt., vol. 34, no. 5, p. 781, 1995.
R. M. Goldstein and C. L. Werner, “Radar interferogram filtering
for geophysical applications,” Geophys. Res. Lett., vol. 25, no. 21,
pp. 4035-4038, Nov. 1998.

D. Zheng and F. Da, “A novel algorithm for branch cut phase
unwrapping,” Opt. Lasers Eng., vol. 49, no. 5, pp. 609-617, May 2011.
D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted
and unweighted phase unwrapping that uses fast transforms and iter-
ative methods,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 11, no. 1,
pp. 107-117, Jan. 1994.

X. Wang, S. Fang, and X. Zhu, “Weighted least-squares phase unwrap-
ping algorithm based on a non-interfering image of an object,” Appl.
Opt., vol. 56, no. 15, p. 4543, 2017.

V. Katkovnik, J. Astola, and K. Egiazarian, “Phase local approximation
(PhaseLa) technique for phase unwrap from noisy data,” IEEE Trans.
Image Process., vol. 17, no. 6, pp. 833-846, Jun. 2008.

S. S. Gorthi and P. Rastogi, “Piecewise polynomial phase approxima-
tion approach for the analysis of reconstructed interference fields in
digital holographic interferometry,” J. Opt. A, Pure Appl. Opt., vol. 11,
no. 6, Jun. 2009, Art. no. 065405.

M. Servin, J. L. Marroquin, D. Malacara, and F. J. Cuevas, “Phase
unwrapping with a regularized phase-tracking system,” Appl. Opt.,
vol. 37, no. 10, p. 1917, 1998.

O. Loffeld, H. Nies, S. Knedlik, and W. Yu, “Phase unwrapping for
SAR interferometry—A data fusion approach by Kalman filtering,”
IEEE Trans. Geosci. Remote Sens., vol. 46, no. 1, pp. 47-58, 2007.
X. Xie and Y. Lee, “Enhanced phase unwrapping algorithm based on
unscented Kalman filter, enhanced phase gradient estimator, and path-
following strategy,” Appl. Opt., vol. 53, no. 18, pp. 4049-4060, 2014.
X. M. Xie and Q. N. Zeng, “Efficient and robust phase unwrapping
algorithm based on unscented Kalman filter, the strategy of quantizing
paths-guided map, and pixel classification strategy,” Appl. Opt., vol. 54,
no. 31, p. 9294, 2015.

Z. Cheng et al., “Practical phase unwrapping of interferometric fringes
based on unscented Kalman filter technique,” Opt. Exp., vol. 23, no. 25,
pp. 32337-32349, Feb. 2015.

R. Kulkarni and P. Rastogi, “Phase unwrapping algorithm using polyno-
mial phase approximation and linear Kalman filter,” Appl. Opt., vol. 57,
no. 4, p. 702, 2018.

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

5595

R. E. Kalman, “A new approach to linear filtering and prediction
problems,” J. Basic Eng., vol. 82, no. 1, pp. 3545, Mar. 1960.

S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proc. IEEE, vol. 92, no. 3, pp. 401-422, Mar. 2004.

W. Schwartzkopf, T. E. Milner, J. Ghosh, B. L. Evans, and A. C. Bovik,
“Two-dimensional phase unwrapping using neural networks,” in
Proc. 4th IEEE Southwest Symp. Image Anal. Interpret., Apr. 2000,
pp. 274-2717.

K. Wang, Y. Li, Q. Kemao, J. Di, and J. Zhao, “One-step robust
deep learning phase unwrapping,” Opt. Exp., vol. 27, no. 10,
pp. 15100-15115, 2019.

W. Yin et al., “Temporal phase unwrapping using deep learning,” Sci.
Rep., vol. 9, no. 1, p. 20175, Dec. 2019.

T. Zhang et al., “Rapid and robust two-dimensional phase unwrapping
via deep learning,” Opt. Exp., vol. 27, no. 16, pp. 23173-23185, 2019.
Y. Qin, S. Wan, Y. Wan, J. Weng, W. Liu, and Q. Gong, “Direct
and accurate phase unwrapping with deep neural network,” Appl. Opt.,
vol. 59, no. 24, p. 7258, Aug. 2020.

K. Wang, Q. Kemao, J. Di, and J. Zhao, “Deep learning spatial phase
unwrapping: A comparative review,” Adv. Photon. Nexus, vol. 1, no. 1,
Aug. 2022, Art. no. 014001.

F. Yang, T.-A. Pham, N. Brandenberg, M. P. Lutolf, J. Ma, and
M. Unser, “Robust phase unwrapping via deep image prior for
quantitative phase imaging,” IEEE Trans. Image Process., vol. 30,
pp. 7025-7037, 2021.

M. V. Perera and A. De Silva, “A joint convolutional and spatial
quad-directional LSTM network for phase unwrapping,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2021,
pp. 4055-4059.

C. W. Domier, W. A. Peebles, and N. C. Luhmann, “Millimeter-wave
interferometer for measuring plasma electron density,” Rev. Scientific
Instrum., vol. 59, no. 8, pp. 1588-1590, Aug. 1988.

C. Thaury et al., “Probing electron acceleration and X-ray emission in
laser-plasma accelerators,” Phys. Plasmas, vol. 20, no. 6, Jun. 2013,
Art. no. 063101.

G. F. Swadling et al., “Diagnosing collisions of magnetized, high
energy density plasma flows using a combination of collective Thom-
son scattering, Faraday rotation, and interferometry,” Rev. Scientific
Instrum., vol. 85, no. 11, p. 11, Nov. 2014.

S. V. Lebedev et al., “Laboratory astrophysics and collimated stellar
outflows: The production of radiatively cooled hypersonic plasma jets,”
Astrophysical J., vol. 564, no. 1, pp. 113-119, Jan. 2002.

D. J. Ampleford et al., “Supersonic radiatively cooled rotating flows
and jets in the laboratory,” Phys. Rev. Lett., vol. 100, no. 3, Jan. 2008,
Art. no. 035001.

H. R. Hasson et al., “Design of a 3-D printed experimental platform
for studying the formation and magnetization of turbulent plasma jets,”
IEEE Trans. Plasma Sci., vol. 48, no. 11, pp. 4056-4067, Nov. 2020.
P-A. Gourdain and C. E. Seyler, “Impact of the Hall effect on high-
energy-density plasma jets,” Phys. Rev. Lett., vol. 110, no. 1, Jan. 2013,
Art. no. 015002.

L. N. Long and A. Gupta, “Scalable massively parallel artificial neural
networks,” J. Aerosp. Comput., Inf., Commun., vol. 5, no. 1, pp. 315,
Jan. 2008.

R. Kulkarni and P. Rastogi, “Direct unwrapped phase estimation in
phase shifting interferometry using Levenberg—Marquardt algorithm,”
J. Opt., vol. 19, no. 1, Jan. 2017, Art. no. 015608.

P. Gao, B. Yao, J. Han, L. Chen, Y. Wang, and M. Lei, “Phase and
amplitude reconstruction from a single carrier-frequency interferogram
without phase unwrapping,” Appl. Opt., vol. 47, no. 15, p. 2760,
May 2008.

D. S. Broomhead and D. Lowe, “Multivariable functional interpolation
and adaptive networks,” Complex Syst., vol. 2, no. 3, pp. 321-355,
1988.

R. L. Hardy, “Multiquadric equations of topography and other irregular
surfaces,” J. Geophys. Res., vol. 76, no. 8, pp. 1905-1915, Mar. 1971.
J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural Comput., vol. 3, no. 2, pp. 246-257,
Jun. 1991.

M.-S. Chen and M. T. Manry, “Power series analyses of back-
propagation neural networks,” in Proc. Seattle Int. Joint Conf. Neural
Netw. (IJCNN), 1991, pp. 295-300.

M. T. Manry, H. Chandrasekaran, and C.-H. Hsieh, “Signal processing
using the multilayer perceptron,” in Handbook of Neural Network
Signal Processing. Boca Raton, FL, USA: CRC Press, 2018, pp. 1-2.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



5596

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359-366, 1989.

D. Casasent and E. Barnard, “Adaptive clustering neural net for
piecewise nonlinear discriminant surfaces,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jun. 1990, pp. 423-428.

A. Sarajedini and R. Hecht-Nielson, “The best of both worlds: Casasent
networks integrate multilayer perceptrons and radial basis functions,” in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), vol. 3, 1992, pp. 905-910.
H. Wendland, “Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree,” Adv. Comput. Math.,
vol. 4, no. 1, pp. 389-396, Dec. 1995.

Z. Wang, J. Chen, and S. C. H. Hoi, “Deep learning for image super-
resolution: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43,
no. 10, pp. 3365-3387, Oct. 2021.

M. Bizhani, O. H. Ardakani, and E. Little, “Reconstructing high fidelity
digital rock images using deep convolutional neural networks,” Sci.
Rep., vol. 12, no. 1, pp. 1-14, Mar. 2022.

R. Kulkarni and P. Rastogi, “Simultaneous unwrapping and low pass
filtering of continuous phase maps based on autoregressive phase model
and wrapped Kalman filtering,” Opt. Lasers Eng., vol. 124, Jan. 2020,
Art. no. 105826.

R. Datta and R. G. Regis, “A surrogate-assisted evolution strategy for
constrained multi-objective optimization,” Expert Syst. Appl., vol. 57,
pp. 270-284, Sep. 2016.

J. Miiller et al., “Surrogate optimization of deep neural networks
for groundwater predictions,” J. Global Optim., vol. 81, no. 1,
pp. 203-231, May 2020.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671-680, May 1983.

L. R. Rere, M. I. Fanany, and A. M. Arymurthy, “Simulated annealing
algorithm for deep learning,” Pro. Comput. Sci., vol. 72, pp. 137-144,
Jan. 2015.

V. G. Gudise and G. K. Venayagamoorthy, “Comparison of particle
swarm optimization and backpropagation as training algorithms for
neural networks,” in Proc. IEEE Swarm Intell. Symp. (SIS), Apr. 2003,
pp. 110-117.

M. Carvalho and T. Ludermir, “Particle swarm optimization of feed-
forward neural networks with weight decay,” in Proc. 6th Int. Conf.
Hybrid Intell. Syst. (HIS), Dec. 2006, p. 5.

M. D. Buhmann, Radial Basis Function Networks. Boston, MA, USA:
Springer, 2010, pp. 823-827.

Y. Chen, B. Yang, and J. Dong, “Time-series prediction using a local
linear wavelet neural network,” Neurocomputing, vol. 69, nos. 4-6,
pp. 449-465, Jan. 2006.

V. Nekoukar and M. T. Hamidi Beheshti, “A local linear radial
basis function neural network for financial time-series forecasting,”
Int. J. Speech Technol., vol. 33, no. 3, pp. 352-356, Feb. 2009.

D. J. MacKay, “Bayesian interpolation,” Neural Comput., vol. 4, no. 3,
pp. 415-447, May 1992.

E. Sariev and G. Germano, “Bayesian regularized artificial neural
networks for the estimation of the probability of default,” Quant.
Finance, vol. 20, no. 2, pp. 311-328, Feb. 2020.

K. Levenberg, “A method for the solution of certain non-linear prob-
lems in least squares,” Quart. J. Appl. Math., vol. 2, no. 2, pp. 164-168,
Jul. 1944.

P. E. Gill and W. Murray, “Algorithms for the solution of the non-
linear least-squares problem,” SIAM J. Numer. Anal., vol. 15, no. 5,
pp. 977-992, Oct. 1978.

D. Gorinevsky, “An approach to parametric nonlinear least square
optimization and application to task-level learning control,” IEEE
Trans. Autom. Control, vol. 42, no. 7, pp. 912-927, Jul. 1997.

S. McLoone, M. D. Brown, G. Irwin, and A. Lightbody, “A hybrid
linear/nonlinear training algorithm for feedforward neural networks,”
IEEE Trans. Neural Netw., vol. 9, no. 4, pp. 669—684, Jul. 1998.

H. Peng, T. Ozaki, V. Haggan-Ozaki, and Y. Toyoda, “A parameter
optimization method for radial basis function type models,” IEEE
Trans. Neural Netw., vol. 14, no. 2, pp. 432-438, Mar. 2003.

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 52, NO. 12, DECEMBER 2024

[78]

[79]

[80]
[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[971
[98]

[99]

[100]

T. Xie, H. Yu, J. Hewlett, P. Rozycki, and B. Wilamowski, “Fast
and efficient second-order method for training radial basis function
networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 4,
pp- 609-619, Apr. 2012.

B. M. Wilamowski and H. Yu, “Improved computation for Levenberg—
Marquardt training,” IEEE Trans. Neural Netw., vol. 21, no. 6,
pp- 930-937, Jun. 2010.

E. W. Forgy, “Analysis of multivariate data: Efficiency vs interpretabilty
of classifications,” Biometrics, vol. 21, no. 3, pp. 768-769, 1965.

S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory, vol. IT-28, no. 2, pp. 129-137, Mar. 1982.

G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359-392, Jan. 1998.

A. H. Ribeiro and L. A. Aguirre, “‘Parallel training considered
harmful?’: Comparing series-parallel and parallel feedforward network
training,” Neurocomputing, vol. 316, pp. 222-231, Nov. 2018.

S. Giinther, L. Ruthotto, J. B. Schroder, E. C. Cyr, and N. R. Gauger,
“Layer-parallel training of deep residual neural networks,”
SIAM J. Math. Data Sci., vol. 2, no. 1, pp. 1-23, Jan. 2020.

P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti, “A new algorithm
for surface deformation monitoring based on small baseline differential
SAR interferograms,” IEEE Trans. Geosci. Remote Sens., vol. 40,
no. 11, pp. 2375-2383, Nov. 2002.

Q. Feng, H. Xu, Z. Wu, Y. You, W. Liu, and S. Ge, “Improved Gold-
stein interferogram filter based on local fringe frequency estimation,”
Sensors, vol. 16, no. 11, p. 1976, 2016.

Q. Kemao, “Two-dimensional windowed Fourier transform for fringe
pattern analysis: Principles, applications and implementations,” Opt.
Lasers Eng., vol. 45, no. 2, pp. 304-317, Feb. 2007.

Q. Kemao, W. Gao, and H. Wang, “Windowed Fourier-filtered and
quality-guided phase-unwrapping algorithm,” Appl. Opt., vol. 47,
no. 29, p. 5420, 2008.

J. C. Estrada, J. L. Marroquin, and O. M. Medina, “Reconstruction
of local frequencies for recovering the unwrapped phase in optical
interferometry,” Sci. Rep., vol. 7, no. 1, pp. 1-10, Jul. 2017.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar inter-
ferometry: Two-dimensional phase unwrapping,” Radio Sci., vol. 23,
no. 4, pp. 713-720, Jul. 1988.

T. J. Flynn, “Two-dimensional phase unwrapping with minimum
weighted discontinuity,” J. Opt. Soc. America A, vol. 14, no. 10,
pp. 2692-2701, Oct. 1997.

M. Costantini, “A novel phase unwrapping method based on network
programming,” [EEE Trans. Geosci. Remote Sens., vol. 36, no. 3,
pp. 813-821, May 1998.

G. Fornaro, A. Pauciullo, and E. Sansosti, “Phase difference-based
multichannel phase unwrapping,” IEEE Trans. Image Process., vol. 14,
no. 7, pp. 960-972, Jul. 2005.

H. Yu, Z. Li, and Z. Bao, “Residues cluster-based segmentation
and outlier-detection method for large-scale phase unwrapping,” IEEE
Trans. Image Process., vol. 20, no. 10, pp. 2865-2875, Oct. 2011.

B. Tayebi, F. Sharif, and J.-H. Han, “Smart filtering of phase residues
in noisy wrapped holograms,” Sci. Rep., vol. 10, no. 1, Oct. 2020,
Art. no. 16965.

P.-A. Gourdain et al., “The impact of Hall physics on magnetized high
energy density plasma jets,” Phys. Plasmas, vol. 21, no. 5, May 2014,
Art. no. 056307.

R. P. Drake, Introduction To High-energy-density Physics. Cham,
Switzerland: Springer, 2018.

I. H. Hutchinson, Principles of Plasma Diagnostics, 2nd ed.,
Cambridge, U.K.: Cambridge Univ. Press, 2002.

J. B. Greenly, J. D. Douglas, D. A. Hammer, B. R. Kusse,
S. C. Glidden, and H. D. Sanders, “A IMA, variable risetime pulse
generator for high energy density plasma research,” Rev. Scientific
Instrum., vol. 79, no. 7, Jul. 2008, Art. no. 073501.

X.-F. Li, L. Huang, and Y. Huang, “A new Abel inversion by means of
the integrals of an input function with noise,” J. Phys. A, Math. Theor.,
vol. 40, no. 2, p. 347, Feb. 2006.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 07,2025 at 22:35:49 UTC from IEEE Xplore. Restrictions apply.



