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Identification of plant transcriptional 
activation domains

Nicholas Morffy1, Lisa Van den Broeck2, Caelan Miller1, Ryan J. Emenecker3,4, John A. Bryant Jr.5, 
Tyler M. Lee1, Katelyn Sageman-Furnas1, Edward G. Wilkinson1, Sunita Pathak1, 
Sanjana R. Kotha6, Angelica Lam6, Saloni Mahatma2, Vikram Pande2, Aman Waoo2, 
R. Clay Wright5, Alex S. Holehouse3,4, Max V. Staller6, Rosangela Sozzani2 & Lucia C. Strader1 ✉

Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors 
(TFs), which have been identified genome-wide by the presence of well-conserved 
DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit 
coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge 
about the presence, location and transcriptional strength of their ADs1. To address 
this gap, here we use a yeast library approach to experimentally identify Arabidopsis 
ADs on a proteome-wide scale, and find that more than half of the Arabidopsis TFs 
contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our 
knowledge, previously unknown. Using the dataset generated, we develop a neural 
network to accurately predict ADs and to identify sequence features that are 
necessary to recruit coactivator complexes. We uncover six distinct combinations  
of sequence features that result in activation activity, providing a framework to 
interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the 
ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is 
conserved in distinct clades. Our findings provide a deep resource for understanding 
transcriptional activation, a framework for examining function in intrinsically 
disordered regions and a predictive model of ADs.

Transcription factors (TFs) are at the foundation of development 
and response to stimuli, and their abilities to (1) bind to a target DNA 
sequence and (2) recruit transcriptional coactivators or corepressors 
are fundamental1. Because TF DNA-binding domains (DBDs) are con-
served and well-structured, we have a deep molecular understanding 
of DBD activity, and several large-scale efforts have mapped TF-binding 
sites2,3. Conversely, despite substantial recent work, many questions 
remain about the molecular interactions that enable TFs to recruit a 
diverse set of coactivator and corepressor complexes, especially in 
plants. Activation domains (ADs) are effector domains that recruit 
coactivator complexes to increase transcription. ADs tend to reside 
in intrinsically disordered regions (IDRs)—protein regions that lack 
a well-defined three-dimensional structure and are often poorly con-
served as assessed by multiple sequence alignments. These IDR char-
acteristics make ADs inherently challenging to study. Consequently, 
only a few plant TFs have annotated ADs (Fig. 1a). The inability to easily 
identify TF ADs hampers researchers’ progress towards understanding 
TF activity, reconstructing gene regulatory networks and engineering 
synthetic tools.

ADs recruit the transcriptional machinery—that is, coactivators—to 
the TF-binding site, but the interactions with this machinery are not 
well-defined despite intense study4. ADs are classically defined by their 
most abundant residues, including acidic, Gln-rich and Pro-rich ADs. 

Among these classes, acidic ADs are the most well-studied, and contain 
interspersed aromatic and acidic residues. Hydrophobic motifs make 
large contributions to activity, and, in nuclear magnetic resonance 
structures, motif residues contact hydrophobic surfaces of coactiva-
tors5. Aromatic residues contribute most strongly to activity, whereas 
leucine and methionine residues have a smaller role. The acidic residues 
sometimes mediate fast, low-affinity binding6–8. A proposed unifying 
idea for acidic ADs is that the acidic residues keep the hydrophobic 
residues exposed to solvent, allowing for coactivator interaction9,10. 
However, little sequence similarity exists among strong ADs and the 
sequence features that govern AD activity remain poorly understood. 
Moreover, despite the crucial role of ADs, they are difficult to identify, 
in part because approaches for identifying ADs are labour intensive. 
This is the case in plant systems, which have traditionally relied on a 
combination of genetic and cross-species approaches to identify ADs. 
A previous study was able to identify the transcriptional activity of tens 
of TFs11, but lacked the resolution to interrogate AD activity specifically.

In this work, we experimentally identify plant transcriptional ADs 
on a genomic scale using an approach that we call the plant activa-
tion domain identification (PADI) high-throughput assay (Fig. 1b), and 
develop a set of rules for the future identification of ADs using a deep 
learning algorithm that we name the transcriptional activation domain 
activity (TADA) network. This information, together with the constant 
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development and improvement of genome-editing techniques, will 
have a transformative effect on the design of synthetic ADs that will 
allow for tunable transcriptional activation.

PADI
At present, determining the transcriptional activation activity of pro-
teins solely on the basis of protein sequence remains a challenge, and 
limits our understanding of transcriptional regulation. To address this 
knowledge gap, we implemented an experimental approach to iden-
tify ADs in all annotated Arabidopsis TFs. We used a high-throughput 
yeast-based system12 to systematically identify ADs from thousands of 
protein fragments. Although this system provided us with the ability to 
identify fragments of Arabidopsis TFs that could activate transcription 
at scale, it has two limitations: (1) it is possible that Arabidopsis-specific 
ADs could be missed in this assay; and (2) it is possible that Arabidopsis 
TF fragments that activate transcription in yeast might not activate 
transcription in Arabidopsis.

We tested the transcriptional AD activity of 1,918 TFs from Arabi-
dopsis, representing more than 20 TF families (Fig. 1a). To assess AD 
activity, we designed synthetic TFs comprising an N-terminal mCherry 
tag, a mouse DBD and an inducible nuclear localization domain12. Each 
synthetic TF contained a 40-amino-acid fragment derived from an 
Arabidopsis TF and was integrated into the yeast genome at the URA3 
locus to ensure the presence and stability of a single synthetic TF in 
each transformant for reliable assessment (Fig. 1b).

We screened each TF in 40-amino-acid fragments, with a step size of 
10 amino acids, testing 68,441 fragments. Oestradiol-induced libraries 
were sorted on the basis of their relative GFP:mCherry ratio, and subse-
quent sequencing was performed to determine the relative abundance 
of fragments in each bin (Fig. 1c). Fragments with high PADI scores were 
found predominantly in bins of a high GFP:mCherry ratio, suggesting 
strong activation. To allow comparison across ten libraries, we applied 
z-score normalization to assign an AD score (PADI score) to each frag-
ment (Fig. 1d and Extended Data Fig. 1). Of the fragments tested, 6,205 
showed strong activation, as denoted by scoring at or above a threshold 
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Fig. 1 | High-throughput tiling of Arabidopsis TFs uncovers thousands of 
ADs. a, Waffle plot of the 1,918 Arabidopsis TFs analysed. Those with previously 
identified ADs are marked with a black box. b, Schematic of PADI. Ten pooled 
libraries of synthetic TFs were integrated into the yeast URA3 locus before 
mating to yeast carrying a 5×UAS reporter. aa, amino acids. ERD, estrogen 
receptor D. c, After induction, cells were flow sorted into bins on the basis of 
GFP:mCherry ratio to assess transcriptional output. d, Scaled AD (PADI) score; 
fragments with a PADI score ≥ 1 (one standard deviation from the mean) were 
considered strong activators. e, Hits need to be filtered by disorder. PADI 
(orange) and predicted disorder (white background) scores for NLP7 show 
strong activity in disordered regions as well as in ordered regions (grey 
background) that overlap with the known PB1 domain. The orange (PADI = 1) 
and grey (Metapredict15 score = 0.5) dashed lines are considered cut-offs for 
activation and disorder, respectively. f, Schematic of NLP7 protein domains. 
From top to bottom: ordered domains (Uniprot Q84TH9, olive and teal); 
previously annotated as containing AD activity13 in the literature (Lit.; orange); 

predicted disorder (Dis.; grey); and PADI scores (blue). g, Forty-amino-acid 
fragments (underlined in f) or intact PB1 domain (teal in f) were tested for 
activation activity using a modified version of the PADI assay (n = 4 
independent experiments). h, Distribution of identified ADs across 
Arabidopsis TF families (n ≥ 22). i, Distribution of highest-scoring hits from 
each TF in each family (n ≥ 11). j, Distribution of the number of ADs identified 
per Arabidopsis TF. k, Distribution of the number of contiguous hits identified 
per identified AD. Contiguous hits could be indicative of a short AD contained 
in neighbouring fragments or of an extended AD for which a subset of residues 
is sufficient to activate transcription; our data cannot distinguish between 
these. l, The distribution of hit locations revealed a bias towards the amino and 
carboxy termini of proteins. The data in h–l have been filtered for hits that are 
present in IDR regions of the parent TF. Unfiltered data can be found in 
Extended Data Fig. 1g. All box plots show the interquartile range and the 
median. Whiskers are 1.5 times the interquartile range.
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of one standard deviation from the mean (PADI score ≥ 1). Using this 
definition, approximately 10% of tested fragments exhibited strong 
transcriptional activation activity.

When examining PADI hits (PADI score ≥ 1) in TFs with previously 
known AD locations, such as NIN-LIKE PROTEIN 7 (NLP7)13, we noticed 
that we often observed extraneous hits in regions of the protein that 
were not previously associated with the transcriptional activity of these 
proteins. Consistently, these extraneous hits were observed in protein 
regions that were predicted to be well-folded (Fig. 1e,f). We hypoth-
esized that fragments from folded regions have sequence attributes 
that are capable of recruiting the transcriptional machinery when 
taken out of their well-ordered context; however, these fragments do 
not exhibit AD activity when in folded regions. Accordingly, previous 
studies have shown that eukaryotic ADs are commonly found in IDRs5,14. 
To test this idea, we further investigated fragments and domains from 
NLP7. NLP7 possesses an N-terminal IDR that is both necessary and suf-
ficient to activate transcription in vivo13. PADI identified a high-scoring 
region that overlapped with the N-terminal region of NLP7, as well as 
fragments from the C-terminal PHOX and BEM1 (PB1) oligomeriza-
tion domain (Fig. 1e,f). In contrast with the NLP7 N-terminal IDR, the 
NLP7 PB1 domain has been shown not to activate transcription in vivo13. 
To determine whether the PB1 domain can activate transcription on 
its own in our PADI system, we tested the full PB1 domain, as well as 
high-scoring PADI fragments from the N terminus and PB1 domain. As 
previously reported13, we observed that the intact PB1 domain did not 
activate transcription in our experimental system (Fig. 1g). This result 
suggests that certain fragments when removed from their ordered 
domain context might exhibit AD-like behaviours that do not reflect 
their native function. In the PADI dataset, 43% of high-scoring fragments 
are from globular domains, which have sequence features consistent 
with ADs, but might lack AD activity in their folded context, and thus we 
urge caution for researchers following up on specific ADs from these 
regions. Therefore, in our dataset, we report both PADI data and IDR 
predictions generated by Metapredict15 (Supplementary Table 1 and 
Supplementary Data 1).

We found that 53% of the 1,918 tested Arabidopsis TFs contained at 
least one AD, defined as a PADI hit that originated from an IDR. These 
ADs were not evenly distributed across TF families. For instance, 79% 
of the MYB family exhibited at least one AD, whereas only 20% of the B3 
family possessed a strong AD (Fig. 1h). The strength of AD output varied 
across families (Fig. 1i), with a correlation between prevalence of ADs 
and transcriptional output by family (Extended Data Fig. 2e). Of those 
TFs with an identified AD, a majority (61%) possessed only a single AD, 
defined as a single region of one or more contiguous hits (Fig. 1j). Fur-
thermore, these ADs (81%) were found predominantly within three or 
fewer contiguous fragments (Fig. 1k). From our data, it is challenging to 
ascertain whether these contiguous regions share a small, overlapping 
core AD or whether they work in a combinatorial manner to strongly 
activate transcription. ADs were preferentially located at either the N 
terminus or the C terminus of Arabidopsis TFs (Fig. 1i). Together, these 
results present a thorough survey of the presence and location of ADs in 
the Arabidopsis genome. By performing this screen in a synthetic yeast 
system, we identified more than 1,500 ADs in more than 1,000 TFs. This 
not only provides us with a better understanding of how Arabidopsis 
TFs function, but also allows us to interrogate the relationship between 
sequence features in PADI hits to systematically understand which 
combinations of features contribute to AD activity.

TADA network and sequence features
Understanding the features that correlate with strong activation 
will help researchers gain an understanding of the mechanisms that 
underlie transcriptional regulation. Unlike structured domains, trun-
cated ADs retain activity16,17, consistent with their intrinsic disorder18. 
Residue enrichment has historically been used to classify ADs, and the 

acidic aromatic class of ADs is the best studied and most common. The 
acid-exposure model suggests that negatively charged acidic residues, 
such as Asp and Glu, serve to expose otherwise-buried bulky aromatic 
and hydrophobic residues, including Phe, Trp, Leu and Tyr, which act 
as contact points with the transcriptional machinery to activate tran-
scription. In line with these findings, we plotted all tested fragments in 
this feature space to further explore the relationship between residue 
enrichment and ADs. Our analysis showed that an enrichment in aro-
matic residues and net negative charge correlated with higher average 
AD scores (Fig. 2a). However, after further examination focusing on 
hits that scored above the threshold (Fig. 2a), we observed a significant 
number of hits with neutral or positive charges, as well as fragments 
with few aromatic residues. These findings suggest that additional 
classes of ADs are present in our library.

To gain a more comprehensive understanding of the underlying 
sequence features associated with transcriptional activity, we validated 
and refined proposed models for AD activity. Moreover, we reasoned 
that by examining the features that contribute to strong activation 
without bias towards existing models, we could potentially uncover 
novel paradigms of transcriptional activation. Because we observed 
a strong prevalence of the acidic aromatic class of ADs (Fig. 2a), we 
first investigated the contribution of individual acidic and aromatic 
amino acids towards PADI scores (Fig. 2b). When examining negatively 
charged residues (Asp and Glu), we found a positive trend between Asp 
frequency and PADI scores, but not between Glu frequency and PADI 
scores (Fig. 2b). Thus, within the acidic-exposure model, the negative 
charge provided by a shorter side chain (Asp) might allow for a greater 
exposure of the functional aromatic residues than the negative charge 
provided by a longer side chain (Glu). Amongst the examined aromatic 
residues (Trp, Phe, Tyr and Leu), we found that only Phe enrichment 
showed a positive trend with PADI score. Despite these mild trends, 
no individual amino acid showed a significant correlation with PADI 
score, suggesting that single aromatic residues are unlikely to be good 
predictors of AD activity.

Owing to the limited correlation between individual amino acids 
and AD activity, we reasoned that higher-order and more complex 
correlations might be descriptive and/or predictive for AD activity. As 
such, we recognized the need to investigate which features strongly 
contribute to the high-scoring fragments in our dataset. To gain insights 
into the sequence features and structural properties that determine AD 
function, we developed a neural-network-based approach. Our neural 
network, which we name the transcriptional activation domain activity 
(TADA) network, incorporates convolutional, activation and recurrent 
layers. By doing so, it captures both linear and non-linear relationships 
between input features and AD predictions. Considering that AD func-
tionality is not determined solely by the primary amino acid sequence 
and that ADs lack a defined secondary structure, we opted to predict 
ADs on the basis of side-chain properties and IDR descriptors, rather 
than relying solely on the raw sequence. To capture this information, 
we computed 42 sequence properties, referred to as features, using a 
sliding window of 5 amino acids (Fig. 2c). These computations resulted 
in a 42 × 36 matrix for each tested fragment. In our first iteration of the 
neural network19, we trained TADA on these 42 features computed on 
a dataset of 75,845 random peptides20. Notably, our neural network 
outperformed an existing classification neural network (ADpred), 
which was also trained on these random peptides, in both sensitivity 
and F1 score19. This suggests the effectiveness of our approach in pre-
dicting ADs. To capture the specific characteristics of identified ADs, 
we retrained our neural network on the PADI dataset, which consisted 
of 64,552 non-hits and 6,385 hits. Given the data imbalance, we imple-
mented several cost-sensitive approaches, and stratified splitting of the 
dataset resulted in 70% for training, 20% for validation and 10% held out 
as a test set (see Methods). On the test set, our neural network slightly 
outperformed the previous iteration trained either on random peptides 
alone or on a combination of random peptides and PADI data across all 
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performance metrics (Extended Data Fig. 3a). Thus, we reasoned that 
certain AD characteristics are not adequately captured within a random 
peptide dataset alone. In addition, on a dataset of human TFs, TADA 
outperformed existing predictors, including PADDLE, ADpred and a 
composite model (Extended Data Fig. 4). A TADA score of 0.4 captured 
most true hits and is used for our score cutoff (Fig. 2d). Overall, TADA 
achieved a high F1 score of 93.40% and an area under the precision 
recall curve (AUPR) of 97.31%, indicating that our unique encoding 
approach and neural network design can advance the prediction of 
ADs (Extended Data Fig. 3a).

To gain insights into the contribution of each of the 42 features to 
TADA network predictions, we determined the effect of the individual 
input features. To this end, we used Shapley additive explanations 
(SHAP) analysis21 and examined the local and global effects of the fea-
tures on TADA’s predictions. Unlike our previous analyses of sequence 
features (Fig. 2b), which rely on linear correlations, TADA and SHAP 
analysis capture non-linear relations and uncover complex correlations 
with AD identification. To identify local explanations and thus aim to 
explain individual predictions, we computed the effect of each feature 
for each AD fragment with SHAP (Fig. 2e). We found that the total counts 
of aromatic residues (Trp, Phe and Tyr), negative residues (Asp and 
Glu), positive residues (Lys, Arg and His) and hydrophobic residues 
(Trp, Phe, Leu, Val, Ile, Cys and Met) emerged as key features across all 
hits. To assess the overall importance across all fragments, and thus the 
global explanation, we also computed the total absolute effect of each 

feature and ranked them according to importance (Fig. 2f). Consistent 
with local explanations (Fig. 2a,b), we found that aromatic, negative, 
hydrophobic and positive residues were most important. In addition, 
the fraction of negatively or positively charged residues and the frac-
tion of residues predicted to be ‘disorder-promoting’ strongly affected 
AD predictions (Fig. 2f). Notably, aromatic residues collectively had a 
greater importance than individual aromatic residues (Fig. 2f). When 
examining our hits in aggregate, we found that many previously known 
drivers of AD activity, such as the presence of aromatic, hydrophobic 
and negative residues, were important to plant ADs; however, we also 
found differential contributions of negatively charged residues (Glu 
> Asp) and aromatic residues (Trp > Phe, Tyr).

By using the deep learning interpretability technique SHAP, we iden-
tified key properties that are important for AD prediction (Fig. 2f). We 
then used the most important and predictive features to perform unsu-
pervised classification of ADs. To this end, we normalized the retrieved 
importance scores and selected eight features above a threshold of 
one standard deviation from the mean (Fig. 2f (inset) and Extended 
Data Fig. 4e), which allowed us to retain the strongest signals from 
the most influential features. To visualize and analyse the resulting AD 
fragments, we used a combination of principal component analysis 
(PCA) and t-distributed stochastic neighbour embedding (t-SNE). By 
projecting all hits onto a two-dimensional (2D) space, we observed 
distinct clusters, ultimately identifying a total of six AD subtypes (Fig. 3a 
and Supplementary Table 2).
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Fig. 2 | Using AD sequence features to create a predictive model. a, Scatter 
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Tyr residues in the library (left) and hits (right). The size of each point represents 
the number of fragments at each coordinate and the colour corresponds to the 
mean PADI score fragments at that coordinate. b, Box plots showing the 
distribution of PADI scores for fragments on the basis of the number of Asp,  
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interquartile range (n = 1–44,633 fragments). c, TADA architecture and 42 
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classify sequences. Mult., multiplication. d, TADA score across PADI hits. Using 
TADA to predict hits from the PADI dataset suggests that a TADA cut-off score of 
0.4 will capture most fragments that activate transcription. e, SHAP values 
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the test dataset classified as fragments scoring higher than 1. Features derived 
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(olive) are shown. f, Normalized SHAP values ranked from most important to 
least important for fragments scoring higher than 1. Inset, the top eight features 
plotted as having a positive or negative effect on prediction. Features derived 
by counting number of residues by side-chain property (blue), derived from 
LocalCIDER38 (green) and the Metapredict15-based secondary structure score 
(olive) are shown. FCR, fraction charged residue; frac., fraction; NCPR, net 
charge per residue; s., secondary; WW, Wimley and White hydropathy.
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To identify whether these subclasses have divergent features that 
might indicate distinct functionality, we investigated sequence fea-
tures of these subtypes (Fig. 3b and Extended Data Fig. 2). The six 
subtypes not only differed from one another in strongly predictive 
features, but also exhibited other differentiating features. Subtypes 
1 and 4 are enriched in negatively charged residues when compared 
with all identified ADs, and are likely to represent two types of acidic 
ADs. Subtype 4 is enriched in aromatic residues whereas subtype 1 
is enriched in aliphatic residues (Fig. 3c). We hypothesize that these 
subtypes function through the acidic-exposure model, in which nega-
tive charge leads to the exposure of residues for interaction with the 
transcriptional machinery.

Subtypes 2 and 6 are relatively depleted in negatively charged resi-
dues and enriched in Ser, Pro, Asn and Gln residues, which suggests 
that a loss of negative charge can be compensated for by increases 
in these residues (Fig. 3d). These combinations of features might 

promote side-chain exposure, whereby Ser phosphorylation might 
generate additional negative charge and Pro and/or Asn residues dis-
rupt structure to allow for expanded peptide backbones. Considering 
the enrichment for Pro and Gln residues, we propose that subtypes 2 
and 6, respectively, represent the Pro-rich and Gln-rich AD classes.

Subtypes 3 and 5 are relatively enriched for positively charged resi-
dues amongst our hits. Subtype 5 also showed an enrichment in nega-
tively charged residues and a reduction in the total number of crucial 
aromatic residues (Fig. 3e), raising the possibility that subtype 5 AD 
relies on a limited number of aromatic residues for interaction with 
the transcriptional machinery. By contrast, subtype 3 does not show 
a compensatory enrichment in negative charge (Fig. 3b), suggesting 
that it has a different mechanism of action to that of subtypes 1, 4 and 5.  
All subtypes displayed a range of PADI scores (Fig. 3f) and predicted 
radii of gyration (Fig. 3g).

Because these subtypes represent sequence features of fragments 
from Arabidopsis TFs that can elicit transcriptional output in yeast, we 
thought that they would be a good test of whether identified hits are 
active in Arabidopsis. For this test, we cloned representative fragments 
from each subtype (Extended Data Fig. 2i,j) into a reporter system con-
sisting of the Gal4 DBD fused to the tested fragment. These TFs were 
cloned into plasmids carrying an mNeonGreen reporter driven by 5× 
Gal4 UAS sites and a minimal promoter to result in a 1:1 ratio of effector 
and reporter. In Arabidopsis mesophyll protoplasts, representatives 
from each subtype activated transcription (Fig. 3h), confirming that each 
subtype identified in our yeast-based PADI screen is active in plant cells.

Together, our network and biophysical analyses provide a frame-
work for correlating functional outputs of IDR protein sequences with 
their features. The six identified AD subtypes differ in the enrichment 
of crucial features, compared with all hits, and serve as a foundation 
for further investigation of ADs and their features beyond the acidic– 
aromatic paradigm.

PADI and TADA validation
To validate PADI-identified ADs and examine their correspondence with 
previously reported ADs, we investigated the only 9 Arabidopsis TFs 
with ADs mapped to within 100 amino acids whose activities have been 
shown to be important for function in plants13,22–28 (Fig. 4a). For each 
previously published AD (orange), we both identified the same region 
in our yeast-based assay (PADI, blue) and predicted the AD using TADA 
(pink). These identified and predicted ADs were consistently found in 
predicted IDRs. We also identified PADI hits in most Arabidopsis TFs 
that have recently been found to activate transcription in a transient 
tobacco-based assay11 (Extended Data Fig. 5a). Our identification of 
PADI hits that match previously reported Arabidopsis domains, along 
with our testing of 24 additional hits in protoplasts, are consistent with 
the possibility that PADI accurately identifies Arabidopsis ADs; however, 
it is still possible that some PADI hits will not be active in Arabidopsis 
and that some Arabidopsis ADs do not activate transcription in yeast.

To expand our validation, we examined ADs in the 23-member 
AUXIN RESPONSE FACTOR (ARF) family of TFs. Transcriptional activ-
ity for 4 members of this family has been mapped to their long central 
IDRs29,30 (Fig. 4b), providing us with the opportunity to validate ADs in 
a family for which the ADs had not been fully mapped. We identified 
ADs in the central IDRs of each of these TFs, but also found strongly 
scoring regions in their well-ordered PB1 domains (Fig. 4b). To test 
our hypothesis that only the high-scoring fragments from IDRs are 
functional in the context of an intact TF, we used the well-developed 
yeast synthetic auxin signalling system31, focusing on ARF7 (Fig. 4d). 
Whereas full-length ARF7 showed strong reporter activation, ARF7 
lacking either AD1 (∆AD1) or AD2 (∆AD2) exhibited a reduced transcrip-
tional output while retaining activity, suggesting that each individual 
AD is sufficient to confer partial activity. Deletion of both ARF7 ADs 
from the IDR (∆AD1∆AD2) abolished all ARF7 transcriptional activity, 
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which indicates that the high-scoring fragments identified by PADI and 
TADA from well-folded regions do not contribute to transcriptional 
activation in the context of the intact ARF7 protein.

The two distinct ADs found in ARF7 provided us with an ideal 
opportunity to interrogate the roles of ADs from different subtypes, 
because ARF7AD1 is a subtype 5 and ARF7AD2 is a subtype 4 AD, and 
they have distinct sequence features (Fig. 4c). We generated and exam-
ined ARF7AD1 and ARF7AD2 variants in our PADI system, and found 
that systematic substitution of residues that were identified by SHAP 
analysis as impactful for AD activity alters the output for each. Mutat-
ing negative residues to either positive residues or Ala led to a loss of 
activity (Fig. 4c). Conversely, mutating positively charged residues 
to negatively charged residues resulted in an increase in activity. In 
addition, mutating aromatic and hydrophobic residues resulted in 
decreased AD activity. We found that mutating Pro negatively affected 
the activity of ARF7AD2, but not that of ARF7AD1 (Fig. 4c), suggesting 
that Pro has distinct molecular roles in these two ADs. Together, these 
results further validate our classification of distinct AD types and sug-
gest that different AD types achieve similar activities through distinct 
combinations of features.

To validate identified ARF7 ADs in planta, we created FrankenARF7 
(FrARF7), which consists of the Gal4 DBD fused to the ARF7 central IDR 
(middle region) and PB1 domain. FrARF7 was cloned into a plasmid 
that also carried an mScarlet-H2B reporter driven by 5× Gal4 UAS sites 
and a minimal promoter to result in a 1:1 ratio of effector and reporter 
(Fig. 4e). In Arabidopsis mesophyll protoplasts, wild-type FrARF7 exhib-
ited strong transcriptional activation, whereas FrARF7∆AD1∆AD2 did not 
activate transcription, confirming that the two ADs identified in the 
ARF7 middle region are necessary for transcriptional activity. FrARF7∆AD1 

showed no loss of activity, whereas FrARF7∆AD2 showed a mild reduc-
tion of transcriptional output (Fig. 4e). Thus, ARF7AD2 is sufficient for 
transcriptional activity in this system and the contribution of ARF7AD1 
can only be unmasked when AD2 is missing. In the future, examining 
ADs from distinct subtypes will allow the subfunctionalization of ADs 
in different cellular contexts and tissue types to be investigated.

AD evolution in the ARF family
The well-studied ARF family has three deeply conserved clades: clade-A 
ARFs are considered transcriptional activators, whereas clade-B and 
clade-C ARFs are considered transcriptional repressors; activator and 
repressor functions are encoded in the intrinsically disordered mid-
dle region of the ARF TFs32. The rich evolutionary history and dichot-
omy of functions makes the ARFs an ideal TF family through which 
to interrogate the evolution of transcriptional function and ADs. We 
identified ADs within the middle regions of all three Arabidopsis ARF 
clades (Fig. 5a). Each clade-A ARF contained one or more AD (Fig. 5a), 
consistent with their historical definition as ‘activator ARFs’. Clade-B 
and clade-C ARFs generally lacked ADs, consistent with their presumed 
roles as transcriptional repressors; however, some members of these 
‘repressor ARF’ families had high-scoring AD regions (Fig. 5a).

To examine the evolution of ARF ADs, we performed a new experi-
ment with an additional 11 species that span the flowering plant lineage 
(Fig. 5b, Extended Data Fig. 6 and Supplementary Table 3). Among the 
112 clade-A ‘activator’ ARF middle regions tested, we found that 97% 
contained at least one AD, defined as a PADI score of at least 1. Notably, 
approximately 58% of clade-B and 62% of clade-C ARFs also contained 
an AD (Fig. 5c). Consistent with their proposed roles in vivo, clade-A 

A
R

F7
A

R
F6

A
R

F5
A

R
F8

M
Y

C
3

P
IF

3
A

tH
S

FA
6b

A
tH

S
FA

2
D

R
E

B
2A

A
P

1
D

R
E

B
1A

W
R

K
Y

50
N

LP
7

100 aa

100 aa

a b

Dis.
PADI
TADA
Lit.

Dis.
PADI
TADA
Lit.

Dis.
PADI
TADA
Lit.

Dis.
PADI
TADA
Lit.

Dis.
PADI
TADA
Lit.

Dis.
PADI
TADA
Lit.

Dis.
PADI
TADA
Lit.

Dis.
PADI
TADA
Lit.

Dis.
PADI
TADA
Lit.

Dis.
PADI
TADA
Lit.

Dis.
PADI
TADA
Lit.

Dis.
PADI
TADA
Lit.

Dis.
PADI
TADA
Lit.

2,000

No 
eff

ec
to

r

ARF7
ΔA

D1
ΔA

D2

ΔA
D1Δ

AD2

4,000

6,000

8,000

10,000
p

IA
A

19
:m

S
ca

rle
t-

I
ac

tiv
at

io
n 

(a
.u

.)

AD1 AD2

d

c

ARF7 middle regionmNEON GAL4DBD

mNEON AD1 AD2 PB1GAL4DBD

mNEON AD2 PB1GAL4DBD

mNEON AD1 PB1GAL4DBD

mNEON PB1GAL4DBD

Gal4 UAS
mScarlet-I H2B

Reporter

Effectors

–1

0

W
T

DE to
 R

K

DE to
 A

RK to
 D

E

RK to
 A

W
LF

Y to
 A

P to
 A W

T

DE to
 R

K

DE to
 A

RK to
 D

E

RK to
 A

W
LF

Y to
 A

P to
 A

1

2

3

4

5

A
D

 s
co

re

–1

0

1

2

3

4

5

A
D

 s
co

re

e

ARF7AD1 ARF7AD2

–3 13 5 –13 –3–3–8Charge –3 7 2 –7 –3–3–5Charge

ARF7AD1

ARF7AD2

≤0

0.50

1.00

1.50

≥2.00

PA
D

I s
co

re

TA
D

A
 p

re
d

ic
tio

n

≥0.7

0.6

0.5

0.4

≤0.3

≤0

0.50

1.00

1.50

≥2.00

PA
D

I s
co

re

TA
D

A
 p

re
d

ic
tio

n

≥0.7

0.6

0.5

0.4

≤0.3

0 10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

mScarlet-H2B (a.u.)

ΔAD1ΔAD2

ΔAD2

ΔAD1

FrARF7

Gal4
A

A

AB

B

B

Fig. 4 | Validation of identified ADs. a, Schematic of WRKY5022, DREB1A23, 
AP124, DREB2A25, AtHSFA226, HtHSFA6b26, PIF327, MYC328 and NLP713 protein 
domains previously annotated as containing AD activity (orange), TADA scores 
(pink), PADI scores (blue) and the predicted disorder (white). b, Schematic  
of ARF8, ARF5, ARF6 and ARF729 protein domains previously annotated as 
containing AD activity (orange), TADA scores (pink), PADI scores (blue) and  
the predicted disorder (white). The two identified ADs in the ARF7 middle 
region are annotated as AD1 and AD2. c, ARF7AD1 and ARF7AD2 variants alter 
transcriptional output. AD sequences were modified as indicated and tested  
in the PADI assay. d, Deletion of ARF7AD1 or ARF7AD2 results in decreased  
ARF7 output in a reconstructed yeast system. pIAA19:mScarlet-I reporter 
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groupings based on the Tukey HSD test with an alpha-level of 0.01.



172  |  Nature  |  Vol 632  |  1 August 2024

Article

fragments scored higher on average than did those from either the 
clade-B or the clade-C ARFs. In plants, the presence of a repression 
domain (RD), such as those found in clade-B ARFs33, leads to tran-
scriptional repression even if an AD is also present34. We therefore 
examined the co-occurrence of annotated RDs33 and fragments that 
elicited a transcriptional response in the tested ARFs, and found that 
76% of clade-B ARFs have annotated RDs, on the basis of the presence 
of known motifs33, in contrast with clade-A and clade-C ARFs (Fig. 5c). 
Thus, although several clade-B ARFs contain ADs, they might not act as 
transcriptional activators in planta owing to the presence of strong RDs.

To better understand the evolution of ARF ADs, we focused our atten-
tion on the clade-A ‘activator’ ARFs, which exist in four functionally 
conserved subclades in the flowering plants35. Although ADs within the 

subclades showed minimal sequence similarity (Extended Data Figs. 5–8),  
they shared common positioning (Fig. 5d). AD fragments from the ARF5 
subclade were distributed in the centre of the middle region, whereas 
ADs in the other three subclades showed a preference for proximity to 
the DBD (N terminus of the middle region) or the PB1 domain (C termi-
nus of the middle region). This result of conserved positioning without 
conserved sequence suggests selective pressure on the locations of ADs, 
even when they reside in extended regions of intrinsic disorder and 
low complexity, as is found in the ARF middle region. Selection on AD 
position can also be found within TF families in Arabidopsis. The MYB 
family, for example, shows a preference for C-terminal ADs (Extended 
Data Fig. 9a). These findings suggest that functionality is encoded not 
only in AD sequence, but also in AD location.

To investigate whether the TADA network, trained on an Arabidopsis 
dataset, can predict ADs in other plant species, we predicted ARF ADs 
in the species examined in our ARF evolution dataset. On this unseen 
dataset, TADA achieved an AUPR of 96.14% and outperformed exist-
ing methods in terms of accuracy and F1 score, indicating that TADA 
generalizes well to other plant species (Extended Data Fig. 9c,d). The 
predicted ADs in the clade-A ARFs overlapped with our PADI findings 
(Fig. 5d), which suggests that training the data on Arabidopsis ADs 
is sufficient for the prediction of ADs across the flowering plants. 
Together, these results provide evidence for the functional and posi-
tional conservation of ADs throughout the more than 145 million years 
of angiosperm evolution.

Discussion
The identification and characterization of ADs has lagged behind that 
of DBDs across all eukaryotic taxa, which has hindered a comprehensive 
understanding of TF function. Unlike DBDs, which are easily identified 
by amino acid sequence, ADs are typically located within IDRs and 
defined by biochemical features rather than by linear sequence, thus 
posing a challenge for traditional bioinformatic methods. To overcome 
this limitation, we conducted the PADI high-throughput assay and 
developed the TADA prediction network to identify ADs within plant 
TFs. In our study, we assayed 79,298 sequences from 2,316 plant TFs 
and discovered 2,069 ADs in 1,275 TFs (Extended Data Fig. 10). Our 
identification and classification of ADs represents a first step towards 
comprehending plant TF function on a genome-wide scale. Similar 
previous studies using random peptides20, yeast peptides4 and human 
peptides36 have resulted in considerable advances in our knowledge of 
AD activity, revealing that 59% of yeast4 and 14% of human36 TFs contain 
identified ADs. From this study, 53% of Arabidopsis TFs contain at least 
one region that can activate transcription in a yeast-based assay.

A limitation of our study is the use of yeast to identify fragments 
of Arabidopsis TFs that activation transcription. Although the tested 
hits were active in plant cells, it is possible that we failed to identify 
ADs in some TFs that would activate transcription only in Arabidopsis. 
However, a strength to our approach is that we are identifying gener-
alizable features that are likely to directly recruit the transcription 
machinery. Performing this work directly in plant cells would prevent 
us from ruling out the possibility that we had identified a domain that 
recruited another Arabidopsis TF, which itself recruited the transcrip-
tional machinery. Thus, this dataset allowed us to create TADA, which 
outperforms existing AD predictors on human and plant datasets 
(Extended Data Figs. 3b,c and 9d).

We found that the acidic aromatic class of ADs dominates our data-
set, which might be expected from a yeast-based screen. However, 
around 15% of Arabidopsis ADs were neutral or positive and had few 
aromatic residues. Using our TADA network output, we identified six 
distinct AD subtypes with differing feature properties. We speculate 
that each subtype might recruit distinct transcriptional machinery or 
function only in certain cellular environments, similar to our observa-
tions when interrogating the two distinct ADs found in ARF7 (Fig. 4d,e). 
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column, the colour represents the mean PADI score (blue) or TADA prediction 
(pink) of all fragments within that window.
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Moreover, these identified AD subtypes showed differential enrich-
ment across TF families (Extended Data Fig. 6), indicating potential 
subfunctionalization. Investigating the contribution of these subtypes 
to transcriptional activation using biochemical and genetic assays will 
be crucial to understand their roles.

Whereas the sequence of ADs varies, their position within the exam-
ined TF families remains conserved (Fig. 5 and Extended Data Fig. 9a). 
This suggests functional conservation of domains in rapidly evolving 
regions of intrinsic disorder. Our findings imply that AD location con-
tributes to TF function, potentially by providing additional means of 
regulating transcription. Nearby interaction domains could occlude or 
reinforce recruitment of the transcriptional machinery depending on 
the context. For example, the PIF3 AD is physically blocked by a protein 
interaction occurring at an adjacent site, preventing transcription27. 
Similarly, an interaction complex facilitated by the ARF19 PB1 domain 
and proximal to AD2 regulates Mediator assembly37. We expect that 
our genome-wide annotation of ADs in Arabidopsis will lead to the 
discovery of similar examples.

Certain TFs exhibit bifunctionality, containing both ADs and RDs. 
Similar to many human TFs36, several clade-B ARFs possess both ADs 
and putative RDs (Fig. 5c). Because RDs are strong transcriptional effec-
tors and override ADs34, we postulate that if the RD and AD are equally 
accessible, the TF will act as a transcriptional repressor. However, if the 
RD were to be buried or occluded, the TF could then act as an activator. 
The ancient and dual roles of ARFs as transcriptional activators and 
repressors represent an intriguing model for studying the relationship 
between RD and AD activity.

Our study, using empirical PADI data and the innovative TADA net-
work, offers a powerful approach to identify and classify ADs. This 
development provides a much-needed tool to fully understand ADs 
and their role in transcriptional regulation. Moreover, our work goes 
beyond expanding our understanding of TF function. It introduces a 
model that investigates the intricate connection between sequence 
and function within IDRs. Our experimental PADI approach provides 
a framework to uncover patterns of conservation that are based on 
function and position rather than on sequence similarity. To further 
enhance our understanding, we have developed the TADA network, 
which uses feature space and amino acid properties to capture both 
linear and non-linear relationships among features. This innovative 
approach, coupled with downstream analyses, provides a roadmap for 
investigating sequence features that contribute to IDR function. We 
believe that this comprehensive methodology will have a far-reaching 
effect on the characterization of IDRs and will enable considerable 
advances to be made in this field.
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Methods

Library generation
PADI libraries. Protein sequences for primary gene models were down-
loaded from TAIR (https://www.arabidopsis.org/) using the bulk data 
retrieval tool. The Araport11 assembly was accessed in June 2020 to 
download sequences. Proteins were fragmented into 40-amino-acid 
tiles with a step size of 10 amino acids using a custom Python script. An 
additional 40-amino-acid tile that corresponds to the final 40 amino 
acids of each protein was also generated to ensure full coverage of each 
TF. Each tile was given a unique name corresponding to its AGI locus 
identified and the starting amino acid position of each tile. Each tile was 
then reverse-translated into a yeast-codon-optimized DNA sequence. 
Cloning adapters were added to each sequence at the 5′ and 3′ end as 
described previously12 with a minor modification, no barcodes were 
included in the 3′ adapters. This resulted in 183-bp sequences, 120 of 
which encode the variable 40-amino-acid sequence. These sequences 
were distributed into 10 synthesis libraries of around 7,000 fragments 
each for a total synthesis of 69,347 Arabidopsis tiles (Agilent). No TFs 
were split between synthesis libraries and synthesis libraries were  
ordered on the basis of AGI locus number to be functionally random 
in content.

ARF evolution library. ARF sequences for 12 species were identi-
fied using BlastP searches on Phytozome (https://phytozome-next.
jgi.doe.gov) against the ARF5 protein sequence, with the excep-
tion of ARFs from Zea mays, which were accessed from MaizeGDB 
(https://www.maizegdb.org/). All top hits from each species were 
aligned to AtARF2, AtARF5, AtARF7 and AtARF17 protein sequences 
to determine the presence of a canonical ARF DBD and PB1 domain. 
Blast hits that lacked one or both were excluded. The middle region 
was defined as the first amino acid downstream of the DBD, on the 
basis of a previous study40, to the last amino acid upstream of the 
conserved PB1, on the basis of another study41. The extracted middle 
regions were then passed through our custom Python script to gener-
ate tiles as described above, resulting in a synthesis library of 9,069  
fragments.

Pilot library. A pilot library consisting of Arabidopsis thaliana and 
Zea mays ARF middle region tiles was generated as described above. 
In total 2,260 fragments were synthesized; these data was used in the 
training of the TADA network.

Cloning of synthesis libraries into pMVS142
All libraries were cloned into the pMVS142 backbone12. The plasmid 
contains a KanMX gene and the yeast ACT1 promoter driving the 
expression of a synthetic TF comprising an N-terminal mCherry tag 
fused to the mouse Zif268 DBD followed by an oestrogen-binding 
domain and a multiple cloning site for fragment integration. Synthe-
sis libraries were amplified using primers specific to the shared 5′ and 
3′ adapters and Q5 2X Mastermix (NEB) and purified with the Mon-
arch PCR Purification Kit (NEB). The plasmid backbone was digested 
with NheI-HF and AscI and the synthesis libraries were cloned into 
the digested backbone using the NEBuilder HiFi assembly at a 2:1 
insert to vector ratio eight times to ensure the integration of all frag-
ments. The resulting reactions were pooled and cleaned using the 
Monarch PCR Purification Kit (NEB) and transformed into 100 µl of 
Top10 electrocompetent Escherichia coli. Transformed cells were 
grown overnight in 125 ml Luria broth (LB) with ampicillin (Amp) 
selection. Dilution series up to 1:10,000 of transformed cells were 
plated on LB + Amp plates to determine colony counts in liquid cul-
ture. Synthesis libraries were considered successfully cloned if we 
reached colony counts higher than 49,000. Plasmid DNA was extracted 
from transformed E. coli using the ZymoPURE II Plasmid Maxiprep Kit  
(Zymo Research).

Yeast strains used in PADI assays
DHY211 is a MATa yeast strain from A. Chu and J. Horecka and was used 
to generate yeast pools carrying synthetic TFs at the URA3 locus. MY435 
is the MATα reporter strain that contains a fast-maturing GFP variant 
driven by six Zif268 binding sites.

Yeast integration, selection and mating
PADI, ARF evolution and pilot libraries. Yeast synthetic TF cloning 
was performed as described previously12 with the following modifica-
tions: maxipreps of synthetic TF plasmid libraries were triple digested 
with EcoRI-HF, PacI-HF and SalI-HF before transformation, along with 
500-bp homology arms for the 5′ and 3′ ends of the synthetic TF, into 
DHY211. Transformed cells were recovered overnight in YPD medium 
and then plated on SC + G418 + 5-FOA plates to identify clones with 
stable integrations of the synthetic TF pool at the URA3 locus. Libraries 
were deemed successfully cloned when 49,000 colonies were reached 
(77,000 colonies for the ARF evolution library). The resulting clones 
were then scraped, pooled, washed and grown again in YPD for mating 
or stored in glycerol at −80 °C for additional mating and experimenta-
tion. Positive yeast clones were mated to MATα MY435 twice (or five 
times in the case of the ARF evolution library) and then pooled to ensure  
retention of all fragments. The resulting mated cells were grown over-
night in bulk in SC + G418 + NAT. Cells were collected and stored con-
centrated in glycerol at −80 °C until flow sorting experiments. In total, 
892 fragments (1.3%) were lost during cloning steps across the 10 PADI 
libraries, 60 fragments (0.7%) were lost during cloning from the ARF 
evolution library and four fragments (0.2%) were lost during cloning 
from the pilot library.

NLP7 fragment and PB1 confirmation. Arabidopsis NLP7 coding se-
quences that encode a 40-amino-acid fragment starting with Leu101 
(fragment 1), a 40-amino-acid fragment starting with Glu901 (frag-
ment 2), and the PB1 domain (Thr863 to Val945) were synthesized by 
Twist Biosciences. Fragments were PCR-amplified using primers with 
overlap to pMVS219 as described above to generate synthetic TFs for 
each tested region using NEBuilder HiFi cloning as described above. 
The resulting clones were confirmed by sequencing with Plasmidsau-
rus. Yeast strains expressing synthetic TFs with fragment 1, fragment 
2 and PB1 domain yeast strains were made as described above using 
homology-directed integration of synthetic TFs with one modifica-
tion: MY435 was used for stable integration instead of DHY211. Cells 
were recovered for 1 h in YPD and plated on SC + G418 + NAT to confirm 
transformants.

Confirmation of ARF7 ADs in a yeast synthetic auxin signalling sys-
tem. ARF7 in the pGP8A vector was driven under the ADH1 promoter42. 
AD deletions were made to this ARF7 plasmid using j5 to design prim-
ers43 and an in vivo assembly strategy to assemble the constructs44. 
Sanger sequencing confirmed the coding sequence of AD deletion 
constructs.

Plasmids encoding the effectors ARF7, ARF7∆AD1, ARF7∆AD2 and 
ARF7∆AD1∆AD2 were digested with PmeI before Lithium PEG transforma-
tion45. ARF7 constructs were transformed into YPH500 (MATα ura3-52 
lys2-801_amber ade2-101_ochre trp1-Δ63 his1-Δ200 leu2-Δ1) contain-
ing an mScarlet reporter driven under the IAA19 promoter housed 
in a pGP6G vector. Correct integration of transformed colonies was 
confirmed by diagnostic PCR across the boundary of homologous 
recombination and confirmed transformants were struck to isolation 
on YPAD plates.

PADI assay
Mated yeast libraries were grown overnight in SC + G418 + NAT, unmated 
yeast libraries were grown overnight in SC + G418 and untransformed 
DHY211 were grown in SC overnight at 30 °C. Yeast grown overnight 
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was subcultured at 1:5 dilution in SC medium without selection and 
1 µM β-oestradiol was added to mated libraries and the positive and 
negative control strains. Cells were grown for an additional four hours 
at 30 °C and then placed on ice until cell sorted.

Cells were analysed and sorted on a Beckman Coulter Astrios, with 
the Summit Software package, at the DCI Flow Cytometry Core at 
Duke University (PADI and ARF evolution libraries) and on a BD Aria-II 
machine at Washington University in St. Louis (pilot assay). DHY211 
and the positive and negative controls were used to define cell gates 
and gain in each experiment. Experimental yeast libraries were sorted 
into 12 bins on the basis of the relative GFP:mCherry signal in each cell. 
A minimum of 60,000 cells per bin were sorted for the PADI assay and 
355,000 cells per bin for the ARF evolution experiment into 2 ml fresh 
SC. Cells were kept on ice until the completion of the experiment and 
then grown in SC medium at a final volume of 5 ml overnight at 30 °C. 
The cells were then pelleted and frozen at −80 °C until DNA extractions 
were conducted.

The GFP- and mCherry-only sorts were conducted as above with some 
modification. All ten mated PADI libraries were grown overnight in 
SC + G418 + NAT. The optical density at 600 nm (OD600 nm) of each library 
was taken and then all ten libraries were pooled with equal numbers of 
cells, and the pool was diluted 1:5 in SC medium with 1 µM β-oestradiol 
and grown for four hours before cell sorting. GFP- and mCherry-only 
sorts were performed with only six bins each that spanned the range 
of values present in the pooled libraries and one million cells per bin 
were sorted into fresh SC medium. Overnight growth and storage were 
performed as described above.

All PADI libraries were assayed once, with the exception of library 3, 
which was assayed twice. Library 3 replicates are compared in Extended 
Data Fig. 1d. The control fragments common to all ten libraries were 
assayed independently in each library and are compared in Extended 
Data Fig. 1e,f.

Yeast genomic extraction and sequencing
Yeast genomic DNA was extracted with the YeaStar Genomic DNA Kit 
(Zymo Research). Sequencing libraries were generated through three 
PCR reactions. PCR1 amplified a 600-bp fragment that contained the 
tested fragment from the integrated locus. PCR2 amplified the frag-
ment itself and added phasing and Illumina sequencing adapters. PCR3 
completed the Illumina sequencing adapters and indexes specific to 
each sample for each bin and yeast library tested. All yeast libraries and 
bins were sequenced with 150-bp PE reads, or 150-bp SE for the pilot 
study, with a minimum of one million reads per sample.

Data analysis
Paired raw Fastq files from each library were aligned to fragment DNA 
sequences using BWA-mem aligner (v.0.7.15)46 and SAMtools (v.1.10)47 
to generate BAM files. Fragment counts in each bin were extracted 
from the resulting BAM files using SAMtools coverage47. Count files 
were then opened in Python using Pandas (v.1.4.1; https://zenodo.org/
record/7979740) and NumPy48 to generate PADI scores. Each library 
was independently analysed to generate PADI scores by first normal-
izing each sequenced bin by counts per million reads. Each bin was 
normalized by the number of yeast collected in each bin. Next, each 
fragment was normalized across bins by taking the fragment counts in 
each bin and dividing by the sum of fragment counts across all bins. The 
raw AD score was generated by taking the dot product of the propor-
tional count of each fragment in each bin and the median GFP:mCherry 
score for each bin. Raw AD scores were then z-score normalized using 
the preprocessing command in the Scikit-learn package (v.1.2.0)49 to 
generate the final PADI score.

Sequence features for each fragment were determined using Loc-
alCIDER (v.0.1.19)38, including hydrophobicity, kappa and individual 
amino acid counts. Net charge was calculated by taking the sum of 
Arg and Lys residues and subtracting the sum of Asp and Glu residues. 

Disorder predictions for all tested TFs were generated using Metapre-
dict 2 (v.2.2)15. Mean disorder values were applied to each fragment 
by taking the mean Metapredict values assigned to each amino acid 
in the tested fragment.

NLP7 fragment confirmation
Positive yeast transformants expressing the synthetic TF with frag-
ment 1, fragment 2 or the intact PB1 were grown in SC + G418 + NAT 
overnight and diluted 1:5 in SC medium. These transformants were 
then induced with 1,000× β-oestradiol and allowed to incubate at 30 °C 
for 4 h. Transformed cell populations were scored using the Beckman 
Coulter Cytoflex S Flow Cytometer and CytExpert software. A general 
gating strategy was used to identify the population of present yeast. 
Cells expressing mCherry were identified by comparing untransformed 
MY435 cells using the Y610 channel (ex: 561 nm, em: 610 ± 20 nm, 2,000 
gain). A minimum of 300,000 mCherry-positive yeast cells from four 
independent induction experiments for each construct (NLP7 AD, PB1 
fragment and PB1 domain) were used to collect GFP-reporter levels 
using the B525 channel (ex: 488 nm, em: 525 ± 40 nm, 2,000 gain). FCS 
files were generated through Cytoflex and the mean GFP/mCherry score 
was calculated using the Python packages flowkit (v.1.0.1), seaborn 
(v.0.13.0) and pandas (v.1.4.1).

Training dataset and encoding
The TADA neural network, which has been previously described19, 
underwent training using 75,845 random peptides. To capture the 
inherent characteristics of plant ADs, TADA was retrained on PADI. PADI 
consists of a total of 70,937 40-amino-acid fragments, among which 
64,552 and 6,385 were identified as non-ADs and ADs, respectively 
(PADI data). To represent the sequences and capture the side-chain 
properties of each fragment, 42 features were computed. These fea-
tures included 11 side-chain properties (Supplementary Table 4) and 
9 properties used to describe disordered regions (Supplementary 
Table 4), and the count of each of the 20 amino acids was computed 
for a window of size 5 across the entire sequence length with a step 
size of one amino acid. The intrinsically disordered properties were 
calculated using LocalCIDER (v.0.1.19)38 and AlphaFold50. This sliding 
window approach resulted in 36 subsequences. In addition, two intrin-
sically disordered properties, kappa and omega, were computed for 
the entire sequence length. To accommodate the 36 subsequences, 
the computed kappa and omega values were duplicated. The computa-
tion of these 42 features, accounting for the 36 × 42 input matrix, was 
performed. The dataset was then split in a stratified manner into three 
proportions: 70% for training, 20% for validation and 10% as a test set. 
After the split, the feature matrices were scaled using a standard scaler, 
which adjusted the mean and standard deviation of each feature to zero 
and one, respectively. This was followed by a min–max scaling, which 
rescaled the features between 0 and 1.

Neural network architecture
The TADA neural network architecture comprises four types of layers: 
(1) two convolutional neural network layers (CNN); (2) an attention 
layer; (3) two bi-directional long short term memory (biLSTM) layers; 
and (4) a dense layer. The purpose of the two CNN layers is to extract 
potential patterns within the fragments and reduce the dimensionality 
of the data. These one-dimensional (1D) CNNs perform convolutions 
using a kernel size of 2 and a stride of 1, allowing for the identifica-
tion of potential bipeptides that are believed to be characteristic of 
ADs. To prevent overfitting and enhance generalization, dropout was 
incorporated into the CNN layers. An attention layer was included to 
highlight the learned patterns from the CNN layers and to selectively 
focus on the features that are more crucial for the prediction task. To 
capture the interdependence of the subsequences within a sequence, 
the biLSTM layers were added. Finally, the dense layer is connected to 
the output layer, completing the network architecture.
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Experimental settings and evaluation
The hyperparameters found to give the best performance19 are pre-
sented in Supplementary Table 4.

Our input dataset is unbalanced, with the ADs being underrepre-
sented. To achieve accurate prediction for the underrepresented ADs, 
we used cost-sensitive approaches. Specifically, our cost-sensitive 
approach is twofold: (i) the misclassification of the minority class penal-
izes with a focal loss function; and (ii) our class weights are inversely 
proportional to the class sizes in the dataset.

To assess the performance of TADA trained using PADI, three neural 
networks were trained with (i) PADI alone; (ii) the random peptides 
data as described previously19; and (iii) a compiled dataset of PADI and 
the random peptides. In the combined dataset, the random peptides 
were extended by adding the first 10 amino acids of the cloning vector 
to generate 40-amino acid fragments. To account for class imbalance, 
cost- sensitive approaches were applied in all three neural networks, 
which were not yet implemented in the previous study19. We imple-
mented early stopping criteria during model training based on the F1 
score of the validation set. This allowed us to halt the training process 
when the model performance on the training set no longer improved 
significantly. Finally, to confirm that TADA is not memorizing sequences 
and thus biased towards predicting ARF sequences, we fully retrained 
TADA withholding a total of 2,046 ARF sequences (ARF (494), MPARF 
(87), PPARF (469), AMARF (996)). To evaluate the performance of the 
neural networks, we calculated various performance metrics on the test 
dataset. These metrics include precision, recall, AUPR, area under the 
receiver operating curve (AUC), accuracy and F1 score. These metrics 
were computed individually for each class.

Analysis of feature importance and unsupervised clustering
To conduct predictions and SHAP analysis, we retrained the neural 
network using a 90:10 split between the training and the validation 
datasets. The best model obtained during training was saved and 
used for predictions and SHAP analysis. We used SHAP21 to assess the 
influence of the 42 computed features on the predictions. Within the 
SHAP package, we used the GradientExplainer to acquire the SHAP 
value associated with each feature and each subsequence for all AD 
positive classes in our dataset. To determine the overall effect of the 42 
features, we aggregated the SHAP values for each feature by summing 
the absolute values of each subsequence and fragment. To select the 
most important features in an unbiased manner, we normalized the 
obtained SHAP values using z-scores and selected all features with a 
z-score higher than 1. In total, we identified eight features, which were 
subsequently used for clustering. To determine the directionality of 
the effect of the top eight features and ascertain whether they had an 
overall positive or negative influence on the predictions, we summed 
the SHAP values of each subsequence and fragment. Lastly, to gain 
an overall understanding of the variability of the important features 
across the AD fragments, we summed the absolute SHAP values of the 
36 subsequences.

To identify subtypes of AD classes, we used an unsupervised approach 
that involved PCA, t-SNE and k-means clustering. First, we extracted 
the scaled features and SHAP values for the top eight most important 
features from the ADs. Second, we reduced the dimensions of the 2D 
feature matrix for each fragment by using kernel PCA, resulting in a 
1D matrix that captured the majority of the variance within the sub-
sequences. The 2D SHAP value dimensions for each fragment were 
reduced by summing the values across the subsequences. Next, we 
concatenated the features matrix (8 × 6,385) and the SHAP value matrix 
(8 × 6,385), and performed a kernel PCA with 10 components. The result-
ing components from the t-SNE were plotted, using PCA initialization, a 
high learning rate, large perplexity and exaggeration51. Finally, we used 
the output components of the t-SNE for k-means clustering, identifying 
six as the optimal number of clusters on the basis of an elbow plot. For 

each of the six clusters, we performed another SHAP analysis to assess 
any global differences in the contribution of each feature to the AD 
subtype prediction. Using the same approach as that used in the global 
SHAP analysis, we ranked each feature according to its importance.

Cloning synthetic TFs for protoplast assays and FrARF7
A gene fragment that encoded the Gal4 DBD fused to the middle region 
and C terminus of ARF7, a nos terminator and 1,000 bp of non-coding 
DNA including a multiple cloning site was synthesized by Twist in the 
pENTR gateway-compatible backbone. An additional gene fragment 
encoding 500 bp of non-coding DNA followed by 5× Gal4 UAS sites, a 
minimal CaMV 35S promoter and mScarlet-I fused to histone 2B was 
synthesized and put into the pENTR backbone by Twist. The pENTR 
backbones containing the synthetic TFs were linearized using SacI, and 
the reporter was PCR-amplified to include 20 bp overlap with the pENTR 
synthetic TF multiple cloning site at the 5′ and 3′ ends. The reporter 
insert was cloned into the linearized pENTR backbone vector using 
NEBuilder HiFi cloning to generate pENTR synthetic TF+Reporter 
clones. The entry clones were then cloned into pLCS107, which provided 
an in-frame mNEON fused to the N terminus of the synthetic TF driven 
under the UBQ10 promoter and a nos terminator for the mScarlet-I 
H2B reporter, by gateway cloning. The Gal4 DBD, FrARF7∆AD1 and 
FrARF7∆AD2 variants were generated by in-frame deletions of the 
ARF7 CDS, ARF7AD1 and ARF7AD2, respectively, by PCR linearization 
and self-assembly with NEBuilder HiFi cloning. The FrARF7∆AD1∆AD2 
variant was generated by Hifi cloning to delete ARF7AD2 from the 
FrARF7∆AD1 variant. These additional variants were then subcloned 
to add the reporter and then cloned into the pLCS107 backbone as 
described above.

A plasmid that encoded the Gal4 DBD, a nos terminator, 1,500 bp of 
non-coding DNA followed by 5× Gal4 UAS sites, a minimal CaMV 35S 
promoter, mNeonGreen and a nos terminator was synthesized by Twist 
in the pENTR gateway-compatible backbone. The pENTR backbone 
containing the synthetic TFs were linearized using SacI, and the AD 
fragments were PCR-amplified to include 20 bp overlap with the pENTR 
synthetic TF multiple cloning site at the 5′ and 3′ ends. The reporter 
insert was cloned into the linearized pENTR backbone vector using 
NEBuilder HiFi cloning to generate pENTR synthetic TF+Reporter 
clones. The entry clones were then cloned into pLCS99, which provided 
the UBQ10 promoter, by gateway cloning.

Auxin-responsive reporter activation assays in yeast
Activation assays were adapted from a previous report52 using an 
Attune NxT Acoustic focusing cytometer with 488-nm excitation, 
forward-scatter and side-scatter and 637-nm emission for RFP. Events 
were annotated and plotted using the flowTime R package53. Individual 
colonies of each strain were diluted to 1 cell per µl in synthetic com-
plete medium (Takara). Cultures were incubated overnight for 16 h at 
900 rpm in a Talboys microplate shaker. The following morning, three 
separate measurements were drawn at approximately one hour apart 
for measurement. Cultures were in exponential growth phase to capture 
maximum activation. Approximately 10,000 events from biological 
replicates were recorded 3 times (9 total) for each measurement and 
the YL1.A channel was used.

Testing synthetic TFs and FrARF7
Arabidopsis mesophyll protoplasts were isolated from 14-day-old Col-0 
leaves. A total of 100,000 cells were transformed with 20–30 µg of 
plasmid DNA carrying Gal4, and synthetic TFs or FrARF7, FrARF7∆AD1, 
FrARF7∆AD2 or FrARF7∆AD1∆AD2 with UAS constructs using the 
tape-sandwich method and incubated for 16 h in the dark. Transformed 
cell populations were scored using the Beckman Coulter Cytoflex S 
Flow Cytometer and CytExpert software. A back gating strategy was 
taken to identify the population of intact protoplasts. For the FrARF7 
experiment, cells expressing mNEON reporters were first identified 



by comparing transformed mNEON-Gal4 cells with untransformed 
cells using the B525 channel (ex: 488 nm, em: 525 ± 40 nm, 69 gain) 
and then back gated on FSCvSSC. A minimum of 63 mNEON-positive 
cells from four independent transformations were used to collect 
mScarlet-I H2B reporter levels using the Y610 channel (ex: 561 nm, 
em: 610 ± 20 nm, 1,000 gain). At least 2,212 total mNEON-positive cells 
from four independent transformations were used to determine the 
mean levels of mScarlet-I H2B. For the synthetic TF experiment, cells 
expressing mScarlet-I were first identified by comparing transformed 
mScarlet-Gal4 cells with untransformed cells using the Y610 channel 
(ex: 561 nm, em: 610 ± 20 nm, 1,000 gain) and mNeonGreen reporter lev-
els were collected using the B525 channel (ex: 488 nm, em: 525 ± 40 nm, 
69 gain). FCS files for mNEON-positive cell populations were generated 
by Cytoflex and analysed using FlowKit (v.1.0.1)54, NumPy (v.1.22.3)48 
and Pandas (v.1.4.1; https://zenodo.org/record/7979740) packages in 
Python (v.3.8.12) with custom scripts. A minimum of 520 cells from 
three independent transfections were used to determine the mean 
mNEON values. When used, Tukey HSD statistical tests to determine 
alpha-groups between populations were conducted in JMP Pro 17 
(v.17.0,0) at an alpha-level of .01.

Determining subtypes of the ARF evolution dataset
To determine the subtypes of ADs among the six identified subtypes, 
we first conducted a SHAP analysis. We then generated a concatenated 
dataset of the scaled features and SHAP values for the top eight most 
important features. To incorporate these new points into our exist-
ing t-SNE plot, we used a previously described method51. Following 
that, we correlated the 16 data points (8 features and 8 SHAP values) 
of each AD fragment to the same data of the TADA class 1 ADs. Next, we 
selected the ten nearest neighbours that have the highest correlation. 
We then took the median of the t-SNE positions of these ten nearest 
neighbours to identify the plot position of the AD fragment. To assign 
the subtype for the ADs, we took the most frequent subtype of the ten 
nearest neighbours.

Sequence analysis and predicted sequence properties
Sequence analysis calculations for sequence charge decoration (SCD) 
and sequence hydropathy decoration (SHD) were generated using the 
Python package SPARROW (https://github.com/idptools/sparrow). 
Predictions for radius of gyration (Rg), end-to-end distance (Re) and 
asphericity were generated using the Python package ALBATROSS55. 
In brief, ALBATROSS is a Python package that contains bidirectional 
recurrent neural networks trained to generate predicted sequence 
properties for disordered proteins including Rg, Re and asphericity 
using the primary amino acid sequence as the input.

Sample size
No calculations were performed to predetermine sample size. Biologi-
cal and technical replicates were performed as described in the Meth-
ods for each experiment and conform to standards in the field. Exact 
n numbers for each experiment are provided in each figure legend.

Data exclusions and replication
No data were excluded. Experiments were replicated as described in 
the Methods. All attempts at replication were successful.

Randomization and blinding
Randomization and blinding were not applicable because the data are 
quantitative and were not subjectively grouped.

Unique biological materials
Unique biological materials are available from the corresponding 
author (L.C.S.) upon request.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Library sequencing data have been deposited in the NCBI’s Gene Expres-
sion Omnibus (GEO) and are accessible through the GEO series acces-
sion number GSE234215. Source data are provided with this paper.

Code availability
All scripts for the neural network training and validation and for mak-
ing predictions are available on GitHub (https://github.com/LisaVdB/
TADA).
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | PADI workflow and quality control. a, Extended 
depiction of the PADI assay. 1) DNA encoding 40-amino-acid fragments are 
synthesized and 2) cloned into a synthetic TF backbone in bulk. 3) Confirmed 
synthetic TF libraries are cloned into the URA3 locus of DHY211 yeast cells and 
positive clones are selected by G418 and 5-FOA resistance. 4) Positively cloned 
yeast TF libraries are mated to the MY435 reporter strain12. Positively mated 
clones are selected by G418 (library) and CloNAT (reporter) resistance. 5) 
Pooled mated libraries and controls are grown overnight and subcultured 1:5 
with 1 µM beta-estradiol to induce synthetic TF localization to the nucleus. 6) 
After 4 hrs beta-estradiol treatment, mated yeast libraries are sorted into bins 
based on relative levels of GFP (reporter) to mCherry (synthetic TF) to determine 
AD activity. 7) Populations from each bin were grown overnight and sequenced 
to determine the distribution of tested fragments across bins. b,c, These plots 
show the correlation between PADI scores from all Arabidopsis TF libraries 
plotted against a pooled library where cells were sorted on median GFP (b) or 
mCherry (c) values. Each fragment was given a GFP or mCherry score based on 
the weighted mean of its appearance across all GFP or mCherry bins and then 
normalized using Z-score normalization consistent with how the PADI score 
was generated. The blue line represents the linear correlation of the data. There 
is a positive correlation between PADI score and GFP score, but not between 
PADI and mCherry scores. These results show that the PADI score is a robust 
measure of transcriptional activity regardless of the abundance of any TF.  
d, Scatter plot showing the correlation between two sorts of PADI library 3. 
Replicate 1 is included in all analysis. The blue line represents the linear 
regression of the two datasets. The linear regression model has an r-value of 

0.657. e, Violin plots showing the PADI scores of four positive AD controls 
(n = 10 independent library experiments). The controls are found in all 10 PADI 
libraries and were consistently positive across libraries. The violin plot of 
Arabidopsis fragments (n = 69,347 fragments from 10 libraries) is also provided 
as a comparison. Box plots within the violin plot show the interquartile range 
and the median with whiskers that are 1.5 times the interquartile range. f, Box 
plots showing the PADI scores of tested control fragments across the 10 PADI 
libraries. Each point is the PADI score of the tested fragment and the colour of 
each point corresponds to the 10 PADI libraries (n = 10 independent experiments). 
All box plots show the interquartile range and the median. Whiskers are 1.5 
times the interquartile range. g, Comparison of panels h–l from main text Fig. 1. 
The data presented from Fig. 1h–l (top) (n = 3,576) are presented above the 
same analysis conducted on all positive fragments regardless of mean disorder 
(bottom) (n = 6,207). The trends hold between the filtered data (top) and 
unfiltered data (bottom). h, Distribution of identified ADs across Arabidopsis 
TF families. i, Distribution of highest-scoring hits from each TF in each family.  
j, Distribution of the number of ADs identified per Arabidopsis TF. k, Distribution 
of number of contiguous hits identified per identified AD. Contiguous hits 
could be indicative of a short AD contained in neighbouring fragments or  
of an extended AD for which a subset of residues is sufficient to activate 
transcription; our data cannot distinguish between these. l, The distribution  
of hit locations revealed a bias towards the amino and carboxy termini of 
proteins. All box plots represent the median and interquartile range. The 
whiskers are 1.5 times the interquartile range.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | PADI hit characterization. a–d, Box plots showing the 
number of D + E (a) R + K + H (b) A + I + L + M + V (c) and S + N + P + Q (d) of each 
subtype (n ≥ 625). Letters correspond to the statistical levels of each subtype 
based on the Tukey–Kramer HSD metric with an alpha-level of 0.05. e, Scatter 
plot showing the correlation between the percentage of TFs with at least one AD 
(defined as a PADI score of greater than or equal to 1 and from an IDR) and the 
mean of the highest-scoring AD from each TF in a family. The line represents the 
linear regression and the shaded area represent the 95% confidence interval.  
f, Box plots showing the net charge of hits from each of the six AD subtypes 
(n ≥ 625). g, Heat map showing the distribution of Rg values against PADI score 
for all tested fragments (n = 6,207). We used simulations to examine the radius 
of gyration (Rg), which is a measure of the volume that an IDR ensemble 
occupies. Rg is particularly relevant to the AD molecular mechanism, as 
exposure of interacting side chains is necessary for interaction with the 
transcriptional machinery. We found that the Rg of our identified ADs occupied 
a narrow range of radii, as compared to the tested library, raising the possibility 
that ADs must adopt sufficiently expanded conformations for activity. h, Box 
plots showing the Rg values of each subtype; Rg was similar across subtypes 
(n ≥ 625). i, Table describing the PADI fragments tested in the synthetic TFs in 
Fig. 3h. The fragment key, its Arabidopsis identifier, amino acid sequence, PADI 

score, and subtype are shown. j, Box plots showing the distribution of PADI 
scores for each of the six subtypes. The stars represent the PADI score of the 
fragments tested for activity in Fig. 3h and shown in Extended Data Fig. 2i. The 
tested fragments span the range of PADI scores found in the six subtypes 
(n ≥ 625). Stars depict the PADI scores of selected hits for testing in protoplasts. 
k, Protein accumulation of Synthetic TFs from Fig. 3h. Violin plots show the 
mScarlet-TF values of cells. The black lines mark the mean mScarlet-TF value of 
each sample (n ≥ 529 cells from 3 independent transfections). l, Protein 
accumulation of FrankenARF TFs from Fig. 4e. Violin plots show the mNEON-TF 
values of cells. The black lines mark the mean mNEON-TF value of each sample 
(n ≥ 2,212 cells from 4 independent transfections). All cells collected for reporter 
expression were gated on the presence of TF signal when compared to blank 
cells. Only positive cells were used to collect output data presented in Figs. 3h 
and 4e. m, Gating strategy for examination of AD activity in protoplasts. Cells 
were gated based on size and mScarlet (for presence of TF) signal as depicted. 
Untransfected cells did not display signal above the threshold for mScarlet (left) 
whereas control cells transfected with the TF lacking an AD (middle) and cells 
transfected with the TF carrying VP16 (right) were selected for assessment of 
mNeonGreen (transcriptional output). All box plots represent the median and 
interquartile range. The whiskers are 1.5 times the interquartile range.
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Extended Data Fig. 3 | Classification performance of TADA and effect of 
features on TADA’s prediction performance. a, The loss of TADA during 
training and validation. b, TADA’s performance in terms of precision, recall, area 
under the receiver operating curve (AUC), accuracy, AUPR and F1 score. TADA 
was trained three distinct times using random peptides20, PADI (referred to as 
“plant TFs”), and random peptides and PADI combined. c, TADA outperforms  
all published AD predictors. We compared the performance TADA with three 
published AD predictors (ADpred, PADDLE and a composition model4,10,20.  

We used a hand-curated list of 599 ADs from 451 human TFs. For each TF, we 
predicted ADs and considered predictions that overlapped a known annotation 
by > 10 amino acids to be true positive, using each predictor. TADA made the 
most predictions, had the highest Sensitivity, and highest F1 score. d, Z-score 
normalized SHAP values leading to the selection of 8 features with a z-score 
above 1. e, Normalized SHAP values ranked from overall most important to least 
important for fragments scoring above 1 for each of the 6 identified AD 
subclasses.



Extended Data Fig. 4 | AD subtypes by TF family. Heat map showing the percentage of hits (defined as a PADI score ≥ 1) from each subtype found in each family in 
Arabidopsis.



Article

Extended Data Fig. 5 | Comparison of PADI hits to previous activators and 
distribution of hits across the middle regions of clade-A ARF subclades.  
a, Hummel et al.11 identified ADs in sixty-eight Arabidopsis TFs that could elicit 
a transcriptional response when transiently expressed in intact tobacco leaves. 
We identified fragments that could activate transcription in yeast from fifty-six 
(82%) of the sixty-eight TFs factors identified by Hummel et al. We did not 
identify fragments that could elicit yeast-based transcription from nine TFs in 
which Hummel et al. demonstrated transcriptional activity. An additional three 

TFs were untested in the PADI dataset. It is possible that for the 9 TFs for which 
Hummel et al. found activation activity and in which we did not identify a hit in 
our PADI screen that either 1) they contain ADs that are active in plant cells  
but not in yeast or 2) the nearly intact TFs used by Hummel et al. recruited  
other coactivators in their system (for example native TFs that contain an AD). 
b–e, Orange regions were used to define AD regions for alignment in Extended 
Data Figs. 7 and 8. b, ARF5 clade. c, ARF6 clade. d, ARF7 clade. e, ARF8 clade.



Extended Data Fig. 6 | Phylogeny of examined ARFs. The maximum-likelihood 
tree was generated using MAFFT alignments of the conserved ARF DBD. Major 
ARF clades (bright blue, orange and green) and subclades (light blue, orange 

and green) are annotated. These annotations were used for categorizing 
sequences in Fig. 4.
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Extended Data Fig. 7 | ARF7 and ARF5 subclade AD alignments. a–c,The 
highest-scoring fragment from each tested ARF within the defined ARF7 and 
ARF5 AD regions (a, ARF7AD1; b, ARF7AD2; c, ARF5 AD) (orange bars in 
Extended Data Fig. 5b,d) were used to generate alignments with MAFFT. 

Alignments were visualized with the ESPript 3.0 webserver. Boxes indicate 
regions in which 50% of amino acid residues share sequence similarity based on 
biochemical properties. Bolded residues are the amino acids with shared 
properties within the region. Black boxes represent sequence conservation.



Extended Data Fig. 8 | ARF6 and ARF8 subclade AD alignments. The 
highest-scoring fragment from each tested ARF within the defined AD regions 
(orange bars in Extended Data Fig. 5c,e) were used to generate alignments with 
MAFFT. Alignments were visualized with the ESPript 3.0 webserver. Boxes 

indicate regions where 50% of amino acid residues share sequence similarity 
based on biochemical properties. Bolded residues are the amino acids with 
shared properties within the region. Black boxes represent sequence 
conservation.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | MYB family ADs and prediction performance of 
TADA on the ARF evolution dataset. a, Histogram of all AD hits (defined as a 
PADI score of greater than or equal to 1 and from an IDR) from the MYB family. 
Each bar represents the number of ADs found in each 5% interval of the protein 
length. These results show that MYB ADs are enriched in the final 15% of tested 
TFs. b, Representative gating strategy for all PADI libraries. Yeast cells were 
gated based on size to exclude doublets (R1 and R3). Single cells were then 
gated to exclude those with mCherry signal below background (R4) when 
compared to mCherry negative cells. The mCherry-positive cells were then 
binned and sorted into twelve populations based on the GFP:mCherry ratio. 
c,Prediction performance of TADA, and the TADAΔARF variation. TADA 
performance on the PADI data test set and the ARF evolution dataset in terms  

of precision, recall, area under the receiver operating curve (AUC), accuracy, 
AUPR and F1 score. We further validated the generalization of TADA by 
retraining TADA on the original training dataset but withholding the ARF 
sequences (2,046 of the 70,937 sequences), which we called TADAΔARF.  
This approach prevents TADA from memorizing/overfitting ARF sequences.  
d, Prediction performance of TADA, PADDLE, ADPred, and the composition 
model in terms of area under the receiver operating curve (roc_auc), area under 
the precision recall curve (pr_auc), accuracy, F1 score, true positive rate (tpr), 
false positive rate (fpr), precision, and recall when tested on the ARF evolution 
dataset. Because each of these predictors subdivides sequences differently 
and used different fragment lengths for training, we compared their 
performance on full-length protein sequence from the evolution dataset.
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Extended Data Fig. 10 | Arabidopsis TFs with identified ADs. Waffle plots of the 1,918 Arabidopsis TFs analysed. Those with previously identified ADs are marked 
with a black box in the left waffle plot. The right waffle plot depicts those with activating fragments identified by PADI.
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Data collection Cell sorting populations were collected using Summit Software for BC Astrios. 
Additional protoplast and yeast flow cytometry data was collected with CytExpert for Cytoflex S.

Data analysis Paired raw Fastq files from each library were aligned to fragment DNA sequences using BWA-mem aligner and SAMtools to generate BAM 
files and determine fragment counts. 
Data analysis was conducted using Numpy, Pandas, scikitlearn, and custom Python scripts to determine AD scores. 
Analysis on flow cytometry data was done using flowTime R package and flowkit, seaborn and pandas python packages as described in the 
methods.  
All graphs were generated with Seaborn and Matplotlib python packages. 
Statistical analysis on protoplast flow cytometry was conducted using JMP17. 
Sequence features were determined using LocalCider and MetaPredict2 in Python. 
The TADA Neural Network is available on https://github.com/LisaVdB/TADA and described in the methods as well as the software submission 
sheet. 
SPARROW is available at https://github.com/idptools/sparrow 
ALBATROSS is available at https://github.com/idptools/goose/ 
 
Software Version Purpose 
BWA 0.7.15 NGS sequence Alignment 
SAMtools 1.10 BAM file generation and read count extraction 
Numpy 1.22.3 Data analysis in Python 3.8.12 
Pandas 1.4.1 Data analysis in Python 3.8.12 
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Seaborn 0.13.0 Data visualization and graphing in Python 3.8.12 
Matplotlib 3.7.1 Data visualization and graphing in Python 3.8.12 
Scikitlearn 1.2.0 Data normalization 
LocalCider 0.1.19 Amino Acid Feature Extraction 
Meatpredict 2.2 Disorder Prediction 
JMP17 17.0.0 Statistical analysis 
FlowKit 1.0.1 Extract flowcytometry data from .fcs files for analysis 
Python 3.8.12  

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Library sequencing data has been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO series access number GEO: GSE234215. Source 
data are provided with this paper.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 
other socially relevant 
groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We calculated that a minimum of 60,000 cells per bin per pooled library provided sufficient coverage of the tested library for downstream 
analysis. 
 
No calculations were performed to predetermine sample size. Biological and technical replicates were performed as described in the methods 
for each experiment and conform to standards in the field. Exact n for each experiment is listed in each figure legend panel.

Data exclusions No data was excluded from this study.

Replication All experimentation was conducted as described in the methods with replications listed. Internal controls in each flow sort were checked to 
determine the reproducibility of the assay across sorts. All attempts at replication were successful.

Randomization Complex fragment libraries were generated from transcription factors spanning the Arabidopsis thaliana genome and tested in genomic 
order, making tested pools functionally random. Thus randomization is not applicable since data are quantitative and were not subjectively 
grouped.
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Blinding Not applicable since data are quantitative and were not subjectively grouped.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes

Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents
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Novel plant genotypes N/A

Seed stocks The Col-0 ecotype was used for protoplast experiments. Col-) is available commercially and from the ABRC stock center.

Authentication N/A

Plants

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation For yeast-based data, Sorted cells were grown in SC media overnight and then used to extract genomic DNA. For protoplast-
based data, cells were extracted from soil-grown plants immediately prior to transfection.

Instrument Cell sorting was conducted on  Beckman Coulter Astrios at The DCI Flow Cytometry Core 
at Duke University (PADI and ARF Evolution Libraries) and on a BD Aria-II machine at 
Washington University in St. Louis (Pilot Assay). Additional flow cytometry on protoplasts and yeast was conducted using the 
Beckman Coulter Cytoflex S Flow Cytometer and Attune NxT Acoustic focusing cytometer as described in the methods.

Software Analysis on flow cytometry data was done using flowTime R package and flowkit, seaborn and pandas python packages as 
described in the methods. 

Cell population abundance The entire population of cells were flow sorted into 12 bins for all cell sorting assays. All yeast and protoplast flow cytometry 
experiments were conducted as described in the methods.

Gating strategy For cell sorting, initial gating on yeast cells was generated using FSC and SSC. Yeast cells with and without mCherry expression 
constructs were used to set mCherry positive populations. Activity was scored as a ratio of GFP to mCherry signal in positive 
cells, all cells were included. For ptotoplast-based experiments, gating was on SSC and either mScarlet or mNeonGreen, 
depending on the assay, as described.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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