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Gene expressionin Arabidopsisis regulated by more than 1,900 transcription factors

(TFs), which have been identified genome-wide by the presence of well-conserved
DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit
coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge
about the presence, location and transcriptional strength of their ADs. To address
this gap, here we use a yeast library approach to experimentally identify Arabidopsis
ADson a proteome-wide scale, and find that more than half of the Arabidopsis TFs
containan AD. We annotate 1,553 ADs, the vast majority of which are, to our
knowledge, previously unknown. Using the dataset generated, we develop aneural
network to accurately predict ADs and to identify sequence features that are
necessary to recruit coactivator complexes. We uncover six distinct combinations
of' sequence features that resultin activation activity, providing a framework to
interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the
ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is
conserved indistinct clades. Our findings provide a deep resource for understanding
transcriptional activation, aframework for examining function inintrinsically
disordered regions and a predictive model of ADs.

Transcription factors (TFs) are at the foundation of development
and response to stimuli, and their abilities to (1) bind to a target DNA
sequence and (2) recruit transcriptional coactivators or corepressors
are fundamental'. Because TF DNA-binding domains (DBDs) are con-
served and well-structured, we have a deep molecular understanding
of DBD activity, and several large-scale efforts have mapped TF-binding
sites?®. Conversely, despite substantial recent work, many questions
remain about the molecular interactions that enable TFs to recruit a
diverse set of coactivator and corepressor complexes, especially in
plants. Activation domains (ADs) are effector domains that recruit
coactivator complexes to increase transcription. ADs tend to reside
inintrinsically disordered regions (IDRs)—protein regions that lack
awell-defined three-dimensional structure and are often poorly con-
served as assessed by multiple sequence alignments. These IDR char-
acteristics make ADs inherently challenging to study. Consequently,
onlyafew plant TFs have annotated ADs (Fig.1a). Theinability to easily
identify TF ADs hampers researchers’ progress towards understanding
TF activity, reconstructing gene regulatory networks and engineering
synthetic tools.

ADsrecruit the transcriptional machinery—thatis, coactivators—to
the TF-binding site, but the interactions with this machinery are not
well-defined despiteintense study*. ADs are classically defined by their
most abundant residues, including acidic, GIn-rich and Pro-rich ADs.

Amongthese classes, acidic ADs are the most well-studied, and contain
interspersed aromatic and acidic residues. Hydrophobic motifs make
large contributions to activity, and, in nuclear magnetic resonance
structures, motif residues contact hydrophobic surfaces of coactiva-
tors’. Aromatic residues contribute most strongly to activity, whereas
leucine and methionineresidues have asmaller role. The acidic residues
sometimes mediate fast, low-affinity binding®®. A proposed unifying
ideafor acidic ADs is that the acidic residues keep the hydrophobic
residues exposed to solvent, allowing for coactivator interaction®™.
However, little sequence similarity exists among strong ADs and the
sequence features that govern AD activity remain poorly understood.
Moreover, despite the crucial role of ADs, they are difficult toidentify,
in part because approaches for identifying ADs are labour intensive.
This is the case in plant systems, which have traditionally relied on a
combination of genetic and cross-species approaches toidentify ADs.
Aprevious study was able to identify the transcriptional activity of tens
of TFs", butlacked the resolution to interrogate AD activity specifically.

In this work, we experimentally identify plant transcriptional ADs
on a genomic scale using an approach that we call the plant activa-
tiondomainidentification (PADI) high-throughput assay (Fig.1b), and
develop aset of rules for the future identification of ADs using a deep
learning algorithm that we name the transcriptional activation domain
activity (TADA) network. Thisinformation, together with the constant
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Fig.1|High-throughput tiling of Arabidopsis TFs uncovers thousands of
ADs. a, Waffle plot of the 1,918 Arabidopsis TFs analysed. Those with previously
identified ADs are marked with ablack box. b, Schematic of PADI. Ten pooled
libraries of synthetic TFs were integrated into the yeast URA3 locus before
matingto yeast carryinga5xUASreporter.aa, aminoacids. ERD, estrogen
receptor D. ¢, Afterinduction, cellswere flow sorted into bins on the basis of
GFP:mCherry ratioto assess transcriptional output.d, Scaled AD (PADI) score;
fragments with a PADIscore >1(one standard deviation from the mean) were
considered strongactivators. e, Hits need to be filtered by disorder. PADI
(orange) and predicted disorder (white background) scores for NLP7 show
strongactivityindisordered regions aswellasinordered regions (grey
background) that overlap with the known PB1domain. The orange (PADI=1)
and grey (Metapredictscore = 0.5) dashed lines are considered cut-offs for
activation and disorder, respectively. f, Schematic of NLP7 protein domains.
From top to bottom: ordered domains (Uniprot Q84TH9, olive and teal);
previously annotated as containing AD activity in the literature (Lit.; orange);

development and improvement of genome-editing techniques, will
have a transformative effect on the design of synthetic ADs that will
allow for tunable transcriptional activation.

PADI

Atpresent, determining the transcriptional activation activity of pro-
teins solely on the basis of protein sequence remains a challenge, and
limits our understanding of transcriptional regulation. To address this
knowledge gap, we implemented an experimental approach to iden-
tify ADs in all annotated Arabidopsis TFs. We used a high-throughput
yeast-based system' to systematically identify ADs from thousands of
protein fragments. Although this system provided us with the ability to
identify fragments of Arabidopsis TFs that could activate transcription
atscale, ithas two limitations: (1) itis possible that Arabidopsis-specific
ADs could be missed in this assay; and (2) itis possible that Arabidopsis
TF fragments that activate transcription in yeast might not activate
transcription in Arabidopsis.

predicted disorder (Dis.; grey); and PADI scores (blue). g, Forty-amino-acid
fragments (underlinedin f) orintact PB1 domain (teal inf) were tested for
activationactivity using amodified version of the PADI assay (n =4
independent experiments). h, Distribution of identified ADs across
Arabidopsis TF families (n>22).i, Distribution of highest-scoring hits from
each TFineach family (n >11).j, Distribution of the number of ADs identified
per Arabidopsis TF.k, Distribution of the number of contiguous hits identified
peridentified AD. Contiguous hits could be indicative of ashort AD contained
inneighbouring fragments or of an extended AD for which a subset of residues
issufficient to activate transcription; our data cannot distinguish between
these.l, The distribution of hit locations revealed a bias towards the amino and
carboxy termini of proteins. The datain h-1have been filtered for hits thatare
presentinIDRregions of the parent TF. Unfiltered data canbe foundin
Extended DataFig.1g. Allbox plots show the interquartilerange and the
median. Whiskers are 1.5 times the interquartile range.

We tested the transcriptional AD activity of 1,918 TFs from Arabi-
dopsis, representing more than 20 TF families (Fig. 1a). To assess AD
activity, we designed synthetic TFs comprising an N-terminal mCherry
tag, amouse DBD and aninducible nuclear localization domain'. Each
synthetic TF contained a 40-amino-acid fragment derived from an
Arabidopsis TF and was integrated into the yeast genome at the URA3
locus to ensure the presence and stability of a single synthetic TF in
each transformant for reliable assessment (Fig. 1b).

Wescreened each TFin40-amino-acid fragments, with astep size of
10 amino acids, testing 68,441 fragments. Oestradiol-induced libraries
were sorted on the basis of their relative GFP:mCherry ratio, and subse-
quent sequencing was performed to determine the relative abundance
of fragmentsin each bin (Fig.1c). Fragments with high PADI scores were
found predominantly in bins of a high GFP:mCherry ratio, suggesting
strong activation. To allow comparison across ten libraries, we applied
z-score normalization to assign an AD score (PADIscore) to each frag-
ment (Fig. 1d and Extended Data Fig.1). Of the fragments tested, 6,205
showed strong activation, as denoted by scoring at or above athreshold
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of one standard deviation from the mean (PADI score > 1). Using this
definition, approximately 10% of tested fragments exhibited strong
transcriptional activation activity.

When examining PADI hits (PADI score >1) in TFs with previously
known AD locations, such as NIN-LIKE PROTEIN 7 (NLP7)", we noticed
that we often observed extraneous hits in regions of the protein that
were not previously associated with the transcriptional activity of these
proteins. Consistently, these extraneous hits were observed in protein
regions that were predicted to be well-folded (Fig. 1e,f). We hypoth-
esized that fragments from folded regions have sequence attributes
that are capable of recruiting the transcriptional machinery when
taken out of their well-ordered context; however, these fragments do
not exhibit AD activity when in folded regions. Accordingly, previous
studies have shown that eukaryotic ADs are commonly found in IDRs>*.
Totestthisidea, we further investigated fragments and domains from
NLP7.NLP7 possesses an N-terminal IDR thatis both necessary and suf-
ficient toactivate transcriptioninvivo™. PADIidentified a high-scoring
region that overlapped with the N-terminal region of NLP7, as well as
fragments from the C-terminal PHOX and BEM1 (PB1) oligomeriza-
tion domain (Fig. 1e,f). In contrast with the NLP7 N-terminal IDR, the
NLP7 PB1domain has been shown not to activate transcription in vivo®.
To determine whether the PB1 domain can activate transcription on
its own in our PADI system, we tested the full PB1 domain, as well as
high-scoring PADI fragments from the N terminus and PB1domain. As
previously reported”, we observed that the intact PB1domain did not
activate transcriptionin our experimental system (Fig. 1g). This result
suggests that certain fragments when removed from their ordered
domain context might exhibit AD-like behaviours that do not reflect
their native function. In the PADI dataset, 43% of high-scoring fragments
are from globular domains, which have sequence features consistent
with ADs, but mightlack AD activity intheir folded context, and thus we
urge caution for researchers following up on specific ADs from these
regions. Therefore, in our dataset, we report both PADI data and IDR
predictions generated by Metapredict” (Supplementary Table 1and
Supplementary Datal).

We found that 53% of the 1,918 tested Arabidopsis TFs contained at
least one AD, defined as a PADI hit that originated from an IDR. These
ADs were not evenly distributed across TF families. For instance, 79%
of the MYB family exhibited atleast one AD, whereas only 20% of the B3
family possessed astrong AD (Fig.1h). The strength of AD output varied
across families (Fig. 1i), with a correlation between prevalence of ADs
and transcriptional output by family (Extended Data Fig. 2e). Of those
TFswithanidentified AD, amajority (61%) possessed only asingle AD,
defined as asingle region of one or more contiguous hits (Fig. 1j). Fur-
thermore, these ADs (81%) were found predominantly within three or
fewer contiguous fragments (Fig.1k). Fromour data, itis challenging to
ascertainwhether these contiguous regions share asmall, overlapping
core AD or whether they work in a combinatorial manner to strongly
activate transcription. ADs were preferentially located at either the N
terminus or the C terminus of Arabidopsis TFs (Fig. 1i). Together, these
results present athorough survey of the presence and location of ADs in
the Arabidopsis genome. By performing this screenin a synthetic yeast
system, weidentified morethan1,500 ADsin more than1,000 TFs. This
not only provides us with a better understanding of how Arabidopsis
TFsfunction, butalso allows us to interrogate the relationship between
sequence features in PADI hits to systematically understand which
combinations of features contribute to AD activity.

TADA network and sequence features

Understanding the features that correlate with strong activation
will help researchers gain an understanding of the mechanisms that
underlie transcriptional regulation. Unlike structured domains, trun-
cated ADs retain activity'®?, consistent with their intrinsic disorders.
Residue enrichment has historically been used to classify ADs, and the
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acidicaromatic class of ADs is the best studied and most common. The
acid-exposure model suggests that negatively charged acidic residues,
suchas Asp and Glu, serve to expose otherwise-buried bulky aromatic
and hydrophobic residues, including Phe, Trp, Leu and Tyr, which act
as contact points with the transcriptional machinery to activate tran-
scription. Inline with these findings, we plotted all tested fragmentsin
this feature spaceto further explore therelationship betweenresidue
enrichment and ADs. Our analysis showed that an enrichment in aro-
maticresidues and net negative charge correlated with higher average
AD scores (Fig. 2a). However, after further examination focusing on
hits that scored above the threshold (Fig. 2a), we observed asignificant
number of hits with neutral or positive charges, as well as fragments
with few aromatic residues. These findings suggest that additional
classes of ADs are present in our library.

To gain a more comprehensive understanding of the underlying
sequence features associated with transcriptional activity, we validated
and refined proposed models for AD activity. Moreover, we reasoned
that by examining the features that contribute to strong activation
without bias towards existing models, we could potentially uncover
novel paradigms of transcriptional activation. Because we observed
astrong prevalence of the acidic aromatic class of ADs (Fig. 2a), we
first investigated the contribution of individual acidic and aromatic
amino acids towards PADI scores (Fig. 2b). When examining negatively
chargedresidues (Asp and Glu), we found a positive trend between Asp
frequency and PADI scores, but not between Glu frequency and PADI
scores (Fig.2b). Thus, within the acidic-exposure model, the negative
charge provided by ashorter side chain (Asp) might allow for agreater
exposure of the functional aromatic residues than the negative charge
provided by alonger side chain (Glu). Amongst the examined aromatic
residues (Trp, Phe, Tyr and Leu), we found that only Phe enrichment
showed a positive trend with PADI score. Despite these mild trends,
no individual amino acid showed a significant correlation with PADI
score, suggesting that single aromatic residues are unlikely tobe good
predictors of AD activity.

Owing to the limited correlation between individual amino acids
and AD activity, we reasoned that higher-order and more complex
correlations might be descriptive and/or predictive for AD activity. As
such, we recognized the need to investigate which features strongly
contribute to the high-scoring fragmentsin our dataset. To gaininsights
intothe sequence features and structural properties that determine AD
function, we developed a neural-network-based approach. Our neural
network, whichwe name the transcriptional activation domain activity
(TADA) network, incorporates convolutional, activation and recurrent
layers. By doingso, it captures both linear and non-linear relationships
betweeninput features and AD predictions. Considering that AD func-
tionality is not determined solely by the primary amino acid sequence
and that ADs lack a defined secondary structure, we opted to predict
ADs on the basis of side-chain properties and IDR descriptors, rather
thanrelying solely on the raw sequence. To capture this information,
we computed 42 sequence properties, referred to as features, using a
slidingwindow of 5amino acids (Fig. 2c). These computations resulted
ina42 x 36 matrix for each tested fragment. In our firstiteration of the
neural network', we trained TADA on these 42 features computed on
a dataset of 75,845 random peptides®. Notably, our neural network
outperformed an existing classification neural network (ADpred),
which was also trained on these random peptides, in both sensitivity
and F1score®. This suggests the effectiveness of our approach in pre-
dicting ADs. To capture the specific characteristics of identified ADs,
weretrained our neural network on the PADI dataset, which consisted
of 64,552 non-hits and 6,385 hits. Given the dataimbalance, we imple-
mented several cost-sensitive approaches, and stratified splitting of the
datasetresultedin 70% for training, 20% for validation and 10% held out
asatestset (see Methods). Onthe test set, our neural network slightly
outperformedthe previousiteration trained either onrandom peptides
alone or onacombination of random peptides and PADI dataacross all
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Fig.2|Using AD sequence features to create a predictivemodel. a, Scatter
plotshowing the distribution of net charge and the number of Trp, Leu, Phe and
Tyrresiduesinthelibrary (left) and hits (right). The size of each point represents
the number of fragments at each coordinate and the colour corresponds to the
mean PADIscore fragments at that coordinate. b, Box plots showing the
distribution of PADIscores for fragments on the basis of the number of Asp,
Glu, Trp, Phe, Tyr and Leu residues per fragment. Boxes representinterquartile
range with the median drawn within the box. Whiskers are1.5 times the
interquartile range (n =1-44,633 fragments). ¢, TADA architecture and 42
descriptors, including counts of side-chain class, counts of amino acid
occurrence, attributes calculated by LocalCIDER* and secondary structure
predictionby Metapredict®. From these 42 descriptors, TADA uses two
convolutional neural network (CNN) layers, an attention layer, two sequential
bi-directional long short term memory (biLSTM) layers and a dense layer to

performance metrics (Extended Data Fig. 3a). Thus, we reasoned that
certain AD characteristics are not adequately captured withinarandom
peptide dataset alone. In addition, on a dataset of human TFs, TADA
outperformed existing predictors, including PADDLE, ADpred and a
composite model (Extended Data Fig.4). ATADA score of 0.4 captured
most true hits and is used for our score cutoff (Fig. 2d). Overall, TADA
achieved a high F1score 0f 93.40% and an area under the precision
recall curve (AUPR) of 97.31%, indicating that our unique encoding
approach and neural network design can advance the prediction of
ADs (Extended Data Fig. 3a).

To gain insights into the contribution of each of the 42 features to
TADA network predictions, we determined the effect of the individual
input features. To this end, we used Shapley additive explanations
(SHAP) analysis® and examined the local and global effects of the fea-
tureson TADA's predictions. Unlike our previous analyses of sequence
features (Fig. 2b), which rely on linear correlations, TADA and SHAP
analysis capture non-linear relations and uncover complex correlations
with AD identification. To identify local explanations and thus aim to
explainindividual predictions, we computed the effect of each feature
foreach AD fragment with SHAP (Fig. 2e). We found that the total counts
of aromatic residues (Trp, Phe and Tyr), negative residues (Asp and
Glu), positive residues (Lys, Arg and His) and hydrophobic residues
(Trp, Phe, Leu, Val, lle, Cys and Met) emerged as key features across all
hits. To assess the overallimportance across all fragments, and thus the
global explanation, we also computed the total absolute effect of each

classify sequences. Mult., multiplication.d, TADA score across PADI hits. Using
TADA to predict hits from the PADI dataset suggests that a TADA cut-off score of
0.4 will capture most fragments that activate transcription. e, SHAP values
averaged across the26 subsequences for eachinput feature, as calculated for
the test dataset classified as fragments scoring higher than 1. Features derived
by counting number of residues by side-chain property (blue), derived from
LocalCIDER?*® (green) and the Metapredict™-based secondary structure score
(olive) are shown. f, Normalized SHAP values ranked from mostimportant to
leastimportant for fragments scoring higher than 1. Inset, the top eight features
plotted as having a positive or negative effect on prediction. Features derived
by counting number of residues by side-chain property (blue), derived from
LocalCIDER?® (green) and the Metapredict'-based secondary structure score
(olive) areshown. FCR, fraction chargedresidue; frac., fraction; NCPR, net
chargeperresidue;s., secondary; WW, Wimley and White hydropathy.

feature and ranked them according to importance (Fig. 2f). Consistent
with local explanations (Fig. 2a,b), we found that aromatic, negative,
hydrophobicand positive residues were mostimportant. Inaddition,
the fraction of negatively or positively charged residues and the frac-
tion of residues predicted to be ‘disorder-promoting’ strongly affected
AD predictions (Fig. 2f). Notably, aromatic residues collectively had a
greater importance thanindividual aromatic residues (Fig. 2f). When
examining our hitsin aggregate, we found that many previously known
drivers of AD activity, such as the presence of aromatic, hydrophobic
and negative residues, were important to plant ADs; however, we also
found differential contributions of negatively charged residues (Glu
> Asp) and aromatic residues (Trp > Phe, Tyr).

By using the deep learning interpretability technique SHAP, we iden-
tified key properties that areimportant for AD prediction (Fig. 2f). We
thenused the mostimportant and predictive features to performunsu-
pervised classification of ADs. To this end, we normalized the retrieved
importance scores and selected eight features above a threshold of
one standard deviation from the mean (Fig. 2f (inset) and Extended
DataFig. 4e), which allowed us to retain the strongest signals from
the mostinfluential features. To visualize and analyse the resulting AD
fragments, we used a combination of principal component analysis
(PCA) and t-distributed stochastic neighbour embedding (t-SNE). By
projecting all hits onto a two-dimensional (2D) space, we observed
distinct clusters, ultimately identifying a total of six AD subtypes (Fig. 3a
and Supplementary Table 2).
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Fig.3|ADsubtypes show distinct compositional biases.a, The ADs were
divided into six subtypes on the basis of k-means clustering of the 2D t-SNE
output. t-SNE was performed on aten-component PCA of the eight most
important features and their SHAP values. b, Top, comparative analysis of the
fragment composition of AD versus non-AD fragmentsinrelation to thelibrary
asawhole.Bottom, comparative analysis of fragment composition of each AD
subtypeinrelationto all AD fragments (scoring above1). c-e, Distribution of
subtypesinfeature space against all hits (grey) for subtypes1and4 (c), subtypes
2and 6 (d) and subtypes 3and 5 (e) on the basis of the enrichment of depicted
amino acids. f, PADIscore by subtype (n > 625). g, Mean disorder by subtype
(n>625).h, Allexamined yeast-identified hits promote transcription in plant
cells. Protoplasts were transfected with asynthetic TF containing an N-terminal
mScarlet-1tag, the Gal4 DBD and the identified 40-amino-acid PADI hit, or just
the Gal4 DBD (Gal4). The cells were also transfected with areporter of NLS-
mNeonGreen driven by 5x Gal4 UAS sites. The mNEON reporter was assayed in
mScarlet-positive cells using flow cytometry. Violin plots depict mMNEON signal
inarbitrary units (a.u.) with the mean mNEON signal depicted as ablack bar.
Allexamined hits were significantly different from the control (Student’s t-test;
P<0.0001) (n>520cells from 3independent transfections). Allbox plots show
theinterquartile range and the median. Whiskers are1.5times theinterquartile
range.

To identify whether these subclasses have divergent features that
might indicate distinct functionality, we investigated sequence fea-
tures of these subtypes (Fig. 3b and Extended Data Fig. 2). The six
subtypes not only differed from one another in strongly predictive
features, but also exhibited other differentiating features. Subtypes
land 4 are enriched in negatively charged residues when compared
with allidentified ADs, and are likely to represent two types of acidic
ADs. Subtype 4 is enriched in aromatic residues whereas subtype 1
is enriched in aliphatic residues (Fig. 3c). We hypothesize that these
subtypes function through the acidic-exposure model, in which nega-
tive charge leads to the exposure of residues for interaction with the
transcriptional machinery.

Subtypes 2 and 6 are relatively depleted in negatively charged resi-
dues and enriched in Ser, Pro, Asn and GIn residues, which suggests
that a loss of negative charge can be compensated for by increases
in these residues (Fig. 3d). These combinations of features might
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promote side-chain exposure, whereby Ser phosphorylation might
generate additional negative charge and Pro and/or Asn residues dis-
ruptstructure to allow for expanded peptide backbones. Considering
the enrichment for Pro and GIn residues, we propose that subtypes 2
and 6, respectively, represent the Pro-rich and GIn-rich AD classes.

Subtypes 3 and 5 are relatively enriched for positively charged resi-
dues amongst our hits. Subtype 5 also showed an enrichment in nega-
tively charged residues and a reduction in the total number of crucial
aromatic residues (Fig. 3e), raising the possibility that subtype 5 AD
relies on alimited number of aromatic residues for interaction with
the transcriptional machinery. By contrast, subtype 3 does not show
a compensatory enrichment in negative charge (Fig. 3b), suggesting
thatit hasadifferent mechanismof action to that of subtypes1,4and5.
All subtypes displayed a range of PADI scores (Fig. 3f) and predicted
radii of gyration (Fig. 3g).

Because these subtypes represent sequence features of fragments
from Arabidopsis TFs that can elicit transcriptional output in yeast, we
thought that they would be a good test of whether identified hits are
activeinArabidopsis. For this test, we cloned representative fragments
fromeach subtype (Extended DataFig. 2i,j) into areporter system con-
sisting of the Gal4 DBD fused to the tested fragment. These TFs were
cloned into plasmids carrying an mNeonGreen reporter driven by 5x
Gal4 UAS sites and aminimal promoter toresultinal:1ratio of effector
and reporter. In Arabidopsis mesophyll protoplasts, representatives
from each subtype activated transcription (Fig. 3h), confirming thateach
subtypeidentified inour yeast-based PADIscreenis active inplantcells.

Together, our network and biophysical analyses provide a frame-
work for correlating functional outputs of IDR protein sequences with
their features. The sixidentified AD subtypes differin the enrichment
of crucial features, compared with all hits, and serve as a foundation
for further investigation of ADs and their features beyond the acidic-
aromatic paradigm.

PADI and TADA validation

Tovalidate PADI-identified ADs and examine their correspondence with
previously reported ADs, we investigated the only 9 Arabidopsis TFs
with ADs mapped to within100 amino acids whose activities have been
shown to be important for function in plants™?* 2 (Fig. 4a). For each
previously published AD (orange), we both identified the same region
inour yeast-based assay (PADI, blue) and predicted the AD using TADA
(pink). These identified and predicted ADs were consistently foundin
predicted IDRs. We also identified PADI hits in most Arabidopsis TFs
that have recently been found to activate transcription in a transient
tobacco-based assay" (Extended Data Fig. 5a). Our identification of
PADI hits that match previously reported Arabidopsis domains, along
with our testing of 24 additional hits in protoplasts, are consistent with
the possibility that PADI accurately identifies Arabidopsis ADs; however,
it is still possible that some PADI hits will not be active in Arabidopsis
and that some Arabidopsis ADs do not activate transcription in yeast.

To expand our validation, we examined ADs in the 23-member
AUXIN RESPONSE FACTOR (ARF) family of TFs. Transcriptional activ-
ity for4 members of this family has been mapped to their long central
IDRs?**° (Fig. 4b), providing us with the opportunity to validate ADs in
afamily for which the ADs had not been fully mapped. We identified
ADs in the central IDRs of each of these TFs, but also found strongly
scoring regions in their well-ordered PB1 domains (Fig. 4b). To test
our hypothesis that only the high-scoring fragments from IDRs are
functional in the context of an intact TF, we used the well-developed
yeast synthetic auxin signalling system®, focusing on ARF7 (Fig. 4d).
Whereas full-length ARF7 showed strong reporter activation, ARF7
lacking either AD1 (AAD1) or AD2 (AAD2) exhibited areduced transcrip-
tional output while retaining activity, suggesting that each individual
AD is sufficient to confer partial activity. Deletion of both ARF7 ADs
fromthe IDR (AAD1AAD?2) abolished all ARF7 transcriptional activity,
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Fig.4|Validation ofidentified ADs. a, Schematic of WRKY50??, DREB1A?,
AP1*, DREB2A%, AtHSFA2%%, HtHSFA6b¢, PIF3”, MYC3?® and NLP7" protein
domains previously annotated as containing AD activity (orange), TADA scores
(pink), PADI scores (blue) and the predicted disorder (white). b, Schematic
of ARF8, ARF5, ARF6 and ARF7% protein domains previously annotated as
containing AD activity (orange), TADA scores (pink), PADIscores (blue) and
the predicted disorder (white). The twoidentified ADs in the ARF7 middle
regionare annotated asADl1and AD2.c, ARF7AD1 and ARF7AD2 variants alter
transcriptional output. AD sequences were modified as indicated and tested
inthe PADI assay.d, Deletion of ARF7AD1 or ARF7AD2 resultsin decreased
ARF7 outputinareconstructed yeast system. plIAA19:mScarlet-Ireporter
fluorescence was measured by flow cytometry with the results depicted as
median values of three transformants and three replicate experiments

whichindicates that the high-scoring fragmentsidentified by PADI and
TADA from well-folded regions do not contribute to transcriptional
activation in the context of the intact ARF7 protein.

The two distinct ADs found in ARF7 provided us with an ideal
opportunity to interrogate the roles of ADs from different subtypes,
because ARF7AD1 is a subtype 5 and ARF7AD2 is a subtype 4 AD, and
they have distinct sequence features (Fig. 4c). We generated and exam-
ined ARF7AD1 and ARF7AD2 variants in our PADI system, and found
that systematic substitution of residues that were identified by SHAP
analysis asimpactful for AD activity alters the output for each. Mutat-
ing negative residues to either positive residues or Alaled to aloss of
activity (Fig. 4c). Conversely, mutating positively charged residues
to negatively charged residues resulted in an increase in activity. In
addition, mutating aromatic and hydrophobic residues resulted in
decreased AD activity. We found that mutating Pro negatively affected
theactivity of ARF7AD2, but not that of ARF7AD1 (Fig. 4c), suggesting
that Pro hasdistinct molecularrolesin these two ADs. Together, these
results further validate our classification of distinct AD types and sug-
gest that different AD types achieve similar activities through distinct
combinations of features.

To validate identified ARF7 ADs in planta, we created FrankenARF7
(FrARF7), which consists of the Gal4 DBD fused to the ARF7 central IDR
(middle region) and PB1 domain. FrARF7 was cloned into a plasmid
thatalso carried an mScarlet-H2B reporter driven by 5x Gal4 UAS sites
and a minimal promoter to result in al:1ratio of effector and reporter
(Fig.4e).InArabidopsis mesophyll protoplasts, wild-type FrARF7 exhib-
ited strong transcriptional activation, whereas FrARF7*AP"A"2 did not
activate transcription, confirming that the two ADs identified in the
ARF7middle region are necessary for transcriptional activity. FrARF744P!

(20,000 cells per replicate) with underlaid box plots. Box plots show the
interquartile range and the median. Whiskers are 1.5 times the interquartile
range. e, Deletion of ARF7AD1 or ARF7AD2 resultsin decreased ARF7 output
inplantcells. Protoplasts were transfected with a synthetic TF containing an
N-terminal MNEON tag, the Gal4 DBD and the middle region and C terminus of
ARF7 withorwithout theidentified ADs (FrARF7,AAD1, AAD2and AAD1AAD2)
orjustthe Gal4 DBD (Gal4), along with an mScarlet-1fused to the histone

2B (H2B) reporter driven by 5x Gal4 UAS. The mScarlet reporter was assayed in
mNEON-positive cells using flow cytometry. Violin plots depict mScarlet signal
inarbitrary units with black bars marking the average mScarlet signal (n > 2,212
cellsfrom4 independent transfections). Letters are statistically significant
groupings based on the Tukey HSD test with an alpha-level of 0.01.

showed no loss of activity, whereas FrARF7%**? showed a mild reduc-

tion of transcriptional output (Fig. 4e). Thus, ARF7AD2 is sufficient for
transcriptional activity in this system and the contribution of ARF7AD1
can only be unmasked when AD2 is missing. In the future, examining
ADs from distinct subtypes will allow the subfunctionalization of ADs
indifferent cellular contexts and tissue types to be investigated.

AD evolutionin the ARF family

Thewell-studied ARF family has three deeply conserved clades: clade-A
ARFs are considered transcriptional activators, whereas clade-B and
clade-C ARFs are considered transcriptional repressors; activator and
repressor functions are encoded in the intrinsically disordered mid-
dle region of the ARF TFs®. The rich evolutionary history and dichot-
omy of functions makes the ARFs an ideal TF family through which
to interrogate the evolution of transcriptional function and ADs. We
identified ADs within the middle regions of all three Arabidopsis ARF
clades (Fig. 5a). Each clade-A ARF contained one or more AD (Fig. 5a),
consistent with their historical definition as ‘activator ARFs’. Clade-B
and clade-C ARFs generally lacked ADs, consistent with their presumed
roles as transcriptional repressors; however, some members of these
‘repressor ARF’ families had high-scoring AD regions (Fig. 5a).

To examine the evolution of ARF ADs, we performed a new experi-
mentwith an additional 11 species that span the flowering plant lineage
(Fig. 5b, Extended DataFig. 6 and Supplementary Table 3). Among the
112 clade-A ‘activator’ ARF middle regions tested, we found that 97%
contained atleast one AD, defined as a PADI score of atleast 1. Notably,
approximately 58% of clade-B and 62% of clade-C ARFs also contained
an AD (Fig. 5c). Consistent with their proposed roles in vivo, clade-A
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Fig.5|The position of ARF ADs has remained constant over evolutionary
time. a, Arabidopsisclass AARFs areenriched in ADs. b, Flowering plant
speciesexamined inthe ARF evolutionlibrary. ¢, Abreakdown of the number
of ARFswithatleast one AD region (orange), putative RD (blue), AD and
putative RD (grey) and neither AD nor RD (teal) ineach of the three clades and
the maximum PADI score found in each of the tested ARFs that scored above
thethreshold.RDs were identified by searching for the following motifsin the
ARF fragments: LXLXL, [R/KILFG[F/I/V], DLNxxP and LXLxPP (where x denotes
any amino acid)®?°.d, Heat maps showing the average PADI score and TADA
predictionscores of ARF middle-region fragments from different clade-A
subclades. Each columnis 5% of the length of the tested ARF middleregion
and eachrow is one examined ARF. When multiple fragmentsreside withina
column, the colour represents the mean PADIscore (blue) or TADA prediction
(pink) of all fragments within that window.

fragments scored higher on average than did those from either the
clade-B or the clade-C ARFs. In plants, the presence of a repression
domain (RD), such as those found in clade-B ARFs®, leads to tran-
scriptional repression even if an AD is also present®*. We therefore
examined the co-occurrence of annotated RDs* and fragments that
elicited a transcriptional response in the tested ARFs, and found that
76% of clade-B ARFs have annotated RDs, on the basis of the presence
of known motifs®, in contrast with clade-A and clade-C ARFs (Fig. 5¢).
Thus, although several clade-B ARFs contain ADs, they might notact as
transcriptional activatorsinplantaowingto the presence of strong RDs.

Tobetter understand the evolution of ARF ADs, we focused our atten-
tion on the clade-A ‘activator’ ARFs, which exist in four functionally
conserved subcladesin the flowering plants®. Although ADs within the
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subcladesshowed minimal sequencesimilarity (Extended DataFigs.5-8),
they shared common positioning (Fig. 5d). AD fragments from the ARF5
subclade were distributed in the centre of the middle region, whereas
ADsintheotherthree subclades showed a preference for proximity to
the DBD (N terminus of the middle region) or the PB1 domain (C termi-
nus ofthe middle region). This result of conserved positioning without
conserved sequence suggests selective pressure onthe locations of ADs,
even when they reside in extended regions of intrinsic disorder and
low complexity, as is found in the ARF middle region. Selection on AD
position can also be found within TF families in Arabidopsis. The MYB
family, for example, shows a preference for C-terminal ADs (Extended
DataFig.9a). These findings suggest that functionality is encoded not
onlyin AD sequence, butalsoin AD location.

Toinvestigate whether the TADA network, trained on an Arabidopsis
dataset, can predict ADs in other plant species, we predicted ARF ADs
in the species examined in our ARF evolution dataset. On this unseen
dataset, TADA achieved an AUPR of 96.14% and outperformed exist-
ing methods in terms of accuracy and F1score, indicating that TADA
generalizes well to other plant species (Extended Data Fig. 9¢,d). The
predicted ADs in the clade-A ARFs overlapped with our PADI findings
(Fig. 5d), which suggests that training the data on Arabidopsis ADs
is sufficient for the prediction of ADs across the flowering plants.
Together, these results provide evidence for the functional and posi-
tional conservation of ADs throughout the more than 145 million years
of angiosperm evolution.

Discussion

Theidentification and characterization of ADs has lagged behind that
of DBDs across all eukaryotic taxa, which has hindered acomprehensive
understanding of TF function. Unlike DBDs, which are easily identified
by amino acid sequence, ADs are typically located within IDRs and
defined by biochemical features rather than by linear sequence, thus
posingachallenge for traditional bioinformatic methods. To overcome
this limitation, we conducted the PADI high-throughput assay and
developed the TADA prediction network to identify ADs within plant
TFs. In our study, we assayed 79,298 sequences from 2,316 plant TFs
and discovered 2,069 ADs in 1,275 TFs (Extended Data Fig. 10). Our
identification and classification of ADs represents afirst step towards
comprehending plant TF function on a genome-wide scale. Similar
previous studies using random peptides?, yeast peptides*and human
peptides haveresulted in considerable advances in our knowledge of
AD activity, revealing that 59% of yeast* and 14% of human® TFs contain
identified ADs. From this study, 53% of Arabidopsis TFs contain at least
oneregion that can activate transcription in a yeast-based assay.

A limitation of our study is the use of yeast to identify fragments
of Arabidopsis TFs that activation transcription. Although the tested
hits were active in plant cells, it is possible that we failed to identify
ADsinsome TFs thatwould activate transcription only in Arabidopsis.
However, a strength to our approach is that we are identifying gener-
alizable features that are likely to directly recruit the transcription
machinery. Performing this work directly in plant cells would prevent
us from ruling out the possibility that we had identified adomain that
recruited another Arabidopsis TF, whichitself recruited the transcrip-
tional machinery. Thus, this dataset allowed us to create TADA, which
outperforms existing AD predictors on human and plant datasets
(Extended Data Figs. 3b,c and 9d).

We found that the acidic aromatic class of ADs dominates our data-
set, which might be expected from a yeast-based screen. However,
around 15% of Arabidopsis ADs were neutral or positive and had few
aromatic residues. Using our TADA network output, we identified six
distinct AD subtypes with differing feature properties. We speculate
thateach subtype mightrecruit distinct transcriptional machinery or
function onlyin certain cellular environments, similar to our observa-
tionswheninterrogating the two distinct ADs found in ARF7 (Fig. 4d,e).



Moreover, these identified AD subtypes showed differential enrich-
ment across TF families (Extended Data Fig. 6), indicating potential
subfunctionalization. Investigating the contribution of these subtypes
totranscriptional activation using biochemical and genetic assays will
be crucial to understand their roles.

Whereas the sequence of ADs varies, their position within the exam-
ined TF families remains conserved (Fig. 5 and Extended Data Fig. 9a).
This suggests functional conservation of domains in rapidly evolving
regions of intrinsic disorder. Our findings imply that AD location con-
tributes to TF function, potentially by providing additional means of
regulating transcription. Nearby interaction domains could occlude or
reinforce recruitment of the transcriptional machinery depending on
the context. Forexample, the PIF3 AD is physically blocked by a protein
interaction occurring at an adjacent site, preventing transcription?.
Similarly, aninteraction complex facilitated by the ARF19 PB1 domain
and proximal to AD2 regulates Mediator assembly*. We expect that
our genome-wide annotation of ADs in Arabidopsis will lead to the
discovery of similar examples.

Certain TFs exhibit bifunctionality, containing both ADs and RDs.
Similar to many human TFs*, several clade-B ARFs possess both ADs
and putative RDs (Fig.5c). Because RDs are strong transcriptional effec-
torsand override ADs**, we postulate thatifthe RD and AD are equally
accessible, the TF will act asatranscriptional repressor. However, if the
RDweretobeburied or occluded, the TF could then actas anactivator.
The ancient and dual roles of ARFs as transcriptional activators and
repressors represent anintriguing model for studying the relationship
between RD and AD activity.

Our study, using empirical PADI data and the innovative TADA net-
work, offers a powerful approach to identify and classify ADs. This
development provides a much-needed tool to fully understand ADs
and their role in transcriptional regulation. Moreover, our work goes
beyond expanding our understanding of TF function. It introduces a
model that investigates the intricate connection between sequence
and function within IDRs. Our experimental PADI approach provides
aframework to uncover patterns of conservation that are based on
function and position rather than on sequence similarity. To further
enhance our understanding, we have developed the TADA network,
which uses feature space and amino acid properties to capture both
linear and non-linear relationships among features. This innovative
approach, coupled with downstream analyses, provides aroadmap for
investigating sequence features that contribute to IDR function. We
believe that this comprehensive methodology will have afar-reaching
effect on the characterization of IDRs and will enable considerable
advances to be made in this field.
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Methods

Library generation

PADI libraries. Protein sequences for primary gene models were down-
loaded from TAIR (https://www.arabidopsis.org/) using the bulk data
retrieval tool. The Araportll assembly was accessed in June 2020 to
download sequences. Proteins were fragmented into 40-amino-acid
tileswith astep size of 10 amino acids using a custom Python script. An
additional 40-amino-acid tile that corresponds to the final 40 amino
acids of each proteinwas also generated to ensure full coverage of each
TF. Each tile was given a unique name corresponding to its AGl locus
identified and the starting amino acid position of each tile. Each tile was
thenreverse-translated into a yeast-codon-optimized DNA sequence.
Cloning adapters were added to each sequence at the 5’ and 3’ end as
described previously” with a minor modification, no barcodes were
included in the 3’ adapters. This resulted in 183-bp sequences, 120 of
which encode the variable 40-amino-acid sequence. These sequences
were distributed into10 synthesislibraries of around 7,000 fragments
each for a total synthesis of 69,347 Arabidopsis tiles (Agilent). No TFs
were split between synthesis libraries and synthesis libraries were
ordered on the basis of AGI locus number to be functionally random
in content.

ARF evolution library. ARF sequences for 12 species were identi-
fied using BlastP searches on Phytozome (https://phytozome-next.
jei.doe.gov) against the ARFS protein sequence, with the excep-
tion of ARFs from Zea mays, which were accessed from MaizeGDB
(https://www.maizegdb.org/). All top hits from each species were
aligned to AtARF2, AtARF5, AtARF7 and AtARF17 protein sequences
to determine the presence of a canonical ARF DBD and PB1 domain.
Blast hits that lacked one or both were excluded. The middle region
was defined as the first amino acid downstream of the DBD, on the
basis of a previous study*’, to the last amino acid upstream of the
conserved PB1, on the basis of another study*. The extracted middle
regions were then passed through our custom Python script to gener-
ate tiles as described above, resulting in a synthesis library of 9,069
fragments.

Pilot library. A pilot library consisting of Arabidopsis thaliana and
Zea mays ARF middle region tiles was generated as described above.
Intotal 2,260 fragments were synthesized; these datawas used in the
training of the TADA network.

Cloning of synthesis libraries into pMVS142

Alllibraries were cloned into the pMVS142 backbone™. The plasmid
contains a KanMX gene and the yeast ACT1 promoter driving the
expression of a synthetic TF comprising an N-terminal mCherry tag
fused to the mouse Zif268 DBD followed by an oestrogen-binding
domain and a multiple cloning site for fragment integration. Synthe-
sis libraries were amplified using primers specific to the shared 5’ and
3’ adapters and Q5 2X Mastermix (NEB) and purified with the Mon-
arch PCR Purification Kit (NEB). The plasmid backbone was digested
with Nhel-HF and Ascl and the synthesis libraries were cloned into
the digested backbone using the NEBuilder HiFi assembly at a 2:1
insert to vector ratio eight times to ensure the integration of all frag-
ments. The resulting reactions were pooled and cleaned using the
Monarch PCR Purification Kit (NEB) and transformed into 100 pl of
ToplO0 electrocompetent Escherichia coli. Transformed cells were
grown overnight in 125 ml Luria broth (LB) with ampicillin (Amp)
selection. Dilution series up to 1:10,000 of transformed cells were
plated on LB + Amp plates to determine colony counts in liquid cul-
ture. Synthesis libraries were considered successfully cloned if we
reached colony counts higher than 49,000. Plasmid DNA was extracted
from transformed E. coli using the ZymoPURE Il Plasmid Maxiprep Kit
(Zymo Research).

Yeast strains used in PADI assays

DHY211isaMATayeast strainfrom A. Chuand]. Horecka and was used
togenerate yeast pools carrying synthetic TFs at the URA3locus. MY435
is the MATa reporter strain that contains a fast-maturing GFP variant
driven by six Zif268 binding sites.

Yeast integration, selection and mating

PADI, ARF evolution and pilot libraries. Yeast synthetic TF cloning
was performed as described previously? with the following modifica-
tions: maxipreps of synthetic TF plasmid libraries were triple digested
with EcoRI-HF, Pacl-HF and Sall-HF before transformation, along with
500-bp homology arms for the 5" and 3’ ends of the synthetic TF, into
DHY211. Transformed cells were recovered overnight in YPD medium
and then plated on SC + G418 + 5-FOA plates to identify clones with
stableintegrations of the synthetic TF pool at the URA3locus. Libraries
were deemed successfully cloned when 49,000 colonies were reached
(77,000 colonies for the ARF evolution library). The resulting clones
were thenscraped, pooled, washed and grown againin YPD for mating
orstoredinglycerolat—80 °C for additional mating and experimenta-
tion. Positive yeast clones were mated to MATa MY435 twice (or five
timesinthe case of the ARF evolution library) and then pooled to ensure
retention of all fragments. The resulting mated cells were grown over-
night in bulk in SC + G418 + NAT. Cells were collected and stored con-
centrated in glycerolat -80 °Cuntil flow sorting experiments. In total,
892 fragments (1.3%) were lost during cloning steps across the 10 PADI
libraries, 60 fragments (0.7%) were lost during cloning from the ARF
evolution library and four fragments (0.2%) were lost during cloning
fromthe pilotlibrary.

NLP7 fragment and PB1 confirmation. Arabidopsis NLP7 coding se-
quences that encode a 40-amino-acid fragment starting with Leu101
(fragment 1), a 40-amino-acid fragment starting with Glu901 (frag-
ment 2), and the PB1 domain (Thr863 to Val945) were synthesized by
Twist Biosciences. Fragments were PCR-amplified using primers with
overlap to pMVS219 as described above to generate synthetic TFs for
each tested region using NEBuilder HiFi cloning as described above.
Theresulting clones were confirmed by sequencing with Plasmidsau-
rus. Yeast strains expressing synthetic TFs with fragment 1, fragment
2 and PB1 domain yeast strains were made as described above using
homology-directed integration of synthetic TFs with one modifica-
tion: MY435 was used for stable integration instead of DHY211. Cells
wererecovered for1hin YPD and plated on SC + G418 + NAT to confirm
transformants.

Confirmation of ARF7 ADs in a yeast synthetic auxin signalling sys-
tem. ARF7 in the pGP8A vector was driven under the ADHI promoter*.
AD deletions were made to this ARF7 plasmid using j5 to design prim-
ers* and an in vivo assembly strategy to assemble the constructs*.
Sanger sequencing confirmed the coding sequence of AD deletion
constructs.

Plasmids encoding the effectors ARF7, ARF7*"!, ARF7**P? and
ARF744P18AD2yere digested with Pmel before Lithium PEG transforma-
tion®. ARF7 constructs were transformed into YPH500 (MATa ura3-52
lys2-801_amber ade2-101_ochre trp1-A63 his1-A200 leu2-A1) contain-
ing an mScarlet reporter driven under the IAA19 promoter housed
ina pGP6G vector. Correct integration of transformed colonies was
confirmed by diagnostic PCR across the boundary of homologous
recombination and confirmed transformants were struck toisolation
on YPAD plates.

PADI assay

Matedyeastlibraries were grownovernightinSC + G418 + NAT, unmated
yeast libraries were grown overnight in SC + G418 and untransformed
DHY211 were grown in SC overnight at 30 °C. Yeast grown overnight
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was subcultured at 1:5 dilution in SC medium without selection and
1M B-oestradiol was added to mated libraries and the positive and
negative control strains. Cells were grown for an additional four hours
at30°Candthen placed onice until cell sorted.

Cells were analysed and sorted on a Beckman Coulter Astrios, with
the Summit Software package, at the DCI Flow Cytometry Core at
Duke University (PADI and ARF evolution libraries) and on a BD Aria-II
machine at Washington University in St. Louis (pilot assay). DHY211
and the positive and negative controls were used to define cell gates
and gainineach experiment. Experimental yeast libraries were sorted
into12bins onthe basis of the relative GFP:mCherry signal in each cell.
Aminimum of 60,000 cells per binwere sorted for the PADI assay and
355,000 cells per bin for the ARF evolution experimentinto 2 mlfresh
SC. Cells were kept on ice until the completion of the experiment and
then grownin SC medium at a final volume of 5 ml overnight at 30 °C.
The cellswere then pelleted and frozen at -80 °C until DNA extractions
were conducted.

The GFP-and mCherry-only sorts were conducted as above with some
modification. All ten mated PADI libraries were grown overnight in
SC + G418 + NAT. The optical density at 600 nm (ODyq ) Of €eachlibrary
was taken and thenall tenlibraries were pooled with equal numbers of
cells,and the poolwas diluted 1:5in SC medium with 1 pM B-oestradiol
and grown for four hours before cell sorting. GFP- and mCherry-only
sorts were performed with only six bins each that spanned the range
of values present in the pooled libraries and one million cells per bin
weresorted into fresh SC medium. Overnight growth and storage were
performed as described above.

AllPADIlibraries were assayed once, with the exception of library 3,
whichwasassayed twice. Library 3 replicates are compared in Extended
DataFig. 1d. The control fragments common to all ten libraries were
assayed independently in each library and are compared in Extended
DataFig.1e,f.

Yeast genomic extraction and sequencing

Yeast genomic DNA was extracted with the YeaStar Genomic DNA Kit
(Zymo Research).Sequencing libraries were generated through three
PCRreactions. PCR1amplified a 600-bp fragment that contained the
tested fragment from the integrated locus. PCR2 amplified the frag-
mentitselfand added phasing and lllumina sequencing adapters. PCR3
completed the lllumina sequencing adapters and indexes specific to
eachsampleforeachbinandyeast library tested. All yeast libraries and
bins were sequenced with 150-bp PE reads, or 150-bp SE for the pilot
study, with a minimum of one million reads per sample.

Data analysis

Paired raw Fastq files fromeach library were aligned to fragment DNA
sequences using BWA-mem aligner (v.0.7.15)* and SAMtools (v.1.10)*
to generate BAM files. Fragment counts in each bin were extracted
from the resulting BAM files using SAMtools coverage®’. Count files
were then opened in Python using Pandas (v.1.4.1; https://zenodo.org/
record/7979740) and NumPy*® to generate PADI scores. Each library
was independently analysed to generate PADI scores by first normal-
izing each sequenced bin by counts per million reads. Each bin was
normalized by the number of yeast collected in each bin. Next, each
fragment was normalized across bins by taking the fragment countsin
eachbinand dividing by the sum of fragment counts across all bins. The
raw AD score was generated by taking the dot product of the propor-
tional count of each fragmentin eachbinand the median GFP:mCherry
score for each bin. Raw AD scores were then z-score normalized using
the preprocessing command in the Scikit-learn package (v.1.2.0)* to
generate the final PADI score.

Sequence features for each fragment were determined using Loc-
alCIDER (v.0.1.19)*, including hydrophobicity, kappa and individual
amino acid counts. Net charge was calculated by taking the sum of
Argand Lys residues and subtracting the sum of Asp and Gluresidues.

Disorder predictions for all tested TFs were generated using Metapre-
dict 2 (v.2.2)". Mean disorder values were applied to each fragment
by taking the mean Metapredict values assigned to each amino acid
inthe tested fragment.

NLP7 fragment confirmation

Positive yeast transformants expressing the synthetic TF with frag-
ment 1, fragment 2 or the intact PB1 were grown in SC + G418 + NAT
overnight and diluted 1:5 in SC medium. These transformants were
theninduced with1,000x 3-oestradiol and allowed toincubate at 30 °C
for4 h. Transformed cell populations were scored using the Beckman
Coulter Cytoflex S Flow Cytometer and CytExpert software. A general
gating strategy was used to identify the population of present yeast.
Cells expressing mCherry were identified by comparing untransformed
MY435 cells using the Y610 channel (ex: 561 nm, em: 610 + 20 nm, 2,000
gain). Aminimum of 300,000 mCherry-positive yeast cells from four
independentinduction experiments for each construct (NLP7 AD, PB1
fragment and PB1 domain) were used to collect GFP-reporter levels
using the B525 channel (ex: 488 nm, em: 525 + 40 nm, 2,000 gain). FCS
files were generated through Cytoflex and the mean GFP/mCherry score
was calculated using the Python packages flowkit (v.1.0.1), seaborn
(v.0.13.0) and pandas (v.1.4.1).

Training dataset and encoding

The TADA neural network, which has been previously described”,
underwent training using 75,845 random peptides. To capture the
inherent characteristics of plant ADs, TADA was retrained on PADI. PADI
consists of a total of 70,937 40-amino-acid fragments, among which
64,552 and 6,385 were identified as non-ADs and ADs, respectively
(PADI data). To represent the sequences and capture the side-chain
properties of each fragment, 42 features were computed. These fea-
tures included 11 side-chain properties (Supplementary Table 4) and
9 properties used to describe disordered regions (Supplementary
Table 4), and the count of each of the 20 amino acids was computed
for awindow of size 5 across the entire sequence length with a step
size of one amino acid. The intrinsically disordered properties were
calculated using LocalCIDER (v.0.1.19)* and AlphaFold*. This sliding
window approachresultedin36 subsequences. Inaddition, twointrin-
sically disordered properties, kappa and omega, were computed for
the entire sequence length. To accommodate the 36 subsequences,
the computed kappa and omega values were duplicated. The computa-
tion of these 42 features, accounting for the 36 x 42 input matrix, was
performed. The dataset was then splitina stratified mannerinto three
proportions: 70% for training, 20% for validation and 10% as a test set.
After the split, the feature matrices were scaled using astandard scaler,
whichadjusted the mean and standard deviation of each feature to zero
and one, respectively. This was followed by a min-max scaling, which
rescaled the features between O and 1.

Neural network architecture

The TADA neural network architecture comprises four types of layers:
(1) two convolutional neural network layers (CNN); (2) an attention
layer; (3) two bi-directional long short term memory (biLSTM) layers;
and (4) a dense layer. The purpose of the two CNN layers is to extract
potential patterns within the fragments and reduce the dimensionality
of the data. These one-dimensional (ID) CNNs perform convolutions
using a kernel size of 2 and a stride of 1, allowing for the identifica-
tion of potential bipeptides that are believed to be characteristic of
ADs. To prevent overfitting and enhance generalization, dropout was
incorporated into the CNN layers. An attention layer was included to
highlight the learned patterns from the CNN layers and to selectively
focus on the features that are more crucial for the prediction task. To
capturetheinterdependence of the subsequences within asequence,
the biLSTM layers were added. Finally, the dense layer is connected to
the output layer, completing the network architecture.
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Experimental settings and evaluation
The hyperparameters found to give the best performance' are pre-
sented in Supplementary Table 4.

Our input dataset is unbalanced, with the ADs being underrepre-
sented. Toachieve accurate prediction for the underrepresented ADs,
we used cost-sensitive approaches. Specifically, our cost-sensitive
approachistwofold: (i) the misclassification of the minority class penal-
izes with a focal loss function; and (ii) our class weights are inversely
proportional to the class sizes in the dataset.

To assess the performance of TADA trained using PADI, three neural
networks were trained with (i) PADI alone; (ii) the random peptides
dataas described previously™; and (iii) a compiled dataset of PADl and
the random peptides. In the combined dataset, the random peptides
were extended by adding the first 10 amino acids of the cloning vector
togenerate 40-amino acid fragments. To account for classimbalance,
cost- sensitive approaches were applied in all three neural networks,
which were not yet implemented in the previous study'. We imple-
mented early stopping criteria during model training based on the F1
score of the validation set. This allowed us to halt the training process
when the model performance on the training set no longer improved
significantly. Finally, to confirmthat TADA is not memorizing sequences
and thus biased towards predicting ARF sequences, we fully retrained
TADA withholding a total of 2,046 ARF sequences (ARF (494), MPARF
(87), PPARF (469), AMARF (996)). To evaluate the performance of the
neural networks, we calculated various performance metrics onthe test
dataset. These metricsinclude precision, recall, AUPR, areaunder the
receiver operating curve (AUC), accuracy and F1score. These metrics
were computed individually for each class.

Analysis of feature importance and unsupervised clustering

To conduct predictions and SHAP analysis, we retrained the neural
network using a 90:10 split between the training and the validation
datasets. The best model obtained during training was saved and
used for predictions and SHAP analysis. We used SHAP? to assess the
influence of the 42 computed features on the predictions. Within the
SHAP package, we used the GradientExplainer to acquire the SHAP
value associated with each feature and each subsequence for all AD
positive classes in our dataset. To determine the overall effect of the 42
features, we aggregated the SHAP values for each feature by summing
the absolute values of each subsequence and fragment. To select the
most important features in an unbiased manner, we normalized the
obtained SHAP values using z-scores and selected all features with a
z-score higher than1.In total, weidentified eight features, which were
subsequently used for clustering. To determine the directionality of
the effect of the top eight features and ascertain whether they had an
overall positive or negative influence on the predictions, we summed
the SHAP values of each subsequence and fragment. Lastly, to gain
an overall understanding of the variability of the important features
acrossthe AD fragments, we summed the absolute SHAP values of the
36 subsequences.

Toidentify subtypes of AD classes, we used anunsupervised approach
thatinvolved PCA, t-SNE and k-means clustering. First, we extracted
the scaled features and SHAP values for the top eight mostimportant
features from the ADs. Second, we reduced the dimensions of the 2D
feature matrix for each fragment by using kernel PCA, resultingin a
1D matrix that captured the majority of the variance within the sub-
sequences. The 2D SHAP value dimensions for each fragment were
reduced by summing the values across the subsequences. Next, we
concatenated the features matrix (8 x 6,385) and the SHAP value matrix
(8 x 6,385),and performed akernel PCAwith 10 components. The result-
ing components from the t-SNE were plotted, using PCAinitialization, a
highlearningrate, large perplexity and exaggeration®. Finally, we used
the output components of the t-SNE for k-means clustering, identifying
six as the optimal number of clusters on the basis of an elbow plot. For

each of the six clusters, we performed another SHAP analysis to assess
any global differences in the contribution of each feature to the AD
subtype prediction. Using the same approach as that used in the global
SHAP analysis, we ranked each feature according to its importance.

Cloning synthetic TFs for protoplast assays and FrARF7

Agene fragment that encoded the Gal4 DBD fused to the middle region
and C terminus of ARF7,anos terminator and 1,000 bp of non-coding
DNA including a multiple cloning site was synthesized by Twist in the
pENTR gateway-compatible backbone. An additional gene fragment
encoding 500 bp of non-coding DNA followed by 5x Gal4 UAS sites, a
minimal CaMV 35S promoter and mScarlet-I fused to histone 2B was
synthesized and put into the pENTR backbone by Twist. The pENTR
backbones containing the synthetic TFs were linearized using Sacl, and
thereporter was PCR-amplified toinclude 20 bp overlapwiththe pENTR
synthetic TF multiple cloning site at the 5" and 3’ ends. The reporter
insert was cloned into the linearized pENTR backbone vector using
NEBuilder HiFi cloning to generate pENTR synthetic TF+Reporter
clones. Theentry clones were then cloned into pLCS107, which provided
anin-frame mNEON fused to the N terminus of the synthetic TF driven
under the UBQ10 promoter and a nos terminator for the mScarlet-I
H2B reporter, by gateway cloning. The Gal4 DBD, FrARF7AAD1 and
FrARF7AAD2 variants were generated by in-frame deletions of the
ARF7 CDS, ARF7AD1and ARF7AD2, respectively, by PCR linearization
and self-assembly with NEBuilder HiFicloning. The FrARF7AAD1AAD2
variant was generated by Hifi cloning to delete ARF7AD2 from the
FrARF7AADI1 variant. These additional variants were then subcloned
to add the reporter and then cloned into the pLCS107 backbone as
described above.

Aplasmid thatencoded the Gal4 DBD, anos terminator, 1,500 bp of
non-coding DNA followed by 5x Gal4 UAS sites, a minimal CaMV 35S
promoter, mNeonGreen and anos terminator was synthesized by Twist
in the pENTR gateway-compatible backbone. The pENTR backbone
containing the synthetic TFs were linearized using Sacl, and the AD
fragments were PCR-amplified toinclude 20 bp overlap with the pENTR
synthetic TF multiple cloning site at the 5’ and 3’ ends. The reporter
insert was cloned into the linearized pENTR backbone vector using
NEBuilder HiFi cloning to generate pENTR synthetic TF+Reporter
clones. Theentry clones were then cloned into pLCS99, which provided
the UBQ10 promoter, by gateway cloning.

Auxin-responsive reporter activation assays in yeast

Activation assays were adapted from a previous report® using an
Attune NxT Acoustic focusing cytometer with 488-nm excitation,
forward-scatter and side-scatter and 637-nm emission for RFP. Events
were annotated and plotted using the flowTime R package®. Individual
colonies of each strain were diluted to 1 cell per plin synthetic com-
plete medium (Takara). Cultures were incubated overnight for 16 h at
900 rpminaTalboys microplate shaker. The following morning, three
separate measurements were drawn at approximately one hour apart
formeasurement. Cultures were inexponential growth phase to capture
maximum activation. Approximately 10,000 events from biological
replicates were recorded 3 times (9 total) for each measurement and
the YL1.A channel was used.

Testing synthetic TFs and FrARF7

Arabidopsis mesophyll protoplasts were isolated from14-day-old Col-O
leaves. A total of 100,000 cells were transformed with 20-30 pg of
plasmid DNA carrying Gal4, and synthetic TFs or FrARF7, FrARF7AAD],
FrARF7AAD2 or FrARF7AAD1AAD2 with UAS constructs using the
tape-sandwichmethod andincubated for 16 hin the dark. Transformed
cell populations were scored using the Beckman Coulter Cytoflex S
Flow Cytometer and CytExpert software. A back gating strategy was
taken to identify the population of intact protoplasts. For the FrARF7
experiment, cells expressing mMNEON reporters were first identified



by comparing transformed mNEON-Gal4 cells with untransformed
cells using the B525 channel (ex: 488 nm, em: 525 + 40 nm, 69 gain)
and then back gated on FSCvSSC. A minimum of 63 mNEON-positive
cells from four independent transformations were used to collect
mScarlet- H2B reporter levels using the Y610 channel (ex: 561 nm,
em: 610 +20 nm,1,000 gain). Atleast 2,212 total MNEON-positive cells
from four independent transformations were used to determine the
mean levels of mScarlet-1 H2B. For the synthetic TF experiment, cells
expressing mScarlet-Iwere firstidentified by comparing transformed
mScarlet-Gal4 cells with untransformed cells using the Y610 channel
(ex:561 nm,em: 610 + 20 nm,1,000 gain) and mNeonGreenreporter lev-
elswere collected using the B525 channel (ex: 488 nm,em: 525+ 40 nm,
69 gain). FCS files for mNEON-positive cell populations were generated
by Cytoflex and analysed using FlowKit (v.1.0.1)**, NumPy (v.1.22.3)*8
and Pandas (v.1.4.1; https://zenodo.org/record/7979740) packages in
Python (v.3.8.12) with custom scripts. A minimum of 520 cells from
three independent transfections were used to determine the mean
mNEON values. When used, Tukey HSD statistical tests to determine
alpha-groups between populations were conducted in JMP Pro 17
(v.17.0,0) at an alpha-level of .01.

Determining subtypes of the ARF evolution dataset

To determine the subtypes of ADs among the six identified subtypes,
we first conducted a SHAP analysis. We then generated a concatenated
dataset of the scaled features and SHAP values for the top eight most
important features. To incorporate these new points into our exist-
ing t-SNE plot, we used a previously described method®'. Following
that, we correlated the 16 data points (8 features and 8 SHAP values)
ofeach AD fragment to the same data of the TADA class 1ADs. Next, we
selected the ten nearest neighbours that have the highest correlation.
We then took the median of the t-SNE positions of these ten nearest
neighbours toidentify the plot position of the AD fragment. To assign
the subtype for the ADs, we took the most frequent subtype of the ten
nearest neighbours.

Sequence analysis and predicted sequence properties

Sequence analysis calculations for sequence charge decoration (SCD)
and sequence hydropathy decoration (SHD) were generated using the
Python package SPARROW (https://github.com/idptools/sparrow).
Predictions for radius of gyration (Rg), end-to-end distance (Re) and
asphericity were generated using the Python package ALBATROSS®.
In brief, ALBATROSS is a Python package that contains bidirectional
recurrent neural networks trained to generate predicted sequence
properties for disordered proteins including Rg, Re and asphericity
using the primary amino acid sequence as the input.

Samplesize

No calculations were performed to predetermine sample size. Biologi-
caland technical replicates were performed as described in the Meth-
ods for each experiment and conform to standards in the field. Exact
nnumbers for each experiment are provided in each figure legend.

Data exclusions and replication
No data were excluded. Experiments were replicated as described in
the Methods. All attempts at replication were successful.

Randomization and blinding
Randomization and blinding were not applicable because the dataare
quantitative and were not subjectively grouped.

Unique biological materials
Unique biological materials are available from the corresponding
author (L.C.S.) upon request.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Library sequencing datahave been depositedinthe NCBI's Gene Expres-
sion Omnibus (GEO) and are accessible through the GEO series acces-
sion number GSE234215. Source data are provided with this paper.

Code availability

Allscripts for the neural network training and validation and for mak-
ing predictions are available on GitHub (https://github.com/LisaVdB/
TADA).
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PADI Workflow and Quality Control

Step Quality Control

Approximately 7,000 fragments in 10 PADI
libraries, and 11,000 fragments in the ARF
evolution library were synthesized. Identical
positive and negative controls were included in
each library to ensure successful integration and
function of the PADI assay in all downstream steps.

Synthesize cDNA to encode
overlapping 40AA fragments

Tiansapton fac

Clone fragments;

transform into £.¢ co/l inbulk | Bulk E. coli transformations are sequenced using
NGS amplicon sequencing to determine presence
and fidelity of synthesized fragments and that they
are appropriately integrated into the yeast screen
vector.

PADI Score

Transform oonsfructs into
a mating type ye:

onstructs are confirmed as stable integrants at
the URA3 locus by double selection. Positive
selection on G418 selects for integration of the
synthetic AD construct and 5-FOA negatively

selects against yeast that contain wild-type URA3.

Over 50,000 individual yeast clones are collected to
ensure that each library was present at over 7X
coverage.

(M
./ -2 4

Mate library yeast

For the PADI libraries, matings were done with bulk
with AD repuner yeast

yeast AD library to the reporter strain in duplicate
and combined to ensure coverage of synthesized
fragments. For the larger ARF evolution library,
matings were done five times and combined to

- ensure full coverage of synthesized fragments.

Induce reporter system
Cells are induced with B-estradiol for 4 hours.
Non-induced cells are kept as a negative control for
sorting.

Reporter|

(5]
. " . ", |—?c'llvallr:

Untransformed mating type a, unmated reporter
strain, and uninduced mated libraries are first
checked as negative controls. Positive control
strains from Staller et al 2018 are then checked for
proper induction and to ensure proper gating pnor
to sorting. Finally the mated library is sorted bas

on the ratio of GFP reporter to mCherry ef 'fector
into 12 bins. Additional pooled sorts using only
mCherry or GFP were done to ensure that TF
abundance was not responsible for AD activity.

Sort cells by
fluorescence signal

PADI Score

All bins are sequenced using barcoded amplicon
sequencing. Each bin from each fragment library
has an individual barcode. Sequencing results
across bins are first checked to ensure that all

Sequence from tranches of cells
of varying GFP/mCherry ratios

-2 4

-2

GFP Score

fragments are present. If more than 2% of the
library is missing, we sequence the unmated yeast
stocks to determine if fragments were lost at the
initial yeast cloning step (3) or during mating (4).

r-value = 0.657
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Extended DataFig.1|See next page for caption.
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Extended DataFig.1|PADIworkflow and quality control. a, Extended
depictionofthe PADI assay.1) DNA encoding 40-amino-acid fragments are
synthesized and 2) cloned into asynthetic TF backbone in bulk. 3) Confirmed
synthetic TF libraries are cloned into the URA3 locus of DHY211yeast cells and
positive clones are selected by G418 and 5-FOA resistance. 4) Positively cloned
yeast TF libraries are mated to the MY435 reporter strain'?. Positively mated
clonesareselected by G418 (library) and CIoNAT (reporter) resistance. 5)
Pooled mated libraries and controls are grown overnight and subcultured 1:5
with1pMbeta-estradiol toinduce synthetic TF localization to the nucleus. 6)
After 4 hrsbeta-estradiol treatment, mated yeast libraries are sorted into bins
based onrelative levels of GFP (reporter) to mCherry (synthetic TF) to determine
AD activity.7) Populations from each bin were grown overnight and sequenced
to determine the distribution of tested fragments across bins. b,c, These plots
show the correlationbetween PADIscores from all Arabidopsis TF libraries
plotted againsta pooled library where cells were sorted on median GFP (b) or
mCherry (c) values. Each fragment was givena GFP or mCherry score based on
the weighted mean of its appearance across all GFP or mCherry bins and then
normalized using Z-score normalization consistent with how the PADI score
was generated. The blueline represents thelinear correlation of the data. There
isa positive correlation between PADIscore and GFP score, but not between
PADIand mCherryscores. Theseresults show that the PADIscore is arobust
measure of transcriptional activity regardless of the abundance of any TF.

d, Scatter plot showing the correlation between two sorts of PADI library 3.
Replicatelisincludedinall analysis. The blueline represents the linear
regression of the two datasets. The linear regression model has anr-value of

0.657. e, Violin plots showing the PADI scores of four positive AD controls
(n=10independentlibrary experiments). The controls are found in all 10 PADI
libraries and were consistently positive across libraries. The violin plot of
Arabidopsisfragments (n = 69,347 fragments from 10 libraries) is also provided
asacomparison. Box plots within the violin plot show the interquartile range
and the median withwhiskers thatare 1.5 times the interquartile range. f, Box
plots showing the PADIscores of tested control fragments across the 10 PADI
libraries. Each pointis the PADIscore of the tested fragment and the colour of
each pointcorrespondstothe10 PADIlibraries (n =10 independent experiments).
Allbox plots show the interquartile range and the median. Whiskers are 1.5
times theinterquartile range. g, Comparison of panels h-Ifrom main text Fig. 1.
The data presented from Fig. 1h-I(top) (n = 3,576) are presented above the
same analysis conducted onall positive fragments regardless of mean disorder
(bottom) (n=6,207). The trends hold between the filtered data (top) and
unfiltered data (bottom). h, Distribution of identified ADs across Arabidopsis
TF families. i, Distribution of highest-scoring hits fromeach TF ineach family.
j, Distribution of the number of ADs identified per Arabidopsis TF.k, Distribution
of number of contiguous hitsidentified peridentified AD. Contiguous hits
couldbeindicative of ashort AD contained in neighbouring fragments or

of anextended AD for which asubset of residuesis sufficient to activate
transcription; our data cannot distinguish between these.l, The distribution
of hitlocationsrevealed a bias towards the amino and carboxy termini of
proteins. Allbox plots represent the median and interquartile range. The
whiskersarel.5times theinterquartile range.
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iCc AT1G58110.1_61 RTSSESHLVEELPFWLDDLLNEQPESPARKCGHRRSSSDS  3.033857022 1
1D AT2G18850.1_401 PYDVIPLDFDVIDDEDIETEFSWTTHMLRGTWLSSNHNIF 4.643607361 1
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Extended DataFig.2 | PADI hit characterization. a-d, Box plotsshowingthe
numberofD+E(@R+K+H(b)A+I+L+M+V(c)andS+N+P+Q(d)ofeach
subtype (n>625). Letters correspond to the statistical levels of each subtype
based onthe Tukey-Kramer HSD metric withan alpha-level of 0.05. e, Scatter
plotshowingthe correlation between the percentage of TFswithatleastone AD
(defined asaPADIscore of greater than orequaltoland fromanIDR) and the
mean of the highest-scoring AD fromeach TFina family. The line represents the
linear regression and the shaded arearepresent the 95% confidence interval.

f, Box plots showing the net charge of hits from each of the six AD subtypes
(n=625).g,Heat map showing the distribution of Rg values against PADIscore
for all tested fragments (n = 6,207). We used simulations to examine the radius
ofgyration (Rg), whichisameasure of the volume thatanIDRensemble
occupies. Rgis particularly relevant to the AD molecular mechanism, as
exposure of interacting side chainsis necessary forinteraction with the
transcriptional machinery. We found that the Rg of our identified ADs occupied
anarrowrange ofradii,as compared to the tested library, raising the possibility
that ADs must adopt sufficiently expanded conformations for activity. h, Box
plotsshowing the Rg values of each subtype; Rg was similar across subtypes
(n=625).i, Table describing the PADI fragments tested in the synthetic TFsin
Fig.3h. The fragmentkey, its Arabidopsisidentifier,amino acid sequence, PADI

score,and subtype areshown. j, Box plots showing the distribution of PADI
scores for each of the six subtypes. The stars represent the PADIscore of the
fragmentstested foractivity in Fig.3hand shownin Extended Data Fig. 2i. The
tested fragments span the range of PADIscores found in the six subtypes
(n>625).Stars depict the PADIscores of selected hits for testing in protoplasts.
k, Protein accumulation of Synthetic TFs from Fig. 3h. Violin plots show the
mScarlet-TF values of cells. The black lines mark the mean mScarlet-TF value of
each sample (n =529 cells from 3independent transfections). I, Protein
accumulation of FrankenARF TFs from Fig. 4e. Violin plots show the mNEON-TF
values of cells. The black lines mark the mean mNEON-TF value of each sample
(n>2,212cells from4 independent transfections). All cells collected for reporter
expressionwere gated on the presence of TF signal when compared to blank
cells. Only positive cellswere used to collect output data presented in Figs. 3h
and 4e.m, Gating strategy for examination of AD activity in protoplasts. Cells
were gated based onsize and mScarlet (for presence of TF) signal as depicted.
Untransfected cells did not display signal above the threshold for mScarlet (left)
whereas control cells transfected with the TF lacking an AD (middle) and cells
transfected with the TF carrying VP16 (right) were selected for assessment of
mNeonGreen (transcriptional output). Allbox plots represent the median and
interquartilerange. The whiskersarel.5times theinterquartile range.
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Extended DataFig. 3| Classification performance of TADA and effect of
featureson TADA’s prediction performance. a, Theloss of TADA during

training and validation. b, TADA’s performance in terms of precision, recall, area

under the receiver operating curve (AUC), accuracy, AUPRand F1score. TADA
was trained three distinct times using random peptides?’, PADI (referred to as
“plant TFs”),and random peptides and PADI combined. ¢, TADA outperforms
all published AD predictors. We compared the performance TADA with three
published AD predictors (ADpred, PADDLE and acomposition model*!°2°,

Weused ahand-curated list of 599 ADs from 451 human TFs. Foreach TF, we
predicted ADs and considered predictions that overlapped aknown annotation

by >10amino acids to be true positive, using each predictor. TADA made the

most predictions, had the highest Sensitivity, and highest F1score.d, Z-score
normalized SHAP values leading to the selection of 8 features with a z-score
abovel.e,Normalized SHAP values ranked from overall mostimportant to least
important for fragments scoring above1for each of the 6 identified AD
subclasses.



Distribution of AD Subtypes by Arabidopsis TF Family
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a, Hummel etal." identified ADs in sixty-eight Arabidopsis TFs that could elicit
atranscriptional response when transiently expressedinintact tobaccoleaves.
Weidentified fragments that could activate transcriptionin yeast from fifty-six

(82%) of the sixty-eight TFs factorsidentified by Hummel et al. We did not

identify fragments that could elicit yeast-based transcription fromnine TFsin
whichHummel et al. demonstrated transcriptional activity. An additional three
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TFswere untestedinthe PADI dataset. Itis possible that for the 9 TFs for which
Hummel et al. found activation activity and in which we did not identify a hitin
our PADIscreen thateither1) they contain ADs thatare active in plant cells
butnotinyeastor2)thenearlyintact TFs used by Hummeletal. recruited
other coactivatorsintheir system (for example native TFs that contain an AD).
b-e, Orangeregions were used to define AD regions for alignment in Extended
DataFigs.7and 8.b, ARF5clade.c, ARF6 clade.d, ARF7 clade. e, ARF8 clade.
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Extended DataFig.8|ARF6 and ARF8subclade AD alignments. The indicate regions where 50% of amino acid residues share sequence similarity

highest-scoring fragment from each tested ARF within the defined AD regions based onbiochemical properties. Bolded residues are the amino acids with
(orange barsin Extended DataFig. 5c,e) were used to generate alignments with shared properties within the region. Black boxes represent sequence
MAFFT. Alignments were visualized with the ESPript 3.0 webserver. Boxes conservation.
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Extended DataFig.9|MYB family ADs and prediction performance of
TADA onthe ARF evolution dataset. a, Histogram of all AD hits (defined as a
PADIscore of greater than orequaltoland fromanIDR) from the MYB family.
Eachbar represents the number of ADs found in each 5% interval of the protein
length. Theseresults showthat MYB ADs are enriched in the final 15% of tested
TFs.b,Representative gating strategy for all PADI libraries. Yeast cells were
gated based onsize to exclude doublets (R1and R3). Single cells were then
gated to exclude those with mCherry signal below background (R4) when
compared to mCherry negative cells. The mCherry-positive cells were then
binned and sorted into twelve populations based on the GFP:mCherry ratio.
c,Prediction performance of TADA, and the TADAAARF variation. TADA
performance onthe PADI data test set and the ARF evolution datasetinterms

of precision, recall, area under the receiver operating curve (AUC), accuracy,
AUPR and F1score. We further validated the generalization of TADA by
retraining TADA on the original training dataset but withholding the ARF
sequences (2,046 of the 70,937 sequences), which we called TADAAARF.

This approach prevents TADA from memorizing/overfitting ARF sequences.
d, Prediction performance of TADA, PADDLE, ADPred, and the composition
modelintermsofareaunderthereceiver operating curve (roc_auc), areaunder
the precisionrecall curve (pr_auc), accuracy, F1score, true positive rate (tpr),
false positive rate (fpr), precision, and recall when tested on the ARF evolution
dataset. Because each of these predictors subdivides sequences differently
and used different fragment lengths for training, we compared their
performance on full-length protein sequence from the evolution dataset.
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Extended DataFig.10|Arabidopsis TFs withidentified ADs. Waffle plots of the 1,918 Arabidopsis TFs analysed. Those with previously identified ADs are marked
withablack boxintheleft waffle plot. Theright waffle plot depicts those with activating fragments identified by PADI.
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Data collection  Cell sorting populations were collected using Summit Software for BC Astrios.
Additional protoplast and yeast flow cytometry data was collected with CytExpert for Cytoflex S.
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Data analysis was conducted using Numpy, Pandas, scikitlearn, and custom Python scripts to determine AD scores.
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Statistical analysis on protoplast flow cytometry was conducted using JIMP17.
Sequence features were determined using LocalCider and MetaPredict2 in Python.
The TADA Neural Network is available on https://github.com/LisaVdB/TADA and described in the methods as well as the software submission
sheet.
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Pandas 1.4.1 Data analysis in Python 3.8.12
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Sample size We calculated that a minimum of 60,000 cells per bin per pooled library provided sufficient coverage of the tested library for downstream
analysis.

No calculations were performed to predetermine sample size. Biological and technical replicates were performed as described in the methods
for each experiment and conform to standards in the field. Exact n for each experiment is listed in each figure legend panel.

Data exclusions  No data was excluded from this study.

Replication All experimentation was conducted as described in the methods with replications listed. Internal controls in each flow sort were checked to
determine the reproducibility of the assay across sorts. All attempts at replication were successful.

Randomization  Complex fragment libraries were generated from transcription factors spanning the Arabidopsis thaliana genome and tested in genomic
order, making tested pools functionally random. Thus randomization is not applicable since data are quantitative and were not subjectively
grouped.
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Blinding Not applicable since data are quantitative and were not subjectively grouped.
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Seed stocks The Col-0 ecotype was used for protoplast experiments. Col-) is available commercially and from the ABRC stock center.
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Gating strategy

For yeast-based data, Sorted cells were grown in SC media overnight and then used to extract genomic DNA. For protoplast-
based data, cells were extracted from soil-grown plants immediately prior to transfection.

Cell sorting was conducted on Beckman Coulter Astrios at The DCI Flow Cytometry Core

at Duke University (PADI and ARF Evolution Libraries) and on a BD Aria-Il machine at

Washington University in St. Louis (Pilot Assay). Additional flow cytometry on protoplasts and yeast was conducted using the
Beckman Coulter Cytoflex S Flow Cytometer and Attune NxT Acoustic focusing cytometer as described in the methods.

Analysis on flow cytometry data was done using flowTime R package and flowkit, seaborn and pandas python packages as
described in the methods.

The entire population of cells were flow sorted into 12 bins for all cell sorting assays. All yeast and protoplast flow cytometry
experiments were conducted as described in the methods.

For cell sorting, initial gating on yeast cells was generated using FSC and SSC. Yeast cells with and without mCherry expression
constructs were used to set mCherry positive populations. Activity was scored as a ratio of GFP to mCherry signal in positive
cells, all cells were included. For ptotoplast-based experiments, gating was on SSC and either mScarlet or mNeonGreen,
depending on the assay, as described.
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