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SUMMARY

Transcription factors can promote gene expression through activation domains. Whole-genome screens
have systematically mapped activation domains in transcription factors but not in non-transcription factor
proteins (e.g., chromatin regulators and coactivators). To fill this knowledge gap, we employed the activation
domain predictor PADDLE to analyze the proteomes of Arabidopsis thaliana and Saccharomyces cerevisiae.
We screened 18,000 predicted activation domains from >800 non-transcription factor genes in both species,
confirming that 89% of candidate proteins contain active fragments. Our work enables the annotation of hun-
dreds of nuclear proteins as putative coactivators, many of which have never been ascribed any function in
plants. Analysis of peptide sequence compositions reveals how the distribution of key amino acids dictates
activity. Finally, we validated short, “universal” activation domains with comparable performance to state-of-
the-art activation domains used for genome engineering. Our approach enables the genome-wide discovery

and annotation of activation domains that can function across diverse eukaryotes.

INTRODUCTION

Transcription factors (TFs) regulate gene expression by binding
specific DNA regions with their DNA-binding domains (DBDs)
and interacting with protein complexes through their transcrip-
tional effector domains.’ Transcriptional effector domains that
promote transcription are further classified as activation do-
mains (ADs). In this work, we will refer to all short protein se-
quences that function in AD assays as peptides with AD activity
(PADs), regardless of their native function in their respective
parent protein. New high-throughput methodologies have
helped characterize the regulatory activity of transcriptional
effector domains en masse in yeast, human, and fly models, '
and these approaches are beginning to be implemented to study
plants.® Still, most studies have largely biased their focus on TFs,
leaving other nuclear proteins and their potential role in tran-
scription understudied. Moreover, non-nuclear proteins have
been demonstrated to be involved in transcriptional regulation.
For example, Notch1, a plasma membrane localized protein in
multicellular animals, contains a C-terminal AD that is cleaved,
processed, and localized to the nucleus to induce transcrip-
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tion.'® Similarly, the cell-adhesion protein beta-catenin is local-
ized to the nucleus when multimerized, where it acts as a tran-
scriptional coactivator in fly and vertebrates, and the closest
plant homologs have been linked to root development.’'~"®
Thus, there is evidence of proteins with ADs outside of standard
TFs. To more thoroughly study all putative proteins that may be
involved in transcriptional activation, genome-wide screens of all
proteins—not just TFs or nuclear proteins—are needed to iden-
tify previously unannotated molecular factors that may play a
role in transcriptional regulation.

The availability of large AD activity datasets has enabled the
development of deep convolutional neural networks that can
predict the activity of eukaryotic ADs from protein se-
quences.®'* These models have helped elucidate how specific
amino acid (AA) sequence features of acidic ADs enable their
transcriptional activation activity.'®> Notably, because current
AD predictive models have been trained on large datasets
from select organisms (i.e., yeast and human), the predictive
strength of these models in other eukaryotes has not been well
defined. The published neural network models have never
been directly tested in a large-scale experiment.
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Mechanistic studies have shown how acidic residues promote
the exposure of hydrophobic residues that, in turn, are essential
for AD activity.'® Hence, the distribution of acidic and hydropho-
bic residues is key because hydrophobic clusters can lead to the
intramolecular collapse of the AD, diminishing its activity.® The
recently proposed acidic exposure model links these observa-
tions to structural disorder in ADs, where acidic residues stabi-
lize an energetically unfavorable solvent exposure of hydropho-
bic residues, which, in turn, interact with coactivators to promote
transcription in a transiently structured fashion.® Thus, sequence
composition, structural disorder, and small sequence motifs in
ADs have been linked to defining AD activity, but we still lack a
comprehensive understanding of how positional sequence fea-
tures affect AD function.

Eukaryotic transcription is facilitated by TFs, coactivators, and
chromatin regulators. Coactivators can function as adaptors
between TFs and RNA polymerase Il or the general transcription
apparatus, whereas other coactivators modify chromatin to help
transcription of chromatinized templates or help with unwinding
DNA, all resulting in higher transcriptional output.'®~'%17~1° Co-
activators interface between TFs and RNA polymerase but do
not directly bind DNA, functionally separating them from TFs.
Coactivators and chromatin regulators can contain ADs,”"'*2°
marking activator activity non-unique to TFs; still, there has
been a dearth of high-throughput studies focused on identifying
new coactivator candidates due to the multitude of mechanisms
that coactivators use to promote transcription. Hence, the
occurrence of ADs in nuclear non-TF genes could indicate
that a given protein is involved in transcription and help annotate
previously unknown transcription associated genes and
coactivators.

Genome-scale studies characterizing TFs in plants have pro-
vided the foundational understanding of the complex regulation
that underlies plant development, adaptation, and overall phys-
iology.?"*> However, transcriptional coactivators have been
much less studied and leave a large blind spot in our understand-
ing of their role in transcription. Unlike unicellular systems that
are more readily tractable to screening massive libraries and
cell sorting, the complex physiology and cell wall of plants
have hindered the implementation of high-throughput methods
for the characterization of ADs in plants. As a result, our under-
standing of plant ADs and the role of potential coactivators pales
in comparison with other better-studied model eukaryotes (e.g.,
yeast). We previously reported that a machine learning model
trained on data from a large library of synthetic activators from
yeast can correctly predict ADs in plant TFs% however, it is still
unclear how applicable and scalable these models are in plant
systems, necessitating further evaluation of more plant ADs pre-
dicted by yeast models. A larger set of validated plant ADs would
allow the comparison of sequence features in plant ADs with ob-
servations in other well-studied eukaryotes. Moreover, studying
pADs from non-TF genes can help us identify and annotate pre-
viously unknown proteins involved in transcriptional regulation
and deepen our understanding of the features defining AD
strength in plants.

Here, we assess the transcriptional activity of predicted pADs
derived from non-TF proteins from yeast and plants. We gener-
ated a library of 18,000 synthetic TFs carrying predicted pADs
from non-TF genes with pADs derived from Saccharomyces cer-
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evisiae (S. cerevisiae) and Arabidopsis thaliana (A. thaliana). We
show that 753 (89%) of 846 parent genes in the library contain
pADs capable of promoting transcription in yeast. Notably,
pADs were not limited to nuclear genes, and many pADs were
found in a wide range of protein families localized to other organ-
elles. We find a positional distribution of key AAs that make large
contributions to pAD activity, providing insight into sequence
“grammar.” Furthermore, we show how strong pADs from the li-
brary activate transcription in plants, marking them as universal
pADs. Our large interspecies dataset provides both the founda-
tional knowledge to explore the role of pADs in non-TFs and a
large set of new pADs that can be readily integrated into genome
engineering efforts across phylogenetically diverse eukaryotes.

RESULTS

Characterization of a library of non-TF ADs mined from
yeast and plant proteomes

We aimed to systematically discover previously uncharacterized
pADs derived from non-TF proteins in two model eukaryotic sys-
tems, A. thaliana and S. cerevisiae. In previous work, we have
shown that AD predictors derived from fungal data can accu-
rately predict ADs in plant TFs and that plant ADs function in
yeast.® Here, we leveraged this result to predict activators in
plant and yeast proteins, followed by high-throughput experi-
mental validation in yeast.

To extract potential ADs from both proteomes, we utilized
PADDLE, a neural network model capable of predicting acidic
ADs in 53-AA-long peptides.’® We computationally chopped
each proteome in 53 AA tiles spaced every one residue,
yielding 9,211,910 tiles in A. thaliana and 2,646,422 tiles in
S. cerevisiae derived from 27,082 and 6,455 proteins, respec-
tively (Figures 1A and 1B; Data S1). We used PADDLE to predict
the potential of all tiles to activate transcription. We then used TF
databases for both species—PlantTFDB v5.0 and Yeastract+—
to remove all tiles derived from TF sequences.”*?* We found that
tiles from non-TF genes had a similar dynamic range of predicted
activity as tiles from TF genes (Figures S1Aand S1B), and in Ara-
bidopsis, the strongest predicted tile occurred in a non-TF gene
(AT5G07570.1). We defined all genes that we mined tiles from as
parent genes because multiple tiles can come from a single pro-
tein sequence. We then selected 12,000 tiles from A. thaliana and
6,000 tiles from S. cerevisiae with the highest predicted activa-
tion score, yielding a 18,000-tile library derived from 447 Arabi-
dopsis and 402 yeast parent proteins, respectively. We chose
to include overlapping tiles to increase accuracy and resolution.
To gauge the subcellular localization of parent proteins of the li-
brary, we utilized SUBAS for Arabidopsis and YeastGFP/YPL+ to
annotate localization.?>’ There was a total of 214 parent pro-
teins localized to the nucleus in Arabidopsis and 107 in yeast.
Non-nuclear genes were localized throughout all subcellular
locations in both species (Tables S1 and S2). This diversity of
localization suggests that peptides predicted to be ADs occur
throughout various organelles across both proteomes.

To experimentally characterize and validate our library, we
used a previously established expression system utilizing syn-
thetic TFs in yeast.'® In this expression system, each tile is fused
to a synthetic TF, consisting of (1) mCherry for normalization of
TF concentration to generated reporter signal as a N-terminal
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Figure 1. Proteome-wide characterization of pADs mined from non-TF plant and yeast proteins

(A and B) Histogram showing the PADDLE predicted activity of all 53 amino acid tiles in (A) S. cerevisiae and (B) A. thaliana proteome. Inlet figures show the
magnified areas of the histogram the putative AD candidates for the libraries were chosen from (marked in red).

(C) The 12,000 strongest A. thaliana and 6,000 strongest S. cerevisiae tiles were characterized as a synthetic TF library in S. cerevisiae. Activator activity was
calculated by abundance of barcodes in bins established during FACS sorting. DBD, DNA-binding domain; EBD, estrogen binding domain.

(D-F) (D) Activity of every tile as determined by FACS and consecutive barcode sequencing across eight bins. Red bar indicates activity of no-AD controls.
Predicted activity vs. experimentally observed activity of all tiles from (E) S. cerevisiae and (F) A. thaliana. SP, Spearman’s R.

fusion, (2) the orthogonal murine Zif268 DBD, (3) a human estro-
gen response domain to make the system inducible with B3-estra-
diol, (4) the 53-AA-long AD candidate, and (5) a unique barcode
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in the 3’ UTR marking candidate identity in the library (Figure 1C).
The associated reporter consists of six copies of the Zif268 bind-
ing sites upstream of a modified GAL1 promoter driving GFP.2®
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Both the reporter and the synthetic TF were integrated into the
genome of S. cerevisiae to reduce expression variability. We
used fluorescence-activated cell sorting (FACS) to sort the li-
brary (see STAR Methods), and experimentally validated the ac-
tivity of 17,553 tiles (97.5% of total library) from 846 parent genes
with high reproducibility between replicates (Pearson’s r = 0.82)
(Figure S2; Tables S3 and S4). Multiple DNA barcodes were used
for each tile to further measure the variability resulting from mul-
tiple integrations, thereby increasing accuracy of measurements
as previously shown.'®

The experimental activity of our library allowed us to evaluate
the accuracy of PADDLE predictions. In the PADDLE training da-
taset, ~30% of TF-derived tiles showed activity, and the model
achieved reliable qualitative and quantitative prediction of ADs
(~10,400 tiles, Pearson’s r = 0.81). In our library, tile activity
ranged over three orders of magnitude with 56.5% of the library
showing significant activity above no-TF control levels (Fig-
ure 1D). This was the largest fraction of active tiles we have
observed using this system.®'® Parts of the library activated
transcription equally or stronger than Gcn4-AD and -VP16-AD
controls (Figures S3A and S3B). We found 89.0% of parent
genes (753 out of 846) of tiles in our library to contain at least
one tile with activator activity, demonstrating that tiles that can
function as ADs are widespread throughout non-TF genes.
This result shows how PADDLE can, in most cases, correctly
localize pADs in proteins but its architecture, which predicts
AD likelihood and then extrapolates activity predictions, is not
rigorous enough to predict both qualitative and quantitative as-
pects of ADs. Overall, we identified 9,911 pADs derived from
non-TFs, providing a rich resource for engineering efforts.

Single-AA tiling unravels positional effects and key
residues dictating AD activity

Although the large fraction of active tiles supports the ability of
PADDLE to localize pADs in protein sequences, the quantitative
predictions of pAD strength did not correlate as strongly with our
experimental results (Spearman’s r = 0.35, Pearson’s r = 0.33)
(Figure S4). Notably, the PADDLE algorithm predicted activity
with higher accuracy in A. thaliana than in S. cerevisiae AD pop-
ulations with moderate Spearman correlation coefficients of 0.34
and 0.28, respectively (Figures 1E and 1F). We found that in 13%
of parent genes, the strongest predicted tile precisely overlap-
ped with the strongest experimental tile. Hence, PADDLE
correctly identifies the general location of pADs but struggles
to accurately predict the quantitative strength of the respective
pAD and precise pAD boundaries. Our results support previous
evidence that there are positional effects of AA residues dictating
pAD activity and demonstrate that PADDLE cannot resolve these
effects.

To further investigate the discrepancies between PADDLE
predictions and observed activities, we examine how AA
composition and positional context may play a role in defining
AD activity. We recovered previously observed relationships be-
tween AA sequence and activity, i.e., that W, F, L, D, and E are
associated with activity and K and R are not.>'*?**° To compare
tile populations, we split the entire library into four equal quar-
tiles, ranging from weakest to strongest activity. Notably, the
average AA composition of tiles in all four quartiles was nearly
identical (Figure S5). This result emphasizes the power of this da-
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taset to probe sequence grammar. We found that the enrichment
of acidic-aromatic dipeptides in strong ADs was reproducible in
our dataset (Figures S6A-S6D; Data S2).° We hypothesized that
the positional distribution of functional AAs is key to AD activity.

To gauge the positional information encoded in each quartile,
we measured the local density of all residues along each tile of
every quartile, where density is the frequency of the respective
AA in a 5 AA window. We then grouped AA groups linked to
AD activity and computed the density at each position of the
53 AAs of every tile of each respective quartile. We found the
density of W, F, Y, and L residues, which are closely linked to
AD activity, to be overall higher in the highest activity quartile,
and density was higher in the C terminus when compared with
tiles in other quartiles (Figures 2A and S7A). This finding supports
the acidic exposure model, which predicts that hydrophobic res-
idues at the C terminus will be more exposed to solvent and
make larger contributions to activity. All quartiles had a low den-
sity of hydrophobic residues in the N terminus, suggesting that
PADDLE has partially learned this signal. Correspondingly, the
fourth quartile displayed a weaker density of acidic residues in
the C terminus and was more evenly distributed throughout the
entire tile, whereas the weaker quartiles had a stronger enrich-
ment of acidic residues in the C terminus and depletion in the
N terminus (Figures 2B and S7B). These results support the hy-
pothesis that the occurrence of key AAs—in this case, hydropho-
bic and acidic residues—alone does not correlate with activity
but rather their distribution along the AD, further supporting the
acidic exposure model.® The dip in acidic residues at the
extreme C terminus in the fourth quartile was surprising to us
because we and others have previously shown that acidic
residues near or next to aromatic residues boost activity. We
speculate that the C terminus is highly exposed, both by virtue
of being on the end and because of the additional acidity of
the C-terminal backbone.

We further studied the role of intrinsic disorder on activity in
our library. Virtually all ADs are intrinsically disordered, and
the acidic exposure model suggests that more disordered se-
quences are likely more active. To gauge the disorder of tiles
fused to synthetic TFs in the respective quartile, we utilized the
disorder predictor Metapredict V2.°" We found that all quartiles
displayed increased disorder in their N terminus, suggesting
that initial disorder in the tile is important for activity (Figure 2C).
In all quartiles, disorder dropped drastically in the C terminus and
the fourth quartile showed increased disorder throughout the
entire tile (Figure S8). The disorder in the N terminus implies
that an entropic spacer or expanded linker between the estrogen
binding domain and the AD increases activity. It is further
possible that some sequences in this library may be interacting
with the estrogen binding domain, which could drive collapse
and decrease activity. The drop in predicted disorder at the C
terminus is likely the consequence of the increased density of ar-
omatic residues (Figure 2C). In consequence, current predictive
models are still missing necessary positional information of key
residues in ADs that need to be incorporated into future network
training.

High-throughput studies usually scan protein sequences by
tiling in step sizes of >10 AAs.”'* Here, we decided to tile at
single-AAresolution, allowing us to study how single AA
changes both from losing and gaining one AA during tiling
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Figure 2. Tiling pADs with single-amino-acid resolution deciphers positional distribution of key amino acid groups
(A and B) Density of functional amino acids across every position of every tile in the quartile with the strongest and weakest activity (4,388 sequences per quartile).
Density is calculated in a five amino acid window for each position along the pAD as the average of all (A) hydrophobic residues (W, L, F, and Y), (B) acidic residues

(D and E). Error bars indicate the 95% confidence interval.

(C) Mean predicted disorder at every position of tiles fused to the synthetic TF in respective quartiles predicted by MetapredictV2. Error bars indicate the 95%

confidence interval.

(D) Example of PADDLE predicted vs. measured activity in single-amino-acid resolution of regions of interest (AT1G14630).

(E and F) Tiling protein sequences with single-amino-acid resolution allows us to observe the effects on activity when (E) gaining a C-terminal amino acid or
(F) losing an N-terminal amino acid. Blue colored boxes indicate amino acids significantly decreasing activity, red boxes indicate amino acids significantly
increasing activity (p < 0.05) as measured by Mann-Whitney U test of the respective amino acid against M, T, N, and P.

directly affect AD activity because the rest of the tiles fully over-
lap (Figure 2D). At the C terminus, gaining the hydrophobic res-
idues (W, F, and L) significantly enhanced activity as expected
(Mann-Whitney U test, p < 0.05). Notably, isoleucine, which is
not normally linked to enhancing activity, had a stronger posi-
tive effect on activity than acidic residues (Figure 2E). The
enrichment of isoleucine was only observed in the C-terminal
position tiles (Figure S9), suggesting an unknown role of this
residue in AD activity. At the N terminus, all effects were smaller
than for the C terminus, but losing hydrophobic residues or
aspartate significantly decreased activity, while losing positively
charged residues like arginine and lysine significantly increased
activity, following known rules of activity (Figure 2F).>® Overall,
we show that the AA composition alone cannot fully explain AD
activity, with the position and distribution of key AAs playing a
critical role.
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A genome-wide compendium of coactivator candidates
in plants

Coactivators provide an interface between TFs and RNA poly-
merase and are essential for the activation of gene expression.
Although there has been significant attention on characterizing
TFs at a genome scale, only a limited number of coactivators
have been characterized in plants, limiting our ability to fully un-
derstand how they regulate transcription. Artificially recruiting
coactivators and chromatin regulators to DNA can directly
modulate transcription.>*?> Moreover, coactivators can contain
ADs. We reasoned that pADs could occur in any gene involved
in transcription because nuclear non-TF genes with pADs repre-
sent potential coactivators. Based on subcellular localization
data, our library contains pADs from 107 and 200 nuclear non-
TF genes in yeast and Arabidopsis, respectively, allowing us to
explore their potential coactivator function (Figures 3A and 3B).
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Figure 3. Non-nuclear proteins occurring throughout organelles have predicted pADs in both yeast and plants
Cell schematics with occurrence of parent genes with pADs in the different organelles and cellular structures in (A) S. cerevisiae and (B) A. thaliana. GO terms
associated with nuclear genes in (C) S. cerevisiae and (D) A. thaliana. GO terms associated with non-nuclear genes in (E) S. cerevisiae and (F) A. thaliana.

Coactivators have been more thoroughly studied in yeast than
in plants; hence, we benchmarked the occurrence of pADs in nu-
clear non-TF genes from yeast to identify previously unanno-
tated coactivator candidates, as well as provide potential re-
gions with AD activity in known coactivators with ADs. To
provide a more comprehensive list of genes with potential ADs,
we included parent genes that yielded the 50% strongest
pADs in the library. We used Gene Ontology (GO) terms to gauge
the function of candidate genes and found most GO terms to be
linked to transcription, such as “transcription by RNA polymer-
ase II,” “chromatin organization,” “regulation of cell cycle,”
and “histone modification” (Figure 3C; Table S5). As expected,
we characterized tiles derived from known coactivators in yeast,
namely, IFH1, MED2, ROX3, and NRS1.***” We also found

pADs in chromatin regulators, namely, HFI1, CHD1, SFH1,
STH1, SDS3, CTI6, and INO80.%*-*2 Tiles from other proteins
involved in transcription included transcription initiation factor
elF4G1, TATA binding factors TAF1, TAF14, and BDF1, and gen-
eral TF TFG1.4“*" Notably, we found pADs in two genes of un-
known protein family and function (YBLO29W and YML108W),
which may function as potential coactivators. Candidate genes
were also associated with the GO terms “rRNA processing”
and “chromosome segregation,” raising the question of what
roles ADs might play in these proteins. Overall, previous obser-
vations of ADs in coactivator complexes and chromatin regula-
tors were supported by our results. Hence, our approach can
be used to generate a list of putative genes with regulatory func-
tions for further characterization.

Cell Systems 15, 662-672, July 17, 2024 667




¢? CellPress

OPEN ACCESS

Coactivators in plants have been far less studied and mostly
annotated based on homologs from other eukaryotes.*®*°
Hence, the parent genes of tiles from Arabidopsis contained
far fewer hits in known transcription associated genes. Of the
211 nuclear non-TF hits, only four had previously been validated
to be coactivators, highlighting the opportunity to discover puta-
tive plant coactivators. We found pADs in the coactivators
MED13 and LNK1/LNK2/LNK3,%°"°2 the chromatin regulators
HAF2 and SCS2A/B,**°* and four transcription elongation fac-
tors from family S-ll. We also found pADs in three members of
the VQ family of suspected transcriptional coregulators that
interact with WRKY family TFs during abiotic stress response
and four CCT-motif-containing proteins that have been linked
to transcriptional elongation in other eukaryotes.’® Notably,
only 23 genes have GO terms linked to transcription with terms
such as ‘“chromatin binding,” “nucleic acid binding,” “DNA
binding.” The most abundant GO term was “unknown molecular
functions” with 89 associated genes, highlighting putative coac-
tivators that have not yet been characterized (Figure 3D,
Table S6). Other nuclear genes with pADs were either not previ-
ously associated with transcription or have never been studied
before, suggesting that there may be plant-specific coactivators
that cannot be annotated purely based on sequence homology
to other eukaryotes. Our results supply an extensive list of puta-
tive coactivators in Arabidopsis, which should accelerate the
proper characterization of such proteins, ultimately providing
useful targets to modulate and engineer key traits in plants.

Non-nuclear proteins throughout all organelles

contain pADs

Non-nuclear proteins can contain ADs and influence transcrip-
tion via relocation to the nucleus as exemplified in the examples
of Notch1 and beta-catenin.'®"'" We investigated the prevalence
of pADs that occur in proteins outside of the nucleus. We again
only focused on parent genes harboring tiles of the 50% stron-
gest experimentally validated pADs, yielding 136 Arabidopsis
and 207 yeast non-nuclear genes (Figures 3A and 3B). We found
46 and 126 cytosolic genes in Arabidopsis and yeast, respec-
tively. These genes are candidates for relocalization into the nu-
cleus, similar to Notch1 and beta-catenin. Besides these candi-
dates in Arabidopsis, we found AD containing genes in the
chloroplast (19), plasma membrane (15), mitochondria (13), Golgi
(9), endoplasmic reticulum (9), peroxisome (2), vacuole (2), and
extracellular space (9). In yeast, there were candidates in the
endoplasmic reticulum (12), vacuole (14), bud neck (11), mito-
chondria (10), the vacuolar membrane (3), and multiple non-nu-
clear organelles (26). Overall, 90 Arabidopsis and 101 yeast
non-nuclear genes with ADs are non-cytosolic and are targeted
to a specific organellar compartment, raising the question of
whether they can be relocated to the nucleus to modulate
transcription.

To gauge the role of all non-nuclear candidate genes, we stud-
ied their GO terms in both species. In yeast, GO terms were un-
related to transcription and included both metabolic terms, such
as “lipid metabolic process,” and signaling terms, such as
“response to chemical.” Many GO terms were linked to architec-
ture of the cell such as “meiotic/mitotic cell cycle,” “cytoskel-
eton organization,” and “organelle fission” (Figure 3E;
Table S7). In Arabidopsis, the two most abundant molecular
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function terms were linked to “protein binding” and “general
binding,” followed by “catalytic activity” and “unknown molecu-
lar function” (Figure 3F; Table S8). The inclusion toward GO
terms linked to binding interactions in Arabidopsis raises the
question of whether AD-like peptides have been co-opted in
other organelles to facilitate protein-protein interactions outside
of the nucleus. In principle, isolating proteins in topologically
separate compartments enables the reuse of the same pro-
tein-protein interactions without crosstalk. This highlights the
diverse functionalities of proteins with AD-like sections in both
species and suggests that AD-like peptides may perform other
protein-protein interactions outside the nucleus.

A set of universal eukaryotic ADs

Our library gave us the unique opportunity to validate the trans-
ferability of yeast-derived pADs into plants and establish poten-
tial universal activators that function in phylogenetically diver-
gent eukaryotes. We characterized 51 of the strongest pADs in
the library—31 derived from Arabidopsis and 20 from yeast—in
the plant Nicotiana benthamiana using an agroinfiltration-medi-
ated transient expression system that we previously established
(Table S9).° In this system, each tile is fused to the yeast GAL4-
DBD and localized to a synthetic minimal promoter with five
concatenated GAL4 binding sites to drive GFP (Figure 4A),
modulating GFP expression. A constitutively expressed dsRed
is used to normalize the signal. To benchmark the potency of
the tiles, we also tested the strong activator VP16 and VPR (a
fusion of the three strong activators VP64, p65, and RTA) as
GAL4 fusions. Of 51 pADs tested, we found 45 (88.2%) to signif-
icantly increase GFP expression over the reporter only control,
five were stronger than VP16, and four were statistically indistin-
guishable from VPR (Mann-Whitney-U test, p < 0.05, n = 48) (Fig-
ure 4A; Table S10). Notably, our tested pADs span the entire dy-
namic range of possible activities in planta, from no observed to
very strong activity, highlighting the importance of remeasuring
pADs in planta. Overall, we discovered short, universal pADs
from non-TF proteins that perform similarly to longer state-of-
the-art ADs, such as VPR, that are readily available for further eu-
karyotic engineering efforts. Shorter and stronger ADs are in de-
mand for space-limited synthetic biology engineering strategies,
such as viral delivery methods.

Our agnostic approach to mapping pADs in non-TF genes al-
lowed us to mine strong ADs from proteins that have not previ-
ously been associated with transcription, and we show that
these ADs function in plants. As an example, we localized and
validated pADs in known plant coactivators, namely, one CCT-
motif containing protein from Arabidopsis (AT1G04500), coacti-
vator LNK3 (AT3G12320), and SAGA complex subunit 2A
(AT2G19390), which showed activity similar to the VP16 control.
Furthermore, the strongest pAD in plants was derived from an
Arabidopsis uncharacterized 2Fe-2S ferredoxin-like superfamily
protein (AT1G50780). The second strongest pAD was derived
from a hypothetical protein (AT2G29920). Overall, pADs in non-
TF proteins involved in transcription and in non-nuclear proteins
function in planta.

Eukaryotic TFs utilize conserved general transcription ma-
chinery (e.g., Mediator) to facilitate transcription, making new
TF parts a potential resource to develop tools for the control
of transcription across eukaryotes. For our plant experiments,
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Figure 4. Cross-validation of strong pADs yields candidates with similar activities to gold standard activators

(A) Activity of 51 of the strongest tiles measured in yeast in N. benthamiana. Each data point represents the expression of GFP normalized by a constitutively
expressed dsRed. VP16 and VPR serve as positive AD controls. EV, empty vector control; Gal4, Gal4-DBD without a tethered AD.

(B) Mean normalized in planta activity of pADs in (A) sorted by activity strength in yeast.

(C) Mean normalized in planta activity of pADs in (A) relative to predicted activity.

we chose only the strongest tiles from our yeast experiments,
expecting that, if they utilize general conserved transcription
machinery, activities in plants should be similarly strong. How-
ever, we observed a poor correlation between the rank order of
yeast pAD vs. the rank order in plants (Figure 4B). PADDLE pre-
dictions correlated worse with observed pAD activity in plants
than in yeast (Figure 4C). Our results suggest that although
PADDLE can localize ADs in parent genes in both plant and
yeast proteins with 89.0% accuracy, there are mechanistic fea-
tures of plant transcription not fully captured by PADDLE that
prevent accurate prediction of AD strength. We conclude that
future work is needed to generate independent plant AD data-
sets to train models that can predict the strength of plant ADs
with higher accuracy to enable the full potential of mining plant
proteomes.

DISCUSSION

High-throughput studies have largely focused on ADs found in
TFs and protein classes known to be involved in transcription,
which has partly biased our understanding of the biological
role of such peptides. By mining proteomes for pADs from
non-TF genes and demonstrating their activity in yeast and
plants, we reveal that pADs frequently occur across entire pro-

teomes and outside the nucleus, going beyond the canonical
description of ADs in TFs that mediate nuclear transcription.
Studying nuclear non-TF pADs from the well-studied model
yeast expands our understanding of which genes contain
AD-like peptides and where they are localized. We found a
direct correlation between nuclear genes containing pADs
and their likelihood to function as coactivators in yeast. Our
dataset provided the motivation to extrapolate this observa-
tion to plants, and we annotated over 200 putative coactiva-
tors that may be involved in many facets of plant transcrip-
tional regulation. Due to the throughput limitations of our
experimental setup, we focused on the strongest 18,000 tiles
from both species, leaving a far larger sequence space of me-
dium or weak pADs unstudied. Future work will focus on
experimentally validating larger sets of predicted pADs in
both species and help understand how frequent pADs occur
throughout proteomes.

The recent establishment of large experimental datasets of
ADs in yeast has led to the development of multiple neural net-
works that attempt to localize and predict the activity of ADs
from protein sequences.>'* In this study we utilized one of
these models PADDLE to build and test our library.’* We
found that PADDLE can correctly localize pADs throughout
entire proteomes; however, the capabilities of PADDLE to
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predict the quantitative activity of pADs fell short in compari-
son with the high correlation value that was reported in the
original study. We further show that plant tiles that functioned
as strong ADs in yeast, indeed, largely functioned in plants but
with divergent degrees of activity. This discrepancy indicates
that, although general eukaryotic mechanisms for the regula-
tion of transcription between plants and yeast are conserved,
there are intricacies in plants that models trained on yeast
data cannot resolve. These intricacies parallel leucine-depen-
dent ADs from metazoans that are missing in yeast.'® It further
highlights that the flexible positional and compositional
sequence requirements of ADs need to be explored further
in their native context.

Recently, there has been significant interest in utilizing
genome engineering approaches in non-model eukaryotes that
have traditionally been recalcitrant to genetic studies. Such ef-
forts are constrained by the dearth of characterized genetic parts
that reliably function across phylogenetically diverse eukaryotes,
restraining the application of high-throughput genetic screening
methods, such as CRISPR activation (CRIPSRa). Our results
highlight how computational models for predicting ADs are still
in their infancy. Sequences with very similar AA composition
can largely differ in activity based on AA arrangement. Future
work is needed to further unravel this sequence grammar to
better understand AD function and guide the construction of
next-generation predictive models. In the long term, we antici-
pate building models for species-specific activity. Such knowl-
edge will help establish design principles for ADs, which will
ease the implementation of new synthetic biology tools and
genome-scale activation assays, such as CRISPRa screens in
plants and other non-model organisms.

At their core, ADs enable protein-protein interactions
with transcriptional machinery to facilitate transcription. We
observed an abundance of peptides with AD-like properties
throughout entire proteomes in two distantly related eukary-
otes, suggesting three possible roles of these peptides. (1)
Their parent proteins moonlight into the nucleus to facilitate
transcription. (2) The broad sequence space that allows AD
activity has led to statistical occurrence of peptides with AD-
like properties. (3) ADs are an instance of a larger class of pro-
tein-protein interaction domains that perform many functions.
Option one is supported by anecdotal evidence of proteins
normally localized to the cytosol and mitochondria being im-
ported into the nucleus to promote transcription during
signaling cascades.'%'"°5>7 Option two is supported by large
AD screens that show that up to 1% of random sequences
have AD activity when localized to promoters.®®°° We believe
that option three entails the most logic. ADs do not rely on
structure to facilitate binding, they form multiple weak interac-
tions with coactivators.®®" We believe that compartmentali-
zation allows the “recycling” of AD-like interactions in different
organelles. Of note, the GOs predicted from physically sepa-
rated plant organelles (e.g., mitochondria and chloroplast)
are highly enriched in proteins involved in protein binding, sup-
porting that these interactions could be used for different
functions independent of transcription. We speculate that
the versatile nature of ADs extends their role beyond nuclear
transcription and blurs the distinction of ADs as a feature
unique to TFs.
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Detailed methods are provided in the online version of this paper and include
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o PADDLE prediction of every 53 amino acid tile in the proteome of A.
thaliana and S. cerevisiae
o Plasmid library construction
o Yeast Library Construction and measurement
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Agrobacterium fabrum strain GV3101 Joint BioEnergy Institute N/A

Chemicals, peptides, and recombinant proteins

B-estradiol Sigma-Aldrich 50-28-2
Acetosyringone Sigma-Aldrich D134406

Critical commercial assays

Monarch PCR and DNA kit NEB T1030S

Zymo YeaSTAR kit Zymo Research #D2002

Deposited data

lllumina sequencing of barcoded library GEO GSE247147

PADDLE predictions and code for visualization Zenodo Zenodo: 11151016
Experimental models: Organisms/strains

DHY211 Staller et al.® Staller et al.®
Saccharomyces cerevisae strain FY5 Staller et al.® Staller et al.®
Oligonucleotides

Table S12 N/A N/A

Recombinant DNA

pms6370 https://registry.jbei.org JBx_082980

pMVS219 RRID https://www.addgene.org/99049/).Addgene_99049
Software and algorithms

Python v3.9.5 Python.org N/A

S4Pred Moffat and Jones®” https://bio.tools/psipred
IUPRED Erdds et al.®® https://iupred3.elte.hu/
PADDLE Sanborn et al.'* Sanborn et al.'
Metapredict v2 Emenecker et al.®* Emenecker et al.®*
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr. Patrick

M. Shih (pmshih@berkeley.edu).

Materials availability

All plasmid materials and bacterial strains will be made available through the Inventory of Composable Elements (https://registry.jbei.

org/). Sequences and raw data are available as supplemental information.

Data and code availability

@ The lllumina sequencing data have been deposited under GEO accession GSE247147 and are publicly available as of the date
of publication. Accession numbers are listed in the key resources table. All flow cytometry data reported in this paper will be

shared by the lead contact upon request.

@ All code used for data analysis and associated data files are available on Zenodo: 11151016
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL DETAILS

N. benthamiana growth conditions

Wild type N. benthamiana plants were obtained from the in-house seed bank at the Joint BioEnergy institute. N. benthamiana
plants were grown in SunGro Horticulture Professional Growing Mix #1 for four weeks in Percival-Scientific growth chambers at
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25°C in 16/8-hour light/dark cycles and 60% humidity at ~100 pmol of photons m~2 s~". Plants were fertilized two weeks after germi-
nation with MiracleGro®. Post infiltration N. benthamiana plants were maintained in the same growth conditions.

Bacterial and yeast growth conditions

Agrobacterium fabrum strain GV3101 was obtained from the Inventory of Composable Elements (ICE) at the Joint BioEnergy Institute.
Generated binary vectors were transformed into A. fabrum strain GV3101 and selected on LB plates (50 ng/mL kanamycin, 30 ung/mL
gentamicin, and 100 pg/mL rifampicin). Selected transformants were inoculated in liquid LB media with the same antibiotic concen-
trations. Yeast strains were grown in synthetic complete glucose media with G418 (200 ng/ml) and/or NAT (100 pg/ml) at 30°C.

METHOD DETAILS

PADDLE prediction of every 53 amino acid tile in the proteome of A. thaliana and S. cerevisiae

We predicted the AD activity of all proteins of the reference proteome of A. thaliana (Colombia ecotype) and S. Cerevisiae (strain
S288C) which we obtained from TAIR (Araport11) and SGD (S288C Genome release 64-3-1), respectively. Both proteomes with
associated predictions are available in Data S1 and can be loaded using Load_predictions_SI_data1l.ipynb. We predicted the sec-
ondary structure of every full-length protein using S4PRED and their structural disorder with IUPRED3 (long and short mode).?%%° We
then tiled the protein sequences and structural predictions into consecutive 53 amino acid tiles and predicted their AD activity using
the PADDLE API for Python as described.'* We ran all predictions in Python v3.9.5 with associated APIs and our pipeline is available
in the supplemental data package. As we wanted to focus on tiles from non-TF genes, we utilized the TF databases PlantTFDB v5.0
and Yeastract+ to filter out any tiles derived from TFs. We selected tiles from genes that achieved a PADDLE predicted activation >30,
yielding 12,000 A. thaliana tiles and 6,000 S. cerevisiae tiles with a dynamic range of PADDLE predicted activation strength between
17 and 138.

Plasmid library construction

The library of both Arabidopsis and Saccharomyces ADs were generated by mapping the tiles back to their native DNA sequence in
the respective reference genomes, retrieved from TAIR and SGD (all sequences in Table S1). 18,000 unique DNA oligos coding for 53
amino acid long putative activators were synthesized in one oligo pool by Twist Bioscience. Each oligo contains a 24 bp upstream
primer (GCGGGCTCTACTTCATCGGCTAGC), 159 bp encoding the activator candidate, a 21 bp primer (TGATAACTAG
CTGAGGGCCCQG) with four stop codons in 3 frames and the Apal site. Specifically, we used 75 ng of template and 12 rounds of
PCRin 16 parallel 50 uL reactions using primers LC3.P1_Lib_Hom_up_5’, which adds homology arms and YL_randBCs_R1_3’ which
adds random 11 nt barcodes and downstream homology arms (NEB Q5 polymerase Tm=70C). The PCR product was pooled and
cleaned using the Monarch PCR and DNA kit, followed by product visualization on a 1% Agarose gel. Vector pMVS219 was linearized
using Nhel, Ascl and Pacl and used for library assembly. The assembly was performed using 100 ng of linearized backbone and
7.5 ng of PCR product using NEB Hifi DNA Assembly Master Mix in 8, 10 uL reactions. Assemblies were electroporated into
DH5B cells (NEB C3020K), and we recovered >1,000,000 colonies.

The plasmid sequence of the library assembly vector pMVS219 is available on addgene (https://www.addgene.org/99049/).

Yeast Library Construction and measurement

To ensure singular constructs per cell, we introduced our library into the URA3 locus of strain DHY211 (MATa, MKT1(30G,)
RMET1(INS-308A) TAO3(1493Q), CAT5(91M) MIP1(661T), SAL1* HAP1*). Employing the established yeast transformation method,®®
we subjected the transformation to 30 minutes at 30 °C followed by 60 minutes at 42 °C. To minimize potential PCR errors, we per-
formed Sall and EcoRlI digestion on the plasmid library, releasing the section encompassing the ACT1 promoter, the synthetic TF, and
the KANMX marker. Simultaneously, Pacl digestion was conducted to cleave plasmids devoid of an activation domain variant and
barcode insert, thereby reducing the occurrence of transformants with inactive TFs. Directed integration into the URAS locus was
guided by 500 bp upstream homology spanning the URA3 and ACT1 promoters, along with a corresponding 500 bp downstream
homology region spanning the TEF and URA3 terminators. These regions were PCR amplified from pMVS 295 (Strader 6161) and
pMVS 296 (Strader 6768), a generous gift from Nick Moffy and Lucia Starder. Transformation utilized a molar ratio of 1:3 for linearized
library to homology arms, with 28 umol of linearized library per reaction. The transformed library was plated on YPD, followed by an
overnight incubation at 30°C, and subsequent replica-plating onto freshly prepared SC G418 plates. Employing this process across
80 transformation reactions yielded an estimated >1,000,000 individual colonies. Subsequently, the transformants were collectively
mated with an FY5 strain containing the reporter integrated into the uncertain ORF, YBR032w. Diploids were selected on YPD with
G418 (200 pg/ml) and NAT (100 pg/ml) (strain MY436 YBR032w::P3_GFP NAT S288C), resulting in prototrophic diploids. These
110,000 yeast transformants were mated in batches, and prior to the final experiment, batches were pooled, and multiple aliquots
were frozen.

Fluorescence Activated Cell Sorting and library preparation

Each sorting experiment was preceded by thawing a frozen glycerol stock, followed by overnight growth in SC+G418+NAT. Cultures
were cultivated in synthetic complete (SC) dextrose media at 30 °C.%° Prior to fluorescence-activated cell sorting (FACS),
overnight cultures were diluted (1:5) into SC+ 1 uM B-estradiol and incubated for 3.5-4 hours at 30 °C. We sorted the yeast library
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on a Aria-fusion cell sorter at the UC Berkeley Flow Cytometry core facility. We used the parent yeast strain with the reporterand a TF
lacking an activation domain as a negative control to determine autofluorescence and baseline mCherry levels. We sorted 1 million
cells of the synthetic TF library into 8 bins with each bin roughly covering 11 % of the entire observable population in the GFP channel.
To test reproducibility, we sorted another 500,000 cells from each bin.

Sorted cells were grown overnight in SC at 30 °C and gDNA was extracted with the Zymo YeaSTAR (#D2002) kit. Barcodes were
amplified by PCR (CP21.P14: TCCTCATCCTCTCCCACATC, CP17.P12: GGACGAGGCAAGCTAAACAG, NEB Q5 for 20 cycles, Tm
67 °C). We added phasing nucleotides as well as overhangs for indexing primers using primer mixtures SL5.F[1-4] and SL5.R[1-4]
(NEB Q5 for 20 cycles, Tm 62 °C). We finally added dual indexing primers using the i5 and i7 system from lllumina (NEB Q5 for 20
cycles, Tm 65 °C). We then performed a bead cleanup. We sequenced the library on an lllumina Novaseq 6000 system with
2x150 bp paired end reads.

We assessed library performance against known ADs from GCN4 and VP16 on a BD Accuri™ C6 flow cytometer (BD Biosciences).
All strains were grown in SC+G418+NAT at 30 overnight and diluted (1:5) into SC+/- 1 uM B-estradiol and incubated for 3.5-4 hours at
30 °C. Samples were washed with cold 1x PBS (137 mmol NaCl, 2.7 mM KCI, 1.8 mM KH,PO,4, 10 mM Na,HPQO,) once before mea-
surement. Per sample 100,000 events were recorded and analyzed using the Python fcsparser package.

Plant experiments

Generated binary vectors were transformed into Agrobacterium fabrum strain GV3101. Selected transformants were inoculated in
liquid media with appropriate selection the night before the experiment. A. fabrum strains were grown until ODgog between 0.8
and 1.2 and were mixed equally (final ODggo = 0.5 for each strain) with the strain harboring the assay reporter construct to a final
ODggo = 1.0. Cultures were centrifuged for 10 min at 4000 g and resuspended in infiltration buffer (10 mM MgCl,, 10 mM MES,
and 200 uM acetosyringone, pH 5.6). Cultures were induced for 2 h at room temperature on a rocking shaker. Leaves 6 and 7 of
4-week-old N. benthamiana plants were syringe infiltrated with the A. fabrum suspensions. Post infiltration N. benthamiana plants
were maintained in the same growth conditions as described above. Leaves were harvested three days post infiltration and 16
leaf disks from two leaves and 3 plants total per construct were collected. The leaf disks were floated on 200 pL of water in 96
well microtiter plates and GFP (Ex. A = 488 nm, Em. A =520 nm) and RFP (Ex. A = 532 nm, Em. A = 580 nm) fluorescence measured
using a Synergy 4 microplate reader (Bio-tek). The reporter construct for the screen was pms6370 containing GFP and dsRed expres-
sion cassettes. GFP expression was driven by a fusion of five previously characterized GAL4 binding sites with the core WUSCHEL
promoter.®” GFP expression was normalized using dsRed driven by the constitutive MAS promoter on the same plasmid.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of barcodes and inferring activity

After demultiplexing samples, we kept only the reads that contained a perfect match to a designed tile. For each set of 8 sorted sam-
ples, we performed two normalizations. We first normalized the reads by the total number of reads in each bin. Then, for each de-
signed tile, we normalized across the 8 bins to calculate a relative abundance. We then converted relative abundances to an activity
score for each tile by taking the dot product of the relative abundance with the median fluorescence value of each bin (Table S11).
This computation is a weighted average. Tiles with less than 10 reads were not included in the final dataset. Later, post hoc analysis
suggested that tiles with at least 1000 reads were well measured.

During plasmid library construction we added random barcodes to the designed tiles. To build a map linking designed tiles to barc-
odes, we combined all the sequencing data from the 16 sorted samples. We use this map to compare two modes of analysis. First, for
the primary analysis used in the manuscript, we used only the tile sequences, effectively combining all the barcodes together and
ignoring independent transformations. Second, we repeated the analysis for each AD+barcode combination, in effect measuring
the activity of each independent transformant of each tile. The methods largely agreed (Figure S10). We determined statistical sig-
nificance thresholds to infer the number of tiles with AD activity. We calculated the statistical difference between each individual tile
with the mean of no-AD control using a one sample t-test and corrected p-values using Benjamini-Hochberg false discovery
rates (5%).

Data analysis
We analyzed and visualized the data and underlying sequences of the tiles using the following APIs in Python v3.9.5: pandas, sea-
born, matplotlib, numpy and scipy. All associated Jupyter Notebooks for producing all Figures are available on GitHub (doi: 10.5281/
zenodo.11151016). We sorted the library by activity and spilit it into four equal sized quartiles with 4388 tiles per quartile. To gauge the
composition of each tile in each quartile, we calculated the amino acid frequencies of all amino acids in each tile. For the amino acid
density analysis, we applied a sliding window size 5 along every position of each tile, averaging the frequencies of amino acid occur-
rence of each amino acid for each quartile. We chose the amino acid window size to be 5 to not bias the analysis for short AD motifs
like the 9aaTAD.®® We then grouped the amino acid frequencies based on functional groups which we defined as follows: acidic (D, E)
and hydrophobic (W, L, F, Y).

To gauge the disorder of tiles we utilized the disorder predictor MetapredictV2 which integrated the outcomes of multiple indepen-
dent disorder predictors.®* We predicted disorder of tiles when fused to the synthetic TF and in their endogenous context. Confi-
dence intervals were calculated using the seaborn pointplot function.
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Dipeptide frequencies were calculated by splitting tiles into quartiles as described before. We calculated the total occurrence of
every amino acid in the respective quartiles. We measured the frequency of every dipeptide upstream and downstream, meaning if
the first amino acid is an alanine, we accounted for all XA and AX dipeptides, where X is any of 20 twenty amino acids. The total occur-
rence of dipeptides was then normalized to the occurrence of the first amino acid in the quartile. We calculated dipeptide frequencies
with spacers of up to 8 amino acids between amino acid one and two.

We provide figures of all parent genes with annotated location of tiles with their respective predicted and experimental activity as a
resource in Data S3.

We utilized the single amino acid resolution of our tiling experiments to gauge the effect on AD activity when one C-terminal amino
acid is gained, or one N-terminal amino acid is lost. We generated a subset of tiles only including tiles that had at least one consec-
utive neighboring tile, meaning a pair of identical tiles with only one amino acid difference in the C- and N-terminus. From this subset
we calculated the change of AD activity between consecutive pairs of tiles and associated the lost and gained amino acid during the
step. The analysis was performed for the entire library independent of whether a tile was defined as an AD or not.
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