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Plant pathogens pose a continuous threat to global food production. Recent
discoveries in plantimmunity research unveiled a unique protein family
characterized by an unusual resistance protein structure that combines two
kinase domains. This study demonstrates the widespread occurrence of
tandem kinase proteins (TKPs) across the plant kingdom. An examination of
104 plant species’ genomes uncovered 2,682 TKPs. The majority (95.6%) of
these kinase domains are part of the receptor-like kinase—Pelle family, which
is crucial for cell surface responses in plant immunity. Notably, 90% of TKPs
comprise dual kinase domains, with over 50% being pseudokinases. Over
56% of these proteins harbor 127 different integrated domains, and over 47%

include atransmembrane domain. TKP pseudokinases and/or integrated
domains probably serve as decoys, engaging with pathogen effectors

to trigger plantimmunity. The TKP Atlas we created sheds light on the
mechanisms of TKP convergent molecular evolution and potential function.

Plants are essential for food production. Unfortunately, crop produc-
tionisimpacted by various biotic stresses'. The perpetual interaction
of plants and pathogens is evident in their defense and counterde-
fense strategies®. Plant immune receptors capable of recognizing
andresponding to pathogen attack include surface-localized pattern
recognition receptors (PRRs) and intracellular nucleotide-binding
leucine-rich repeat (NLR) receptors’.

Surface-localized PRRs can recognize a variety of biological pat-
terns present in pathogens as well as extracellular pathogen effector
proteins>*. The patterns are called pathogen-associated molecular pat-
terns or microbial-associated molecular patterns and include flagellin,
lipopolysaccharides and chitin®. PRRs are partitioned into receptor-like
kinases (RLKs) and receptor-like proteins (RLPs)*. RLKs comprise the
following three domains: an extracellular ligand-binding domain, a
transmembrane domain and an intracellular protein kinase domain
(KD)*.RLPs, in contrast, while having extracellular and transmembrane
domains, lack aKD within their short cytoplasmic region®.

Plant pathogens modulate plant metabolism and immune
responses to their benefit by secreting effector proteins into plant
cells. To combat this, plants employ numerous intracellular NLR recep-
tors capable of recognizing effectors and mounting effector-triggered
immunity’. NLR activation induces programmed cell death, also called
the hypersensitive response’. NLRs can directly detect pathogen effec-
torsorindirectly detect modifications of host proteins®. Notably, some
NLRs, known as NLR-integrated domain (NLR-ID) receptors, incorpo-
ratebothstrategies within their structure—direct viaintegrated domain
and indirect recognition by host protein monitoring®.

Additionally, NLRs caninteract with host kinases. The ZARI NLR,
for example, interacts with the effector target, pseudokinase ZED1,
and is capable ofidentifying several pathogen effectors’. Downstream
signaling of PRRs and NLRs overlaps and mutually potentiates each
other, despite having differing structural characteristics and identify-
ing different pathogen components'. The activation of plantimmune
receptorstriggersaseries of responses: release of calcium, an elevation
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in reactive oxygen species, the activation of MAP kinases and altera-
tions in gene transcription geared towards defense.

The discovery of the barley stem rust resistance gene Rpgil and
the wheat stripe rust resistance gene Yr15 (WTKI) prompted a new
chapterinplantimmunology'”. Both encode tandem kinase proteins
(TKPs) with KD-pseudokinase domain (KD-PKD) architecture. So far,
more than ten cereal TKPs were functionally validated”*%. Two of the
wheat tandem kinases (WTKs) containintegrated domains annotated
as von Willebrand factor A (VWA)—Lr9 (WTK6-vWA) governing strong
resistancetoleaf rustand PmS7 (WTK6b-vWA) conferring resistance to
powdery mildew?>?, The mutation analysis suggests that pathogen per-
ceptionby TKPs canalso involve integrated domains®. The wheat blast
resistance gene RWT4specifically recognizes the Magnaportheoryzae
effector AvrPWT4, and its kinase activity is essential for defense”. Taken
together, TKPs emerged as new players in plantimmunity.

An initial search of 11 plant genomes, mostly cereals, aiming to
explore TKP evolution, discovered 92 putative TKPs'2. The study inref.
12 proposed that multiple KDs originated viaduplication or fusion, with
over half of the predicted kinases likely resulting from gene duplication.
However, no systematic attempts were made to explore TKP distribu-
tion across a broad range of plant species throughout the plant king-
domorto provide acomprehensive characterization of their structure,
origin and potential functional role in plantimmunity.

Inthe present study, we investigated the prevalence and domain
architecture of TKPs in 104 genomes across the plant kingdom. Over
half of the discovered TKPs contained a PKD, while 55.9% of all TKPs
contained a nonkinase integrated domain. This suggests that TKP
may use their pseudokinases or integrated domains as decoys to trap
pathogen effectors. The discovery of the TKP protein family as an
essential player in the plantimmune system may reconceptualize our
understanding ofimmune receptor activationin plants. Our TKP Atlas
will serve as abase for future discoveries of TKP convergent molecular
evolution and function.

Results
Identification of TKPs across the plant kingdom
Todate, ten experimentally verified tandem kinases are known (Supple-
mentary Table1). To assess the prevalence of TKPs in the plant kingdom,
we searched 104 plant genomes for the presence of protein kinases. In
our analysis, we incorporated species from the following three classes:
Monocotyledoneae, Eudicotyledoneae and Magnoliidae, spanning
ploidy levels from diploid to hexaploid. We particularly focused on
the 47 agricultural species and model plants like Arabidopsis and Nico-
tianabenthamiana. TKPsrepresenta protein family due to their similar
structural composition, identified by the presence of two or more fused
KDs. Therefore, we identified proteins that contain at least one KD by
using the ProSITE kinase profile (PS50011). A total of 1,78,376 protein
kinases were identified, constituting 3.8% of all analyzed proteins.
Next, we identified TKPs from the protein kinases based on the
presence of two or more fused KDs. In our study of 104 plant genomes,
we found that the number of TKPs per genome ranged from1 (Saccha-
rumofficinarumx spontaneum) to 346 (Vaccinium corymbosum; Fig.1).
Intotal, we identified 2,682 proteins as TKPs, with the number of KDs
per gene ranging from two to eight. However, the maximum number
of KDs in confirmed multikinase proteins reached only five through-
out our literature analyses*. Therefore, we removed six sequences
from the atlas that contained more than five kinase/pseudokinases
domains (PKDs), as they are likely annotation errors, leaving 2,676
TKPs in the subsequent analysis. Plant species differed in the num-
ber and composition of tandem kinases found in their genomes. The
northern highbush blueberry (V. corymbosum) contained the largest
number of TKPs in our analyses, with 346, which is twice the amount
foundin William’s lovegrass (Eragrostis tef,143 TKPs). However, Leersia
perrieri had the highest percentage of TKPs relative to full proteome
(0.35%), followed by E. tef (0.34%; Extended Data Fig. 1a). The number

of TKPs weakly correlated with genome size (Spearman’s correla-
tion coefficient (p) = 0.232, P=0.018), and no significant differences
between sequencing technologies were found (ANOVA, P=0.954;
Supplementary Table 2).

We also analyzed the TKPs for the presence of integrated non-KDs.
We identified that 1,180 protein sequences contained only KDs in
tandem, while 1,496 proteins included integrated domains. These
integrated domains fused to kinases are mostly associated with plant
defense systems, such as lectin, leucine-rich repeat and stress—-anti-
fungal domains® 2,

We used HMMER with a collection of KD profiles to refine KD
membership. This analysis classified the 5,723 KDs into ten groups
comprising 77 subfamilies (Supplementary Table 3). The RLK-Pelle
group was the most prominent, with 5,472 members (95.6% of the total)
partitioned into 46 subfamilies. Moreover, the largest subfamilies were
RLK-Pelle DLSV (25.3%) and RLK-Pelle_L-Lec (11.7%; Extended Data
Fig. 1b). The DLSV family comprises the following four moss-specific
RLKs subfamilies: DUF26, LRR-VIIIb, SD-1 and VWA?**°, The experi-
mentally validated TKPs primarily belonged to the DLSV family in the
LRR-VIIIb subfamily (Supplementary Table1).

Prevalence of TKPs among cereal crops

Our analysisincluded eight species from the Triticeae tribe exhibiting
arange of ploidy levels from 2x to 6x. Likely due to genome duplication
events, polyploid species (4%, 6x) harbored several times more TKPs
than diploid species (Supplementary Table 4).

Despite the difference in TKP counts, they are distributed on all
chromosomes and spread across all three subgenomes (A, B and D),
TKPs frequently clustered at the ends of chromosomes, as seen in the
cases of Aegilops tauschii, Triticumurartu, Triticum turgidum, Triticum
aestivum and Triticum spelta (Extended Data Fig. 2). Other resistance
genes (that is NLRs) also show clusters near telomeres, where higher
recombination rates drive faster evolutionary adaptations®**,

Variety of kinase families among TKPs
To assess the functionality of the identified tandem kinases, we catego-
rized their domainsinto ‘likely proteinkinase’ and ‘pseudokinase’ based
onthe presence of the following three catalyticallyimportant residues
from the catalytic triad: B,-lysine, HRD,,, and DFG,,,”(Fig. 2a,b).
Among the analyzed TKPs, 2,372 (90%) are dual kinases. These
TKPs exhibited various combinations of kinase and pseudokinase
organization. The most prevalent combination was the presence of
two KDs, which accounted for 42% (1,002) of all dual kinases. Combi-
nations of KD-PKD and PKD-KD were almost as common, comprising
41% (989) of the analyzed dual kinases. The remaining 18% (381) of dual
kinases TKPs contained two PKDs, asillustrated in Fig. 2c. Among the
identified TKPs, combinations with two KDs from RLK-Pelle_ DLSV
(20%) or RLK-Pelle_L-Lec (10%) were the most frequent, with most
domains categorized as functional (Fig. 2d). In summary, most TKPs
from across 104 plant genomes contain acombination of two protein
KDs (KD-KD or KD-PKD), which belong to the RLK-Pelle_DLSV fam-
ily or RLK-Pelle_L-Lec family. Some compositions (e.g., CrRLK1L-1—
RLCK-VIla-2, CrRLK1L-1—DLSV) were present only in the species from
Eudicotyledoneae clade (Fig. 2d).

Integrated non-KDs are common in TKPs

We analyzed the TKPs for the presence of integrated domains by scan-
ning against available Pfam HMM profiles. Among the 2,676 TKPs, 1,496
proteinsincluded integrated domains. These integrated domains,
such as lectins, leucine-rich repeats and stress—antifungal domains,
fused tokinases, are mostly associated with plant defense systems®%,
We also identified 1,267 (47.3%) TKPs that possess a transmembrane
domain, a typical structural component of plant RLKs. Notably, 1,132
(89.3%) of these 1,267 TKPs contained both anintegrated domainand a
transmembrane domain. Numerous species displayed a considerable
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Fig.1| A taxonomic tree of 104 plant species was used to generate the TKP
Atlas showcasing the number of TKPs. The tree comprises 68 dicot species,
30 monocot species and 7 species from the Magnoliidae clade. The tree is
based on the NCBItaxonomy, created using the ete toolkit v3.1.2, showcasing
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the total number of TKPs in parentheses*®. This tree illustrates qualitative
branching patterns, excluding distance information. Colored species: lilac,
monocotyledoneae; yellow, eudicotyledoneae. All of the identified TKPs are
available on the Zenodo platform (https://doi.org/10.5281/zenodo.13384335).

presence of kinases likely linked to the membrane, including L. perrieri
(85 with/55 without transmembrane domain) and £. tef (80/63; Supple-
mentary Table5). The presence of atransmembrane domain alone does
not guarantee localization to the plasma membrane, as proteins often
require initial signal peptides for this process*. We used the SignalP
6.0 tool to identify these signal peptides. Our findings reveal that not
every TKP with a transmembrane domain also had detectable signal
peptides, suggesting alternative pathways for membrane association,
orlimitations in detection of signal peptides (Supplementary Table 5).

Amongthe1,267 TKPs witha transmembrane domain, only 704 (55.5%)
harbor a signal peptide, suggesting possible evolution from RLKs
(Supplementary Table 5). Indeed, the individual KDs most frequently
found in TKPs are also prevalent in RLKs (Fig. 2d).

Surprisingly, over half (55.9%) of identified TKPs contained a
non-KD. For our analyses, we did not classify a potential transmem-
brane domain as an integrated domain. TKP distribution with and
without such domains varied across different species. For example, V.
corymbosum (271 withintegrated domain/77 without) and E. tef (92/51)
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Fig. 2| Prediction, composition and diversity of kinase and PKDs across 104
plantgenomes. a,b, Sequence logos demonstrating the residue frequency

at key conserved positions in KDs (a) and a lack of relative conservation in
PKDs (b) in each TKP. Amino acids exhibit colors based on their chemical
characteristics—positively charged (basic; H, K, R) are represented in blue;
negatively charged (acidic; D, E) in red; small, nonpolar, aliphatic (G, A) in pink;
aromatic amino acids (F, W, Y) in brown; polar, uncharged amino acids (N, Q) in
purple; nonpolar, aliphatic (I, L, M, P, V) in green; and amino acids that contain
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sulfur or have a hydroxyl group (C, S, T) in orange. ¢, Proportion of TKPs with
different combinations of kinase and PKDs across 104 plant genomes. The
majority of TKPs comprise two KDs. Kinase/pseudokinase combinations with
more than ten members are presented. d, Top 15 of most common tandem kinase
member counts among TKPs containing two to five kinase or PKDs across 104
plant genomes. Clades are designated by colors—green, eudicotyledoneae; blue,
monocotyledoneae; red, magnoliidae. All abbreviations of kinase family names
are fully expanded in Supplementary Note.

displayed ahigher proportion of proteins withintegrated domain (Sup-
plementary Table5). In contrast, TKPs without integrated domain were
more prevalentin 7. aestivum (11with/71without) and Hevea brasiliensis
(14/60; Extended Data Fig. 3 and Supplementary Table 5).

Weidentified atotal of 127 different classes of integrated domains
associated with TKPs. The most prevalent integrated domainswere 3_
lectin (D-mannose binding lectin; PFO1453), LRR_8 (LRR VIII, PF13855),
and stress—antifungal (or DUF26; PF01657; Fig. 3a). Most integrated
domains did not follow a strict positional pattern. However, certain
domains suchas WD40 (PFO0400), NAF (PF03822) and PP2 (PF14299)
were found exclusively at the N terminus of the protein (Fig. 3b).

Exploring domain compositions of TKPs with integrated domains,
itisnotable that the prominent members are proteins containing two
KDs from the RLK-Pelle L-Lec and RLK-Pelle LRR 11l families (Fig. 4a).
Wealso discovered ten TKPs with anintegrated heavy-metal-associated
(HMA, PS50846) domain, including in the characterized TKP RPG1,
which may beinvolved inthe direct recognition of effectors®?® (Fig. 4b).

We identified 216 TKPs with integrated domain and presumed
cytoplasmic localization due to the lack of transmembrane domain
and signal peptides. These kinases contain integrated domains, such
as malectin-like, stress—antifungal and legume lectin, that are found
inRLKs (Fig.4b).

Phylogeny of different subfamilies of KDs

To investigate whether TKPs emerged via the duplication of a single
geneor the fusion of distinct genes, we performed a phylogenetic analy-
sis of T. aestivum tandem kinases that contain two KDs from the same
family. We selected this species because all experimentally validated
TKPs were found in the Triticeae tribe. We divided the wheat genome

into different subgenomes A, B and D for phylogenetic tree construc-
tion (Fig. 5). Our findings revealed that most KDs were phylogenetically
distantfromeach other and groupedinseparate clades. However,some
fusions were between a domain and its most similar domain suggest-
ing potential duplication (Fig. 5). Collectively, this analysis shows that
most TKP fusion events in wheat, even within the same kinase family,
were not the result of gene duplication. This observation is also sup-
ported by the analysis presented in Fig. 6. Thus, duplication may also
not explain the presence of other integrated domains.

Toinvestigate the coevolution of different kinase families present
within TKPs, we performed multidimensional scaling analyses for the
most common families of kinases (L-Lec and DLSV) from all studied
species. Our research revealed a clear separation of the tandem KDs
fromthe L-Lec family into the following four distinct clusters: a cluster
containing pseudokinases (A), a cluster containing functional kinases
(B), and two close-by clusters (Cand D; Fig. 6a). Interestingly, we found
that pseudokinases from cluster A are fused to KDs from cluster B,
suggesting that these two clusters represent one fusion event from
which many TKPs evolved. Conversely, kinase and PKD from clusters
C and D did not fuse with domains from other clusters, suggesting a
tendency for their fusion with very similar domains. The DLSV family
contains four clusters where fusion events occurred within each cluster
with only two exceptions. A lack of an apparent pattern within each
cluster suggests many independent fusion events within very similar
domains, but most ofthem are not gene duplications as the fusions are
not between the most similar domains (Fig. 6b). A histogram for two
subfamilies was built based on the similarity distance matrix of protein
kinases (Extended DataFig.4). The histograms demonstrate adiverse
distribution of domain distances within a protein for the two families.
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Discussion demonstrate that the TKP protein family is widespread across the plant
TKPs form an important protein family capable of conferring resist-  kingdom. Recently, two tandem KD-PKDs (TKP7 and TKP8) were found
ance to diverse fungal pathogens. Here we provide an assessment of  in sugarcane as the candidate genes for Brul brown rust resistance”.
tandem kinases’ distribution across the plant kingdom. Our results ~ Wheatblast resistance protein RWT4 can also trigger immunity inrice
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protoplasts by perceiving the effector AvrPWT4, indicating TKPs can
be transferred between plant genera®. Therefore, the current TKP Atlas
shedslight on plantimmunity, probably far beyond the Triticeae tribe.

The RLK-Pelle kinase family is the plants’ most extensive group of
RLKs®. Within the TKP sequences discovered in this work, more than
95% of the KDs belonged to this family. Our data revealed an almost
equal number of TKPs with KD-KD versus KD-PKD architectures.
However, predicting unfunctional kinases based only on their sequence
is still imperfect and some classified PKDs may possess kinase activ-
ity. The kinase activity of RLKs has been well studied, such as the RLK
LecRK-IX.2 from Arabidopsis®. However, the TKP’sKD activity was only
experimentally proved in the following three cases: RPG1, WTK7-TM
and RWT4 (refs. 21,23,40). For example, the two kinases of WTK7-TM

were predicted as PKD based on their sequences, but when tested
experimentally, they were both shown to be functional®. This sug-
gests that different TKPs exhibit diverse kinase activities as should be
expected for a protein family that evolved by convergent molecular
evolutionand provides similar solutions under selection by pathogen
stress. Further studies are required to determine the activity and func-
tion of the predicted KDs and PKDs.

Most of the experimentally confirmed functional TKPs are
cytoplasmic proteins, except for WTK7-TM, which possesses a trans-
membrane domain shown to be essential for protein function®. Fur-
thermore, aquarter of the TKPsinour datahad both atransmembrane
domainand asignal peptide, indicatingmembrane association*. These
accumulated datasuggest that atleasta portion of TKPs are associated
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Fig. 6 | Multidimensional scaling analyses of all tandem kinases with two KDs
from two RLK-Pelle subfamilies from all studied species. a,b, Analyses include
KDs from the RLK-Pelle L-Lec (a) and DLSV (b) subfamilies. A triangle or a circle
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second position. The color indicates the functionality of the domain—green,
kinase; red, pseudokinase. Black lines show connections between two domains in
the same protein.

with cell membranes and may detect pathogens in this subcellular
location. Taken together, these data provide an important TKP Atlas
for the plant community and highlight many facets of TKP evolution
and function.

Notably, all ten experimentally identified TKPs contained at
least one domain from the RLK-Pelle family>**(Supplementary
Table1). Our study suggests that many TKPs with two RLK-Pelle L-Lec
domains resulted from a single ancient fusion event between distant
family members, persisted across multiple species (monocots and
dicots). However, the remainder of TKPs with two RLK-Pelle L-Lec
domains arose from numerous independent fusion events among
closely related members (Fig. 6). This latter pattern is also typical of
the DLSV family. RLKs are a large gene family and can be tandemly
clustered, which could facilitate independent fusion events®. These
independent events may illustrate convergent molecular evolution,
particularly if most of the events are associated with plant adap-
tation to biotic stress mechanisms. Different plant species have
independently evolved similar receptor characteristics to adapt to
various plant pathogens, as demonstrated for the RLP30 immune
receptor, which has a role in immunity against pathogens from two
microbial kingdoms™.

We previously proposed a model for the molecular function of
TKPswith acombination of active and inactive domains*, assuming the
PKD serves asadecoy tointeract with pathogen components working
together with the kinase for signal transduction*. However, recently
it was shown that RWT4 can specifically bind the AvrPWT4 effector in
boththekinase and pseudokinase regions, leading to the transcription
of defense genes and inducing cell death®. Moreover, TKPs were shown
to serve as an unusual class of immune receptors capable of directly
interacting with pathogen effectors*and activating an NLR helper to
trigger immunity*>*,

Another hypothesis for tandem kinase recognition of the effector
occurs viaintegrated domains. Like in NLR-ID receptors, the integra-
tion is the decoy domain, which mimics pathogen effector targets,
enablingdirectinterception of effector proteins. Recently, two TKPs
(WTK6-vWA and WTK6b-vWA) were demonstrated to include aninte-
grated domain?’?%, Mutations in these VWA domains resulted in aloss
of resistance, suggesting that the two integrated domains located
at the C terminus of these proteins are possibly involved in effector
recognition®’. More than half (56%) of the discovered TKPs contained
at least one integrated domain, with the most common being betta

lectin, LRR VIlland stress-antifungal. B-Lectin (legumelectin domain,
PF00139) is a carbohydrate-binding domain often found in proteins
involvedin plant defense reactions, such as chitinases, glucanases and
thaumatins® %, The function of the LRR VIIl domain is poorly under-
stood, but LRR domains are associated with plantimmune responses,
often found inimmune receptors like LRR-RLKs". Another integrated
domainidentified in NLR proteins is the HMA domain. Multiple NLRs
with HMA-integrated domains experimentally verified that the HMA
domaindirectly interacts with the effector**. Weidentified TKPs fused
with HMA, including the characterized TKP RPGI. Based on this evi-
dence, it is plausible to propose that integrated domains present in
TKPs could also participate in pathogen perception by acting as decoys
of pathogen virulence targets.

Weidentified 637 TKPs with transmembrane domain, signal pep-
tide, and integrated domains (such as stress-antifungal, LysM, B-lectin,
etc.), whichwere also found in another family of plantimmune recep-
tors—RLKs*. These TKPs probably evolved from RLKs; however, RLKs
have one KD, whereas tandem kinases have two or more. This might
indicate an evolutionary separation of functions after gene duplica-
tion or fusion events, leading to the birth of a new type of receptors
in plants®.

In conclusion, our study provides insights into the diversity of
TKPs across the plant kingdom. Our analysis revealed a high degree
of variability in the number of these proteins across different species.
We also found that many TKPs contain integrated domains, which
could affect their functional properties. Our findings highlight the
importance of studying TKPs’ functional properties in plants and
their potential contribution to plant resistance to pathogens. The
animal Janus tandem kinases (JAKs) participate in complex regula-
tory networks governing cell differentiation, tissue regeneration and
innateimmuneresponses***’. For example, JAK3 differentially regulates
Toll-like receptors-mediated inflammatory cytokine production in
innateimmune cells. Plants’ TKPs may be involved in similar processes,
offering another level of functional diversity.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
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Methods

Collection of protein sequence data across the plant kingdom
Annotated protein sequences of 104 plant species were obtained
from several databases—NCBI, Origin, Giga, JDI, Dryad, PLAZA, GDR
and Ensembl. We included plants from three different clades in the
analysis—Magnoliidae (7 species), Monocotyledoneae (30 species)
and Eudicotyledoneae (68 species; Supplementary Table 2 and Fig. 1).

Identification of tandem kinases among all proteins

Almost 5 million protein sequences (4,707,304) of 104 seed plant spe-
cieswerealigned against the protein KD’s profile (PS50011) by ps_scan
software from ProSITE (https://prosite.expasy.org/). Hits with less than
150 amino acids were discarded. Putative TKPs were defined as protein
sequences with two or more protein KDs arranged in tandem; all pro-
teins with a single KD were discarded. Longer alternative transcripts
were chosenin case of multiple annotated transcripts for one gene.

The annotation of the kinase units of TKPs

To annotate protein KDs at the subfamily level, we extracted sequences
of allKDs from the iTAK database, which was built on the protein kinase
classificationin ref. 30. Next, we used these sequences to create a profile
database using HMMER (v3.1b2). Then, we used hmmscan from HMMER
with our KDs against this database and annotated it based on the most
substantial entry. Currently, thereis no stable definition or defined profile
foraprotein PKD. Therefore, we applied an empirical conservation-based
approach, targeting catalytically essential residues, namely amino acid
substitutions that are critical for phosphorylation activity at one of the
three conservedsites of the ‘catalytic triad’—ATP-binding 33 lysine (K), the
catalyticaspartate within the catalyticloop (HRD), and the metal-binding
aspartate of the activation loop (DFG)*. If domains contained mutations
ordeletionsinany of the three amino acids, we classified these domains
as pseudokinases. Multiple sequence alignments (MSA) of all KDs were
performedby mafft (v7.130). We pulled catalytic triad residues out of the
MSA and used them to classify sequences as KD/PKD. This was based on
whether these residues were present or substituted inone or more of the
extracted positions. Using this definition, we classified domains as likely
functional kinases or pseudokinases.

Identification and classification of integrated domains fused
to tandem kinases

We used HMMER with all available Pfam-A profiles to annotate inte-
grated domains fused to tandem kinases. We used the ProSITE tool
for the annotation of the HMA (PS50846) domain due to its small
size, which rendered it challenging to identify using HMMER. We also
predicted transmembrane domains with Phobius and TMHH web
services, accepting domains identified by both tools. Signal peptides
in the sequences were identified using SignalP 6.0 (ref. 49). Cellular
localization of proteins carrying signal peptides was predicted using
DeepLoc 2.0 (ref. 50). All subsequent analyses were performed in the
Renvironment for statistical computing (https://www.r-project.org/).

Phylogenetic and multidimensional scaling analyses

We employed two filters in our dataset to elucidate the complex phy-
logenetic history of tandem kinases. Specifically, we only included
TKPs possessing two KDs and those exhibiting equivalent annotation
atthe subfamily level for both KDs. We extracted KDs from the filtered
sequences and grouped them by species and subfamily. We performed
multiple sequence alignment with mafft (v7.130) and dropped out
all outlier sequences by Sequence Bouncer with a 10% gap cutoff. We
constructed phylogenetic trees for tandem kinases with two domains
from the RLK-Pelle DLSV subfamily from T. aestivum. We constructed
1,000 bootstrap replicate trees using RAXML to evaluate the robust-
ness of the phylogenetic relationships. Finally, we calculated pair-
wise distances for sequences from several considered subfamilies by
dist.alignment function from seqinr (version 4.2-16) R package and

performed multidimensional scaling analyses with R base function
cmdscale®* Then, we constructed a frequency histogram depicting
the distribution of similarity scores.

Statistical tests

We tested two hypotheses related to our results—first, whether the
count of TKPs is correlated with species genome size, and second,
whether the sequencing technology used to create the assembly is
affecting the TKP counts. For the first hypothesis, we used the Spear-
man correlation test because our data does not follow anormal distri-
bution and lacks linearity (Supplementary Table 2).

To examine whether the sequencing technology used to create
the assembly is affecting the number of detected TKPs, we divided
our dataset into the following three groups: (1) genomes sequenced
using short-read-based technology, (2) long-read-based technology
and (3) ahybrid of these technologies. We then performed an ANOVA
test to compare the mean number of TKPs across these groups (Sup-
plementary Table 2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We have published a fasta file with all found TKPs on the Zenodo plat-
formwith alink: https://doi.org/10.5281/zenodo.13384335 (ref. 53).

Code availability
We have published our code onthe Zenodo platformwith alink: https://
doi.org/10.5281/zenodo.11118417 (ref. 54).
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Extended Data Fig. 1| Domain diversity and proportion of TKPs identified from predicted proteomes. a, The proportion of TKPs compared to the total proteome
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Nature Genetics


http://www.nature.com/naturegenetics

https://doi.org/10.1038/s41588-024-02032-x

a Aegilops tauschii

I—
so | I I N
o0 || I
o |

OMbp 100Mbp  200Mbp 300Mbp ~ 400Mbp  500Mbp  600Mbp
Genomic Position

C Triticum turgidum subsp. durum

' [ I

o | |
o= | I I
7A | I

7B

!
OMbp  100Mbp 200Mbp 300Mbp 400Mbp 500Mbp 600Mbp 700Mbp 800Mbp
Genomic Position

e Triticum aestivum

| I I I
18 IT_---I
o |

«o I

s+ | N N e
sc | I I I |
s0 | I I B

o- || I

o ||| I
oo ||

7 | I
7= I B

7D|

' '
OMbp  100Mbp 200Mbp 300Mbp 400Mbp 500Mbp 600Mbp 700Mbp 800Mbp
Genomic Position

b Triticum urartu

OMbp

100Mbp 200Mbp 300Mbp 400Mbp 500Mbp 600Mbp ~ 700Mbp
Genomic Position

d Triticum turgidum subsp. dicoccoides

7= [ B

'
OMbp  100Mbp 200Mbp 300Mbp 400Mbp 500Mbp 600Mbp 700Mbp 800Mbp
Genomic Position

f Triticum spelta

1 | I B
e | I I |
o |

2+ [ .
26 | I
2o | I I B

s | R
so | O
oo | I N |
o |
oo ||
o0 |
7A
a7
™ 1

OMbp  100Mbp 200Mbp 300Mbp 400Mbp 500Mbp 600Mbp 700Mbp 800Mbp
Genomic Position
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Extended DataFig. 3| A tree with the nine species having the most abundant domain (ID). The tree represents taxonomy, created using the ete toolkit v3.1.2,
number of TKPs. Bars demonstrate the presence/absence of atransmembrane showcasing total TKP counts as abar chart. This treeillustrates qualitative
region (TM), assignal peptide (SP) and at least one integrated (nonkinase) branching patterns, excluding distance information.
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function from seqinr (version 4.2-16) R package.

Extended Data Fig. 4 | Distance histogram calculated on domain sequences with matching family annotations. a, For TKPs with two domains from the RLK-Pelle
Lec family. b, For TKPs with two domains from RLK-Pelle DLSV family. Pairwise distances were calculated for sequences from two subfamilies by dist.alignment
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PLAZA, GDR, and Ensemble plants. All references to the 104 genome studies are listed in Supplementary Table 2. Additionally, we used the iTAK database for
annotating protein kinase domains and all available Pfam-A profiles to annotate integrated domains.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or  N/A

other socially relevant
groupings

Population characteristics
Recruitment

Ethics oversight

N/A
N/A

N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below

|:| Life sciences

that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Behavioural & social sciences |Z| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection
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Reproducibility
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hierarchical), nature and number of experimental units and replicates.

Annotated protein sequences of 104 plant species were obtained from several databases: ncbi, origin, giga, JDI, dryad, plaza, GDR,
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species), and Eudicotyledoneae (68 species).
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Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.
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controlled. If this is not relevant to your study, explain why.
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Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
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Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
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