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Abstract—Using triplet comparison queries of the form "Do you
think item a is more similar to item b or item c?" to learn a positive
definite matrix to capture a distance metric in Rd has been a
popular approach to capture how human perceive similarity
and differences between various objects/concepts. Most of the
existing works focus on learning a single metric using data from
all people in the dataset. However, people can systematically
differ in their notions of similarity over a set of objects due to
their diverse backgrounds. Therefore, using a single metric for
everyone has limited capacity in capturing the heterogeneity while
modeling how people perceive objects in populations that have
diverse subgroups. The subgroup structure is often salient and
difficult to know a priori. We propose to learn the subgroup
structure from the answers to triplet queries by clustering the
user-triplet observation matrix. By modeling the problem of metric
clustering as a low-rank matrix recovery problem, we leverage
convex optimization based approach to perform clustering. We
provide analysis for two cluster case that sheds light on when the
approach succeeds and fails as function of distance between the
metrics, size of the clusters, number of triplet queries answered
per person and the noise level in the answers obtained. We validate
our results through extensive simulations. Furthermore, we also
provide analysis that shows how an outlier impacts the discovery
of cluster structure.

Index Terms—metric learning, distance learning, clustering,
biclustering, low-rank matrix recovery

I. INTRODUCTION

Understanding how people make preference decisions plays an
important role in different areas ranging from recommendation
systems [1], [2] to crowdsourced democracy [3], [4]. While
comparing different options, what options are considered
similar and dissimilar by the users can be helpful in modeling
and predicting future preference decisions based on the past
data. Metric learning [5] is a popular approach to learn such
a mapping that represents similarities in the perception of a
set of objects by people. Learning such a metric plays an
important role in many human involved tasks [6] and helps to
understand how humans perceive relations between different
objects. A popular way to model human preference judgements
is to use Mahalanobis distance dM(x,y) := ||x − y||M
as the distance function between the options or items with
known representations x,y ∈ Rd, where M is a d × d
positive semidefinite matrix and ∥x∥M =

√
xTMx. One can

also view learning such a metric as learning an embedding

This work was partially supported by NSF grants NCS-FO 2219903 and
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in a d-dimensional Euclidean space such that the distances
between the objects reflect the similarities perceived by humans.
This is known as non-metric MDS setting which has been
considered first in [7], [8]. Designing better queries for getting
dissimilarities among items, query selection algorithms and
more are studied [9].

Learning the distance metric from triplet comparisons in the
form of "Do you think item a is more similar to item b or item
c?" is a well studied problem [10]–[15], see [5], [16] for a
survey. Specifically, learning a sparse/low-rank metric M from
triplet comparison queries is also known as learning a linear
metric in the literature. Vast majority of the literature focuses
on learning single metric for the whole population. However,
diverse groups of people have significant differences on how
they perceive objects. Therefore, a single metric M is not often
enough to model distance metrics of diverse populations. If we
know the subgroups of people, we can apply metric learning
to each of the subgroups separately. However, in practice,
these groups emerge from complex interactions of various
factors such as differences in demographics, language, culture,
educational background and so on. Therefore, it is difficult to a
priori decide the subgroups which pose a challenge to learning
diverse set of metrics.

Our Contributions. In this paper, we propose to first find
the latent subgroups in the population before proceeding to
metric learning by using the answers provided by users to the
triplet queries. We study the problem of clustering populations
based on shared metric within subgroups by using answers to
triplet comparison queries and make the following contributions:
(1) Modeling metric clustering as low-rank matrix recovery:
By representing the answers given by users to the triplet
queries using a data matrix, where each row represents a
specific user and each column represents answers to a specific
triplet query, we formulate this problem as the problem of
clustering rows of a binary matrix. Since it is impossible
to expect every single user to answer all triplet queries, our
target is to find cluster structure in the population using partial
observations of this data matrix. Our formulation allows us
view the problem of metric clustering from triplet comparisons
as recovering low-rank matrix from a partially observed noisy
binary matrix. Inspired from the rich literature on low-rank
matrix recovery via nuclear norm regularization, we propose
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semidefinite program to recover the low-rank matrix that reflects
the cluster structure. (2) Under assumptions of independent
noise and partial observations for two cluster setting, we provide
analysis of the proposed convex optimization approach that
shows the success and failure conditions for recovery of the
true user-triplet matrix. We also provide simulation results that
confirm our success and failure bounds, and show transition
from failure to success. (3) We also provide analysis of how
this convex approach behaves for the metric clustering problem
in the presence of an outlier.

The rest of the paper is structured as follows: In Section II,
we provide details of our problem formulation and modeling.
In Section III, we state our main results that shed light on
when our proposed convex optimization approach is able to
correctly recover the true user-triplet matrix and when it fails
to do so. We also state results on analysis of the behavior of
the optimization program under the presence of an outlier –
that is a user who does not share the metric of a group.

II. MODELING METRIC CLUSTERING AS LOW-RANK
MATRIX RECOVERY

In this section we describe our problem formulation, modeling
and the optimization approach for metric clustering via triplet
queries. We begin by describing the problem setting, notations
and assumptions.

A. Problem Setting and Assumptions

Let T denote the set of triplets used for querying the users,
and |T | represent the size of that set. Let {(xaj ,xbj ,xcj )}

|T |
j=1,

where x ∈ Rd, denote the representation of the items in the |T |
triplets in the query set. Let m be the the total number of users
under consideration. We assume that there are two disjoint
clusters among the users who differ in how they perceive
similarity across the objects. That is, there exist two different
metrics M1 and M2 corresponding to the two clusters of users.
Let m1 and m2 represent sizes of the two cluster of users
and m = m1 + m2. Our goal is to cluster the users using
their responses to triplet comparisons. Once the clusters are
recovered, one can proceed to recover metrics M1 and M2

from these responses using approaches for metric learning via
triplets [5], [11].

In the noiseless setting, the interaction protocol between the
users and the queries is as follows: We consider a triplet query
consisting of a triplet of objects whose representations are
(xa,xb,xc). Let i ∈ {1, 2} denote the cluster identification,
query result yi for triplet t = {a, b, c} can be written as

yit={a,b,c} =

{
1, if ∥xa − xb∥Mi > ∥xa − xc∥Mi

−1, otherwise.

As the data available to us is answers by the users to triplet
comparisons of the type, “Do you think a is closer to b or
c?”, how different the answers are to the set of triplet queries
for the two metrics M1 and M2 plays an important role in

determining how easy or difficult the clustering problem is.
Therefore, the query triplet set T should have a subset of
triplets such that responses to those triplets under the metrics
M1 and M2 are different. It is important to note that the query
set T should be diverse and large to be able to ensure ability
to distinguish between the metrics which are unknown a priori.
We assume that T is a distinguishable set for M1 and M2.
Otherwise, it is impossible to distinguish them. Our analysis
and results (Section III) will reveal the exact nature of how
this difference between the metrics will play a role.

Noting that it is often difficult to have each user to answer
every triplet query and that there can be noise in the answers,
we make the following assumptions to capture these aspects:

A1. (Partial observations) Each person answers each query
independently with probability 0 < r ≤ 1,

A2. (Noisy answers) Answer to each query is flipped indepen-
dently with probability q < 0.5.

B. Optimization Approach

Consider the user-triplet matrix under noiseless setting and
full observations, i.e., each user answers all triplets. Let L∗ ∈
Rm×|T | represent this true user-triplet matrix, where each row
represents binary answers of a user and each column represents
answers to a specific triplet query. Note that L∗ is a low-rank
matrix with entries from the set {−1,+1}. In the case of two
clusters, this binary matrix will have rank equal to 2 as there are
only two possible rows. With noisy and partial observations,
what we have is a perturbation of this true rank-2 matrix
L∗ with only a random subset of the entries revealed. Let
A ∈ Rm×|T | denote the observation matrix where each row
corresponds to a user and each column corresponds to a triplet.
If a user i responds to a triplet j, then corresponding entry
Aij is either 1 or −1 depending on their answer, and if the
user i does not respond to triplet j, then Aij = 0. That is,
observed entries of A are either 1 or −1 and the unobserved
entries are filled with 0.

Our modeling thus allows us to view the problem of clustering
metrics via triplet queries as low-rank matrix recovery from
noisy and partially observed matrix A. There is a rich literature
on clustering using low-rank matrix recovery approach [17]–
[26]. Taking inspiration from this line of literature, we aim
to estimate clusters in the population by recovering the user-
triplet low-rank matrix L∗ ∈ Rm×|T | using following convex
optimization approach:

minimize
L

λ∥L∥∗ − ⟨A,L⟩

subject to 1 ≥ Li,j ≥ −1 for all i, j,
(1)

where ||L||∗ denotes the nuclear norm of matrix L which is
the sum of singular values of the matrix. We consider this
approach as successful if the argument of this optimization
yields a unique solution that is equal to L⋆ and deem it a
failure otherwise. In Section III, we provide details of our
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analysis that sheds light on when this approach succeeds and
when it fails.

Remark 1. We note that while our theoretical analysis
primarily focuses on two cluster setting, our modeling approach
and the optimization problem described above apply to the
settings with multiple disjoint clusters.

C. Key Quantities and Additional Notation

As noted earlier, to be able to distinguish the two clusters, it is
important that the set of triplet queries used have a subset of
queries where the answer to the triplet queries is different under
the two metrics. Let Tm ⊂ T denote the subset of triplets on
which both the subgroups of people give the same answer when
there is no noise, i.e., matched queries, and Tmm ⊂ T be the
subset of queries on which answers from different subgroups
of people differ, i.e., mismatched queries. Cardinality of the
set of matched (y1

t = y2
t ) and mismatched (y1

t ̸= y2
t ) queries

can be expressed as follows,

|Tmm| = 1

2

∑
t∈T

|y1t − y2t |, |Tm| = 1

2

∑
t∈T

|y1t + y2t |

Let m0 = min{m1,m2} denote the size of the smallest cluster
and M0 = max{m1,m2} denote the size of the largest cluster.
Let τ0 = min {|Tm|, |Tmm|} and T0 = max {|Tm|, |Tmm|},
denoting the smallest and the largest number of columns of
L⋆ that are either all similar or all different. Let n = m +
|T | denote the total number of users and triplets. Let ω =√
m|T |+ 4

√
m1m2TmTmm. We note that ω can be thought as

an indicator of inequality among cluster sizes in the submatrix
level. As the sizes get close to each other, ω increases for
constant m and |T |, since the term m1m2TmTmm gets larger.
We observe a similar trend for ∆, where it gets larger, as the
cluster sizes get closer.

Our analysis shows that the following key quantities emerge
as important in determining when the optimization approach
proposed in (1) succeeds or fails in recovering the true L⋆:

• Maximum value that defines a lower bound on λ without
which the optimization problem 1 would be a failure:

Σfail =

√
rq

M0T0
min {m, |T |}+ 1

.

• The strength of signal in the observation about the cluster
structure:

∆ = r(1− 2q)ω

√
m0τ0√

m0τ0 +
√
T0M0

.

• Minimum value λ for success:

Σsucc = 2
(√

nr(1− r + 4rq(1− q))
)
.

We use Hα to represent the entries of H corresponding to
position pairs (i, j)’s in the set α for a given matrix H.

III. MAIN RESULTS

In this section, we describe the main results of our analysis
of optimization approach in (1) that sheds light on when it
succeeds in exactly recovering the true user-triplet matrix L⋆

and when it fails to do so.

A. Conditions for success and failure without outliers

Let A be the observation matrix generated by the responses
to triplet queries in T according to the model, under the
assumptions A1 and A2, defined in Section II-A. Then we
have the following result that captures when the optimization
approach in (1) succeeds,

Theorem III.1 (Condition for success). Given ϵ > 0, there
exist positive constants c1 and c2 such that, with probability
at least 1− c1m|T | exp (−c2 min{m0, τ0}), the optimization
in (1) recovers L∗ when the following condition holds,

∆(1− ϵ) ≥ λ ≥ (1 + ϵ)Σsucc, (2)

From the above result, we also note that the signal has to be
larger than a certain noise floor, that is, ∆ > Σsucc, for success
condition in Theorem III.1 to hold. Reflecting on this condition
further, we can obtain the following sufficient condition on the
size of the smallest cluster for the optimization in (1) to have
a regularizer that leads to successful recovery of L⋆.

Proposition 1. (Minimum Cluster Size) For the condition
∆ > Σsucc to hold, the minimum cluster size has to satisfy the
following,

m0 >
4n

τ0(1− 2q)2

(
1

r
− 1 + 4q(1− q)

)
.

Remark 2. The above proposition can also be interpreted
in terms of the minimum number of triplets (matched or
mismatched) in a cluster that is sufficient for recovery:

τ0 >
4n

m0(1− 2q)2

(
1

r
− 1 + 4q(1− q)

)

The following theorem captures conditions under which the
optimization problem in (1) fails with high probability to
recover the true L⋆.

Theorem III.2 (Conditions for failure). Given ϵ > 0, there
exist positive constants c1, c2 such that,

1) If λ ≤ (1 + ϵ)Σfail, then the optimization in (1) fails to
recover L∗ with probability 1− c1 exp (−c2m0τ0).

2) If λ ≥ (1 + ϵ)Σsucc and λ ≥ ∆(1 + ϵ), then the
optimization in (1) fails to recover L∗ with probability
1− c1 exp (−c2m0τ0).

This theorem provides insights on how the value of regularizer
is important for the recovery. If it is set too small, or too large,
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then the optimization problem will fail to recover L⋆ with high
probability.

B. Analysis in the presence of outliers

In previous sections, we focused on understanding the condi-
tions for success and failure for recovering the true user-triplet
matrix L⋆ for the case with two clusters and no outliers. Besides
having noisy answers, population may also have outliers, that
is, people whose preferences cannot be modelled reasonably
well by common metrics for subgroups. In this section, we
focus on understanding the impact of outliers on the approach
using the optimization problem in (1) in recovering L⋆. If the
outliers can be separated or if they merge with some of the
subgroups without altering the corresponding entries of L⋆ for
the subgroups to which the outlier(s) merge into, then it would
still be a successful scenario. This is because the rows of L⋆

corresponding to different clusters provide the noiseless and
complete answers to all the triplet queries under the metric
corresponding to that cluster. Therefore, if they are not altered,
then the downstream task of learning the metrics for different
subgroups is not altered. So, we aim to study conditions that
make these scenarios possible. For simplicity, we focus first
on the scenario where there is just one cluster, i.e., just one
metric, and one outlier.

Let m represent the number of people in the cluster. Consider
Min as the true metric of the cluster and Mout as the metric
of the outlier. Yin and Yout are the corresponding binary
vectors with true answers to triplets T . Define distance d as
0.5min{|Yin − Yout|, |Yin + Yout|}/|T |. We wish to recover
non-outlier entries of L∗ correctly.

Suppose Lc ∈ {−1,+1}(m+1)×|T | is the matrix with all rows
equal to Yin. The row corresponding to the outlier in Lc is
actually ±Yin, depending on which is closer. That is, the
outlier in L∗ is merged with the cluster in Lc. Let A be the
observation matrix generated by the responses to triplet queries
T according to the model, under the assumptions A1 and A2,
defined in Section III. We provide following result that captures
when the optimization in (1) merges outlier to the cluster.

Theorem III.3 (Conditions for Merging). Given ϵ > 0, there
exist positive constants c1, c2 such that, optimization in (1)
merges the outlier with the cluster and generate Lc, with
probability 1−c1(m+1)|T | exp (−c2 min(m+ 1, |T |)), when

(1− ϵ)r(1− 2q)(1− 2d)
√
(m+ 1)|T | ≥ λ ≥ (1 + ϵ)2

(
σ
√
n
)
,

where d = 0.5min{|Yin − Yout|, |Yin + Yout|}/|T | and
σ =

√
r(1− r + 4r(q + d− 2qd)(1 + 2qd− q − d)). We

note that this result can be viewed as having the model in
Section III-A with q′ instead of q without the outlier, where
q′ = q + d− 2qd.

Theorem III.3 provides hints on how the value of regularizer
is important for the optimization problem in (1) when there is
an outlier.

Remark 3. We provide an analysis of outliers with only one
outlier and one cluster. As long as outliers are not related
to each other, i.e., when they do not share a common metric
and distinctive entries are at random locations, we can easily
extend Theorem III.3 to capture multiple outliers.

Reflecting on Remark 3, it is not that straightforward what
happens even with 2 outliers, when outliers are related and
share common structures. One might expect different set of
outcomes from the optimization in (1). We can list them as (1)
Whole L∗ is recovered correctly and outliers are separated, (2)
Outliers merge with the same or different clusters, (3) Outliers
emerge as another cluster, and (4) One outlier merges with a
cluster and the other one is separated. Therefore, we leave a
more comprehensive understanding of outlier behavior for the
metric clustering problem as a future work.

IV. SIMULATIONS

In this section, we provide simulation results to illustrate our
theoretical findings. We run all the simulations on Matlab
version R2023b [27]. Note that we use the Alternating Direction
Method of Multipliers (ADMM) solver given in [26] (based
on [28]) to solve the optimization in (1). First, we illustrate
that Σsucc and Σfail bounds are valid for λ. For this, we keep
total number of people as 500, i.e., m1+m2 = 500 with equal
sizes and sample 50 objects from a normal distribution and
generate all possible 58800 triplets. In each trial, we randomly
pick 500 triplets out of 58800. Note that there will be sampling
error on the number of matched and mismatched queries.

We vary observation probability from 0.05 to 1 in steps of
0.05. That is, portion of the triplets that each user responds
on average changes from 0.05 to 1. Similarly, we flip each
entry with q, where q is ranging from 0 to 0.45 in steps of
0.025. Then, we apply ADMM solver ( [26]) and take sign(·)
of the resulting matrix. We repeat each experiment 10 times.
To overcome numerical errors due to precision, we consider
it as successful recovery if the number of different entries
between the resulting matrix and L∗ is no more than 0.1%
of all entries. One might also apply k-means algorithm after
ADMM solver. Similar techniques are considered in [20], [26].

Our plots in Figure 1 show the phase transitions between Σfail
and Σsucc for varying values of λ depending on r and q, while
keeping rest of the parameters fixed. As expected from Theorem
III.1 and III.2, transition occurs somewhere between failure,
Σfail, and success thresholds, Σsucc. Note that black and white
colors represent failure and success regions respectively. We
repeat simulation results with different set of metrics M1 and
M2, where the ratio of mismatched triplets differ depending on
M1 and M2. We observe that transition curves move towards
right in Figure 1 as the ratio of mismatched entries decreases,
and successful recovery gets more difficult as expected. We also
note from Figures1(a) and (b) that the condition for success of
the optimization problem in (1) obtained by our analysis seem
to be in general tight.

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 08,2025 at 02:36:31 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Success (white) and failure (black) regions with decreasing distance values from left to right for λ = 0.9D. Red and green curves show success and
failure thresholds corresponding to λ > Σsucc and λ < Σfail, respectively. Based on distance values, the number of mismatched queries, i.e., Tmm, decreases
from left to right.

V. PROOFS

We analyze the convex optimization approach in (1) for
the metric clustering problem. As we noted, nuclear norm
minimization based low rank matrix recovery is extensively
used in the literature and considered in different contexts. Our
proofs use standard techniques used in the analysis of convex
programs and follow similar lines with [26], [29]–[32], inspired
by robust PCA analysis [33], [34], within the context of metric
clustering problem.

A. Failure Conditions

Without loss of generality, we can suppose that entries of L∗
i,j

corresponding to Tm are all 1. When we exchange second
and third items in a triplet, corresponding column in L∗ is
multiplied with -1 since yit={a,b,c} = −yit={a,c,b}. Similarly,
we can suppose that entries of L∗ corresponding to Tmm are 1
in the first cluster and -1 in the second cluster. Therefore, we
have two different clusters in columns of L∗ corresponding to
Tm and Tmm. We can write the Lagrange of the optimization
in (1) as follows:

L(L;N,R) =− ⟨A,L⟩+ λ∥L∥∗ + ⟨Γ+,L∗ − 11T ⟩
− ⟨Γ−,L∗ + 11T ⟩.

Any optimal solution L∗ has to satisfy KKT conditions.
Therefore, subgradient should be 0.

λ∂∥L∗∥∗ −A+ Γ+ − Γ− = 0, (3)

where Γ+ and Γ− are optimal dual variables. From complemen-
tary slackness conditions, we can write ⟨Γ+,L∗ − 11T ⟩ = 0
and ⟨Γ−,L∗ + 11T ⟩ = 0. Then, we have Γ+

{L∗=1} ≥
0,Γ+

{L∗=−1} = 0,Γ−
{L∗=−1} ≥ 0, and Γ−

{L∗=1} = 0. Suppose
that L∗ = USVT . We can write the subgradient of ∥L∥∗
as UVT + W, where W ∈ MUVT {X : UTX = XV =
0, ∥X∥ ≤ 1}. We have 2 different clusters in the population.
Suppose Rk is the set of {i, j} pairs corresponding to the pop-
ulation in cluster k. C1 and C2 are sets of pairs corresponding
to the matched and mismatched queries respectively. Suppose
µab =

√
|Ra ∩ Cb| for all a, b. Then, we provide following

Lemma.

Lemma 1. We note that

(UVT )i,j =
1

ω


µ−1
11 (µ11 + µ22), if (i, j) ∈ R1 ∩ C1

µ−1
21 (µ12 + µ21), if (i, j) ∈ R2 ∩ C1

µ−1
12 (µ12 + µ21), if (i, j) ∈ R1 ∩ C2

−µ−1
22 (µ11 + µ22), if (i, j) ∈ R2 ∩ C2.

where ω =
√
(µ11 + µ22)2 + (µ12 + µ21)2.

Now, we can insert the subgradient into (3) and write

λUVT + λW −A+ (Γ+ − Γ−) = 0. (4)

Given that WTU = 0 from the definition of the subgradient,
we conclude that WTL = WTUΣVT = 0. Similarly,
LWT = UΣVTWT = 0 since VTWT = 0. Consider the
entries in R1 ∩ C1 with (4) and write their summation as:

sum((λUVT ){R1∩C1}) + sum(λW{R1∩C1})︸ ︷︷ ︸
0

− sum(A{R1∩C1})︸ ︷︷ ︸
r(1−2q)

+ sum((Γ+ − Γ−){R1∩C1})︸ ︷︷ ︸
≥0

= 0

Note that sum(A{R1∩C1}) = m1|Tm|(1 − (1 − r) − 2rq)
with probability 1 − exp (−Ω(m1|Tm|)). When λ(µ11 +
µ22)/ωµ11 − r(1 − 2q) > 0, the equation (4) fails.
We get similar bounds for the entries corresponding to
R1 ∩ C2, R2 ∩ C1 and R2 ∩ C2. Therefore, the opti-
mization in (1) cannot recover L∗ when λ > r(1 −
2q) ω

1+
√

max(|Tm|,|Tmm|)max(m1,m2)

min(|Tm|,|Tmm|)min(m1,m2)

. For m1 = m2, this corre-

sponds to λ > r(1− 2q)
√
m ∗min (|Tm|, |Tmm|).

Consider entries corresponding to the set A−1 ∩ {R1 ∩ C1}.
From (4),

A{A−1∩{R1∩C1}} + (Γ− − Γ+){A−1∩{R1∩C1}}

= λW{A−1∩{R1∩C1}} + λ(UVT ){A−1∩{R1∩C1}}.

A{A−1∩{R1∩C1}} ≤ 0 and (Γ− − Γ+){A−1∩{R1∩C1}} ≤ 0.

Therefore,

∥A{A−1∩{R1∩C1}}∥
2
F
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≤∥λW{A−1∩{R1∩C1}} + λ(UVT ){A−1∩{R1∩C1}}∥
2
F

a
≤λ2

(
∥W{A−1∩{R1∩C1}}∥

2
F + ∥(UVT ){A−1∩{R1∩C1}}∥

2
F

)
≤λ2∥W∥2F + λ2∥(UVT ){R1∩C1}∥

2
F

b
≤λ2 min (m, |T |) ∥W∥22 + λ2∥(UVT ){R1∩C1}∥

2
F

c
≤λ2(min (m, |T |) + 1).

Here, (a) follows from triangle inequality and (b) is due to
the relation between 2-norm and Frobenius norm of a matrix.
Recall that (UVT )i,j = (µ11+µ22)/(ωµ11) for (i, j) ∈ R1∩
C1 and |R1 ∩ C1| = µ2

11 = m1|Tm|. Therefore, we have
∥(UVT ){R1∩C1}∥2F = (µ11 + µ22)

2/(ω)2. Then, (c) follows
from the definition of MUVT , where W ∈ MUVT , and the
fact that (µ11 + µ22) ≤ ω.

We recall that each entry of A is −1 within the entries
corresponding to R1 ∩ C1 with probability rq. Therefore,
∥A{A−1∩{R1∩C1}}∥2F = m1|Tm|rq with probability at least
1− exp (−Ω(m1|Tm|)). From (c), we can write m1|Tm|rq ≤
λ2(min (m, |T |)+1). We get similar inequalities using entries
corresponding to {A−1 ∩ R2 ∩ C1}, {A−1 ∩ R1 ∩ C2} and
{A1 ∩ R2 ∩ C2}. Therefore, we conclude that L∗ cannot be
an optimal solution to the optimization in (1), when

λ <

√
max(m1,m2)max (|Tm|, |Tmm|) rq

min (m, |T |) + 1
.

Remark 4. When m1 = m2, we have ∥(UVT ){R1∩C1}∥2F =
0.5. Therefore, we find that L∗ cannot be an optimal solution
to the optimization in (1), when

λ <

√
mmax (|Tm|, |Tmm|) rq

2min (m, |T |) + 1
.

B. Proof of Theorem III.1 (Success)

We want to show that ⟨A,L∗ − L⟩+ λ(∥L∥∗ − ∥L∗∥∗) > 0,
for all feasible solutions L. We suppose that L∗ = USVT as
above and assume 2 different clusters exist in the population.
Therefore, we have (UUT )i,j = 1

Kpi
if pi = pj and

(UUT )i,j = 0 otherwise, and (VVT )i,j = 1
Lqi

if qi = qj

and (VVT )i,j = 0 otherwise. We can also bound the each
entry of UVT , simply from Lemma 1:

∥UVT ∥∞ ≤
√
m0τ0 +

√
M0T0

ω
√
m0τ0

. (5)

Note that, for m1 = m2, we have ∥UVT ∥∞ ≤ 1√
mτ0

. Recall
that the subgradient of ∥L∥∗ is UVT + W, where W ∈
MUVT {X : UTX = XV = 0, ∥X∥ ≤ 1}. We also define
following projections:

PLS = PUS+ SPV − PUSPV

PL⊥S = S− PLS, (6)

for a matrix S with correct dimensions, where PU = UUT

and PV = VVT . It is easy to show that PL⊥X ∈ MUVT .

Then, we note that UVT + 1
λPL⊥X is a subgradient of ∥L∗∥

for any ∥X∥ ≤ λ. Therefore, we can write

λ(∥L∥∗ − ∥L∗∥∗) ≥ ⟨λUVT + PL⊥X,L− L∗⟩

for any feasible L. We can reorganize this expression using
(6) and write it in the following form:

λ(∥L∥∗ − ∥L∗∥∗) ≥ ⟨λUVT +X− PLX,L− L∗⟩. (7)

Recall that we want to show that

⟨A,L∗ − L⟩+ λ(∥L∥∗ − ∥L∗∥∗) > 0

holds with high probability for all feasible solutions L.

⟨A,L∗ − L⟩+ λ(∥L∥∗ − ∥L∗∥∗)
=⟨E(A),L∗ − L⟩+ ⟨A− E(A),L∗ − L⟩+ λ(∥L∥∗ − ∥L∗∥∗)
a
≥r(1− 2q)∥L− L∗∥1 + ⟨A− E(A),L∗ − L⟩
+λ(∥L∥∗ − ∥L∗∥∗)
b
≥r(1− 2q)∥L− L∗∥1 + ⟨PL(A− E(A))− λUVT ,L∗ − L⟩
c
≥(r(1− 2q)− λ

√
m0τ0 +

√
M0T0

ω
√
m0τ0

− ϵ′′)∥L− L∗∥1

Here, (a) follows from the fact that E(Ai,j) = r(1− 2q)L∗
i,j .

We can apply Lemma 2 for S = A and (b) follows from
(7) for λ ≥ (2σ + ϵ′)

√
n. Lastly, (c) is from (5) and

Theorem V.1. We set r(1 − 2q) − λ
√
m0τ0+

√
M0T0

ω
√
m0τ0

> ϵ′′

and find that L∗ is the optimal solution, where ϵ′′ is chosen
to be a sufficiently small constant. In particular, we set
ϵ′′ = 1

2

(
r(1− 2q)− λ

√
m0τ0+

√
M0T0

ω
√
m0τ0

)
.

Lemma 2. Let S be a random matrix with independent entries
and |Si,j | ≤ 1 for all i, j, and the variance of each entry is at
most σ2. Then, we can bound ∥S− E(S)∥ as follows:

∥S− E(S)∥ ≤ (2σ + ϵ′)
√
n

with probability 1− exp (−Ω(n)).

Proof: S is a random matrix with independent entries and note
that |Si,j − E(Si,j)| ≤ 2. Using standard results on random
matrix theory (Theorem 1.4 in [35]), we can bound the operator
norm of a symmetric matrix X ∈ Rn×n as ∥X∥ ≤ (2σ+ϵ′)

√
n,

with probability 1−exp (−Ω(n)). Now, we use the trick called
dilations [30], [36] and consider X as X = [0 S;ST 0] and
write that ∥S∥ = ∥X∥ ≤ (2σ + ϵ′)

√
n, where n = m+ |T |.

Theorem V.1. Let A be the observation matrix as described
previously in Section III-A. We have that

∥PLZ∥∞ ≤ ϵ′′,

where Z = A − E(A), with probability at least 1 −
6m|T | exp (− 2

9ϵ
′′2 min{m0, τ0}),

Proof: We first characterize the distribution of entries of Z.
For this, we define following random variable Y and call its
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distribution ∆(r, q).

Y =


1− r(1− 2q), w.p. r(1− q)

−1− r(1− 2q), w.p. rq

−r(1− 2q), w.p 1− r.

Here, we note that Zi,jsign(L∗) ∼ ∆(r, q). Therefore, each
entry of PUZ will be the average of mi i.i.d mean zero
random variables. Now, we can write following expressions
using Hoeffding’s Inequality (see (8) for the restatement of
Hoeffding’s Inequality):

P[|(PUZ)i,j | ≥ ϵ′′] ≤ 2 exp−2ϵ′′2m0

P[|(ZPV)i,j | ≥ ϵ′′] ≤ 2 exp−2ϵ′′2τ0

P[|(PUZPV)i,j | ≥ ϵ′′] ≤ 2 exp−2ϵ′′2m0τ0

Note that ∥PLZ∥∞ ≤ ∥PUZ∥∞ + ∥ZPV∥∞ + ∥PUSPV∥∞.
Then, apply the union bound together with Hoeffding’s In-
equality based bounds derived above to complete the proof.

Hoeffding’s Inequality [37]: Let X1, X2 . . . , XN be inde-
pendent random variables such that ai ≤ Xi ≤ bi and let
SN :=

∑N
i=1 Xi, then for all t > 0,

Pr(|SN − E(SN )| ≥ t) ≤ 2 exp

(
− 2t2∑N

i=1(bi − ai)2

)
. (8)

Lemma 3. Let q < 1
2 and A represents the observation matrix

generated by the responses to triplet queries in T according
to the model defined in Section III-A. If λ ≥ (1 + δ)Σsucc

and D = r(1− 2q)ω/
(
1 +

√
T0M0/(m0τ0)

)
≥ λ, then L∗

is the unique optimal solution to the optimization in (1) with
probability 1−exp (−Ω(n))−6m|S| exp(−Ω(min{m0, τ0})).

Proof: It follows from applying union bound for (c) and Lemma
2.

C. Proof for Outliers

We want to show that⟨A,Lc − L⟩ + λ(∥L∥∗ − ∥Lc∥∗) > 0
holds with high probability for all feasible solutions L, where
entries of A are responses to triplet comparisons. Note that
we have, for any ∥X∥ ≤ λ,

⟨A,Lc − L⟩+ ⟨λUVT +X− PTX,L− Lc⟩ > 0. (9)

For any given matrix L ∈ R(m+1)×|T |, we can write L as
L = [Lnon;Lo], where Lnon ∈ Rm×|T | and (Lo)T ∈ R|T |

are entries corresponding to positions of responses from the
cluster and the outlier respectively. Similarly, note that A =
[Anon;Ao]. Therefore, we have

⟨[Anon;Ao],Lc − L⟩+ λ(∥L∥∗ − ∥Lc∥∗)
=⟨[E(Anon);E(Ao)],Lc − L⟩+ ⟨A− E(A),Lc − L⟩
+λ(∥L∥∗ − ∥Lc∥∗)
a
≥⟨E(Anon), (Lc − L)non⟩+ ⟨E(Ao), (Lc − L)o⟩
+⟨PL(A− E(A))− λUVT ,Lc − L⟩

b
≥(r(1− 2q)− λ/

√
(m+ 1)|T | − ϵ′′)∥(L− Lc)non∥1

+(r(1− 2q)(1− 2d)− λ/
√
(m+ 1)|T | − ϵ′′)∥(L− Lc)o∥1

Since ∥A−E(A)∥ ≤ (2σ+ ϵ′)
√
n from Lemma 2 for S = A,

(a) follows from (9). We have E(Anon
i,j ) = r(1 − 2q)Lnon∗

i,j

and E(Ao
i,j) = r(1 − 2q)(1 − 2d)Lo∗

i,j . Note that UVT =

1/
√
(m+ 1)|T | for single cluster. Then, (b) follows from

Proposition 2.

Proposition 2. Let Anon and Ao be as described previously
above. We have that

∥PLZ∥∞ ≤ ϵ′′,

where Z = [Anon;Ao]− [E(Anon);E(Ao)], with probability
at least 1− 6(m+ 1)|T | exp (− 2

9ϵ
′′2 min{m+ 1, T }),

Proof: We first characterize the distribution of entries of Z.
For this, we define following random variable Y ′ and call its
distribution ∆(r, q1, q2).

Y ′=


−1−r(1− 2q1)(1− 2q2), w.p. r(1− q1)q2+rq1(1− q2)

1− r(1− 2q1)(1− 2q2), w.p. rq1q2+r(1− q1)(1− q2)

−r(1− 2q1)(1− 2q2), w.p. 1− r.

Note that Zi,jsign(L∗) ∼ ∆(r, q, d) for entries of the outlier
and Zi,jsign(L∗) ∼ ∆(r, q, 0) for the rest. Therefore, each
entry of PUZ will be the average of m + 1 mean zero
random variables. Now, we can write following expressions
using Hoeffding’s Inequality (see (8) for the restatement of
Hoeffding’s Inequality):

P[|(PUZ)i,j | ≥ ϵ′′] ≤ 2 exp−2ϵ′′2(m+ 1))

P[|(ZPV)i,j | ≥ ϵ′′] ≤ 2 exp−2ϵ′′2|T |
P[|(PUZPV)i,j | ≥ ϵ′′] ≤ 2 exp−2ϵ′′2(m+ 1)|T |,

The rest follows similar lines with the proof of Theorem V.1.

VI. CONCLUSIONS AND FUTURE WORK

We study the problem of clustering populations based on shared
metric within subgroups by using answers to triplet comparison
queries. We provide analysis of convex optimization approach
showing success and failure conditions, and behavior of outliers
with a simple setting. We leave the analysis of populations with
multiple metrics and better understanding of outlier behavior
as future work.
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