
A Joint Gradient and Loss Based Clustered

Federated Learning Design

Licheng Lin∗, Zhaohui Yang‡, Yusen Wu†, Yuchen Liu§, Mingzhe Chen∗†,
∗Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, 33146, USA

‡College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China,
†Frost Institute for Data Science and Computing, University of Miami, Coral Gables, FL, 33146, USA,

§Department of Computer Science, North Carolina State University, Raleigh, NC, 27695, USA

Emails: {lxl1293, yxw1259, mingzhe.chen}@miami.edu, yang zhaohui@zju.edu.cn, yuchen.liu@ncsu.edu

Abstract—In this paper, a novel clustered FL framework
that enables distributed edge devices with non-IID data to
independently form several clusters in a distributed manner
and implement FL training within each cluster is proposed. In
particular, our designed clustered FL algorithm must overcome
two challenges associated with FL training. First, the server has
limited FL training information (i.e., the parameter server can
only obtain the FL model information of each device) and limited
computational power for finding the differences among a large
amount of devices. Second, each device does not have the data
information of other devices for device clustering and can only
use global FL model parameters received from the server and
its data information to determine its cluster identity, which will
increase the difficulty of device clustering. To overcome these two
challenges, we propose a joint gradient and loss based distributed
clustering method in which each device determines its cluster
identity considering the gradient similarity and training loss.
The proposed clustering method not only considers how a local
FL model of one device contributes to each cluster but also the
direction of gradient descent thus improving clustering speed.
By delegating clustering decisions to edge devices, each device
can fully leverage its private data information to determine
its own cluster identity, thereby reducing clustering overhead
and improving overall clustering performance. Simulation results
demonstrate that our proposed clustered FL algorithm can
reduce clustering iterations by up to 99% compared to the
existing baseline.

Index Terms—clustered federated learning, gradient and loss
based distributed clustering,

I. INTRODUCTION

The development of mobile devices and video streaming

applications (i.e., metaverse and virtual reality) motivates the

development of distributed learning frameworks where devices

can train their models locally using their own data [1]–[4].

Federated learning (FL) [5] is a such decentralized learning

algorithm that allows devices to collaboratively learn a shared

machine learning (ML) model while keeping their data local-

ized on their own devices [6]. However, standard FL may not

be applied for devices with non independent and identically

distributed (non-IID) data since a standard FL method directly

aggregates the ML models of devices without considering

the data distributions of devices. To address this problem,

one promising solution is to cluster the devices according to

their data distributions such that the devices in a cluster with
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similar data distributions can collaboratively train a ML model

thus solving the non-IID problem and improving training

performance. However, designing clustered FL algorithms still

presents several challenges including: 1) The parameter server

(PS) has limited information (i.e., FL model parameters) to

determine cluster identities of all devices. 2) The PS has

limited computational resource to identify differences among

a large number of devices.

Recently, a number of existing works such as in [7]–[15]

have studied the design and deployment of clustered FL over

wireless networks. In particular, the authors in [7] designed

a clustered FL algorithm that first trains local models on

each device, and then uses clustering algorithms such as k-

means to cluster devices according to their locally trained

convergent models. The work in [8] developed a FL algorithm

with hierarchical clustering approach. The designed algorithm

first trains a global model over several FL training iterations

and then clusters devices according to the similarities between

updated local FL models. The authors in [9] designed a

clustered FL framework in which an original cluster containing

all devices is recursively divided into smaller sub-clusters. The

device clustering starts when the FL models are stationary

and ends when the gradient norm of any devices in the sub-

cluster is below a preset threshold value. The work in [10]

designed a novel clustered FL which integrates the clustering

algorithm into the training procedure, and to iteratively adjust

the devices’ cluster identities through FL process. In [11],

the authors investigated clustered FL under Byzantine attacks

and shows that clustered FL can reliably detect and remove

malicious clients. The authors in [12] introduced a clustering

algorithm based on social awareness for clustered FL and

developed a heuristic algorithm to minimize the training time

per FL iteration. Meanwhile, the designed clustering method

in [12] can eliminate the need of a centralized PS. The work

in [13] designed a device selection approach for clustered FL

to accelerate the convergence rate. In [14], a three-phased

clustering algorithm based on generative adversarial network

is introduced. The designed clustering method can create dy-

namic clusters and change the number of clusters over different

iterations. However, most of these existing works [7]–[15]

focused on the design of centralized clustering methods which

may lead to significant communication and computational

overhead. Meanwhile, these works [7]–[15] considered the use
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Fig. 1: A Framework of Clustered FL

of only local loss values of edge devices for device clustering

without using other information (i.e., gradient vectors) of FL

training.

The main contribution of this paper is a novel clustered FL

framework that enables distributed edge devices with non-IID

data to independently form several clusters in a distributed

manner and implement FL training within each cluster. In

particular, our designed clustered FL algorithm must overcome

two challenges associated with FL training. First, the server

has limited FL training information (i.e., the PS can only

obtain the FL model information of each device) and limited

computational power for finding the differences among a large

amount of devices. Second, each device does not have the data

information of other devices for device clustering and can only

use global FL model parameters received from the server and

its data information to determine its cluster identity, which

will increase the difficulty of device clustering. To overcome

these two challenges, we propose a joint gradient and loss

based distributed clustering method in which each device de-

termines its cluster identity considering the gradient similarity

and training loss. The proposed clustering method not only

considers how a local FL model of one device contributes

to each cluster but also the direction of gradient descent thus

improving clustering speed. By delegating clustering decisions

to edge devices, each device can fully leverage its private

data information to determine its own cluster identity, thereby

reducing clustering overhead and improving overall clustering

performance. Simulation results over multiple datasets demon-

strate that our proposed clustered FL algorithm can reduce the

iterations required to cluster the devices correctly by up to 99%

compared to the existing baseline.

II. PROPOSED CLUSTERED FL SYSTEM

Consider a clustered federated learning framework in which

one parameter server and a set M of M devices collabora-

tively perform federated learning algorithms. In our model,

devices have different datasets and hence the data distribution

of the devices is non-IID. We assume that the total number

of data distributions of all devices is K. To address the data

heterogeneity problem [16], devices should be divided into

K clusters based on the characteristics of their datasets. The

devices with similar data distributions are clustered into a

group and jointly perform an FL training. In our model, we

consider a general scenario where each device does not know

the data distribution of other devices and the PS also does

not know the data distributions of all devices. Hence, the

PS cannot directly determine the cluster of each device and

each device must use its limited FL parameter information to

determine its cluster. To this end, it is necessary to design

a novel clustered FL method where each device exploits its

FL parameter information to determine its cluster individually.

Next, we introduce our designed clustered FL algorithm. In

particular, we first discuss the general process of clustered

federated learning and then provide more details about the

proposed clustering algorithm in clustered FL.

A. General Procedure of Clustered FL

Here, we introduce the general training process of clustered

FL, which is summarized as follows:

1) The server randomly initializes K FL models at first

training iteration and broadcast the parameters of these

FL models to all devices. We assume that wt
k represents

the FL model parameters of cluster k at iteration t. Here,

the set of devices at each group k may be changed

according to the clustering results.

2) Each device i ∈ M determines its cluster identity, i.e.,

which cluster it belongs to, via its private dataset and

the model parameters received from the PS. Since this

cluster identity would change through FL process, we

denote the cluster identity of device i at t-th iteration as

sti. Given its cluster identity sti, each device will update

its local FL model and transmit its FL parameters and

cluster identity to the PS.

3) The PS will aggregate the FL parameters with the same

cluster identity and generate a global FL model. Since

the devices are divided into K clusters, the PS will

generate K global FL models.

4) Repeat Steps 2-4 until converge.

From the training process of clustered FL, we see that

clustered FL requires each device to use only its dataset and

global FL models received from the PS to identify cluster

identities and each device does not know the data distribution

and cluster identify. Devices need to determine their clustering

identities per iteration.

B. Proposed Clustered FL Algorithm

Given the general process of clustered FL, in this subsection,

we introduce our proposed clustered FL, which also consists

of four steps: 1) cluster FL model broadcast, 2) device cluster

identity determination, 3) local FL model update, and 4) local

FL model aggregation, which are specified as follows.
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1) Initialization: The server randomly initializes K FL

models. Each device initializes its cluster identity randomly

at the first FL training round, since each device does not have

any information to determine the cluster identity.

2) Cluster model broadcast: Since the devices are grouped

into K clusters, the server will generate K initial global FL

models for all clusters. Hence, to implement our proposed

clustered FL, the server will first broadcast the parameters of

K global FL models {wt
1,w

t
2, . . . ,w

t
K} to the devices.

3) Determination of cluster identity for each device: Given

the training process of clustered FL, two challenge must be

solved when we design the device clustering algorithm. First,

the device clustering method must be distributed since the

server has limited FL training information (i.e., the PS can

only obtain the FL model information of each device) and

limited computational power for finding the differences among

a large amount of devices. Second, each device does not have

the data information of other devices for device clustering

and can only use global FL model parameters received from

the server and its data information to determine its cluster

identity, which will increase the difficulty of device clustering.

To overcome these two challenges, we propose a joint gradient

and loss based distributed clustering method that consists

of four steps: 1) Loss calculation, 2) Back-propagation, 3)

Similarity calculation, and 4) Cluster identity determination,

which are specified as follows:

Step 1: Loss calculation Given the parameters of K FL

models, {wt
1,w

t
2, . . . ,w

t
K}, device i first calculates the loss

with respect to each global FL model using a mini-batch of

local data samples Zt
i , as follows:

Lt
i,k(Z

t
i ) =

∑

z∈Zt

i

l(wt
k, z), ∀k = 1, 2, . . . ,K. (1)

where z is a single sample in Zt
i , and l(wt

k, z) is the loss

value of model wt
k with data sample z.

Step 2 Back-propagation: Next, device i can calculate the

gradients of K FL models based on the loss values obtained in

the first step via back-propagation algorithm. In particular, we

assume that the gradient of loss function Lt
i,k(Z

t
i ) with respect

to the global FL model w
t
k at device i is ∇Lt

i,k(Z
t
i ), ∀k =

1, 2, . . . ,K
Step 3 Similarity calculation: The gap between the global

FL model w
t
k of cluster k at iteration t and the global FL

model wt−1
k of cluster k at iteration t− 1 is

∆w
t−1
k = w

t
k −w

t−1
k , (2)

In (2), ∆w
t−1
k is the average gradient of all devices in cluster

k at iteration t− 1. The similarity between the local gradient

∇Lt
i,k(Z

t
i ) and ∆w

t−1
k is calculated by

St
i,k =

(

∇Lt
i,k(Z

t
i )
)

·∆w
t−1
k

|∇Lt
i,k||∆w

t−1
k |

, ∀k = 1, 2, . . . ,K. (3)

In (3), we use cosine similarity to characterize the similarity

between local gradient and the latest global FL model update,

which ignores the magnitude of gradient values and focuses

on the direction of gradient descent. We can also use other

functions to characterize the similarity between local gradient

and the latest global FL model update. For example, if

we consider both the magnitude and direction, we can use

euclidean metric and treat the inverse of distance as similarity

(i.e. St
i,k = −d(∇Lt

i,k,∆w
t−1
k ) = −||∇Lt

i,k−∆w
t−1
k ||, ∀k =

1, 2, . . . ,K.)

Step 4 Cluster identity determination: Given (3), the

cluster identity is estimated by

sti = argmax
k=1,2,...,K

(

λSt
i,k + (1− λ)(−Lt

i,k)
)

. (4)

where λ is a weight parameter that controls the importance

of the gradient similarity and the training loss for the cluster

identification. From (3), we see that the cluster identify of each

device depends on the gradient similarity and the training loss.

4) Local model update: Given cluster identity sti, device i

updates its local model as

w
(t+1)
i = w

t
st
i

− α∇Lt
i,st

i

, (5)

where α is the learning rate. Then, device i transmits its

updated FL model parameters w
(t+1)
i and the cluster identity

sti to the PS.

5) Local FL model aggregation: The uploaded models with

the same cluster identity sti are aggregated by the PS so as to

generate a global model of cluster sti. Denote the set of devices

identified as cluster k as

Mk = {i|i ∈ M, sti = k}. (6)

The global model aggregation of cluster k can be represented

as

w
(t+1)
k =

1

|Mk|

∑

i∈Mk

w
(t+1)
i (7)

The full procedure of our proposed clustered FL algorithm

is summarized in Algorithm 1.

C. Empty Cluster Problem in Cluster FL Training

To implement the proposed clustered FL, we may also

need to solve a problem where one cluster may not have any

devices during the training of clustered FL. This is because

all the devices in this cluster may be misclassified into other

clusters. Although this scenario may not happen frequently, it

will significantly reduce the performance of clustered FL. In

particular, at one clustered FL training iteration, if one cluster

does not have any devices, the FL model of this cluster will not

be updated. When the FL model is not updated, the gradient

vector calculated by each device may not be correct such

that the device will not select the cluster without updated FL

model in the following iterations. In consequence, the number

of clusters considered in our algorithm will be reduced. To

address this issue, we can randomly select K devices and

allocate one device to one cluster. Here, K devices can have

the same data distributions and we only need to make sure

that each cluster will have one device per FL training iteration.

Our simulations results in the following section show that this

random device allocation method (i.e., each cluster has one
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Algorithm 1 Proposed Clustered Federated Learning

1: Input: number of clusters K, number of clustering itera-

tions T , number of devices M , set of devices M, learning

rate λ, K initial cluster models {w
(0)
1 ,w

(0)
2 , . . . ,w

(0)
K }.

2: Initialization: The server initializes K FL models and

each device initializes its cluster identity randomly.

3: for t = 0, 1, . . . , T − 1 do

4: server: broadcast {wt
1,w

t
2, . . . ,w

t
K} to all devices.

5: for device i ∈ M in parallel do

6: for k = 1, 2, . . . ,K do

7: Calculate loss Lt
i,k by (1).

8: Obtain gradient ∇Lt
i,k via back-propagation.

9: Calculate gradient similarity St
i,k by (3).

10: end for

11: Estimate cluster identity by (4).

12: Update the local model by (5).

13: Upload sti and w
t
i to the server.

14: end for

15: server: aggregate received models of each cluster based

on (7).

16: end for

17: Output: global cluster models {wt
1,w

t
2, . . . ,w

t
K} and

the cluster identities of devices {st1, s
t
2, . . . , s

t
M}.

device that will not change its cluster) will only introduce at

most one incorrect device classification.

III. SIMULATION RESULTS AND ANALYSIS

We consider the implementation of the proposed clustered

FL for learning tasks:1) 10 class hand written digits identifi-

cation (i.e., MNIST [17]), 2) 10 class fashion product images

classification (i.e. FashionMNIST [18]), 3) 10 class objects

classification (i.e., CIFAR10 [19]) , and 4) 62 class hand

written letters and digits identification (i.e., EMNIST [20]) . To

evaluate the performance, we run our proposed clustered FL

method in 4 experiments, each of which extracts its cluster task

datasets from a classification dataset. For comparison purpose,

we use the iterative clustered FL scheme from [10] as baseline.

A. Simulation Settings and Performance Metrics

Here, we first explain how to generate the dataset for

the devices in each cluster of each learning task. Then, we

introduce the local FL model settings for each learning task.

Finally, we describe the performance metrics used in the

simulations.

1) Dataset Settings: For the experiments on MNIST, Fash-

ionMNIST, and CIFAR10, we consider 80 devices jointly

implement the clustered FL algorithm. These devices are

equally divided into 4 clusters (i.e., clusters A, B, C, and D as

shown in Fig. 2) and each cluster has 20 devices. Each dataset

totally has 10 class data and a device in each cluster has 8 class

data. Hence the devices in different clusters will have at least 6

overlapped class data. In Fig. 2, we show the data distribution

of the four clusters for each learning task. From this figure,

we see that, in MNIST, the devices in cluster A have a total

of 17500 samples of number 0, 1, 2, 3, 4, 5, 6, 8, while the

devices in cluster B have 14500 samples of number 0, 1, 2, 3,

4, 6, 7, 9. Hence, there are 6 overlapped class data between

devices in cluster A and B. The data samples of each cluster

will be further distributed to its devices equally and randomly.

For EMNIST learning task, we consider the clustered FL is

implemented by 200 devices which are divided into 8 clusters.

To reduce ambiguity between the uppercase and lowercase

forms of some easily hard-to-distinguish letters, we merged

the uppercase and lowercase classes for the letters C, I, J,

K, L, M, O, P, S, U, V, W, X, Y and Z, such that 62 class

data are changed into 47 classes. We further split these classes

into clusters in the same manner as was done for the MNIST

dataset, each of which has 40 class data.

2) Learning Models: For each learning task, we consider

the use of two neural network models as local FL models. The

first one is a multi-layer perceptron (MLP) with three fully-

connected layers with ReLU activation. The second model

is a convolutional neural network (CNN) which consists of

two convolutional layers followed by fully-connected layers.

The detailed MLP and CNN model architectures are shown in

Fig. 3.

3) Performance Metrics: To measure the clustering accu-

racy of the clustered FL algorithm, we use purity which is de-

fined as the percentage of devices that are classified correctly.

The purity P t at iteration t is mathematically expressed as

P t =
1

|M|

∑

k

max
j

|M∗
j ∩Mt

k|,

where M∗
j is the ground truth set of devices at cluster j, and

Mt
k is the set of devices that are clustered by the clustered

FL algorithm at iteration t, with

Mt
k = {i|i ∈ M, sti = k}, ∀k = 1, 2, . . . ,K

is the set of devices with the same cluster identity k at iteration

t.

In order to demonstrate that proposed algorithm brings

better performance to the clustered FL training, we also use

test accuracy to measure the training effect of clustered FL.

While splitting the training dataset, we also split the test

dataset for each user which has the same sample distribution

as their training dataset. The total test accuracy of the clustered

FL system is obtained by averaging test accuracy of all users.

B. Results Analysis

In Fig. 4, we show how the clustering purity, training loss,

and test accuracy vary as the number of training iterations

changes. This experiment is implemented over MNIST dataset.

Fig. 4(a), Fig. 4(b), and Fig. 4(c) are results of MNIST

experiments where MLP is used as FL models, while Fig.

4(d), Fig. 4(e), and Fig. 4(f) are results of experiments where

CNN is used as FL models. Figs. 4(a) and 4(d) show how

clustering purity changes as the number of iterations increases.

From Fig. 4(a), we see that the proposed algorithm with

λ = 0.2 can reduce 99% iterations to achieve 0.9 clustering

purity compared to the baseline. This is because the proposed
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MNIST 0 1 2 3 4 5 6 7 8 9 total

Cluster A 1500 1500 1500 2000 1500 2000 1500 0 6000 0 17500

Cluster B 1500 1500 1500 2000 1500 0 1500 2000 0 3000 14500

Cluster C 1500 1500 1500 0 1500 2000 1500 2000 0 3000 14500

Cluster D 1500 1500 1500 2000 1500 2000 1500 2000 0 0 13500

total 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 60000

FashionMNIST T-shirt/top Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle  boot total

Cluster A 1500 1500 1500 2000 1500 0 1500 0 2000 3000 14500

Cluster B 1500 1500 1500 0 1500 3000 1500 3000 2000 0 15500

Cluster C 1500 1500 1500 2000 1500 0 1500 3000 2000 0 14500

Cluster D 1500 1500 1500 2000 1500 3000 1500 0 0 3000 15500

total 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 60000

CIFAR10 Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck total

Cluster A 1250 1250 1250 1250 1666 0 2500 1666 0 1666 12498

Cluster B 1250 1250 1250 1250 0 1666 0 1667 2500 1667 12500

Cluster C 1250 1250 1250 1250 1667 1667 2500 0 2500 0 13334

Cluster D 1250 1250 1250 1250 1667 1667 0 1667 0 1667 11668

total 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 50000

Fig. 2: Example splits of MNIST, FashionMNIST, and CIFAR10

MLP Layers MNIST FashionMNIST CIFAR10 EMNIST

Input 28 × 28 28 × 28 3 × 32 × 32 28 × 28

Hidden 1 512 512 2048 512

Hidden 2 128 128 512 128

Output 8 8 8 40

CNN Layers MNIST FashionMNIST CIFAR10 EMNIST

Input 28 × 28 28 × 28 3 × 32 × 32 28 × 28

Conv 1 in_channel=1,

out_channel=32,

kernel_size=(3, 3)

in_channel=1,

out_channel=32,

kernel_size=(3, 3)

in_channel=3,

out_channel=6,

kernel_size=(5, 5)

in_channel=1,

out_channel=32,

kernel_size=(3, 3)

Maxpool / / kernel_size=(2, 2) /

Conv 2 in_channel=32,

out_channel=64,

kernel_size=(3, 3)

in_channel=32,

out_channel=64,

kernel_size=(3, 3)

in_channel=6,

out_channel=16,

kernel_size=(5, 5)

in_channel=32,

out_channel=64,

kernel_size=(3, 3)

Maxpool kernel_size=(2, 2) kernel_size=(2, 2) kernel_size=(2, 2) kernel_size=(2, 2)

Hidden 1 128 128 120 128

Hidden 2 / / 84 /

Output 8 8 8 40

Fig. 3: Model architectures of the MLP and CNN for each

experiment

clustered FL algorithm jointly uses gradient direction and loss

value to cluster devices. From Fig. 4(a), we also see that

when λ changes from 0.1 to 0.5, the proposed algorithm can

achieve higher purity at the beginning. This is because the

gradient direction can cluster devices better than loss value at

the beginning, therefore higher weight for gradient direction

brings better performance. Fig. 4(b) and Fig. 4(c) show that the

proposed clustered FL algorithm can reduce 14% iterations to

achieve 0.8 test accuracy compared to the baseline. Fig. 4(d),

Fig. 4(e), and Fig 4(f) show that when CNN is used as FL

model, the cluster performance and training efficiency of the

proposed algorithm is also better, compared to the baseline.

This stems from the fact that the clustering process of the

proposed algorithm is more efficient, which accelerates the

training of FL.

In Fig. 5, we show how the clustering purity varies as the

number of training iteration increases in experiments imple-

mented over FashionMNIST, CIFAR10, and EMNIST. From

Fig. 5(a), Fig. 5(b), and Fig. 5(c), we see that the proposed

algorithm respectfully reduces iterations required to achieve

0.9 clustering purity by up to 98%, 21% and 97% compared

to the baseline. This is because the proposed algorithm can

jointly use gradient direction and loss value to cluster devices.

IV. CONCLUSION

In this paper, we have developed a novel clustered FL

framework that enables distributed edge devices with non-IID

data to independently form several clusters in a distributed

manner and implement FL training within each cluster. In

particular, our designed device method considered two unique

FL features: 1) limited FL training information and computa-

tional power at the PS and 2) each device does not have the

data information of other devices for device clustering and

can only use global FL model parameters received from the

server and its data information to determine its cluster identity.

We have proposed a joint gradient and loss based distributed

clustering method, in which each device determines its cluster

identity considering the gradient similarity and training loss.

The proposed clustering method not only considers how a local

FL model of one device contributes to each cluster but also the

direction of gradient descent thus improving clustering speed.

Simulation results over multiple datasets demonstrate that our

proposed clustered FL algorithm can yield significant gains

compared to the existing method.
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Fig. 4: Performance metrics vary as the number of clustered FL iterations changes on MNIST experiment.
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Fig. 5: Clustering Purities vary as the number of iterations increases on FashionMNIST, CIFAR10, EMNIST experiment.
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