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Abstract—In this paper, a novel clustered FL framework
that enables distributed edge devices with non-IID data to
independently form several clusters in a distributed manner
and implement FL training within each cluster is proposed. In
particular, our designed clustered FL algorithm must overcome
two challenges associated with FL training. First, the server has
limited FL training information (i.e., the parameter server can
only obtain the FL. model information of each device) and limited
computational power for finding the differences among a large
amount of devices. Second, each device does not have the data
information of other devices for device clustering and can only
use global FL. model parameters received from the server and
its data information to determine its cluster identity, which will
increase the difficulty of device clustering. To overcome these two
challenges, we propose a joint gradient and loss based distributed
clustering method in which each device determines its cluster
identity considering the gradient similarity and training loss.
The proposed clustering method not only considers how a local
FL model of one device contributes to each cluster but also the
direction of gradient descent thus improving clustering speed.
By delegating clustering decisions to edge devices, each device
can fully leverage its private data information to determine
its own cluster identity, thereby reducing clustering overhead
and improving overall clustering performance. Simulation results
demonstrate that our proposed clustered FL algorithm can
reduce clustering iterations by up to 99% compared to the
existing baseline.

Index Terms—clustered federated learning, gradient and loss
based distributed clustering,

I. INTRODUCTION

The development of mobile devices and video streaming
applications (i.e., metaverse and virtual reality) motivates the
development of distributed learning frameworks where devices
can train their models locally using their own data [1]-[4].
Federated learning (FL) [5] is a such decentralized learning
algorithm that allows devices to collaboratively learn a shared
machine learning (ML) model while keeping their data local-
ized on their own devices [6]. However, standard FL. may not
be applied for devices with non independent and identically
distributed (non-IID) data since a standard FL. method directly
aggregates the ML models of devices without considering
the data distributions of devices. To address this problem,
one promising solution is to cluster the devices according to
their data distributions such that the devices in a cluster with

This work was supported by the U.S. National Science Foundation under
Grants CNS-2332834, SaTC-2350076, CNS-2312138, and SaTC-2350075.

similar data distributions can collaboratively train a ML model
thus solving the non-IID problem and improving training
performance. However, designing clustered FL algorithms still
presents several challenges including: 1) The parameter server
(PS) has limited information (i.e., FL. model parameters) to
determine cluster identities of all devices. 2) The PS has
limited computational resource to identify differences among
a large number of devices.

Recently, a number of existing works such as in [7]-[15]
have studied the design and deployment of clustered FL over
wireless networks. In particular, the authors in [7] designed
a clustered FL algorithm that first trains local models on
each device, and then uses clustering algorithms such as k-
means to cluster devices according to their locally trained
convergent models. The work in [8] developed a FL algorithm
with hierarchical clustering approach. The designed algorithm
first trains a global model over several FL training iterations
and then clusters devices according to the similarities between
updated local FL models. The authors in [9] designed a
clustered FL framework in which an original cluster containing
all devices is recursively divided into smaller sub-clusters. The
device clustering starts when the FL models are stationary
and ends when the gradient norm of any devices in the sub-
cluster is below a preset threshold value. The work in [10]
designed a novel clustered FL. which integrates the clustering
algorithm into the training procedure, and to iteratively adjust
the devices’ cluster identities through FL process. In [11],
the authors investigated clustered FL under Byzantine attacks
and shows that clustered FL can reliably detect and remove
malicious clients. The authors in [12] introduced a clustering
algorithm based on social awareness for clustered FL and
developed a heuristic algorithm to minimize the training time
per FL iteration. Meanwhile, the designed clustering method
in [12] can eliminate the need of a centralized PS. The work
in [13] designed a device selection approach for clustered FL
to accelerate the convergence rate. In [14], a three-phased
clustering algorithm based on generative adversarial network
is introduced. The designed clustering method can create dy-
namic clusters and change the number of clusters over different
iterations. However, most of these existing works [7]-[15]
focused on the design of centralized clustering methods which
may lead to significant communication and computational
overhead. Meanwhile, these works [7]-[15] considered the use
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of only local loss values of edge devices for device clustering
without using other information (i.e., gradient vectors) of FL
training.

The main contribution of this paper is a novel clustered FL
framework that enables distributed edge devices with non-IID
data to independently form several clusters in a distributed
manner and implement FL training within each cluster. In
particular, our designed clustered FL algorithm must overcome
two challenges associated with FL training. First, the server
has limited FL training information (i.e., the PS can only
obtain the FL model information of each device) and limited
computational power for finding the differences among a large
amount of devices. Second, each device does not have the data
information of other devices for device clustering and can only
use global FL model parameters received from the server and
its data information to determine its cluster identity, which
will increase the difficulty of device clustering. To overcome
these two challenges, we propose a joint gradient and loss
based distributed clustering method in which each device de-
termines its cluster identity considering the gradient similarity
and training loss. The proposed clustering method not only
considers how a local FL model of one device contributes
to each cluster but also the direction of gradient descent thus
improving clustering speed. By delegating clustering decisions
to edge devices, each device can fully leverage its private
data information to determine its own cluster identity, thereby
reducing clustering overhead and improving overall clustering
performance. Simulation results over multiple datasets demon-
strate that our proposed clustered FL algorithm can reduce the
iterations required to cluster the devices correctly by up to 99%
compared to the existing baseline.

II. PROPOSED CLUSTERED FL SYSTEM

Consider a clustered federated learning framework in which
one parameter server and a set M of M devices collabora-

tively perform federated learning algorithms. In our model,
devices have different datasets and hence the data distribution
of the devices is non-IID. We assume that the total number
of data distributions of all devices is K. To address the data
heterogeneity problem [16], devices should be divided into
K clusters based on the characteristics of their datasets. The
devices with similar data distributions are clustered into a
group and jointly perform an FL training. In our model, we
consider a general scenario where each device does not know
the data distribution of other devices and the PS also does
not know the data distributions of all devices. Hence, the
PS cannot directly determine the cluster of each device and
each device must use its limited FL parameter information to
determine its cluster. To this end, it is necessary to design
a novel clustered FL. method where each device exploits its
FL parameter information to determine its cluster individually.
Next, we introduce our designed clustered FL algorithm. In
particular, we first discuss the general process of clustered
federated learning and then provide more details about the
proposed clustering algorithm in clustered FL.

A. General Procedure of Clustered FL

Here, we introduce the general training process of clustered
FL, which is summarized as follows:

1) The server randomly initializes K FL models at first
training iteration and broadcast the parameters of these
FL models to all devices. We assume that w}, represents
the FL model parameters of cluster £ at iteration ¢. Here,
the set of devices at each group k£ may be changed
according to the clustering results.

2) Each device i € M determines its cluster identity, i.e.,
which cluster it belongs to, via its private dataset and
the model parameters received from the PS. Since this
cluster identity would change through FL process, we
denote the cluster identity of device 7 at ¢-th iteration as
st. Given its cluster identity s!, each device will update
its local FL. model and transmit its FL parameters and
cluster identity to the PS.

3) The PS will aggregate the FL parameters with the same
cluster identity and generate a global FL. model. Since
the devices are divided into K clusters, the PS will
generate K global FL models.

4) Repeat Steps 2-4 until converge.

From the training process of clustered FL, we see that
clustered FL requires each device to use only its dataset and
global FL models received from the PS to identify cluster
identities and each device does not know the data distribution
and cluster identify. Devices need to determine their clustering
identities per iteration.

B. Proposed Clustered FL Algorithm

Given the general process of clustered FL, in this subsection,
we introduce our proposed clustered FL, which also consists
of four steps: /) cluster FL model broadcast, 2) device cluster
identity determination, 3) local FL. model update, and 4) local
FL model aggregation, which are specified as follows.
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1) Initialization: The server randomly initializes K FL
models. Each device initializes its cluster identity randomly
at the first FL training round, since each device does not have
any information to determine the cluster identity.

2) Cluster model broadcast: Since the devices are grouped
into K clusters, the server will generate K initial global FL
models for all clusters. Hence, to implement our proposed
clustered FL, the server will first broadcast the parameters of
K global FL models {w!, w}, ..., wi} to the devices.

3) Determination of cluster identity for each device: Given
the training process of clustered FL, two challenge must be
solved when we design the device clustering algorithm. First,
the device clustering method must be distributed since the
server has limited FL training information (i.e., the PS can
only obtain the FL. model information of each device) and
limited computational power for finding the differences among
a large amount of devices. Second, each device does not have
the data information of other devices for device clustering
and can only use global FL. model parameters received from
the server and its data information to determine its cluster
identity, which will increase the difficulty of device clustering.
To overcome these two challenges, we propose a joint gradient
and loss based distributed clustering method that consists
of four steps: 1) Loss calculation, 2) Back-propagation, 3)
Similarity calculation, and 4) Cluster identity determination,
which are specified as follows:

Step 1: Loss calculation Given the parameters of K FL
models, {w!, w}, ... wh}, device i first calculates the loss
with respect to each global FL model using a mini-batch of
local data samples Zf, as follows:

Lh(2h = l(wh2),Vk=12... K (1)
ZGZf

where z is a single sample in Z!, and [(w}, z) is the loss
value of model w!, with data sample z.

Step 2 Back-propagation: Next, device ¢ can calculate the
gradients of K FL models based on the loss values obtained in
the first step via back-propagation algorithm. In particular, we
assume that the gradient of loss function LZ « (Z5) with respect
to the global FL model w, at device i is VL., (Z!),Vk =
L,2,....K ’

Step 3 Similarity calculation: The gap between the global
FL model w! of cluster k at iteration ¢ and the global FL
=1 of cluster k at iteration ¢t — 1 is

model w),
Aw?l =w! — w’,f;l7 )

In (2), sz_l is the average gradient of all devices in cluster
k at iteration ¢ — 1. The similarity between the local gradient
VL (2]) and Aw} ! is calculated by

o (veE) - awp

Si k - —1 ,Vk
' VL, || Aw),

In (3), we use cosine similarity to characterize the similarity

between local gradient and the latest global FL. model update,

which ignores the magnitude of gradient values and focuses

=1,2,....K. (3

on the direction of gradient descent. We can also use other
functions to characterize the similarity between local gradient
and the latest global FL model update. For example, if
we consider both the magnitude and direction, we can use
euclidean metric and treat the inverse of distance as similarity
(ie. S, = —d(VL!,, Awl ") = —[|VL!  —Aw} ||, VE =
1,2,...,K)

Step 4 Cluster identity determination:
cluster identity is estimated by

st = argmax ()\Sf’k +(1- )\)(_E;k)) : )
k=12,...,.K

Given (3), the

where A is a weight parameter that controls the importance
of the gradient similarity and the training loss for the cluster
identification. From (3), we see that the cluster identify of each
device depends on the gradient similarity and the training loss.

4) Local model update: Given cluster identity s!, device i
updates its local model as

wgtﬂ) = wi; — aVL'zsg, 5)
where « is the learning rate. Then, device ¢ transmits its
updated FL. model parameters wgtﬂ) and the cluster identity
st to the PS.

5) Local FL model aggregation: The uploaded models with
the same cluster identity s! are aggregated by the PS so as to
generate a global model of cluster s!. Denote the set of devices
identified as cluster k£ as

My, = {ili € M, st = k}. (6)
The global model aggregation of cluster k£ can be represented
as
(t+1) 1 (t+1)
= — - 7
k M| > w; (7

iEMy

The full procedure of our proposed clustered FL algorithm
is summarized in Algorithm 1.

C. Empty Cluster Problem in Cluster FL Training

To implement the proposed clustered FL, we may also
need to solve a problem where one cluster may not have any
devices during the training of clustered FL. This is because
all the devices in this cluster may be misclassified into other
clusters. Although this scenario may not happen frequently, it
will significantly reduce the performance of clustered FL. In
particular, at one clustered FL training iteration, if one cluster
does not have any devices, the FL model of this cluster will not
be updated. When the FL. model is not updated, the gradient
vector calculated by each device may not be correct such
that the device will not select the cluster without updated FL
model in the following iterations. In consequence, the number
of clusters considered in our algorithm will be reduced. To
address this issue, we can randomly select K devices and
allocate one device to one cluster. Here, K devices can have
the same data distributions and we only need to make sure
that each cluster will have one device per FL training iteration.
Our simulations results in the following section show that this
random device allocation method (i.e., each cluster has one
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Algorithm 1 Proposed Clustered Federated Learning

1: Input: number of clusters K, number of clustering itera-
tions 7', number of devices M, set of devices M, learning
rate A\, K initial cluster models {w§0)7 'wéo), ce 'wgg)}.

2: Initialization: The server initializes K FL models and
each device initializes its cluster identity randomly.

3: fort=0,1,...,7 —1 do

4. server: broadcast {w!, w}, ... wh} to all devices.

5:  for device i € M in parallel do

6: for k=1,2,...,K do

7

8

9

Calculate loss L, by (1).
Obtain gradient Vﬁg’ , via back-propagation.
: Calculate gradient similarity S!, by (3).
10: end for 7

11: Estimate cluster identity by (4).
12: Update the local model by (5).
13: Upload s! and w! to the server.

14:  end for
15:  server: aggregate received models of each cluster based

on (7).
16: end for
17: Output: global cluster models {w!, w},... wt } and
the cluster identities of devices {s!,s5,..., s}

device that will not change its cluster) will only introduce at
most one incorrect device classification.

III. SIMULATION RESULTS AND ANALYSIS

We consider the implementation of the proposed clustered
FL for learning tasks:1) 10 class hand written digits identifi-
cation (i.e., MNIST [17]), 2) 10 class fashion product images
classification (i.e. FashionMNIST [18]), 3) 10 class objects
classification (i.e., CIFAR10 [19]) , and 4) 62 class hand
written letters and digits identification (i.e., EMNIST [20]) . To
evaluate the performance, we run our proposed clustered FL
method in 4 experiments, each of which extracts its cluster task
datasets from a classification dataset. For comparison purpose,
we use the iterative clustered FL scheme from [10] as baseline.

A. Simulation Settings and Performance Metrics

Here, we first explain how to generate the dataset for
the devices in each cluster of each learning task. Then, we
introduce the local FL. model settings for each learning task.
Finally, we describe the performance metrics used in the
simulations.

1) Dataset Settings: For the experiments on MNIST, Fash-
ionMNIST, and CIFAR10, we consider 80 devices jointly
implement the clustered FL algorithm. These devices are
equally divided into 4 clusters (i.e., clusters A, B, C, and D as
shown in Fig. 2) and each cluster has 20 devices. Each dataset
totally has 10 class data and a device in each cluster has 8 class
data. Hence the devices in different clusters will have at least 6
overlapped class data. In Fig. 2, we show the data distribution
of the four clusters for each learning task. From this figure,
we see that, in MNIST, the devices in cluster A have a total

of 17500 samples of number O, 1, 2, 3, 4, 5, 6, 8, while the
devices in cluster B have 14500 samples of number O, 1, 2, 3,
4, 6, 7, 9. Hence, there are 6 overlapped class data between
devices in cluster A and B. The data samples of each cluster
will be further distributed to its devices equally and randomly.

For EMNIST learning task, we consider the clustered FL is
implemented by 200 devices which are divided into 8 clusters.
To reduce ambiguity between the uppercase and lowercase
forms of some easily hard-to-distinguish letters, we merged
the uppercase and lowercase classes for the letters C, I, J,
K, L MO, P S, U V,W, X, Y and Z, such that 62 class
data are changed into 47 classes. We further split these classes
into clusters in the same manner as was done for the MNIST
dataset, each of which has 40 class data.

2) Learning Models: For each learning task, we consider
the use of two neural network models as local FL models. The
first one is a multi-layer perceptron (MLP) with three fully-
connected layers with ReLU activation. The second model
is a convolutional neural network (CNN) which consists of
two convolutional layers followed by fully-connected layers.
The detailed MLP and CNN model architectures are shown in
Fig. 3.

3) Performance Metrics: To measure the clustering accu-
racy of the clustered FL algorithm, we use purity which is de-
fined as the percentage of devices that are classified correctly.
The purity P! at iteration ¢ is mathematically expressed as

1 *
pt — WZm?X|Mj nM.|,
.

where M7 is the ground truth set of devices at cluster j, and
ML is the set of devices that are clustered by the clustered
FL algorithm at iteration ¢, with

Mi=1ilie M,st =k},Vk=1,2,... K

is the set of devices with the same cluster identity £ at iteration
t.

In order to demonstrate that proposed algorithm brings
better performance to the clustered FL training, we also use
test accuracy to measure the training effect of clustered FL.
While splitting the training dataset, we also split the test
dataset for each user which has the same sample distribution
as their training dataset. The total test accuracy of the clustered
FL system is obtained by averaging test accuracy of all users.

B. Results Analysis

In Fig. 4, we show how the clustering purity, training loss,
and test accuracy vary as the number of training iterations
changes. This experiment is implemented over MNIST dataset.
Fig. 4(a), Fig. 4(b), and Fig. 4(c) are results of MNIST
experiments where MLP is used as FL models, while Fig.
4(d), Fig. 4(e), and Fig. 4(f) are results of experiments where
CNN is used as FL models. Figs. 4(a) and 4(d) show how
clustering purity changes as the number of iterations increases.
From Fig. 4(a), we see that the proposed algorithm with
A = 0.2 can reduce 99% iterations to achieve 0.9 clustering
purity compared to the baseline. This is because the proposed
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MNIST (0] 1 2 3 4 5 6 7 8 9 total
Cluster A 1500 1500 1500 2000 1500 2000 1500 0 6000 0 17500
Cluster B 1500 1500 1500 2000 1500 0 1500 2000 0 3000 14500
Cluster C 1500 1500 1500 0 1500 2000 1500 2000 0 3000 14500
Cluster D 1500 1500 1500 2000 1500 2000 1500 2000 0 0 13500

total 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 60000

FashionMNIST  T-shirt/top Trouser Pullover Dress Sandal Shirt Sneaker Ankle boot

Cluster A 1500 1500 1500 2000 1500 0 1500 0 2000 3000 14500
Cluster B 1500 1500 1500 0 1500 3000 1500 3000 2000 0 15500
Cluster C 1500 1500 1500 2000 1500 0 1500 3000 2000 0 14500
Cluster D 1500 1500 1500 2000 1500 3000 1500 0 0 3000 15500

total 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 60000
CIFAR10 Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck total
Cluster A 1250 1250 1250 1250 1666 0 2500 1666 0 1666 12498
Cluster B 1250 1250 1250 1250 0 1666 0 1667 2500 1667 12500
Cluster C 1250 1250 1250 1250 1667 1667 2500 0 2500 0 13334
Cluster D 1250 1250 1250 1250 1667 1667 0 1667 0 1667 11668

total 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 50000

Fig. 2: Example splits of MNIST, FashionMNIST, and CIFAR10

MLP Layers MNIST FashionMNIST CIFAR10 EMNIST

Input 28 X 28 28 X 28 3X32x%x32 28 X 28
Hidden 1 512 512 2048 512
Hidden 2 128 128 512 128

Output 8 8 8 40

Input 28 X 28 28 x 28 3X32X%x32 28 X 28

Conv 1 in_channel=1, in_channel=1, in_channel=3, in_channel=1,
out_channel=32, out_channel=32, out_channel=6, out_channel=32,
kernel_size=(3, 3) kernel_size=(3, 3) kernel_size=(5, 5) kernel_size=(3, 3)

Maxpool / / kernel_size=(2, 2) /

Conv 2 in_channel=32, in_channel=32, in_channel=6, in_channel=32,
out_channel=64, out_channel=64, out_channel=16, out_channel=64,
kernel_size=(3, 3) kernel_size=(3, 3) kernel_size=(5, 5) kernel_size=(3, 3)

Maxpool kernel_size=(2, 2) kernel_size=(2, 2) kernel_size=(2, 2) kernel_size=(2, 2)
Hidden 1 128 128 120 128
Hidden 2 / / 84 /

Output 8 8 8 40

Fig. 3: Model architectures of the MLP and CNN for each
experiment

clustered FL algorithm jointly uses gradient direction and loss
value to cluster devices. From Fig. 4(a), we also see that
when A changes from 0.1 to 0.5, the proposed algorithm can
achieve higher purity at the beginning. This is because the
gradient direction can cluster devices better than loss value at
the beginning, therefore higher weight for gradient direction
brings better performance. Fig. 4(b) and Fig. 4(c) show that the
proposed clustered FL algorithm can reduce 14% iterations to
achieve 0.8 test accuracy compared to the baseline. Fig. 4(d),
Fig. 4(e), and Fig 4(f) show that when CNN is used as FL
model, the cluster performance and training efficiency of the

proposed algorithm is also better, compared to the baseline.
This stems from the fact that the clustering process of the
proposed algorithm is more efficient, which accelerates the
training of FL.

In Fig. 5, we show how the clustering purity varies as the
number of training iteration increases in experiments imple-
mented over FashionMNIST, CIFAR10, and EMNIST. From
Fig. 5(a), Fig. 5(b), and Fig. 5(c), we see that the proposed
algorithm respectfully reduces iterations required to achieve
0.9 clustering purity by up to 98%, 21% and 97% compared
to the baseline. This is because the proposed algorithm can
jointly use gradient direction and loss value to cluster devices.

IV. CONCLUSION

In this paper, we have developed a novel clustered FL
framework that enables distributed edge devices with non-IID
data to independently form several clusters in a distributed
manner and implement FL training within each cluster. In
particular, our designed device method considered two unique
FL features: 1) limited FL training information and computa-
tional power at the PS and 2) each device does not have the
data information of other devices for device clustering and
can only use global FL. model parameters received from the
server and its data information to determine its cluster identity.
We have proposed a joint gradient and loss based distributed
clustering method, in which each device determines its cluster
identity considering the gradient similarity and training loss.
The proposed clustering method not only considers how a local
FL model of one device contributes to each cluster but also the
direction of gradient descent thus improving clustering speed.
Simulation results over multiple datasets demonstrate that our
proposed clustered FL algorithm can yield significant gains
compared to the existing method.
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Fig. 5: Clustering Purities vary as the number of iterations increases on FashionMNIST, CIFAR10, EMNIST experiment.
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