
A Joint Communication and Learning Design for

Secure Federated Learning with Differential Privacy

Licheng Lin∗, Zhaohui Yang†, Qianqian Yang†, Mingzhe Chen∗‡

∗Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, 33146, USA,
†College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China,

‡Frost Institute for Data Science and Computing, University of Miami, Coral Gables, FL, 33146, USA,

E-mails: {lxl1293, mingzhe.chen}@miami.edu, {yang zhaohui, qianqianyang20}@zju.edu.cn

Abstract—In this paper, the problem of resource allocation
for non-orthogonal multiple access (NOMA) enabled secure
federated learning (FL) is investigated. In the considered model, a
set of users participate in the FL training through transmitting
their trained FL model parameters to the base stations (BSs)
via NOMA techniques. To prevent data leakage, each user uses
the differential privacy (DP) technique through adding Gaussian
noise to its FL model parameters. The problem of minimizing
overall privacy leakage of all FL participaring users is formulated
as an optimization problem through jointly optimizing the
connections between users and BSs, transmit power of the users,
and the DP noise power. To solve the formulated non-convex
optimization problem, a genetic algorithm is proposed to search
for feasible solutions in which user connection matrix is taken
as gene and the objective function value is taken as the fitness
of solution. Simulation results show that the proposed genetic
algorithm reduces privacy leakage by up to 73% compared to
the conventional alternating optimization algorithm.

Index Terms—Federated Learning, Differential Privacy, Joint
Communication and Learning Design

I. INTRODUCTION

Centralized machine learning (ML) algorithms require to

collect diverse data from edge devices for ML model training

which may be hindered by privacy, security constraints [1].

To circumvent these limiting factors, federated learning (FL)

[2] is proposed, which distributes the learning process across

multiple distributed edge devices, thus improving data privacy

of edge devices. In particular, instead of sharing raw data,

edge devices in FL transmit only model parameters to a

central server where ML model parameters are aggregated to

form a global model. Since wireless networks have limited

wireless and computing resources, it is necessary to study

the optimization of these resource allocation to support the

deployment of FL over wireless networks.

Currently, FL has been extensively studied in a number

of current works as shown in [2]–[11]. In particular, in

[3], a comprehensive overview of current FL methods, FL

deployment challenges, and future directions was provided.

The work in [2] designed an effective FL called FedAvg based

on iterative model averaging and demonstrated its robustness

experimentally. The authors in [4] introduced the FedProx

framework to address data heterogeneity. In [5], a FL algo-

rithm is designed by considering communication compression
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and decentralization. The authors in [6] studied how wireless

transmission errors affect the FL training performance and

optimized wireless resource (i.e., resource block and transmit

power) allocation and the set of participating devices to

reduce FL training loss. The work in [7] investigated the

deployment of FL in an energy harvesting wireless network

and designed a user scheduling algorithm to reduce FL training

loss. The work in [8] studied a communication-efficient FL

framework which enables edge devices to efficiently train

and transmit model parameters, thus significantly improving

FL performance and convergence speed. The authors in [9]

addresses the critical issue of communication efficiency in

wireless FL by proposing and analyzing quantization methods

to reduce bandwidth usage while maintaining high accuracy.

The work in [10] introduces a approach to FL that addresses

heterogeneous quantization among clients, optimizing aggre-

gation weights based on quantization precision to improve

convergence and performance. The work in [11] presents

a bandwidth allocation model for FL in wireless networks

with multiple providers, addressing round length minimization

under bandwidth and cost constraints. While exchanging ML

model parameters in FL can improve data privacy of edge

devices, current researches [12] have shown that ML model

parameters transmitted by edge devices during FL training can

still unintentionally leak sensitive information of participating

devices. To solve this problem, differential privacy (DP) has

been considered as a promising technique to prevent such

privacy risks by carefully adding artificial noise into exchanged

ML model parameters [13].

A number of recent works [14]–[18] have studied the use of

DP to improve FL data privacy. In particular, in [14], a novel

FL algorithm is proposed that applies differential privacy to

preserve privacy, with precise calculation of the privacy costs

within the differential privacy framework. The work in [15]

studied the trade-off between convergence performance and

degrees of privacy preservation, analyzed the improvement in

convergence performance when the number of users increases

and the existence of an optimal communication round in terms

of convergence performance under a fixed privacy protection

level. The authors in [16] showed that the superposition nature

of the wireless channel provides bandwidth-efficient gradient

aggregation and guarantees the data privacy of participating

users. The authors in [17] introduced a FL framework based

on multi-agent multi-armed bandit to reduce FL training delay
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over wireless channels with differential privacy requirements.

In [18] explores optimizing the trade-off between model per-

formance and privacy preservation in federated edge learning

systems using personalized differential privacy and proposed

a method to jointly minimize global loss and privacy leakage.

However, the above works on the use of DP for FL [14]–

[18] ignored the joint optimization of user association and

DP noise power allocation although the performance can be

further enhanced. Meanwhile, none of these works [14]–[18]

The main contribution of this paper is a novel privacy

preserving FL framework that uses non-orthogonal multiple

access (NOMA) technique to improve FL parameter transmis-

sion efficiency and minimize user privacy leakage. Our key

contributions include:

• We consider a NOMA based cellular network in which

a set of users participate in the FL training through

using the same time and frequency resource. To prevent

data leakage, the users add Gaussian noise to the model

parameters and then transmit them to their associated

BSs. Our purpose is to jointly optimize the connections

between the users and BSs, transmit power of users, and

the DP noise power added to the FL model parameters

so as to minimize the privacy leakage of all users.

• The problem of minimizing overall privacy leakage is

formulated as an optimization problem with optimization

variables including user association, transmission power,

and DP noise power. To solve this problem, we propose a

genetic algorithm to search for feasible solutions in which

user connection matrix is taken as gene and the objective

function value is taken as the fitness of solution.

Simulation results show that the proposed genetic algorithm

reduces the total privacy leakage by up to 73% compared to

the conventional alternating optimization algorithm.

The rest of this paper is organized as follows. The system

model is described in Section II. The optimization problem

is formulated in Section III. In Section IV, we introduce

our genetic algorithm to solve the optimization problem.

Simulation settings and results are introduced in Section V.

Conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a cellular network in which a set S of S base

stations (BSs), a set U of U users, and a parameter server

jointly perform an FL algorithm, as shown in Fig. 1. The users

applies a DP scheme to add artificial noise to their transmitted

FL model parameters so as to preserve their data privacy. Next,

we first introduce the FL training procedure. Then, we explain

the models of FL parameter transmission.

A. Federated Learning System Model

The connection matrix between users and BSs is defined as

M =

»

¼

¼

¼

½

μ1,1 μ1,2 · · · μ1,U

μ2,1 μ2,2 · · · μ2,U

...
...

. . .
...

μS,1 μS,2 · · · μS,U

¾

¿

¿

¿

À

∈ {0, 1}S×U , (1)

Fig. 1. DP-based FL system with multiple base stations

where μs,i = 1 indicates that user i ∈ U is connected to BS

s ∈ S , otherwise, μs,i = 0.

We assume that each user i ∈ U has its own private dataset,

denoted as

Xi = (x
(1)
i ,x

(2)
i , · · · ,x

(Ki)
i )T ∈ R

Ki×m, (2)

where Ki represents the number of data samples in the dataset

Xi. Each x
(k)
i is an m-dimensional data sample vector, which

can be expressed as

x
(k)
i = (x

(k)
i (1), x

(k)
i (2), · · · , x

(k)
i (m− 1), y

(k)
i ), (3)

where the first m − 1 elements represent the training input

of user i’s FL model and the last element y
(k)
i represents the

training output.

Given (1)-(3), the FL training procedure is summarized as

the following five steps:

1) System Initialization. The server broadcasts the sys-

tem parameters including the user connection matrix

(μs,i)s∈S,i∈U , the transmission power used by each user

(pi)i∈U , and the standard deviation of the differential

privacy noise added to user-uploaded models (σi)i∈U

to all BSs. Each BS will broadcast the received system

parameters to the users that are closest to this BS. Based

on the received connection matrix, the users establish the

connections with BSs. Let Us be the set of users that are

associated with BS s. The parameters of the global FL

model at each iteration t is w(t) ∈ R
d. w(0) is randomly

initialized by the server.

2) The server transmits the initialized global model w(0)

to all BSs. Then, each BS s broadcasts this model to all

its connected users i ∈ Us.

3) Local model update with DP strategy. Each user uses its

private data set Xi and the model parameter vector w(t)

to calculate its local loss, denoted as l(w(t),x
(k)
i ). Then,
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users can calculate the gradient of the loss function with

respect to the parameter vector w(t) as follows:

q
(t)
i (Xi) =

1

Ki

Ki
∑

k=1

∇l(w(t),x
(k)
i ). (4)

Following the operations in [12], users add Gaussian

noise n
(t)
i ∼ N (0, σ2

i Id) to the gradient of the loss

function, as follows:

M
(t)
i (Xi) = q

(t)
i (Xi) + n

(t)
i . (5)

We assume that n
(t)
i is a independent valuable that is

not related to the differential privacy noise in other

rounds. Therefore, our considered differential privacy

strategy satisfies the zero-concentrated differential pri-

vacy (zCDP) [19]. Let σi denote the standard deviation

of the differential privacy noise added by user i ∈ U .

We also assume that the upper bound of the local loss

function is L [13]. Hence, the privacy leakage of user

i can be defined under the ρ-zCDP as follows:

ρ = 2
( L

Kiσi

)2

. (6)

where ρ represents the measure of the privacy leakage

for user i’s private data during one round of FL iteration.

After adding noise to the gradient, user i utilizes this

gradient to locally update its model parameters, which

is given by

w
(t+1)
i = w

(t)
i − αM

(t)
i (Xi), (7)

where α > 0 is the learning rate.

4) Model aggregations. Each user i ∈ Us transmits its

model w
(t+1)
i to its connected BS s. The BS then

aggregates all the received models as follows:

w(t+1)
s =

1
∑

i∈U Kiμs,i

∑

i∈U

Kiμs,iw
(t+1)
i . (8)

Finally, all BSs send their aggregated models to the

server, which then aggregates them as

w(t+1) =
1

Ka

∑

s∈S

∑

i∈U

Kiμs,iw
(t+1)
s , (9)

where

Ka =
∑

s∈S

∑

i∈U

Kiμs,i, (10)

is the total number of data samples of all participating

users. The model aggregated by the server will be used

as the new global model for the next iteration and will

be sent to all BSs at the next iteration.

5) Repeat steps 2)-4) for a pre-defined number of iterations

(e.g., T iterations) until convergence.

The entire training process of the considered FL is summa-

rized in Algorithm 1.

Algorithm 1 Multiple-BS DP-based FL

1: The server broadcasts μs,i, pi, σi to all BSs and users.

2: Connections between users and BSs are determined ac-

cording to the user connection index μs,i.

3: Each BS s determines its associated users, represented by

a set Us.

4: for t = 0 : T do

5: The server transmits global model w(t) to all BSs.

6: for BS s ∈ S in parallel do

7: BS s transmits w(t) to all its connected users.

8: for user i ∈ Us in parallel do

9: User i updates its local model according to (7).

10: User i sends w
(t+1)
i back to BS s.

11: end for

12: BS s aggregates received models according to (8).

13: BS s sends w
(t+1)
s to the server.

14: end for

15: The server aggregates received models according to (9).

16: end for

According to [13], the power of the DP noise has a signifi-

cant impact on the convergence of the considered FL algorithm

since DP noise will introduce errors to the global models. To

guarantee the FL convergence, the DP noise parameter σi must

satisfy the following constraint:

∑

s∈S

∑

i∈U

Kiσ
2
i μs,i ≤ Vmax

∑

s∈S

∑

i∈U

Kiμs,i, (11)

where Vmax is an upper bound on the total differential privacy

noise error.

B. Communication System Model

Let pi be the transmit power used by user i ∈ U for FL

model parameter transmission, and Pmax be the maximum

transmit power of a user. We also assume that all users use

the same communication frequency band. Let Is(̃ı) denote the

interference signal power received by BS s from user ı̃. Is(̃ı)
can be expressed as

Is(̃ı) =
∑

s̃∈S

hs,̃ıμs̃,̃ıpı̃. (12)

Hence, the total interference power received by BS s when

receiving signals from user i can be written as
∑

ı̃∈U\{i} Is(̃ı).
Then, the channel capacity between user i and BS s is

cUs,i = μs,iB log(1 +
pihs,i

∑

ı̃∈U\{i} Is(̃ı) +BN0
), (13)

where B is the channel bandwidth and N0 is the power spectral

density of thermal noise, hs,i is the channel gain, which can

be obtained by calculating the path loss between user i and

BS s as follows:

hs,i = l2(
c

4πf
)2(

1

ds,i
)3, (14)
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where l follows a Rayleigh distribution with unit scale param-

eter, c is the speed of light, f is the center frequency, and ds,i
is the distance between user i and BS s.

C. Non-Orthogonal Multiple Access Strategy

To enhance spectral efficiency, non-orthogonal multiple ac-

cess (NOMA) technique is used for FL model parameter trans-

mission between users and BSs. By utilizing superposition

coding at the user (i.e., transmitter) and successive interference

cancellation (SIC) at the BS (i.e., receiver), the users that are

associated with the same BS can transmit FL model parameters

concurrently. Through sharing their bandwidth, each user can

obtain a larger channel capacity. Hence, the channel capacity

between user i and BS s can be obtained as follows:

cUs,i = μs,i

∑

j∈U

μs,jB log

(

1 +
pihs,i

∑

ı̃∈U\{i} Is(̃ı) + Cs,i

)

,

(15)

where Is(̃ı) =
∑

s̃∈S\{s} μs̃,ipihs,̃ı is the interference

from the users that are associated with other BSs,

and Cs,i = BN0 + INOMA(s, i) with INOMA(s, i) =
∑

{k∈U|hs,k<hs,i}
μs,kpkhs,k being the interference caused by

other users connected to BS s. Here, the signals from the users

that are associated with one BS are decoded in a descending

order of their channel gains. When decoding a signal with a

stronger channel gain, the signals with weaker channel gains

are treated as interference.

III. PROBLEM FORMULATION

Given the defined system model, next, we introduce an

optimization problem that aims to minimize the total privacy

leakage of all users via jointly optimizing the user-BS connec-

tion matrix (μs,i)i∈U,s∈S , user transmit power (pi)i∈U , and

the standard deviation of differential privacy noise adopted by

each user (σi)i∈U . The studied problem is formulated as

min
σi,µs,i,pi

∑

s∈S

∑

i∈U

(

1

Kiσi

)2

μs,i, (16)

s.t.
∑

s∈S

∑

i∈U

Kiσ
2
i μs,i � Vmax

∑

s∈S

∑

i∈U

Kiμs,i, (16a)

Kiσi � Nminμs,i, ∀s ∈ S, i ∈ U , (16b)

0 � pi � Pmax, ∀s ∈ S, i ∈ U , (16c)

cUs,i � Rminμs,i, ∀s ∈ S, i ∈ U , (16d)

μs,i ∈ {0, 1}, ∀s ∈ S, i ∈ U , (16e)
∑

s∈S

μs,i � 1, ∀i ∈ U , (16f)

∑

i∈U

μs,i � N1, ∀s ∈ S, (16g)

∑

s∈S

∑

i∈U

μs,i � N2, (16h)

where Nmin is a lower bound of DP noise for all users, N1

represents the maximum user connection capacity of a BS, N2

is the minimum number of users that FL requires to converge.

Constraint (16a) limits the overall differential privacy noise

error to a predetermined value Vmax so as to ensure the FL

convergence [13]. Constraint (16b) sets a lower bound Nmin

on the differential privacy noise added by each user so as

to prevent the privacy leakage of each user. Constraint (16c)

indicates the maximum transmit power of each user. Constraint

(16d) is the minimum channel capacity Rmin required by each

user to send FL model parameters. Here, Rmin also affects

the optimization of the connection matrix since a user will

connect to the BS that can provide a data rate that is larger

than Rmin. Constraints (16e) and (16f) imply that each user

can only connect to one BS at a given time slot. Constraint

(16g) limits the number of users that each BS can connect to.

Constraint (16h) shows the minimum number of participating

users that are required for FL training. Since problem (16)

is a non-convex mixed integer optimization problem, which

is generally hard to solve, we propose a genetic algorithm to

solve this problem.

IV. SOLUTION

In this section, we introduce the use of a genetic algorithm

to solve the optimization problem in (16) since both (pi)i∈U

and (σi)i∈U depend on (μs,i)i∈U,s∈S , but (pi)i∈U and (σi)i∈U

are mutually independent. In particular, we will use the value

of the objective function in (16) as the fitness criterion for a

heuristic search of (μs,i)i∈U,s∈S . Next, we first explain the

process of obtaining the optimal transmit power and DP noise

under a given (μs,i)i∈U,s∈S . Then we introduce the genetic

algorithm for searching (μs,i)i∈U,s∈S .

A. Transmit Power Optimization

Given the user connection index μs,i, each user i’s transmit

power that satisfies the constraint (16d) is

∑

j∈U

μs,jB log(1 +
pihs,i

∑

ı̃∈U\{i} Is(̃ı) +BN0
) � Rmin

, ∀(s, i) ∈ {(s, i)|μs,i = 1}, (17)

which can be rewritten as

pi �

(

∑

ı̃∈U\{i} Is(̃ı) +BN0 + INOMA(s, i)
)

hs,i

×

(

exp

(

Rmin
∑

j∈U μs,jB

)

− 1

)

, ∀(s, i) ∈ {(s, i)|μs,i = 1}.

(18)

From (18), we see that the transmit power of each user i

depends on the transmit power of other users. To solve this

problem, we can directly use the algorithm in [20]. To use the

algorithm in [20], we assume

Ii (p) =

»

½

∑

ı̃∈U\{i}

Is(̃ı)(p(t)) +BN0 + INOMA(s, i)(p(t))

¾

À

×

(

exp

(

Rmin
∑

j∈U μs,jB

)

− 1

)

/

hs,i. (19)
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Given (μs,i)i∈U,s∈S and (19), the optimal transmit power can

be iteratively calculated as follows:

pi(t+ 1) =

{

Ii (p(t+ 1)) , ∀(s, i) ∈ {(s, i)|μs,i = 1}.

0 , ∀(s, i) ∈ {(s, i)|μs,i = 0}.
(20)

When |pi(t+ 1)− pi(t)| ≤ ε, ∀i ∈ U , with ε being a preset

threshold, the optimal transmit power p∗i of each user is

obtained. If p∗i cannot meet constraint (16c), we will discard

this (μs,i)i∈U ,s∈S in our genetic algorithm.

B. DP Noise Optimization

Given the user connection index μs,i, the problem in (16)

can be simplified as

min
σi

∑

s∈S

∑

i∈U

(

1

Kiσi

)2

μs,i, (21)

s.t.
∑

s∈S

∑

i∈U

Kiσ
2
i μs,i � Vmax

∑

s∈S

∑

i∈U

Kiμs,i, (21a)

Kiσi � Nminμs,i, ∀s ∈ S, i ∈ U . (21b)

From (21), we see that the optimization problem (21) is

a convex optimization problem that can be solved using

MATLAB’s fmincon function.

C. User-BS Connection Optimization

Given the relationship among (μs,i)i∈U,s∈S , (pi)i∈U , and

(σi)i∈U , next, we introduce the use of a genetic algorithm to

solve problem (16). Specifically, the values of (μs,i)i∈U,s∈S

are taken as the genes. For a given (μs,i)i∈U,s∈S , the optimal

values of (pi)i∈U and (σi)i∈U are determined by solving the

problem in (17) and the problem in (21). The fitness of each

(μs,i)i∈U,s∈S is the objective function value calculated based

on (μs,i)i∈U,s∈S , (pi)i∈U , (σi)i∈U . A roulette wheel selection

scheme [21] is used to evolve the next generation. The full

procedure of our genetic algorithm for solving problem (16)

is summaried in Algorithm 2.

V. NUMERICAL RESULTS

In this section, we evaluate the effectiveness of the pro-

posed algorithms. The parameters used in simulations are

summarized in Table I. For comparison purposes, we con-

sider an alternating algorithm that iteratively optimizes the

parameters in a sequential manner. In simulations, each gen-

eration consists of 400 individuals (i.e., 400 (μs,i)i∈U,s∈S ).

Among these individuals, 200 individuals are randomly se-

lected from the last generation, 100 individuals are produced

by crossover, and 100 individuals are produced by mutation.

The solutions and objective function values corresponding to

the optimal (μs,i)i∈U,s∈S , (pi)i∈U , (σi)i∈U obtained by the

genetic algorithm with 5/10/20 generations are labeled by

GA5/GA10/GA20, respectively.

Figure 2 shows how the total privacy leakage changes as the

maximum transmit power of each user varies. It can be seen

that when N2 increases from 2 to 5, the genetic algorithm with

5 generations (GA5) is superior to the alternating algorithm.

Algorithm 2 Genetic Algorithm for Solving Optimization

Problem (16)

1: Randomly initialize the first generation of μs,i (i.e., indi-

vidual).

2: Set the number of generations T for the genetic algorithm.

3: for t = 1, 2, . . ., T do

4: Selection:

5: Calculate fitness function for each individual.

6: Select individuals for next generation population based

on their fitness.

7: Crossover:

8: Randomly choose pairs of parent individuals.

9: Perform crossover on pairs to create new offspring.

10: Append offspring individuals to the population.

11: Mutation:

12: Randomly choose individuals from the population.

13: Make random changes (mutations) on chosen individu-

als to generate the offspring.

14: Append offspring individuals to the population.

15: end for

TABLE I
FIXED SYSTEM PARAMETERS IN SIMULATION

System Parameters Value

Number of BSs (S) 2
Number of users (U ) 10

Upper bound of DP noise error (Vmax) 12
Uplink bandwidth (B) 180 KHz

Uplink center frequency (f ) 2450 MHz
Thermal noise power spectral density (N0) -174 dBm/Hz

Scale parameter of channel’s rayleigh distribution (l) 1
Minimum DP noise at each user (Nmin) 100
Minimum communication rate (Rmin) 100 bps

Maximum number of connections at each BS (N1) 3

This is because the genetic algorithm can find a globally

optimal solution instead of finding a local optimal solution as

done by the iterating algorithm. Fig. 2 also shows that when

N2 increases from 2 to 5, the total privacy leakage increases

from 5 × 10−7 to 1.5 × 10−6. This is due to the fact that

the increased participating users will result in a higher overall

privacy leakage.

Figure 3 shows the distribution of the user’s DP noise when

the considered algorithms converge. It can be seen that both the

alternating algorithm and the genetic algorithm require several

users to use large DP noise power. This is because a large DP

noise can reduce the privacy leakage of a user. Fig. 3 also

shows that the genetic algorithm with 20 generations (GA20)

require users to use larger DP noise power compared to that

of GA5 or GA10. This is because the algorithm with more

generations can explore regions of the solution space more,

thus increasing the probability of finding a better solution.

VI. CONCLUSION

In this paper, we have studied the problem of resource allo-

cation for NOMA enabled secure FL. We have considered an
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Fig. 2. The total privacy leakage changes as the maximum transmit power
of each user varies in diverse N2 conditions.

Fig. 3. The final distribution of user’s DP noise varies as the optimization
algorithm changes.

FL system in which a set of users participate in the FL training

through transmitting their trained FL model parameters to the

BSs via NOMA techniques. To prevent data leakage, each

user uses the DP technique through adding Gaussian noise

to its FL model parameters. We have formulated the problem

of minimizing overall privacy leakage of all FL participaring

users as an optimization problem through jointly optimizing

the connections between users and BSs, transmit power of

the users, and the DP noise power. To solve the formulated

non-convex optimization problem, we have proposed a genetic

algorithm to search for feasible solutions in which user con-

nection matrix is taken as gene and the objective function

value is taken as the fitness of solution. Simulation results have

demonstrated the superiority of the proposed genetic algorithm

in terms of privacy leakage protection.
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