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Abstract—In this paper, the problem of resource allocation
for non-orthogonal multiple access (NOMA) enabled secure
federated learning (FL) is investigated. In the considered model, a
set of users participate in the FL training through transmitting
their trained FL. model parameters to the base stations (BSs)
via NOMA techniques. To prevent data leakage, each user uses
the differential privacy (DP) technique through adding Gaussian
noise to its FL. model parameters. The problem of minimizing
overall privacy leakage of all FL participaring users is formulated
as an optimization problem through jointly optimizing the
connections between users and BSs, transmit power of the users,
and the DP noise power. To solve the formulated non-convex
optimization problem, a genetic algorithm is proposed to search
for feasible solutions in which user connection matrix is taken
as gene and the objective function value is taken as the fitness
of solution. Simulation results show that the proposed genetic
algorithm reduces privacy leakage by up to 73% compared to
the conventional alternating optimization algorithm.

Index Terms—Federated Learning, Differential Privacy, Joint
Communication and Learning Design

I. INTRODUCTION

Centralized machine learning (ML) algorithms require to
collect diverse data from edge devices for ML model training
which may be hindered by privacy, security constraints [1].
To circumvent these limiting factors, federated learning (FL)
[2] is proposed, which distributes the learning process across
multiple distributed edge devices, thus improving data privacy
of edge devices. In particular, instead of sharing raw data,
edge devices in FL transmit only model parameters to a
central server where ML model parameters are aggregated to
form a global model. Since wireless networks have limited
wireless and computing resources, it is necessary to study
the optimization of these resource allocation to support the
deployment of FL over wireless networks.

Currently, FL. has been extensively studied in a number
of current works as shown in [2]-[11]. In particular, in
[3], a comprehensive overview of current FL methods, FL
deployment challenges, and future directions was provided.
The work in [2] designed an effective FL called FedAvg based
on iterative model averaging and demonstrated its robustness
experimentally. The authors in [4] introduced the FedProx
framework to address data heterogeneity. In [5], a FL algo-
rithm is designed by considering communication compression

This work was supported by the U.S. National Science Foundation under
Grants CNS-2350076 and CNS-2332834.

and decentralization. The authors in [6] studied how wireless
transmission errors affect the FL training performance and
optimized wireless resource (i.e., resource block and transmit
power) allocation and the set of participating devices to
reduce FL training loss. The work in [7] investigated the
deployment of FL in an energy harvesting wireless network
and designed a user scheduling algorithm to reduce FL training
loss. The work in [8] studied a communication-efficient FL
framework which enables edge devices to efficiently train
and transmit model parameters, thus significantly improving
FL performance and convergence speed. The authors in [9]
addresses the critical issue of communication efficiency in
wireless FL by proposing and analyzing quantization methods
to reduce bandwidth usage while maintaining high accuracy.
The work in [10] introduces a approach to FL that addresses
heterogeneous quantization among clients, optimizing aggre-
gation weights based on quantization precision to improve
convergence and performance. The work in [11] presents
a bandwidth allocation model for FL in wireless networks
with multiple providers, addressing round length minimization
under bandwidth and cost constraints. While exchanging ML
model parameters in FL can improve data privacy of edge
devices, current researches [12] have shown that ML model
parameters transmitted by edge devices during FL training can
still unintentionally leak sensitive information of participating
devices. To solve this problem, differential privacy (DP) has
been considered as a promising technique to prevent such
privacy risks by carefully adding artificial noise into exchanged
ML model parameters [13].

A number of recent works [14]-[18] have studied the use of
DP to improve FL data privacy. In particular, in [14], a novel
FL algorithm is proposed that applies differential privacy to
preserve privacy, with precise calculation of the privacy costs
within the differential privacy framework. The work in [15]
studied the trade-off between convergence performance and
degrees of privacy preservation, analyzed the improvement in
convergence performance when the number of users increases
and the existence of an optimal communication round in terms
of convergence performance under a fixed privacy protection
level. The authors in [16] showed that the superposition nature
of the wireless channel provides bandwidth-efficient gradient
aggregation and guarantees the data privacy of participating
users. The authors in [17] introduced a FL framework based
on multi-agent multi-armed bandit to reduce FL training delay
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over wireless channels with differential privacy requirements.
In [18] explores optimizing the trade-off between model per-
formance and privacy preservation in federated edge learning
systems using personalized differential privacy and proposed
a method to jointly minimize global loss and privacy leakage.
However, the above works on the use of DP for FL [14]-
[18] ignored the joint optimization of user association and
DP noise power allocation although the performance can be
further enhanced. Meanwhile, none of these works [14]—[18]

The main contribution of this paper is a novel privacy
preserving FL framework that uses non-orthogonal multiple
access (NOMA) technique to improve FL parameter transmis-
sion efficiency and minimize user privacy leakage. Our key
contributions include:

o We consider a NOMA based cellular network in which

a set of users participate in the FL training through
using the same time and frequency resource. To prevent
data leakage, the users add Gaussian noise to the model
parameters and then transmit them to their associated
BSs. Our purpose is to jointly optimize the connections
between the users and BSs, transmit power of users, and
the DP noise power added to the FL model parameters
so as to minimize the privacy leakage of all users.

o The problem of minimizing overall privacy leakage is
formulated as an optimization problem with optimization
variables including user association, transmission power,
and DP noise power. To solve this problem, we propose a
genetic algorithm to search for feasible solutions in which
user connection matrix is taken as gene and the objective
function value is taken as the fitness of solution.

Simulation results show that the proposed genetic algorithm
reduces the total privacy leakage by up to 73% compared to
the conventional alternating optimization algorithm.

The rest of this paper is organized as follows. The system
model is described in Section II. The optimization problem
is formulated in Section III. In Section IV, we introduce
our genetic algorithm to solve the optimization problem.
Simulation settings and results are introduced in Section V.
Conclusions are drawn in Section VI

II. SYSTEM MODEL

We consider a cellular network in which a set S of S base
stations (BSs), a set U of U users, and a parameter server
jointly perform an FL algorithm, as shown in Fig. 1. The users
applies a DP scheme to add artificial noise to their transmitted
FL model parameters so as to preserve their data privacy. Next,
we first introduce the FL training procedure. Then, we explain
the models of FL parameter transmission.

A. Federated Learning System Model
The connection matrix between users and BSs is defined as
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Fig. 1. DP-based FL system with multiple base stations

User

where 115, = 1 indicates that user ¢ € U is connected to BS
s € S, otherwise, ps,; = 0.
We assume that each user ¢ € U/ has its own private dataset,
denoted as
X, = (.’1351), :IC(»2) ’m(Ki))T c RKiXm’ )

7 ) 7

where K; reg)resents the number of data samples in the dataset
X ;. Each a:ik) is an m-dimensional data sample vector, which
can be expressed as

2" = (27 (1), 2" (2),- -

2

D,y™),  3)

where the first m — 1 elements represent the training input
of user ¢’s FL. model and the last element ygk) represents the
training output.

Given (1)-(3), the FL training procedure is summarized as
the following five steps:

J 2t (m —

1) System Initialization. The server broadcasts the sys-
tem parameters including the user connection matrix
(ts.i)ses, icu» the transmission power used by each user
(pi)icu, and the standard deviation of the differential
privacy noise added to user-uploaded models (0;);cy
to all BSs. Each BS will broadcast the received system
parameters to the users that are closest to this BS. Based
on the received connection matrix, the users establish the
connections with BSs. Let I/, be the set of users that are
associated with BS s. The parameters of the global FL.
model at each iteration ¢ is w®) € R w(® is randomly
initialized by the server.

2) The server transmits the initialized global model w(®)
to all BSs. Then, each BS s broadcasts this model to all
its connected users 7 € Us.

3) Local model update with DP strategy. Each user uses its
private data set X ; and the model parameter vector w(*)
to calculate its local loss, denoted as l(w(t), wgk)) Then,
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users can calculate the gradient of the loss function with
respect to the parameter vector w'®) as follows:

¢"(X Z Viw®, 2”). @

Followmg the operations in [12], users add Gaussian
noise n ~ N(0,021,) to the gradient of the loss
functlon as follows:

) (X) = ¢ (X)) + i, (5)
We assume that nf )is a independent valuable that is
not related to the differential privacy noise in other
rounds. Therefore, our considered differential privacy
strategy satisfies the zero-concentrated differential pri-
vacy (zCDP) [19]. Let o; denote the standard deviation
of the differential privacy noise added by user ¢ € U.
We also assume that the upper bound of the local loss
function is L [13]. Hence, the privacy leakage of user
¢ can be defined under the p-zCDP as follows:

L \2
where p represents the measure of the privacy leakage
for user ¢’s private data during one round of FL iteration.
After adding noise to the gradient, user ¢ utilizes this
gradient to locally update its model parameters, which
is given by

wgtﬂ) = wl(-t) — aiml(-t)(Xi), (7
where a > 0 is the learning rate.

4) Model aggregations. Each user ¢ € U, transmits its
model w,EtH to its connected BS s. The BS then

aggregates all the received models as follows:

1 (t+1)
E ; )
Ziel/l Kilusvi icld

Finally, all BSs send their aggregated models to the
server, which then aggregates them as

Z Y Kipsawl™D, )

seSicelU

wHD =

wtD) —

(L

where

(10)

K, = Z ZKiHs,ia
seS el
is the total number of data samples of all participating
users. The model aggregated by the server will be used
as the new global model for the next iteration and will
be sent to all BSs at the next iteration.
5) Repeat steps 2)-4) for a pre-defined number of iterations
(e.g., T iterations) until convergence.

The entire training process of the considered FL is summa-
rized in Algorithm 1.

Algorithm 1 Multiple-BS DP-based FL
1: The server broadcasts fi;,p;, 0 to all BSs and users.
2: Connections between users and BSs are determined ac-
cording to the user connection index i, ;.
3: Each BS s determines its associated users, represented by

a set Us.
4: fort=0:7T do
s:  The server transmits global model w® to all BSs.
6: for BS s € S in parallel do
7: BS s transmits w*) to all its connected users.
8: for user 7 € U, in parallel do
9: User ¢ updates its local model according to (7).
10: User ¢ sends wEtH) back to BS s.
11: end for
12: BS s aggregates received models according to (8).
13: BS s sends wgtH) to the server.

14:  end for
15:  The server aggregates received models according to (9).
16: end for

According to [13], the power of the DP noise has a signifi-
cant impact on the convergence of the considered FL algorithm
since DP noise will introduce errors to the global models. To
guarantee the FL convergence, the DP noise parameter o; must
satisfy the following constraint:

Z Z Kia’?us,i < Vmax Z Z K’i,u/s,h

seSiclu seSicl

(In

where Vi,ax 1s an upper bound on the total differential privacy
noise error.

B. Communication System Model

Let p; be the transmit power used by user ¢ € U for FL
model parameter transmission, and P, be the maximum
transmit power of a user. We also assume that all users use
the same communication frequency band. Let I, (%) denote the
interference signal power received by BS s from user 7. I4(7)
can be expressed as

Z) = Z hs,iﬂé,ip'i-

5eS

12)

Hence, the total interference power received by BS s when
receiving signals from user i can be written as > J;c;\ ;3 L5 (7).
Then, the channel capacity between user ¢ and BS s is

Dils.i )
i gy Is() + BNy~

where B is the channel bandwidth and N is the power spectral
density of thermal noise, h; is the channel gain, which can
be obtained by calculating the path loss between user ¢ and
BS s as follows:

Y, = pgiBlog(1 + (13)

C

hsi:l2 o7
: (47rf

()% (14)
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where [ follows a Rayleigh distribution with unit scale param-
eter, c is the speed of light, f is the center frequency, and d; ;
is the distance between user ¢ and BS s.

C. Non-Orthogonal Multiple Access Strategy

To enhance spectral efficiency, non-orthogonal multiple ac-
cess (NOMA) technique is used for FL. model parameter trans-
mission between users and BSs. By utilizing superposition
coding at the user (i.e., transmitter) and successive interference
cancellation (SIC) at the BS (i.e., receiver), the users that are
associated with the same BS can transmit FL. model parameters
concurrently. Through sharing their bandwidth, each user can
obtain a larger channel capacity. Hence, the channel capacity
between user 7 and BS s can be obtained as follows:

Y=g iBlog (1 Pis.i
S0 /J's,zj;/lﬂsd g < + Zieu\{l} [q(i) + Cs,i) ,
(15)
2563\{3} Wsipihs; 18 the interference
from the wusers that are associated with other BSs,
and Cs,i = BNy + INOMA(SJ') with INOMA(S,i) =
Z{keu\hs,mhs,i} s, kPrPs 1 being the interference caused by
other users connected to BS s. Here, the signals from the users
that are associated with one BS are decoded in a descending
order of their channel gains. When decoding a signal with a
stronger channel gain, the signals with weaker channel gains
are treated as interference.

where I(7)

III. PROBLEM FORMULATION

Given the defined system model, next, we introduce an
optimization problem that aims to minimize the total privacy
leakage of all users via jointly optimizing the user-BS connec-
tion matrix (fts;)icu,ses, User transmit power (p;);cy, and
the standard deviation of differential privacy noise adopted by
each user (0;);cy. The studied problem is formulated as

2
. 1

L, S5 () e a6

seSieU
st Y Y Kot e < Vimax Y > Kipieq, (16a)

seSiel seSieU
KZ‘O',' > Nmin,us,i, Vs € S,Z (S U, (16b)
0<p; < Prax, VsE€S,i €U, (16¢)
Y > Ruinps,i, Vs € S,i€ld, (16d)
wsi € {0,1}, Vs € S,i e U, (16¢)
S hei <1, Vieu, (16f)
seSs
Z,Ufs,i < Nl; VS S 87 (16g)
€U
DD psi> Ne, (16h)
seS el

where N, is a lower bound of DP noise for all users, Ny
represents the maximum user connection capacity of a BS, N,
is the minimum number of users that FL requires to converge.
Constraint (16a) limits the overall differential privacy noise

error to a predetermined value Vi, so as to ensure the FL
convergence [13]. Constraint (16b) sets a lower bound Ny,
on the differential privacy noise added by each user so as
to prevent the privacy leakage of each user. Constraint (16c)
indicates the maximum transmit power of each user. Constraint
(16d) is the minimum channel capacity R,,;, required by each
user to send FL model parameters. Here, R, also affects
the optimization of the connection matrix since a user will
connect to the BS that can provide a data rate that is larger
than Ry,i,. Constraints (16e) and (16f) imply that each user
can only connect to one BS at a given time slot. Constraint
(16g) limits the number of users that each BS can connect to.
Constraint (16h) shows the minimum number of participating
users that are required for FL training. Since problem (16)
is a non-convex mixed integer optimization problem, which
is generally hard to solve, we propose a genetic algorithm to
solve this problem.

IV. SOLUTION

In this section, we introduce the use of a genetic algorithm
to solve the optimization problem in (16) since both (p;);cu
and (0;);cy depend on (ps;)icu,ses, but (p;)icy and (0;)icu
are mutually independent. In particular, we will use the value
of the objective function in (16) as the fitness criterion for a
heuristic search of (us;)icu,ses- Next, we first explain the
process of obtaining the optimal transmit power and DP noise
under a given (fts)icu,ses- Then we introduce the genetic
algorithm for searching (ys;)icu ses-

A. Transmit Power Optimization

Given the user connection index i, ;, €ach user 4’s transmit
power that satisfies the constraint (16d) is

Dihsi
Hs, B log(l + = ) 2 Ruin
];, j Yiseugiy Ls(@) + BNo
,V(S,i) € {(sai)“]’&i = 1}7 a7
which can be rewritten as
(Zieu\{i} I (i) + BNy + INOMA(S, l))
Di 2
hs,i
x | exp LT B V(s,i) € {(s,1)|ps; = 1}
Zg‘eu ps,; B Y ’ o '
(18)

From (18), we see that the transmit power of each user i
depends on the transmit power of other users. To solve this
problem, we can directly use the algorithm in [20]. To use the
algorithm in [20], we assume

>

reUu\{i}

Rmin
X|exp| =—"2>—| -1 /hs,i-
( (Zjeu Hosg B) )

Ii(p) = I(1)(p(t)) + BNo + Inoma(s, 1) (p(t))

19)
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Given (fis,1)icu,ses and (19), the optimal transmit power can
be iteratively calculated as follows:

Li(p(t+1)), V(s,i) € {(s,9)|psi = 1}.
0 ¥(s,i) € {(s,1) s = O}
(20)
When |p;(t + 1) — p;(t)] < €, Vi € U, with € being a preset
threshold, the optimal transmit power p; of each user is
obtained. If p] cannot meet constraint (16¢), we will discard
this (1ts,i)icu,ses in our genetic algorithm.

pi(t+1)= {

B. DP Noise Optimization

Given the user connection index i, ;, the problem in (16)
can be simplified as

. 1’
wn 23 () e o
seS icU
st > Y Kiotpei > Vinax 3 > Kipsiy  (21a)
seS iceU seSielU
Kio; > Nmin,us,h Vs e S,i €U. (21b)

From (21), we see that the optimization problem (21) is
a convex optimization problem that can be solved using
MATLAB’s fmincon function.

C. User-BS Connection Optimization

Given the relationship among (is;)icu,ses. (Pi)icu, and
(04)icu, next, we introduce the use of a genetic algorithm to
solve problem (16). Specifically, the values of (fisi)icus,ses
are taken as the genes. For a given (um)ieu,seg, the optimal
values of (p;)icys and (0;);es are determined by solving the
problem in (17) and the problem in (21). The fitness of each
(is.i)icu,ses is the objective function value calculated based
on (s, )icu,ses, (Di)icu, (0:)icu- A roulette wheel selection
scheme [21] is used to evolve the next generation. The full
procedure of our genetic algorithm for solving problem (16)
is summaried in Algorithm 2.

V. NUMERICAL RESULTS

In this section, we evaluate the effectiveness of the pro-
posed algorithms. The parameters used in simulations are
summarized in Table 1. For comparison purposes, we con-
sider an alternating algorithm that iteratively optimizes the
parameters in a sequential manner. In simulations, each gen-
eration consists of 400 individuals (i.e., 400 (us)icu,ses)-
Among these individuals, 200 individuals are randomly se-
lected from the last generation, 100 individuals are produced
by crossover, and 100 individuals are produced by mutation.
The solutions and objective function values corresponding to
the optimal (yisi)icu,ses, (Pi)icu, (0i)icu obtained by the
genetic algorithm with 5/10/20 generations are labeled by
GAS5/GA10/GA20, respectively.

Figure 2 shows how the total privacy leakage changes as the
maximum transmit power of each user varies. It can be seen
that when NN increases from 2 to 5, the genetic algorithm with
5 generations (GAS) is superior to the alternating algorithm.

Algorithm 2 Genetic Algorithm for Solving Optimization
Problem (16)
1: Randomly initialize the first generation of p, ; (i.e., indi-
vidual).
2: Set the number of generations 7" for the genetic algorithm.
3:fort=1,2,...,T do
4:  Selection:
5 Calculate fitness function for each individual.
6:  Select individuals for next generation population based
on their fitness.
7. Crossover:
8:  Randomly choose pairs of parent individuals.
9:  Perform crossover on pairs to create new offspring.
10:  Append offspring individuals to the population.
11:  Mutation:
12:  Randomly choose individuals from the population.
13:  Make random changes (mutations) on chosen individu-
als to generate the offspring.
14:  Append offspring individuals to the population.
15: end for

TABLE 1
FIXED SYSTEM PARAMETERS IN SIMULATION

System Parameters Value
Number of BSs (S) 2
Number of users (U) 10
Upper bound of DP noise error (Vimax) 12
Uplink bandwidth (B) 180 KHz
Uplink center frequency (f) 2450 MHz
Thermal noise power spectral density (/Np) -174 dBm/Hz
Scale parameter of channel’s rayleigh distribution (1) 1
Minimum DP noise at each user (Npyin) 100
Minimum communication rate (Rin) 100 bps
Maximum number of connections at each BS (IN7) 3

This is because the genetic algorithm can find a globally
optimal solution instead of finding a local optimal solution as
done by the iterating algorithm. Fig. 2 also shows that when
N5 increases from 2 to 5, the total privacy leakage increases
from 5 x 1077 to 1.5 x 107°. This is due to the fact that
the increased participating users will result in a higher overall
privacy leakage.

Figure 3 shows the distribution of the user’s DP noise when
the considered algorithms converge. It can be seen that both the
alternating algorithm and the genetic algorithm require several
users to use large DP noise power. This is because a large DP
noise can reduce the privacy leakage of a user. Fig. 3 also
shows that the genetic algorithm with 20 generations (GA20)
require users to use larger DP noise power compared to that
of GAS5 or GAI10. This is because the algorithm with more
generations can explore regions of the solution space more,
thus increasing the probability of finding a better solution.

VI. CONCLUSION

In this paper, we have studied the problem of resource allo-
cation for NOMA enabled secure FL. We have considered an
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FL system in which a set of users participate in the FL training
through transmitting their trained FL. model parameters to the
BSs via NOMA techniques. To prevent data leakage, each
user uses the DP technique through adding Gaussian noise
to its FL. model parameters. We have formulated the problem
of minimizing overall privacy leakage of all FL participaring
users as an optimization problem through jointly optimizing
the connections between users and BSs, transmit power of
the users, and the DP noise power. To solve the formulated
non-convex optimization problem, we have proposed a genetic
algorithm to search for feasible solutions in which user con-
nection matrix is taken as gene and the objective function
value is taken as the fitness of solution. Simulation results have
demonstrated the superiority of the proposed genetic algorithm
in terms of privacy leakage protection.
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