Map Stitcher: Graph Sampling-based Map Conflation

Erfan Hosseini Sereshgi
Tulane University

New Orleans, Louisiana, USA

shosseinisereshgi@tulane.edu

Carola Wenk
Tulane University
New Orleans, Louisiana, USA
cwenk@tulane.edu

{

L™

Figure 1: The Map Stitcher workflow integrates a base map (black) and a supplementary map (red) through graph sampling,
identifying and visualizing correspondences (cyan and purple) and inconsistencies (orange and green). The algorithm then
reconciles these differences, generating a comprehensive merged map (blue).

Abstract

The integration of two geometric graphs is a fundamental task that
arises in various fields, including automated cartography, image
processing, and computer graphics. Maintaining precise and up-to-
date roadmaps may pose a significant hurdle for new companies,
especially in the early stages when resources are limited. A notable
application of this task is the process of map conflation. Map con-
flation or map merging involves combining roadmap data from two
separate sources to create data with higher coverage and accuracy
than either source which is essential for accurate navigation sys-
tems. An ideal solution would be a scalable automated technique
capable of handling vast areas while safeguarding key geometric
and topological details.

In this work, we explore the application of graph sampling, a
common method for evaluating reconstructed maps, to the task
of map conflation. Our approach employs a partial matching tech-
nique, allowing segments to be matched fractionally through graph
sampling. Unlike existing methods, which require a segment to be
either fully matched or not matched at all, our technique enables
nuanced matching. This leads to more detailed conflated maps,
avoiding excessive selectivity when adding edges and more cus-
tomization. Hence, we introduce Map Stitcher, an automated tool
that seamlessly integrates new information from a secondary map
into a primary one. Our approach offers adaptable algorithms that
address various scenarios encountered in roadmap data, allowing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Geolndustry’24, October 29-November 1, 2024, Atlanta, GA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1145-9/24/10

https://doi.org/10.1145/3681766.3699604

for tailored choices based on the specific datasets along with source
code and sample datasets. Furthermore, we evaluate our method
on three roadmap datasets, demonstrating its effectiveness in main-
taining accuracy.

CCS Concepts

« Information systems — Geographic information systems;
« Theory of computation — Design and analysis of algorithms;
Computational geometry.

Keywords

Map Comparison, Map Conflation, Computational Geometry, Geo-
graphical Information Systems

ACM Reference Format:

Erfan Hosseini Sereshgi and Carola Wenk. 2024. Map Stitcher: Graph Sampling-
based Map Conflation. In 3rd ACM SIGSPATIAL International Workshop on
Spatial Big Data and Al for Industrial Applications (Geolndustry’24), October
29-November 1, 2024, Atlanta, GA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3681766.3699604

1 Introduction

Merging geometric graphs is a process that can arise in a variety
of situations. When new map companies or ride apps are founded,
they often do not possess a roadmap of their own. Most use freely
available maps from OpenStreetMap (openstreetmap.org) as base
maps and over time improve their networks by using different
sources like GPS data, satellite images or simply a roadmap from
another data provider. This requires comparing a new road network
to a base roadmap, and later adding it to the base roadmap. Some
parts of the new road network might already be present in the
base roadmap, some might be missing, and some might be partially

https://orcid.org/0000-0003-2548-7428
https://orcid.org/0000-0001-9275-5336
https://doi.org/10.1145/3681766.3699604
https://doi.org/10.1145/3681766.3699604
openstreetmap.org

Geolndustry’24, October 29-November 1, 2024, Atlanta, GA, USA

present or have different geometries. For example, the exact loca-
tions of the centerline representations of streets often differ, as do
locations of street intersections and highway ramp connections.
Map conflation typically involves a two-stage process: first, aligning
the input roadmaps through matching, and then incorporating new
features based on the established correspondences. In this paper
we consider a roadmap to be a geometric graph in the plane, i.e.,
the graph is given together with a planar embedding which maps
vertices to points and edges to line segments. We note that some
of the approaches we discuss may also apply to immersed graphs
which allow transversal edge intersections and hence are able to
model bridges.

Fairly recently, several methods have been proposed to compare
such geometric graphs, including edit distances and Fréchet-based
distances; see [3] and [8] for surveys. Some but not all of these dis-
tance measures return a correspondence between the two graphs
that indicate which parts of graph G correspond to graph H. Natu-
rally, such correspondence will be beneficial for merging graphs.
However, the majority of these measures come with a high com-
putational price tag, with some being NP-complete, making them
inefficient and impractical for large-scale applications. Here, we
study one particular method for comparing geometric graphs, the
graph sampling method [6, 7], and we present an algorithm for
using the correspondence computed by this distance to merge two
input roadmaps from the same area.

Being the most popular method for evaluating reconstructed
maps because of its simplicity, speed and effectiveness in compar-
ing geometric properties, the graph sampling method has been used
for almost a decade. Graph sampling was first introduced by Bia-
gioni and Eriksson [6, 7] to evaluate their results and compare their
approach with the state of the art map construction algorithms.
Even though it has been wrongly called a "distance" on some oc-
casions, graph sampling is a statistical method which discretizes
2D immersed graphs into sample points and matches the samples
instead. The essential idea is to first compute a set of point sam-
ples on each map, and then to match pairs of samples — one from
each map — via a one-to-one matching. See our previous work [2]
for details on the different design choices for implementing graph
sampling and determining a matching.

For deciding whether two samples can be matched, different
criteria, e.g., based on distance or orientation, can be used. Samples
are placed on edges of the graph starting from a random point on
each connected component following a certain interval between
each consecutive pair of samples. After choosing a matching dis-
tance threshold dmayx, these samples are matched one-to-one and
counted for the evaluation. The matching distance threshold only
allows the samples within that distance to be matched to each other.
Additionally, graph sampling takes into account the bearing condi-
tions such that if the bearing difference of two edges is more than
a certain threshold, the samples on these edges cannot be matched
even if they comply with the matching distance threshold. Figure 2
shows an overview of this method.

Throughout this article, we refer to the two inputs, base map
and the supplementary map as G and H, respectively.

Hosseini Sereshgi and Wenk

ot 'k

Figure 2: Two roadmaps in black and red and their graph
sampling results: matched points are connected by pink line
segments, unmatched points are green or orange.

1.1 Related Work

Research in this field can be broadly classified into two categories:
map update and map conflation. While map update involves de-
riving new road information from GPS data or aerial images and
integrating it into an existing base map, our work focuses on the
map conflation domain, exploring the task of combining two entire
road networks.

Several research papers consider the map update problem and
leverage trajectory data to infer and add missing roads to the base
map, such as [13] and [15]. In particular, [16] employs Hidden
Markov matching to align trajectories with the road network. Addi-
tionally, aerial imagery has been used for updating road networks
[4].

Since the 1980s, geospatial conflation has been a topic of ex-
tensive research, driven by the need to address the inherent in-
consistencies between datasets [12]. These inconsistencies arise
from differences in data representation, levels of detail, and spatial
displacement patterns, which are introduced during surveying and

Map Stitcher: Graph Sampling-based Map Conflation

cartographic processes. Many articles utilize optimization and net-
work flow models to add new features from a secondary roadmap
to a primary one [9] [10] with [11] emphasizing on topological
features. Furthermore, [1] adopts classic rank join in their map con-
flation approach and [17] uses a fuzzy logic inference technique.

Lastly, [14] addresses the map conflation problem in the context
of map updating, proposing an algorithm that combines a recon-
structed map with a roadmap, with a particular focus on precisely
identifying road closures.

1.2 Problem Definition

Let G = (Vg,Eg) and H = (Vy, Egy) be two connected geometric
graphs embedded in the plane. That means, each vertex is embedded
at a point in the plane, and an undirected edge is embedded as the
straight line segment between the points. We think of these as two
roadmaps.

For the general map merging problem we wish to compute a
merged roadmap, i.e., a geometric graph G’ such that G’ contains
all of G and it contains the portions of H that are not yet in G.
Equivalently, we can determine the portions of H that are already
contained in G and then insert the remaining portions of H into G
to obtain G’.

The problem then reduces to finding a matching between G and
H that determines the portions of H that are already contained
in G. Ideally we would like a (partial) one-to-one matching from
G to H that is as large as possible and that preserves the length
as much as possible. In practice of course one has to account for
noise, so matching portions of G and H won’t have exactly the
same geometry or length. At the same time we want G to capture
as much of the geometric and topological information of G and H
as possible.

In this paper we compute a matching using the graph sampling
method for comparing two graphs [2, 6, 7] by placing point samples
at regular intervals on each graph and then computing a greedy
matching as described in [2]. The greedy matching algorithm com-
prises two stages:

(1) Initial Assignment: Each sample in graph G is assigned its
nearest neighbor in graph H, resulting in a non-injective
(many-to-one) assignment.

(2) Refinement: The matched pairs are sorted by their distance,
and a one-to-one matching is computed greedily, starting
with the closest pair. If a sample in H is already matched, the
algorithm searches for the 10 nearest unmatched samples in
H and selects the closest one. If no suitable match is found
within the distance and bearing thresholds, the sample in G
remains unmatched.

2 Method

We begin our algorithm by placing sample points on edges of both
G and H, starting from a random vertex of each connected com-
ponent, and placing samples at equal distance A. We call these
two sets of samples Sg and Sy, respectively. We then proceed to
match each sample sg on G to a sample sy on H using the greedy
matching and a matching threshold of dmax and bearing difference
threshold of 0 as described in [2]. To ensure we capture the maxi-
mum amount of geometric and topological information, we need

Geolndustry’24, October 29-November 1, 2024, Atlanta, GA, USA

to store additional data structures. These structures will manage
the samples associated with each edge. Specifically, we use hash
tables to manage sample points on input graphs, linking edges to
their (ordered) samples and enabling constant-time edge lookup
by sample coordinate. As the algorithm progresses, two additional
data structures track matchings:

(1) A matching table for samples between graphs
(2) A dictionary storing the matched sample percentage for each
edge in the second graph.

In order to identify edges in H that need to be added to G, we
use a threshold p on the percentage of matched samples for each
edge in H which is adjustable.

2.1 Intersections

Since the edges of the input graphs are straight line segments,
curved roads are typically made up of a series of connected edges.
Thus, not all vertices of the input graphs are road intersections.
Accurately identifying intersections is crucial because they reveal
missing portions in the roadmap and can be used as anchor points
during the merging process. To achieve this, we first establish a
definition of intersections that aligns with our specific goals:

We consider any vertex on the map an intersection if it connects
more than two roads (has a degree greater than 2). Additionally,
vertices that connect exactly two roads (degree 2) are considered
intersections if the roads entering and exiting differ significantly
in direction (bearing difference of 6 degrees or more). And finally,
Vertices with a degree of 1 (dead ends) are also considered intersec-
tions.

Since roadmaps typically form a single connected network (i.e.,
one can travel between any two points), and based on our definition
of intersections, any missing portion that needs to be added
to G can be identified as a path connecting two intersections.
In general, the intersections in G and H won’t be contained in the
sample sets sg and sg. Therefore we proceed to compute another
partial one-to-one-matching between the intersections in G and
those in H. For this we use the greedy matching algorithm again
with the matching threshold dmax.

Now those intersections in H that are not matched to an inter-
section in G are of two types:

(1) New intersection iy whose corresponding point ig falls on
aroad in G.

(2) Completely new intersection igy that doesn’t exist in G, in-
cluding its connected roads.

In Section 2.2 we show how to identify type (1) intersection in H
and how to add them to G. Intersections of type (2) will be added
implicitly while adding new paths as described in Section 2.3.

2.2 Adding New Intersections

Here, we provide an algorithm for identifying type (1) intersections
in H and for adding them to G. This requires accuracy, because they
need to align perfectly with a road segment already present in G.
So we check each unmatched intersection ify in H to see if it can be
matched to a point on an edge of G. In terms of edges, this means
one ! or two edges in H incident on iz; can be matched to edges in G.

This can happen when i is a degree-2 (turn) intersection.

Geolndustry’24, October 29-November 1, 2024, Atlanta, GA, USA

In theory, both graphs G and H could contain various artifacts, such
as roads that are very close together, or intersections that are very
close to aroad. Although such artifacts are not completely avoidable,
roadmaps tend to be more well-behaved due to the practical nature
and width of roads. Our description below attempts to handle some
of these artifacts using bearing difference 0 and threshold p. Figure 3
shows an example of a potential artifact.

N e
N in

€1

Figure 3: Two roadmaps G and H in black and red and their
samples in cyan. The two edges in G are very close together
(roughly 2dp,x). In addition, the percentage of matched sam-
ples on edges e3 and ey is only 66% < p.

For each unmatched intersection ify we proceed as follows: We
check all edges in H incident on iy whether the percentage of its
samples that are matched is at least 1— p. Intuitively, these edges are
matched well as they have many witnesses. For each of these edges
we look up in constant time the sample closest to ify (each edge
stores a sorted list of samples), and we only keep those samples that
are matched with a sample in Sg. We now consider the following
cases:

o If there are zero such samples, ify is an intersection of type
(2), and we do not proceed further with i for now.

o Ifthere is one such sample sg7, then i is of type (1). We mark
the sample s that is matched with spr as an intersection and
match it with ig.

e If there are two such samples sy, sl’q then let sg, s’G be the
matching samples in G, and e, e(; their edges in G. Only if
the bearing difference between eg, eé; is at most 6, we keep
i as an intersection of type (1). If eg = eé; then sg and
sé lie on the same edge, see Figure 4, and we create a new
intersection ig by averaging the locations of sg and sé. In
this case we also have to split the edge e into two separate
edges that are then connected by the new intersection ig.
This takes linear time in the number of samples on the edge.
Ifeg # eé;, then we pick the first vertex in G on a path from
sG to sé;, mark it as an intersection (if it isn’t already), and
match it with igy. This only takes constant time.

o If there are more than two such samples, we assume this is
an artifact and ignore ify for now.

2.3 Adding New Paths

In this section, we explore the general structure of our traversal al-
gorithm, examining the various types of edges it encounters and the
strategies for handling each one. Due to the connectivity property,
we assert that every type (2) intersection has a path to a matched in-
tersection in H. Consequently, for each matched intersection ify on

Hosseini Sereshgi and Wenk

/
/

Figure 4: Two roadmaps G and H in black and red and their
samples in cyan. Purple dashed lines indicate a matching
between two intersections. iy is a type (1) intersection and
its corresponding point i on G is shown in orange. A is the
sample interval.

H, we verify whether all adjacent edges are matched by examining
the matching status of the first sample and the overall percentage
of matched samples on each adjacent edge, which we stored in
dictionaries during the initial graph sampling step.

If an adjacent edge (or multiple edges) connected to if has a
matching percentage below a specified threshold p, the algorithm
initiates a slightly modified breadth-first search (BFS) on H, starting
from ip. This search explores every connected edge, identifying
paths not present in the base map and incorporating them through
a process known as ’stitching’. The BFS continues until all eligible
adjacent edges have been examined or it reaches another matched
intersection, at which point it terminates. The matching distance
and direction between the starting intersection iy and its corre-
sponding intersection on G define a vector v which specifies the
magnitude and direction of the shift required to align the remain-
ing samples in the path. Figure 5 shows an example of stitching,
where three roads and a type (2) intersection are connected, starting
from a matched intersection i and ending at two other matched
intersections.

Traversing new paths using breadth-first search: We initiate
a (FIFO) queue with vertices v, starting from a matched intersec-
tion ify, and perform a Breadth-First Search (BFS) until the queue
is empty. In parallel, we maintain a secondary queue to keep track
of the most recently visited vertex v, updating it simultaneously
with the main queue to ensure we have the latest vertex in the
path. Additionally, we utilize a dictionary to mark visited edges in
Ep. As the BFS progresses, we take specific actions based on the
next vertex to be visited. As previously stated, we only consider
edges with a matching percentage below the designated threshold
p for addition. However, there is one notable exceptions to this rule,
which we will discuss in detail, as a special case.

Map Stitcher: Graph Sampling-based Map Conflation

(1) The next vertex vy is not an intersection and the edge epy is
not visited: This scenario is the most common, particularly
in areas where roads are curved or intersecting. If the edge
ey is too short to contain a sample, we simply add the other
endpoint of edge e to the queue (along with vertex vg) to
the queue and proceed to the next iteration. However, if ey
contains samples we call Stitch to add ey to the base map G.

(2) The next vertex vy is an intersection but is not matched to
an intersection in G and the edge ey is not visited: We use
Stitch to add ey to the base map G. Since vy represents a
new intersection, we must incorporate it into G. To do so,
we identify the corresponding position in G using the vector
v, and establish a connection between vg and this newly
matched intersection. Finally, we add vg to the queue and
the new intersection becomes vg. Similarly to the previous
case if the edge lacks a sample, we bypass calling the Stitch
function.

(3) The next vertex vy is a matched intersection and the edge efy
is not visited: We utilize Stitch again if there are samples on
ey. This case prunes the BFS tree. We do not explore this
branch further and therefore we do not add vy to the queue.
Nevertheless, we still need to link the last identified vertex
vG to the corresponding matched intersection on G.

(4) The edge ey is visited: This indicates the presence of a cycle,
so we complete the cycle by linking v to the last matched
sample on this edge, thereby closing the loop.

Adding a path via Stitching: The Stitch function constructs
vertices in the graph G based on unmatched samples along an
edge ey and connects them sequentially. If the function encounters
already matched samples, it connects the newly generated portion
to the existing matched portion of the edge. Furthermore, whenever
the function visits a matched sample, it updates the vector V. See
Algorithm 1 for more details.

Figure 6 illustrates the same example during the process of
adding the final edge to the base map.

A special case: In rare instances, the final edge(s) used to link
the new path to an intersection may already exist in the base map,
potentially resulting in partial or complete matching. These pre-
existing edges manifest as degree-1 intersections in the base map
G, indicating their connection to a single adjacent edge. To avoid
disrupting the flow of the base map, we need to take careful steps
to maintain the local connectivity within the base map. Therefore
in cases (1) and (3), we also consider adding edges with a matched
sample percentage exceeding p, provided they meet the following
conditions:

(1) They are not initial edges in the BFS tree (not directly con-
nected to the root node): This helps to eliminate small, iso-
lated segments near curved intersections, which can appear
as tiny dead ends

(2) Following the BFS direction, these edges point outwards from
already matched samples towards unmatched samples: This
ensures that edges are not added in isolation or incorrectly
positioned, maintaining the connectivity and accuracy of

the graph

As illustrated in Figure 7, eg, which is partially matched with edge
ey from map H, is an additional edge in G. Note that the endpoint of

Geolndustry’24, October 29-November 1, 2024, Atlanta, GA, USA

Algorithm 1: Stitch

Input :An edge ey € Ep, its endpoint vpg, and its ordered
list of samples S§; C Sy A dictionary My
connecting each sample sy to its corresponding
matched sample sg or 0 if it is not matched. The
last identified vertex vg € Vi and the vector

1 s Output: The next identified vertex vg € Vg

2 stitches < 0

3 flag « False

a forall sy € Sf; :

5 if My [sy] = 0:

6 newpoint «— Mg [sg] +7

7 if vy is an intersection and

bearing(vg, newpoint) + bearing(eg):
// If the ending point of ey is an intersection,
avoid extending the road too much and passing
the intersection.

8 break

9 Add newpoint as a vertex to G

10 Add an edge to G between v and newpoint
11 My [sH] < newpoint

12 stitches « stitches + 1

13 G < newpoint

14 flag « False
15 else

16 newpoint «— Mg [sg]

17 if bearing(vg, newpoint) + bearing(eg):

// Avoid adding ill-positioned matched points near

the intersections

18 continue
19 v « the vector from sg to Mg [sg]
20 if flag = False:
// Do not stitch over already matched portions
21 Add newpoint as a vertex to G
22 Add an edge to G between v and newpoint
23 G < newpoint
24 flag < True

25 Update matched sample percentage for ey using stitches

26 returnog

eG, intersection i with degree 1, is not matched to the intersection
ify due to their distance. In this case, the Breadth-First Search (BFS)
algorithm does not recognize ey as a new edge since half of its
samples are already matched, resulting in the failure to connect the
corresponding point of iff to ig.

2.4 Runtime Analysis

Greedy matching requires the construction of a R-tree to store the
samples of H. Assuming m and n are the number of samples on G
and H, respectively, constructing the R-tree takes O(nlogn). For
each sample on G we do at most 11 queries on the R-tree which
results in total runtime of O(mlogn) .

Geolndustry’24, October 29-November 1, 2024, Atlanta, GA, USA

Hosseini Sereshgi and Wenk

Figure 5: Two roadmaps G and H in black and red and their
samples in cyan. Purple dashed lines indicate a matching
between two intersections. iy is a matched intersection but
is missing an edge. The orange vector V is used to find the
new vertices’ locations. The added parts are shown in blue.

Figure 6: Two roadmaps G and H in black and red and their
samples in cyan. Purple dashed lines indicate a matching
between two intersections. ify is a matched intersection but
is missing an edge. The orange vector V is used to find the
new vertices’ locations. The added parts are shown in blue.

When adding new intersections of type 1, as described in Sec-
tion 2.2, most of the involved operations take constant time. Sum-
ming these operations, including the check over all edges incident
to the intersection, yields time linear in the complexity of the graph
H. However, the case where eg = e'G requires splitting the list of
samples on an edge, which in an (unrealistic) worst-case scenario
could result in many repeated splits on the same edge, resulting in
worst-case runtime of O(m?). For adding new paths (Section 2.3),
we only perform linear-time breadth-first search to traverse new

Figure 7: Two roadmaps G and H in black and red and their
samples in cyan. Purple dashed lines indicate a matching
between two intersections. iy is a newly matched intersection
however the BFS won’t consider ey for addition because it
is partially matched. The orange vector V is used to find the
new vertices’ locations. The added parts are shown in blue.

paths, and then add the path via stitching. The stitching algorithm
for adding a path takes constant time for the body of the for-loop
(lines 5-24 in Algorithm 1), thus a total of linear time over all sam-
ples in H. Thus the total runtime is O(m? + (m + n) log n).

3 Experimental Evaluations

We provide qualitative and quantitative measure using visual exam-
ples and a precision and recall evaluation. To achieve our outputs we
have used the default values in [2] for matching threshold dmax = 15
meters, bearing threshold 6 = 45 degrees and sample placement
interval A = 5 meters. We set matched percentage threshold to
p = 0.11in our experiments, meaning that edges in the second graph
with a matched percentage above 10 percent are disregarded, and
only those with less than 10 percent matched samples are consid-
ered for addition. This threshold controls the aggressiveness of
merging, and can be adjusted based on data quality and similarity
in common areas to include more details.

3.1 Data and Code

In our experiments we used roadmaps from OpenStreetMap (OSM)
for the Berlin, Athens and Chicago data sets that are available on
mapconstruction.org. For Berlin, we have roadmaps from TeleAtlas
(TA) from 2007 and OpenStreetMap (OSM) from 2013. Similarly, for
Athens, we have large TA maps from 2007 and OSM maps from 2010.
The Chicago OSM map is from 2012. The number of vertices and
edges for these datasets and their respective total length are shown
in Table 1. Unfortunately, the TA maps are not publicly available.
However, we provide pictures of the input and output maps (Fig-
ure 13 and Figure 14) for transparency. Moreover, we have used the
Graph Sampling Toolkit from [2] for evaluation and visualizations.

mapconstruction.org

Map Stitcher: Graph Sampling-based Map Conflation

Map Stitcher was implemented in python and is available on our
repository https://github.com/Erfanh1995/MapStitcher.

Datasets | Source | Vertices | Edges | Total Length (km)

Berlin OSM 5894 6839 357.72
TA 9848 11165 412.25
Athens OSM 32212 39699 2000.47
TA 66753 75695 2226.18

Chicago OSM 8924 11338 596.50

Table 1: Attributes of the input datasets Berlin, Athens and
Chicago.

3.2 Visual Demonstration

Before we attempt to measure the quantitative quality of our out-
puts, let us first showcase the visual quality of our maps using
examples from several locations in our datasets. Here, we examine
various corner cases that can be challenging. These include:

(1) Intermediate connections between lanes

(2) Roundabouts

(3) Missing or partially-present edges that would complete a
loop

(4) Short and misplaced highway ramps

(5) Right-turn lanes near intersections

One such notable location is ramp entrances leading onto high-
ways or expressways. Due to the presence of small edges with only
one sample, our algorithm detects these edges for addition. While
it’s difficult to entirely avoid adding these edges, as they can occur
anywhere in the datasets, even in the middle of long straight roads,
our algorithm attempts to self-correct. After adding such an edge, it
connects the endpoint back to the main road, forming a small loop
and preventing short dead ends in these areas. Figure 8 presents two
examples of this scenario, demonstrating our algorithm’s ability to
navigate complex situations.

Maintaining geometric properties: Map Stitcher preserves
the original length, angles, and shapes of the maps, even when the
roadmaps are slightly misaligned. Figure 9 showcases our method’s
capability to effectively handle complex shapes and geometries,
maintaining their integrity and accuracy.

Preserving topological structure: Our approach effectively
manages unclosed loops, avoiding unwanted artifacts around con-
nections. However, due to strict constraints, it occasionally over-
looks extending dead-end roads. Figure 10 illustrates an area with
multiple loops requiring closure, and as seen, our algorithm handles
them successfully, with only one exception.

3.3 Automated Precision and Recall Evaluation

Assessing the effectiveness of map conflation methods poses a sig-
nificant challenge due to the absence of ground-truth references for
comparison. This lack of information renders most evaluation met-
rics inadequate. In academic literature, researchers have relied on
precision and recall to evaluate matchings and conflation, involving
manual examination of matched and unmatched road segments to
count "correct" and "incorrect” matches based on visual features
or metadata. While this approach provides some insight into the

Geolndustry’24, October 29-November 1, 2024, Atlanta, GA, USA

Figure 8: The input roadmaps OSM and TA are shown in
black and red, respectively. Matched samples on G and H
are in cyan and purple, unmatched samples are in orange
and green. The blue roadmap is the output. Green circles
highlight successes, red circles indicate shortcomings.

quality of the matching, it does not assess the conflation. More-
over, it fails to account for topological and geometrical features
of the output map or attributes that are not necessarily visually
apparent, such as duplicated edges or disconnected road endpoints
that happen to be in the same location. These attributes are crucial
for a quality roadmap and require more comprehensive evaluation
methods beyond manual assessment. In this section, we will discuss
an alternative evaluation method that may be more suitable for
assessing the effectiveness of map conflation techniques.
Precision and recall are also the two primary metrics used to
evaluate the outcomes of graph sampling methods [2]. Important

https://github.com/Erfanh1995/MapStitcher

Geolndustry’24, October 29-November 1, 2024, Atlanta, GA, USA

/

Figure 9: The input roadmaps OSM and TA are shown in black
and red, respectively. The blue roadmap is the output.

to note that these precision and recall values differ from the ones
we discussed above, and should not be confused with those. In
this context, when comparing two graphs, G and H, precision is
calculated as the ratio of matched samples to the total number of
samples in H (the second roadmap), while recall is calculated as
the ratio of matched samples to the total number of samples in G
(the first roadmap). This enables more thorough assessments, as
segments can be matched partially, and their geometric characteris-
tics, including angle and length, are taken into account, influencing
the evaluation outcome. Hence, we first show the results of the
comparison between the input roadmaps in Table 4 and Table 2
using graph sampling. These results provide valuable insights into
the similarities and differences between the two input maps and
can be used for understanding and interpreting the evaluation of
our output. An analysis of the precision and recall values reveals
that, in the case of Berlin, the TA map exhibits a high recall value,
indicating that it encompasses most of the roads present in the OSM
maps. However, the precision value suggests that the OSM map
does not similarly capture all the roads in the TA map. In contrast,
the Athens maps display greater diversity and cover a significantly
larger area, making direct comparisons more complex.

Knowing the information above, we applied Map Stitcher to the
Athens and Berlin data sets, using OpenStreetMap (OSM) as the
base map and supplementing it with TeleAtlas (TA) maps, which
offer greater detail. In our initial evaluation approach, we employ

Hosseini Sereshgi and Wenk

\

Figure 10: The input roadmaps OSM and TA are shown in
black and red, respectively. The blue roadmap is the output.
Green circles highlight successes, red circles indicate short-
comings.

graph sampling to assess the merged map by comparing it to each
of the input roadmaps. Assuming G as one of the input roadmaps
and H as the output we have computed the values on Table 5 and
Table 3.

It’s expected that our recall values would be high when compared
to OSM maps, since we don’t make substantial changes to the
base map. However, the notable increase in recall values when
compared to the secondary map indicates a significant enhancement
in coverage. Our output achieved exceptional recall values on both
datasets, successfully covering 97 percent of the secondary map,
demonstrating a substantial improvement in map completeness.

When examining precision values in relation to the OSM map,
the results offer limited insight. However, the notable improvements
in precision when compared to the supplementary map indicate
a significant enhancement in the consistency and accuracy of the
added segments, demonstrating a higher degree of precision in our
output.

3.4 Constructing A Dataset With Ground Truth

In this section, we aim to "artificially” construct a dataset by splitting
aroadmap G into two sub-roadmaps Gy, G sets such that (a) their
union covers G, so, G; U G = G, and (b) their intersection is not
empty, so, G1 N Gy # 0.

Map Stitcher: Graph Sampling-based Map Conflation

Berlin ‘ Samples ‘ Matched Precision Recall F
OSM 71,515
TA 82,423

Table 2: Graph sampling evaluation for Berlin OSM vs. TA,
using dmax = 15m.

‘ 67,936 0.82 095 0.88

Berlin ‘ Samples ‘ Matched Precision Recall F
OSM 71,515
Merged 86,397
TA 82,423

Table 3: Graph sampling evaluation for Berlin OSM vs. the
Merged output and TA vs. the Merged output, using dpyax =
15m.

71,002 0.82 0.99 0.90
80,076 0.93 097 0.95

Athens ‘ Samples ‘ Matched Precision Recall F
OSM 399,898
TA 445,092

Table 4: Graph sampling evaluation for Athens OSM vs. TA,
using dmax = 15m.

349,725 0.79 0.88 0.83

Athens ‘Samples Matched Precision Recall F
OSM 399,898
Merged | 491,720
TA 445,092

Table 5: Graph sampling evaluation for Athens OSM vs. the
Merged output and TA vs. the Merged output, using dmax =
15m.

396,383 0.81 099 0.89
420,380 0.85 0.94 0.90

The two roadmaps Gi, G are then given to Map Stitcher as in-
puts, and the output is compared with the initial roadmap G (ground
truth). While this approach is not flawless, as input maps often differ
in their overlapping regions as well, it can still demonstrate the con-
sistency of our method. For this purpose we use the well-known
Chicago roadmap [5]. We split the roadmap randomly into two
roadmaps via an automated program 2 (see Section A for details)
while making sure the two have overlapping areas. Figure 11 illus-
trates the outcome of this process, displaying two graphs generated
through this method, with the final image depicting the merged
result. We utilize Graph Sampling to evaluate the merged result
by comparing it to the ground truth, as shown in Figure 12. This
comparison yields an evaluation summary in Table 6, revealing a
striking similarity of approximately 97 percent.

3.5 Runtime

Table 7 shows the runtimes of Map Stitcher given Athens and Berlin
datasets on a 2017 3.1 GHz Dual-Core Intel Core i5 Macbook Pro
with 16 GB 2133 MHz LPDDR3 RAM. Note that the time required for

This program and the constructed dataset are also available on our repository.

Geolndustry’24, October 29-November 1, 2024, Atlanta, GA, USA

Chicago ‘ Samples ‘ Matched Precision Recall F
Ground-truth | 119,170

116,245 0.967 0.975 0.971
Merged 120,230

Table 6: Graph sampling evaluation for Chicago ground-truth
vs. Merged, using dmax = 15m.

—W]||._i_i" I::F SaNEEEEE E;
—=caanlliEIIS==S. i =l T
—< =t FegZ TTTT
SE=i==== e et
= I
= T
]
" = T | 1
e

— T | -
:ﬂl ; :?
L] =
S====cE cnn=RdEil
i — I{ lé.-
=nnnnl=l ey R

. == B

AT ==
TITE = ! 1 B
,-I"' H T i L
=S : i bﬁ
il — =

......

Hih

T
ug|

R

£

=

HTES
T

| = H
i == 1]

— T 1

e
i

M= I i
I

=)
fll

===
1

1]
h

T
L ul
1

£
=

o

A

Figure 11: The two input roadmaps are shown in black and
red while the merged roadmap (output) is blue.

matching increases when G and H have more extensive overlapping
areas, and conversely, the time needed for merging grows when
the disparity between G and H is more significant.

Geolndustry’24, October 29-November 1, 2024, Atlanta, GA, USA

Datasets | Matching (s) | Merging (s)
Berlin 24 228
Athens 386 9125
Chicago 18 1653

Table 7: Runtime in seconds for Berlin, Athens and Chicago

4 Conclusion and Discussion

We presented Map Stitcher, an automated tool for merging two
roadmaps. Map Stitcher ensures the preservation of topological fea-
tures, such as intersections and their vertex degrees, by deliberately
identifying and addressing missing intersections in the second map.
This cautious approach also effectively handles small edges near
intersections, roundabouts, and misplaced highway ramps (As pre-
viously shown in Figure 8). Furthermore, our approach maintains
geometric features, including lengths, angles, and relative feature
locations, by leveraging graph sampling’s inherent preservation
of approximate length and angle (via A and 6). The Stitch func-
tion Algorithm 1 utilizes this property to reconstruct the original
geometry. Additionally, the location of new features is seamlessly
integrated into the base map by translating their position using the
vector of the closest matched pair in the current path, ensuring a
consistent relative location with existing features.

Map Stitcher achieves "Differential Conflation" by seamlessly
integrating new features from a secondary map without altering the
existing base map features. However, handling areas that have un-
dergone significant changes, such as repurposing or reconstruction,
poses a significant challenge, requiring additional investigation.
More future work could work out a deeper understanding of the
existence of artifacts in practice and further optimize the handling
of them. In addition, further work on developing more automatic
methods for evaluating merged maps would be helpful for the com-
munity. If available, one approach could use GPS trajectory data and
compare how well those trajectories map-match to the individual
maps and to the merged maps.

Acknowledgments

E.H.S. and C.W. were both partially supported by National Science
Foundation grant CCF 1637576.

References

[1] Gorisha Agarwal, Laks V.S. Lakshmanan, Xiaoming Gao, Kevin Ventullo, Saurav
Mohapatra, and Saikat Basu. 2021. MAYUR: Map conflAtion using earlY prUning
and Rank join. In Proc. 29th ACM SIGSPATIAL GIS (Beijing, China). 550-553.
https://doi.org/10.1145/3474717.3484258

[2] Jordi Aguilar, Kevin Buchin, Maike Buchin, Erfan Hosseini Sereshgi, Rodrigo L.
Silveira, and Carola Wenk. 2024. Graph Sampling for Map Comparison. ACM
Trans. Spatial Algorithms Syst. 10, 3 (2024), 1-24. https://doi.org/10.1145/3662733

[3] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk. 2015. Map Construction
Algorithms. Springer. https://doi.org/10.1007/978-3-319-25166-0

[4] Favyen Bastani and Sam Madden. 2021. Beyond Road Extraction: A Dataset for
Map Update using Aerial Images. arXiv:2110.04690 [cs.CV]

[5] James Biagioni and Jakob Eriksson. 2012. Inferring Road Maps from Global
Positioning System Traces. Transportation Research Record: Journal of the Trans-
portation Research Board 2291, 1 (2012), 61-71.

[6] J. Biagioni and J. Eriksson. 2012. Inferring Road Maps from Global Positioning
System Traces: Survey and Comparative Evaluation. Transportation Research
Record: Journal of the Transportation Research Board 2291 (2012), 61-71.

[7] J. Biagioni and J. Eriksson. 2012. Map inference in the face of noise and disparity.
In Proc. 20th ACM SIGSPATIAL GIS (Redondo Beach, California). 79-88.

Hosseini Sereshgi and Wenk

[8] M. Buchin, E. Chambers, P. Fang, B.T. Fasy, E. Gasparovic, E. Munch, and C. Wenk.
2023. Distances Between Immersed Graphs: Metric Properties. La Matematica 2
(2023), 197-222. https://doi.org/10.1007/s44007-022-00037-8

Ting Lei and Zhen Lei. 2019. Optimal spatial data matching for conflation:
A network flow-based approach. Transactions in GIS 23, 5 (2019), 1152-1176.
https://doi.org/10.1111/tgis.12561

[10] TingL.Lei. 2021. Large scale geospatial data conflation: A feature matching frame-
work based on optimization and divide-and-conquer. Computers, Environment
and Urban Systems 87 (2021), 101618. https://doi.org/10.1016/j.compenvurbsys.
2021.101618

Zhen Lei and Ting L. Lei. 2024. Towards Topological Geospatial Conflation: An
Optimized Node-Arc Conflation Model for Road Networks. ISPRS International
Journal of Geo-Information 13, 1 (2024). https://doi.org/10.3390/ijgi13010015
[12] Alan Saalfeld. 1988. Conflation Automated map compilation. International journal
of geographical information systems 2, 3 (1988), 217-228. https://doi.org/10.1080/
02693798808927897

Zhangging Shan, Hao Wu, Weiwei Sun, and Baihua Zheng. 2015. COBWEB: a
robust map update system using GPS trajectories. In Proc. ACM International
Joint Conference on Pervasive and Ubiquitous Computing (Osaka, Japan). 927-937.
https://doi.org/10.1145/2750858.2804286

Rade Stanojevic, Sofiane Abbar, Saravanan Thirumuruganathan, Gianmarco
De Francisci Morales, Sanjay Chawla, Fethi Filali, and Ahid Aleimat. 2018. Road
Network Fusion for Incremental Map Updates. In Progress in Location Based
Services 2018, Peter Kiefer, Haosheng Huang, Nico Van de Weghe, and Martin
Raubal (Eds.). Springer, 91-109.

Tao Wang, Jiali Mao, and Cheqing Jin. 2017. HyMU: A Hybrid Map Updating
Framework. In Database Systems for Advanced Applications, Selcuk Candan, Lei
Chen, Torben Bach Pedersen, Lijun Chang, and Wen Hua (Eds.). Springer, 19-33.
Yin Wang, Xuemei Liu, Hong Wei, George Forman, Chao Chen, and Yanmin
Zhu. 2013. CrowdAtlas: self-updating maps for cloud and personal use. In Proc.
11th ACM Annual International Conference on Mobile Systems, Applications, and
Services (Taipei, Taiwan). 27-40. https://doi.org/10.1145/2462456.2464441

Xu Zhang and Mei Chen. 2023. Methodology for Conflating Large-Scale Roadway
Networks. Transportation Research Record 2677, 3 (2023), 189-202. https://doi.org/
10.1177/03611981221115085 arXiv:https://doi.org/10.1177/03611981221115085

[

[11

[13

[14

[15

[16

(17

A Details About the Program Used In
Section 3.4

The construction of the Chicago ground truth dataset involves the
following process: Initially, two random edges from graph G are
selected and assigned to graphs G; and Gg, respectively. To ensure
connectivity in G; and Gz, adjacent edges are stored in separate
lists (c1 and c3) for each graph. The algorithm then enters a loop,
repeatedly selecting random edges from c; and ¢y until all edges
from G have been processed. In each iteration, if an edge is found
in both ¢; and co, it is added to both G and G2; otherwise, each
graph receives the edge selected from its respective candidate list
and ¢ and cy are updated.

|
1]
N
o
i

i

=
|
=1

~

Figure 12: Chicago OSM ground truth (black)

https://doi.org/10.1145/3474717.3484258
https://doi.org/10.1145/3662733
https://doi.org/10.1007/978-3-319-25166-0
https://arxiv.org/abs/2110.04690
https://doi.org/10.1007/s44007-022-00037-8
https://doi.org/10.1111/tgis.12561
https://doi.org/10.1016/j.compenvurbsys.2021.101618
https://doi.org/10.1016/j.compenvurbsys.2021.101618
https://doi.org/10.3390/ijgi13010015
https://doi.org/10.1080/02693798808927897
https://doi.org/10.1080/02693798808927897
https://doi.org/10.1145/2750858.2804286
https://doi.org/10.1145/2462456.2464441
https://doi.org/10.1177/03611981221115085
https://doi.org/10.1177/03611981221115085
https://arxiv.org/abs/https://doi.org/10.1177/03611981221115085

Geolndustry’24, October 29-November 1, 2024, Atlanta, GA, USA

Map Stitcher: Graph Sampling-based Map Conflation

Q
X
N

%

W

S

S

5\

,
,

a

y

W2
-

oy

(14

RS

A

C\S

O

A

.
S

Figure 13: Athens OSM (black), TA (red), and Merged (blue).

and Merged (blue).

TA (red),

Figure 14: Berlin OSM (black),

Received 14 September 2024

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Problem Definition

	2 Method
	2.1 Intersections
	2.2 Adding New Intersections
	2.3 Adding New Paths
	2.4 Runtime Analysis

	3 Experimental Evaluations
	3.1 Data and Code
	3.2 Visual Demonstration
	3.3 Automated Precision and Recall Evaluation
	3.4 Constructing A Dataset With Ground Truth
	3.5 Runtime

	4 Conclusion and Discussion
	Acknowledgments
	References
	A Details About the Program Used In Section 3.4

