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A nonlocal phase-field crystal (NPFC) model is presented as a nonlocal counterpart of
the local phase-field crystal (LPFC) model and a special case of the structural PFC
(XPFC) derived from classical field theory for crystal growth and phase transition. The
NPFC incorporates a finite range of spatial nonlocal interactions that can account for
both repulsive and attractive effects. The specific form is data-driven and determined
by a fitting to the materials structure factor, which can be much more accurate than
the LPFC and previously proposed fractional variant. In particular, it is able to match

the experimental data of the structure factor up to the second peak, an achievement not
possible with other PFC variants studied in the literature. Both LPFC and fractional

PFC (FPFC) are also shown to be distinct scaling limits of the NPFC, which reflects
the generality. The advantage of NPFC in retaining material properties suggests that
it may be more suitable for characterizing liquid–solid transition systems. Moreover,
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we study numerical discretizations using Fourier spectral methods, which are shown
to be convergent and asymptotically compatible, making them robust numerical dis-
cretizations across different parameter ranges. Numerical experiments are given in the
two-dimensional case to demonstrate the effectiveness of the NPFC in simulating crystal
structures and grain boundaries.

Keywords: Nonlocal phase-field crystal models; Fourier spectral methods; asymptotically

compatible schemes; crystal lattices; structure factor; grain boundary.
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1. Introduction

Over the years, various continuum models have been developed to describe different

aspects of crystal growth and liquid–solid transitions. One such model that has

generated considerable interest is the phase-field crystal (PFC) model proposed by

Elder et al.23, 24 The PFC model is a conserved form of the non-conserved Swift–

Hohenberg equation.49 It introduces a periodic order parameter φ to represent

the local-time-averaged atomic density field, with the associated dimensionless free

energy

E(φ) = 1

2
‖∆φ+ φ‖22 +

∫

Ω

F (φ), (1.1)

where Ω is the unit period domain of φ. Thus, the PFC model can be viewed as an

H−1-gradient flow of energy (1.1) with a constant mobility:

∂φ

∂t
= ∆µ, where µ = (∆+ I)2φ+ F ′(φ). (1.2)

Although initially proposed to model elasticity in crystal growth, the PFC mod-

els have been applied to various other fields, such as thin film growth, dendrite

formation, single dislocation, alloy solidification, and spontaneous elastic interac-

tion. They have been successfully applied to study crystals with 2D triangular and

3D BCC symmetries. More studies and applications of PFC models can be found in

recent reviews25, 37, 48 and references provided therein. To allow for effective simu-

lations of other common metallic crystal structures, various extensions have been

studied. These extensions include the use of higher-order derivatives in free energy

formulations15, 28, 30, 35, 55 and structural PFC (XPFC) models that adopt a nonlo-

cal integral form in the free energy formulation.29, 39, 47 A special type of fractional

nonlocal interactions has also been studied in Refs. 2 and 3.

In this work, we focus on a nonlocal analog of the original phase-field crystal

model (1.2). For easy reference, the latter model (1.2) is referred to as the local

phase field crystal (LPFC) model and (1.1) as the local energy. We first define the

nonlocal free energy

Eδ(φ) =
1

2
‖Lδφ+ φ‖22 +

∫

Ω

F (φ), (1.3)



Nonlocal phase-field crystal models in two dimensions 2101

obtained by replacing the Laplace operator ∆ in (1.1) with the nonlocal Laplacian,

also named nonlocal diffusion (ND) operator, Lδ parameterized by a constant δ:

Lδφ(x) =

∫

Bδ(x)

ρδ(|x− x′|)(φ(x′)− φ(x))dx′. (1.4)

Here, δ is the horizon parameter measuring the range of interactions, Bδ(x) is a

δ-neighborhood of the center x, and the kernel ρδ(s) is a nonnegative radial-type

function with a compact support in [0, δ]. Moreover, the kernel ρδ is taken such

that we recover L0 = ∆ as the limit of Lδ as δ → 0.

Then, by introducing the nonlocal chemical potential using the variational

derivative of the energy with respect to φ,

µδ = (Lδ + I)2φ+ F ′(φ), (1.5)

a nonlocal phase-field crystal (NPFC) model can be formulated as

∂φ

∂t
= L̃δµ

δ = L̃δ((Lδ + I)2φ+ F ′(φ)), (1.6)

where L̃δ is a given self-adjoint and positive-definite linear operator, NPFC can be

mathematically interpreted as a gradient flow of the energy (1.3) associated with

the inner product (v, (−L̃δ)
−1v), similar to the original PFC. While the operator

L̃δ can take on a general form, it is assumed to satisfy, for any constant function

φ = c, L̃δ(φ) = 0, which in particular implies that (L̃δf, 1) = (f, L̃δ1) = 0 for any

periodic function f , where (·, ·) is the standard L2 inner product. This leads to the

conservation of total mass

d

dt

∫

Ω

φ(x, t)dx = 0, ∀ t ≥ 0.

Thus, (1.6) represents conservative dynamics, just like its local counterpart (1.2).

For computational convenience, we also assume that L̃δ is simultaneously diago-

nalizable with ∆ and Lδ. Moreover, to have consistency with the local model, we

assume further that L0 = ∆ is also the limit of L̃δ as δ → 0. Some special cases of

L̃δ include L̃δ = ∆ and L̃δ = Lδ.

There are several motivations for the study of the NPFC model that involves

the ND operator with a finite range of nonlocal interactions. First, this choice is

in line with the XPFC approach, which explores more general forms of free energy

than the original LPFC models. Second, as the nonlocal interaction kernel becomes

more localized, we can recover the local partial differential operators in the limit,

which enables us to make connections between the NPFC model and the original

PFC model. Third, by choosing special fractional kernels and setting the interaction

domain to be the entire space, we can also recover fractional PFC (FPFC) models

as another limiting case. In addition, it is worth noting that nonlocal operators are

integral operators that have been widely used to model problems in physics, chem-

istry, and materials science. Although the PFC model was originally derived from

a phenomenological approach, it can be reinterpreted as a simplified and approxi-

mated version of the dynamic density functional theory (DDFT).52 In this sense,
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the NPFC model is in the same spirit while offering us more flexibility in choosing

the interaction kernels. Moreover, the ND operators are of the convolution type and

are diagonalizable in the Fourier space. Thus, fast algorithms proposed in Ref. 21

can be used to evaluate the Fourier symbols associated with various choices of ker-

nels. This significantly reduces the computational complexities in the simulations of

NPFC and makes the simulation costs comparable to that of simulating the LPFC

models. Furthermore, one of the features of ND operators is that they avoid the

explicit use of spatial derivatives, allowing us to handle more singular solutions.

Unlike diffusive interfaces generated by LPFC models, the NPFC can capture sharp

interfaces among bulk phases without causing further complications. In some cases,

these sharp interfaces have important physical meanings.

The use of ND operators involving a finite range of interactions, as formulated

by (1.4) has been widely studied in various fields.16 These operators have been used

to model nonlocal heat conduction,10 phase transitions,9, 13, 27 kinetic equations,32

nonlocal Dirichlet forms,7 and peridynamics,8, 36, 43, 45, 46 among others. Significant

progress has been made in the rigorous mathematical analysis4, 5, 12, 17, 18, 26 and

the algorithmic development of these operators.11, 14, 31, 33, 38, 44, 53, 57 In particu-

lar, asymptotically compatible (AC) schemes have been developed to preserve the

limiting behavior of ND operators in discretizations.50, 51 Du and Yang20 success-

fully extended this AC concept to semidiscrete Fourier spectral methods for solving

nonlocal nonlinear Allen–Cahn equations. Moreover, Du and Yang20 derived a uni-

form and optimal error estimate of O(δ2) for the convergence of numerical nonlocal

solutions to the numerical solution of the local limit. However, the study of Ref. 20

was limited to one-dimensional problems.

In this paper, we carefully investigate NPFC models from both modeling

and numerical simulation perspectives. We first employ the data-driven modeling

approach to illustrate that a more accurate fitting of the structure factors of mate-

rials in the liquid state can be obtained by selecting special forms of the nonlocal

interaction kernels used in the NPFC that involve both repulsive and attractive

interactions. This desirable feature helps to demonstrate the advantages of NPFC

the LPFC and FPFC models on the physical ground. We then develop suitable

numerical algorithms for the efficient simulations of NPFC. For time discretization,

we show that SAV schemes can be used to preserve the features and structures

of the original continuum models. For spatial discretization, we utilize the Fourier

spectral discretization and fast algorithms for the evaluation of nonlocal operators

in the spectral space. Moreover, we prove that Fourier spectral methods are not only

convergent but also give AC discretizations of the 2D NPFC models together with

a uniform and optimal error estimate. Additionally, we present simulations with

sharp interfaces by NPFC models with integrable kernels which allows for more

singular solutions to be captured, demonstrating the capability of NPFC models

in generating sharp interfaces instead of typical diffusive interfaces associated with

LPFC models.
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2. Physical Motivation and Model Development

Let us first recall some basic features of the free energy functional and the material

structure factor to motivate the development of NPFC, particularly with sign-

changing kernels that account for both repulsive and attractive interactions.

2.1. Free energy and structure factor

During the transition from liquid to solid phases, there is a significant change in

density. Specifically, the density is relatively uniform in the liquid phase but becomes

spatially periodic in the solid phase. To model this behavior, a free energy functional

given by Eq. (2.1) has been developed in Ref. [23, Sec. I(C)]:

E(φ) =
∫

Ω

{

φ

2
G(∆)φ+ F (φ)

}

. (2.1)

The first term in the above energy functional is associated with the Laplacian oper-

ator ∆. It induces spatial dependence and is responsible for the periodicity observed

in the solid phase. The second term
∫

Ω
F (φ) captures the thermodynamic proper-

ties of the system, such as the energy required for the formation of the solid–liquid

interface and density changes. The model is also prescribed by specific forms of

G(∆), which can be determined by experimental data or theoretical considerations.

Overall, the free energy functional in Eq. (2.1) yields a simple yet effective model

for studying the liquid–solid transition in a system and has been widely used in the

literature.

For elastic materials, the simplest possible forms of the free energy (2.1) capable

of producing periodic structures have been constructed in Ref. [23, Sec. I(C)] via

the following representation G:

G(∆) = λ(k2c +∆)2. (2.2)

The parameters used in (2.2) are to fit the structure factor for 36Ar, which was

determined by experiments at 85K as reported in Ref. 56. That is, the fitting was

done with respect to the wave number k for the structure factor function

S(k) = 1
ω̂(k) ,

where ω̂(k) = G(−k2)− ε with

ε := −F ′′(0)

being a constant with its physical significance proportional to the undercooling, i.e.

ε ∼ Te − T , where T is the temperature of the system and Te is the equilibrium

temperature at which the phase transition occurs. Here, the term G(−k2) that

resulted from the Fourier transform of (2.2) is of the following form:

G(−k2) = λ(k2c − k2)2.
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It is worth noting that the fitted curve was often able to match the experimental

data up to the first peak, which has been the usual practice since small wave num-

bers carry more information on the material. For comparison, we briefly introduce

the FPFC which is demonstrated in Ref. 3. In the FPFC model, instead of Eq. (2.2),

the following operator

G(∆, γ) = λ(k2c +∆)2γ or G(∆, γ) = λ(k2γc − (−∆)γ)2 (2.3)

is considered with a parameter γ. Obviously, FPFC reduces to the classical PFC

with γ = 1. Instead of using local operators in the above models, we can replace

them with nonlocal operators defined in (1.4), that is,

G(Lδ) = λ(k2c − Lδ)
2. (2.4)

In particular, with kernels ρδ that are allowed to be sign-changing, we can incorpo-

rate both repulsive and attractive interactions and offer better approximations to

the structure factor, thus making it possible to produce and match beyond a single

peak. The latter has not been achieved in the literature before.

2.2. NPFC models with sign-changing kernels

To describe the 2D NPFC models with the relevant ND operator Lδ defined on the

domain [0, Lx] × [0, Ly], we first introduce a couple of truncated and normalized

fractional kernels

ραj ,δj (s) =
2(4− αj)

πδ4−αj |s|αj
χ[−δj ,δj ], s ∈ (0, δj), δj ∈ (0,∞), αj ∈ [0, 4). (2.5)

Now, we focus on the ND operator Lδ involving a kernel represented by a linear

combination of two fractional kernels with fractional powers α1 and α2 and horizon

parameters δ1 and δ2, that is, the kernel ρδ in (1.4) is taken to be of the following

form:

ρα,δ(s) = c1ρα1,δ1(s)− c2ρα2,δ2(s)

=
2(4− α1)c1

π

1

δ4−α1

1 sα1

− 2(4− α2)c2
π

1

δ4−α2

2 sα2

, s ∈ (0, δ), (2.6)

where α = {α1, α2} and δ = min{δ1, δ2}. To satisfy the normalized moment condi-

tion, we require that

c1 − c2 = 1.

It is trivial to check that for a pair of integers (k, l), e
i( 2πk

Lx
x+ 2πl

Ly
y)

is an eigen-

function of Lδ with periodic boundary conditions. The corresponding eigenvalue is

λδ(k, l) = c1λα1,δ1(k, l)− c2λα2,δ2(k, l), where

λαj ,δj (k, l) =
2(4− αj)

πδ2j

∫ 1

0

r1−αj

∫ 2π

0

(

cos

(

2πrδj

√

k2

L2
x

+
l2

L2
y

cos θj

)

− 1

)

dθdr

(2.7)
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for j = 1, 2. The evaluation of the above double integrals can be performed using the

accurate and efficient hybrid algorithm proposed in Ref. 21. For suitable parameter

values, the kernel ρα,δ could change sign, being positive around the origin but

negative at r = δ.

2.3. Fitting the structure factor with NPFC having

sign-changing kernels

As an illustration of NPFC models, we investigate the fitting of the structure factor

with sign-changing kernels. Comparisons with the fitting results associated with

the local Laplace operator and the FPFC studied in Ref. 3 are also carried out.

For the local operator L0 = ∆, the parameters {λ, kc} are selected by fitting the

functional form G(∆) to the first-order peak in the experimental measurements24

of the structure factor represented by

S(k) =
1

G(−k2)− ε
.

For the nonlocal operator Lδ, we are able to select parameters {λ, kc, α1, α2, δ1, δ2,

c1, c2} by fitting the functional form to the first-order peak in the experimental

measurements with sign-changing kernels, i.e. we fit

S(λα,δ) =
1

G(λα,δ)− ε
,

where parameters kc and ε are chosen in advance by referring to experimental data.

Similarly to earlier studies, we utilize experimental data on the liquid structure

factor of 35Ar at a temperature of 85K, which is near the melting point of argon,

where the material remains in a liquid state. The fitted structure factor profiles

are shown in Fig. 1, where the experimental data are displayed with black dotted

line. We observe that the fitted curves with a local operator (presented with a

magenta dotted line) and FPFC (presented with blue solid-dotted line) match well

with the experimental data up to the first peak. However, the fitted profile with

sign-changing kernels (presented with a solid red line) agrees almost up to the

first two peaks. In contrast, it should be noted that the fitted curves with a local

operator and FPFC can only have one peak. Moreover, for small wave numbers k,

the fitting by the nonlocal operator with sign-changing kernels, like that for the

FPFC, is much closer to the experimental data than the case with a local operator.

This demonstrates that the nonlocal operator with sign-changing kernels has an

advantage in capturing the energy compared to the local operator. The improvement

in fit quality is remarkable. As an illustration, we present here the results of the

fitting and the values of parameters used when kc = 1.997, ε = −0.3725: for the local

case we have λ = 0.8115 as the only fitting parameter; for the FPFC case, the two

parameters are λ = 0.8666 and γ = 1.237; meanwhile, for the nonlocal case, the

parameters used are, respectively, λ = 1.8315, δ1 = 2.21, α1 = 1, δ2 = 3.01, α2 =

0, c1 = 3, and c2 = 2. The combined kernel with parameters resulted from fitting is

checked to be positive, and the resulted operator is still negative definite.



2106 Q. Du, K. Wang & J. Yang

0 1 2 3 4 5

k

0

0.5

1

1.5

2

2.5

3

S
tr

u
c
tu

re
 f
a
c
to

r 
S

(k
)

experimental data

nonlocal case

local case

fractional order

1 1.5

k

0.1

0.2

0.3

0.4

Fig. 1. Fit of structure factor of 36Ar.

The corresponding structure factors fitting of some other materials reported in

Refs. 22 and 54 are presented in Fig. 2. In each case, the improvement made by

the NPFC model with sign-changing kernels is striking compared with the LPFC

and FPFC models. This shows that the resulting NPFC model will have better

performance in capturing phases in modeling liquid–solid transition systems.

Next, we make some comparisons with XPFC models with multi-peak Gaus-

sians. For XPFC models,6 the free energy is expressed as

E(φ) =
∫

Ω

[

1− ε

2
φ2 − a

3
φ3 +

v

4
φ4

]

− 1

2

∫∫

Ω

[φ(x)C2(‖x− x′‖)φ(x′)]dx′dx,

where the pair correlation function is approximated by a combination of modulated

Gaussian functions in Fourier space via

Ĉ2(k) = max(Gi(k), Gi+1(k), . . . , GN (k)),

with N being the total number of Gaussian functions used in the approximation of

the direct correlation function, and

Gi(k) = exp

(

− σ2k2i
2λiβi

)

exp

(

− (k − ki)
2

2α2
i

)

the modulated Gaussian function (i.e. a Gaussian function with its height modified

by an exponential function). The parameter ki specifies the position of the ith

Gaussian peak, αi corresponds to the root-mean-square width of the ith Gaussian

peak and controls the excess energy associated with defects, interfaces, and strain,

σ controls the heights of the Gaussian peaks and is related to temperature, λi and

βi are the planar atomic density and the number of planar symmetries of the ith
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Fig. 2. Structure fitting for different materials at various temperatures.

family of crystallographic planes. In this XPFC model, the structure factor S(k)

can be obtained from the peak position via

S(k) =
1

N

N
∑

i=1

σi exp

(

− (k − ki)
2

2α2
i

)

.

Note that here we simplify the parameters to σi associated with the height of the

peak and αi associated with the width of the peak. The results are shown in Fig. 3.

Here we set N = 2 to fit the first two peaks with k1 = 1.9971 and k2 = 3.6417.

While XPFC models using multi-peak Gaussians can fit the structural factor with

more peaks, NPFC models not only offer a much better fitting than the XPFC

around the second peak but also lead to slightly better fitting even at the first peak.

This provides further support for the use of NPFC over XPFC variants of the PFC.

Note that linear combinations of truncated power-like kernels are adopted for

nonlocal operators. They are specifically chosen to achieve good fittings of structure

factors. Despite the sign changes of the kernels, the resulting nonlocal operators
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can remain positive definite; see Ref. 34 for related discussions. One may verify

this easily for the specific choices used here by evaluating their eigenvalues that

can be efficiently obtained, see later discussions. In the rest of this paper, without

ambiguity, we always simplify ραj ,δj to ρδ.

3. Properties of the NPFC and the Discretization Schemes

To present some theoretical analysis, we assume that the operators −Lδ and −L̃δ

are all positive definite, which are reasonable assumptions that can be verified for

the fitting parameters used.

The NPFC equation given in (1.6) is a gradient flow of nonlocal free energy

(1.3) associated with the dual space norm of the energy norm associated with the

operator −L̃δ. By the assumption on its positive-definiteness, we have the following

energy identity:

dEδ(φδ)

dt
= (L̃δµ

δ, µδ) ≤ 0, (3.1)

which is analogous to the LPFC equation, an H−1 gradient flow satisfying

dE(φ0)

dt
= (∆µ0, µ0) ≤ 0. (3.2)

We note that the nonlocal chemical potential µδ is given by (1.5) and µ0 is the local

chemical potential defined analogously with ∆ in place of Lδ. They are also the

first variations of the energy functionals (1.3) and (1.1), respectively. If we define

G0φ = (∆+ I)2φ and Gδφ
δ = (Lδ + I)2φδ,
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the NPFC (1.6) and the associated LPFC model can be, respectively, written as

∂φδ

∂t
= L̃δ(Gδφ

δ + F ′(φδ)) and
∂φ0

∂t
= ∆(G0φ

0 + F ′(φ0)). (3.3)

Here, we discuss the nonlinear term F (φ) in more detail. The energy dissipation

law of local models has sufficient regularities to guarantee the L∞-boundedness

of both the exact solution and numerical solutions due to the Sobolev embedding

H2 ↪→ L∞, which plays a crucial role in proving the error bounds. However, for

nonlocal models, the energy dissipation does not have sufficient regularities to derive

such boundedness. In order to derive the L∞-boundedness for nonlocal models

following the Sobolev embedding H2 ↪→ L∞, we need to handle the term ∆F ′(φ).
Therefore, we make the following assumption on the nonlinear term:

Assumption.

F ∈ C2(Ω) and ‖F ′′′‖∞ < C. (3.4)

However, for the quartic polynomials, such as the typical choice F (φ) = 1
4 (φ

2− ε)2,

the assumption is not satisfied. To address this, we perform a Lipschitz truncation

modification. Choosing a sufficiently large number D, we modify F (φ) with F̃ (φ)

as follows:

F̃ (φ) =















1

4
(φ2 − ε)2, |φ| ≤ D,

aφ2 + b log |φ|+ ce−φ2

, |φ| > D,

(3.5)

where coefficients a, b, and c are determined such that F̃ (φ), F̃ ′(φ), and F̃ ′′(φ) are
continuous at |φ| = D. It is easy to check that with such a modification F̃ (φ) (still

denoted as F (φ) subsequently) satisfies assumption (3.4).

We remark that in our numerical tests we set D = 1 and in fact, the maximum

value of the numerical solution is always smaller than D. Hence, this modification

does not actually affect the numerical simulation.

3.1. Fourier spectral approximation in space

We solve both LPFC and NPFC models numerically using Fourier spectral methods.

The numerical solutions are of the following form:

φδ
MN (x, y) =

∑

|k|≤M

∑

|`|≤N

aδk`(t)e
i( 2πk

Lx
x+ 2π`

Ly
y)
,

φ0
MN (x, y) =

∑

|k|≤M

∑

|`|≤N

a0k`(t)e
i( 2πk

Lx
x+ 2π`

Ly
y)
,
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and satisfy

∂φδ
MN

∂t
= L̃δGδφ

δ
MN +Πh[L̃δF

′(φδ
MN )],

∂φ0
MN

∂t
= L0G0φ

0
MN +Πh[L0F

′(φ0
MN )],

(3.6)

respectively, with same initial value φ0, where Πh is the spectral orthogonal pro-

jection onto

SMN = span{ei(
2πk
Lx

x+ 2π`
Ly

y) | −M ≤ k ≤ M,−N ≤ ` ≤ N},

defined for any φ by Πhφ ∈ SMN that satisfies

(Πhφ, ϕ) = (φ, ϕ), ∀ϕ ∈ SMN . (3.7)

Note that Πh commutes with L̃δ and L0 = ∆.

3.2. Fully discrete SAV scheme for time discretization

We now discuss the time discretization of the time-dependent NPFC model. First,

the NPFC models are reformulated with some scalar auxiliary variables (SAV),

which follow steps proposed in Refs. 41 and 42:



































∂φ

∂t
= L̃δµ,

µ = Gδφ+ βφ+ rH(φ),

dr

dt
=

1

2

∫

Ω

H(φ)
∂φ

∂t
dx,

(3.8)

with

H(φ) =
U(φ)

√

∫

Ω
F (φ)dx− β

2 ‖φ‖22 + CH

and U(φ) = F ′(φ)− βφ, (3.9)

where CH and β are any chosen positive constants.

The energy dissipation law follows by noting that

dE(φ(t))
dt

= (µ, L̃δµ) ≤ 0, with E(φ) = 1

2
(φ,Gδφ) +

β

2
(φ, φ) + r2,

which is derived by taking inner products of the first two equations in scheme (3.8)

against µ, ∂φ
∂t , respectively, multiplying the third equation with 2r and summing up

the resulted equations.
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By making discretization with second-order backward difference formula

(BDF2) in time and Fourier spectral method in space, the fully discrete SAV/BDF2

scheme is given in (3.10):






















(3φn+1
MN − 4φn

MN + φn−1
MN , q) = 2τ(L̃δµ

n+1
MN , q), ∀ q ∈ SMN ,

(µn+1
MN , w) = (Gδφ

n+1
MN , w) + β(φn+1

MN , w) + rn+1(H(φ̄n+1
MN ), w), ∀w ∈ SMN ,

3rn+1 − 4rn + rn−1 =
1

2
(H(φ̄n+1

MN ), 3φn+1
MN − 4φn

MN + φn−1
MN ),

(3.10)

where

φ̄n+1
MN = 2φn

MN − φn−1
MN . (3.11)

3.3. Energy stability and error estimates for the SAV/BDF2

scheme

Multiplying the above three equations with µn+1
MN , (3φn+1

MN − 4φn
MN + φn−1

MN )/(2τ)

and rn+1/τ , respectively, integrating the first two equations and using the following

elementary identity:

2(ak+1, 3ak+1 − 4ak + ak−1)

= |ak+1|2 + |2ak+1 − ak|2 + |ak+1 − 2ak + ak−1|2 − |ak|2 − |2ak − ak−1|2,
(3.12)

we obtain

1

τ
{Ẽ [(φn+1

MN , rn+1), (φn
MN , rn)]− Ẽ [(φn

MN , rn), (φn−1
MN , rn−1)]}

+
1

τ

{

1

4
(φn+1

MN − 2φn
MN + φn−1

MN ,Gδ(φ
n+1
MN − 2φn

MN + φn−1
MN ))

}

+
1

τ

{

1

4
(φn+1

MN − 2φn
MN + φn−1

MN , β(φn+1
MN − 2φn

MN + φn−1
MN ))

}

+
1

τ

{

1

2
(rn+1 − 2rn + rn−1)2

}

= (µn+1
MN , L̃δµ

n+1
MN ),

where for the positive semidefinite operator Gδ, the modified discrete energy is

defined as

Ẽ [(φn+1
MN , rn+1), (φn

MN , rn)]

=
1

2
((rn+1)2 + (2rn+1 − rn)2) +

1

4
((φn+1

MN ,Gδφ
n+1
MN )

+ (2φn+1
MN − φn

MN ,Gδ(2φ
n+1
MN − φn

MN ))) +
1

4
(β(φn+1

MN , φn+1
MN )

+β(2φn+1
MN − φn

MN , 2φn+1
MN − φn

MN )),
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which is always non-negative. Thus, with −L̃δ being positive definite, we get the

following theorem.

Theorem 3.1. The SAV/BDF2 scheme (3.10) is unconditionally energy stable in

the sense that the modified energy Ẽ [(φn+1
MN , rn+1), (φn

MN , rn)] is non-increasing in n.

In what follows we always assume M = N for simplicity and use notation uN

instead of uMN to represent the spatial discrete solution for any variable u. Without

specific statement ‖ · ‖ stands for L2 norm hereafter. We use C to denote a generic

positive constant that may take different values in its each occurrence, but is always

independent of the temporal step size and spatial step size.

Lemma 3.1. Let {φn
N , rn} be solutions to scheme (3.10) with L̃δ = Lδ and

let assumption (3.4) hold. Assuming that φ0 ∈ H2(Ω), then numerical solutions

{φn
N , rn} are bounded, that is,

‖φn
N‖L∞ + |rn| ≤ C. (3.13)

The proof of the lemma is left to A.1. We now present a technical lemma to

handle the operation of the nonlocal operators on nonlinear terms, which will be

used to prove Theorem 3.2.

Lemma 3.2. Assume that the functions u and v satisfy ‖u‖∞ ≤ C and ‖v‖∞ ≤ C

and either u or v is globally Lipschitz continuous. Let g = g(x) be any Lipschitz

continuous function in x ∈ [−C,C] and its derivative g′ is also Lipschitz continuous.

Define e = u− v, and then the following inequality holds:

(−Lδ(g(u)− g(v)), g(u)− g(v)) ≤ C((−Lδe, e) + (e, e)).

Remark 3.1. In Ref. 40, the following inequality, analogous to that in Lemma 3.2,

‖∇g(u)−∇g(v)‖ ≤ C(‖e‖+ ‖∇e‖)
is proved with the assumptions |g′(x) − g′(y)| ≤ L|x − y| and ‖g‖ + ‖v‖ ≤ C.

However, the chain rule used in Ref. 40 is not applicable to the nonlocal operator

considered here. Thus, we establish the conclusion in the above lemma subject to

the assumption on the Lipschitz continuity of either u or v, or its convex linear

combination, see the proof in the appendix. In the application of the lemma, we

take one of the u and v as the true solution for which the Lipschitz continuity can

be assumed or rigorously established.

Next, we present an error estimate of the fully discrete SAV/BDF2 scheme for

the NPFC model, under sufficient regularity assumptions on the true solution φ.

Theorem 3.2. Let {φ(t, x), r(t)} and {φn
N , rn} be solutions to Eqs. (3.8)

and (3.10), respectively, with L̃δ = Lδ. Suppose that r ∈ H3(0, T ), φ0 ∈ H2(Ω),

∂2
t φ ∈ L2(0, T ;H1

per(Ω)), ∂
3
t φ ∈ L2(0, T ;H−1(Ω)), and assumption (3.4) hold, then

the following error estimation holds:

‖φn
N − φ(tn)‖+ |rn − r(tn)| ≤ C(‖Πhφ(tn)− φ(tn)‖+ τ2),
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and in particular,

‖φn
N − φ(tn)‖+ |rn − r(tn)| ≤ C(hm + τ2),

for φ ∈ L∞(0, T ;Hm
per(Ω)) and

‖φn
N − φ(tn)‖+ |rn − r(tn)| ≤ C(e−c/h + τ2),

for analytical solution φ, where constants C and c are independent of the temporal

step size τ and spatial step size h.

Remark 3.2. The proof of the above theorem is given in A.3. We note that the

conclusion can be directly generalized to the case with any positive definite oper-

ator −L̃δ and non-negative definite operator Gδ. Moreover, an error estimate of µ,

omitted in the statement of the theorem, can also be obtained from the proof.

4. Asymptotic Compatibility

It is known that the horizon parameter δ in the definition of nonlocal operator

measures the range of nonlocal interactions. With δ → 0, only local interactions

take effect, that is, the limit of nonlocal operator as δ goes to zero is the local

differential operator. Numerical schemes that preserve this limit behavior are called

AC schemes.19, 50, 51 Mathematically, let u0 and uδ
N be solutions to a continuous

local model and its discrete nonlocal counterpart, respectively, then the asymptotic

compatibility can be formulated as

‖uδ
N − u0‖ → 0 as δ → 0, N → ∞. (4.1)

Further the estimate can be derived by following the triangle inequality below:

‖uδ
N − u0‖ ≤ ‖uδ

N − u0
N‖+ ‖u0

N − u0‖. (4.2)

The reason why we adopt such a triangle inequality is explained in Ref. 20.

In this section, we aim to prove the asymptotic compatibility of the discretiza-

tion of the 2D NPFC models. The analysis is similar to that studied for nonlocal

Allen–Cahn equations,20 so some details are skipped to keep the presentation short.

Note that similar techniques can be used to establish the well-posedness of the

NPFC model as well as its local limit as δ → 0.

4.1. Analysis of asymptotic compatibility

The asymptotic compatibility for the fully discrete scheme is presented in Theo-

rem 4.2. Before presenting the theorem, we introduce Lemma 4.1 and Theorem 4.1

which will be used in the proof of Theorem 4.2.

Lemma 4.1. Let φδ
N (x, y) and φ0

N (x, y) be numerical solutions to the steady linear

nonlocal problem

−Lδφδ(x, y) = f(x, y) ∀ (x, y) ∈ (−π, π)× (−π, π),
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and local problem

−L0φ0(x, y) = f(x, y) ∀ (x, y) ∈ (−π, π)× (−π, π),

respectively, subject to periodic conditions. Thus, it holds that

‖φδ
N − φ0

N‖ ≤ Cδ2‖f‖,
where the generic constant C is independent of spatial step size.

The result can be seen as an extension of similar conclusions presented in the

one-dimensional case in Ref. 20. The proof can be found in A.4., together with the

proof of the following theorem.

Theorem 4.1. Assume that φδ
N and φ0

N are solutions to (3.6), respectively, and

assumption (3.4) hold. Then for any finite t ≤ T, it holds that

‖φδ
N (t, ·)− φ0

N (t, ·)‖2 ≤ C(T, φ0)δ
2, (4.3)

where C is independent of spatial step size.

Theorem 4.2 (Asymptotic compatibility). Let {φδ,n+1
N , rδ,n+1} be numer-

ical solutions to the above fully discrete nonlocal SAV scheme (3.10) and

{φ0,n+1
N , r0,n+1} to corresponding local scheme, respectively. Suppose φ0 ∈ H2(Ω).

Then the following asymptotic convergence holds:

‖φδ,n+1
N − φ0,n+1

N ‖+ |rδ,n+1 − r0,n+1| ≤ C(T, φ0)δ
2,

where the constant C is independent of spatial step size and temporal step size.

Remark 4.1. Theorems proved above can be generalized to any negative definite

operator L̃δ and non-negative definite operator Gδ.

Remark 4.2. In proving asymptotic compatibility, the requirement of global Lip-

schitz continuity assumption on nonlinear term F can be relaxed to local Lipschitz.

In this setting, the locally Lipschitz continuous nonlinear term F (φ) can be modified

with the cut-off function Eq. (3.5), and the resulted nonlinear term F̃ (φ) = F (φ) for

considered domain φ ∈ D. Thus all remaining details hold and so is the conclusion.

4.2. Numerical implementation

In the following numerical examples, we will use the free energy (1.3) and the

residual of the equation to decide whether the evolution is close enough to the

steady state or not. In all numerical examples presented in this paper, we take

quartic polynomial form of the nonlinear term F (φ) = 1
4 (φ

2− ε)2. We approximate

the continuum energy (1.3) as

EMN =
LxLy

2

∑

|m|≤M

∑

|n|≤N

|1 + λδ(m,n)|2|amn|2

+
1

4(2M + 1)(2N + 1)

2M
∑

j=0

2N
∑

k=0

|φ2
jk − ε|2,
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where

φjk =
∑

|m|≤M

∑

|n|≤N

amne
i( 2πm

Lx
xj+

2πn
Ly

yk), xj =
jLx

2M + 1
, yk =

kLy

2N + 1
.

The residual is calculated as

Res =

∥

∥

∥

∥

3Φn+1 − 4Φn +Φn−1

2τ

∥

∥

∥

∥

F

,

where ‖ · ‖F denotes Frobenius norm and Φ = {φjk} is a (2M + 1) × (2N + 1)

matrix.

4.3. Numerical tests on the asymptotic compatibility

for NPFC models

Example 4.1. We first verify the asymptotic compatibility for a 2D NPFC model

in [0, 10π] × [0, 10π] with periodic boundary conditions being considered in this

example and initial value is given by φ0(x) = 0.05 sin(x) cos(x) + 0.07. We fix

ε = 0.025 and take the kernel defined in (2.5) with α = 1 and α = 3 respectively.

In both cases of α = 1 and α = 3, we take a small time step with ∆t = 0.001

and M = N = 64. The numerical differences between the solutions of the NPFC

and LPFC models are shown in Table 1. The convergence speed is seen to be about

O(δ2), which is in good agreement with the theoretical results. Thus, we achieve

the optimal convergence rate for asymptotic compatibility.

4.4. Numerical experiments

Next, we present examples that offer comparisons between lattices simulated with

LPFC and NPFC models, respectively.

Example 4.2. Consider both 2D NPFC and LPFC models in [0, 50]× [0, 50] with

periodic boundary conditions and the random initial value (RIV) with average mean

value φ̄ = 0.07. In both nonlocal and local models we fix ε = 0.025. The fractional

power kernel defined in (2.5) is taken as α = 1.

We set ∆t = 1, M = N = 64. In the nonlocal cases, we choose small δ = 0.2

and large δ = 2. The numerical solutions at T = 250, 500, 1000, 2000 are presented

Table 1. (Example 4.1) Errors between numerical
solutions of NPFC and LPFC models.

δ = 0.4 α = 1 α = 3

‖φδ

N
− φ0

N
‖2 Rate ‖φδ

N
− φ0

N
‖2 Rate

δ 3.49e−04 — 1.71e−04 —
δ/2 7.08e−05 2.30 3.81e−05 2.16
δ/4 1.68e−05 2.07 9.27e−06 2.04
δ/8 4.15e−06 2.01 2.30e−06 2.01
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Fig. 4. (Example 4.2) Numerical evolutions of NPFC and LPFC models.

in Fig. 4. It is observed that the dynamics and steady state of NPFC models with

small δ look nearly identical to the LPFC model. However, with a large δ, there are

visible differences between the dynamics and steady state of the NPFC models and

the local ones. However, without considering the slight rotation, the steady states

all have the same periodic patterns.

4.5. Grain boundary simulation

Example 4.3. Simulations of the grain boundaries with NPFC model are pre-

sented in this example. On a period grid of [0, Lx]× [0, Ly], we specify a one-mode

approximation of the stationary hexagonal state φh(x, y) in one orientation between

0 < y < Ly/2, while another hexagonal state of a different orientation is specified

between Ly/2 < y < Ly. The hexagonal lattice is given by

φ(x, y) = φ̄+Aφ

[

cos(qx) cos

(

qy√
3

)

− 1

2
cos

(

2qy√
3

)]

with q =
√
3
2 , φ̄ being the mean value of φ and

Aφ =
4

5

(

φ̄+
1

3

√

15ε− 36φ̄2

)

.

In the middle of two hexagonal states with various orientations, random values

with mean value φ̄l = φ̄ are specified so as not to influence the nature of the

grain boundary that emerged. The parameters for the simulation are taken as:

ε = 4/15, φ̄ = 0.2, the time step size is 0.5 and the space step size is around π/4.

The results of numerical simulations corresponding to different values of grain

mismatch angle θ = 11.6◦, 26.3◦, 39.4◦ at time T = 10,000 are shown in Fig. 5. It

is observed that around interfaces 5|7 dislocation dipoles are formed instead of the

original hexagonal lattice. We mark 5|7 dislocation dipoles with green pentagons
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Fig. 6. (Example 4.4) Phase evolution for NPFC models starting from initial hexagonal lattice.

where cδ =
∫

Bδ(0)
ρδ(|x|)dx > 0, and ? represents the convolution. Then, the steady

state equation becomes

φ3 + ((cδ − 1)2 − ε)φ = −ρδ ? (ρδ ? φ) + 2cδ(ρδ ? φ)− 2ρδ ? φ+ c0. (4.6)

Example 4.4. In this example, we fix α = 0.5 and δ = 3 in the fractional kernel

(2.5). The domain is taken as [0, 12π]× [0, 12π], and the discretization parameters

are taken as M = N = 128.

We conduct two experiments in this example. The first one starts from a hexag-

onal lattice as the initial value with ε = 0.49, while the other one starts from a

square lattice as the initial value with ε = 0.017. In both experiments, we solve

NPFC models by proposed SAV scheme with discretizations of Fourier spectral

method in space and BDF2 in time.

The phase evolutions are shown in Figs. 6 and 7. We observe that the interface

phase among bulk phase becomes from diffusive ones initially to sharp ones finally.

These are exactly the discontinuities we have expected in this case. We believe that

these sharp interface phenomena have important physical meaning, since we only

choose suitable kernels without any other extra conditions to achieve the sharp

interface. Meanwhile, with the help of the hybrid algorithm provided in Ref. 21, the

computation complexities of NPFC models are almost the same as LPFC models.

For concrete proof of such a discontinuity with integrable kernels, we present

the following theorem for one-dimensional case. In two-dimensional case, one may

observe the intersection of the graph of numerical solutions and plane Y = 0, in

which it reduces to one-dimensional case.

Theorem 4.3. Assume φ∗ is a solution to the aforementioned conserved NPFC

model (4.4) and φ∗(x) = 0 at point x = x∗. Then φ∗ is continuous at x = x∗ when
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Fig. 7. (Example 4.4) Phase evolution for NPFC models starting from initial square lattice.

|cδ − 1| ≥ √
ε; φ∗ is discontinuous at x = x∗ when |cδ − 1| < √

ε and ρδ + 2 −
2
cδ

< 0.

Proof. Without loss of generality, we set c0 = 0. Eq. (4.6) can be rewritten as

φ∗(x)((φ∗(x))2 + (cδ − 1)2 − ε)

= −[ρδ ? (ρδ ? φ
∗)](x) + 2cδ[ρδ ? φ

∗](x)− 2[ρδ ? φ
∗](x)

:= I(x).

Note that

I(x) = −
[(

ρδ + 2− 2

cδ

)

? ρδ ? φ
∗
]

(x).

Assume φ∗ is increasing over [x∗ − 2δ, x∗ + 2δ], since φ∗(x∗) = 0, then φ∗(x) ≥ 0

for any x ∈ (x∗, x∗ + δ). Therefore I(x∗) = 0 and

I(x) = I(x)− I(x∗) > 0

if ρδ + 2 − 2/cδ < 0. With this setting, when |cδ − 1| ≥ √
ε, φ∗ is continuous at

x = x∗; when |cδ − 1| < √
ε, it requires that (φ∗(x))2 + (cδ − 1)2 − ε ≥ 0, that is

φ∗(x) ≥
√

ε− (cδ − 1)2 > 0,

which yields discontinuity of φ∗(x) at x = x∗ since φ∗(x∗) = 0.

Remark 4.3. Restriction ρδ+2−2/cδ < 0 is not necessary in numerical examples.

Its introduction is just for the ease of proof. The existence of discontinuous solutions

established here is similar to that given in Ref. 20. We also note a related study of

discontinuous solutions to the nonlocal Cahn–Hilliard equation in Ref. 13.
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Fig. 8. (Example 4.5) Graph of numerical solutions for various values taken by δ.

The following example is designated to verify Theorem 4.3.

Example 4.5. We verify Theorem 4.3 over the domain [0, 10] by choosing constant

integrable kernel ρδ = 3
δ3 in one-dimensional case. Parameter ε = 1/4. The initial

value is given by φ0 = sin( 25πx). We plot numerical solutions in Fig. 8 for different

values of δ at T = 500.

Note that in this case cδ = 6
δ2 . We see from Fig. 8 that with δ = 1.5 in which

case δ satisfies the condition |cδ − 1| >
√
ε, the graph of numerical solution is

continuous; with δ increasing to 2.5, discontinuity appears between phases. In this

case δ satisfies |cδ − 1| < √
ε while ρδ + 2 − 2/cδ > 0. For δ = 2.6 which satisfies

|cδ − 1| < √
ε and ρδ + 2− 2/cδ < 0, the graph is still discontinuous. With δ = 4.5

satisfying |cδ−1| > √
ε, we see the graph of numerical solution deforms to continuous

interface again. This example confirms the findings of Theorem 4.3.

5. Concluding Remarks

This work presents a new data-driven 2D NPFC model. We first propose a nonlocal

analogue free energy with the ND operators, which are more general than the

original local PFC and also can encompass other fractional variants. Our studies

show that the NPFC can provide much better fitting of the structure factor obtained

by experiment data, thus enhancing its modeling capability.

The NPFC model can be viewed as the gradient flow in the dual space of the

energy space associated with the ND operator. We numerically solve NPFC models
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using an SAV scheme with Fourier spectral methods in space and BDF2 in time,

together with the hybrid algorithm proposed in Ref. 21 to evaluate Fourier symbols

of ND operator with specially chosen kernels. Numerical examples show that the

proposed NPFC models, in particular those with sign-changing kernels that incor-

porate both repulsive and attractive interactions, can offer significant advantages

in modeling the liquid–solid transition systems, such as in characterizing elastic

and plastic deformations, as well as the anisotropy of solid–solid and solid–liquid

interfaces.

While this work is focused on the 2D case, the model can in principle be extended

to three dimensions, which could be of greater relevance to applications in materials

science. More careful studies in this direction will be pursued in the future.

Appendix A

A.1. Proof of Lemma 3.1

Proof. We have, from the energy stability, that

‖φn
N‖+ ‖Lδφ

n
N‖+ |rn| ≤ C since ‖Lδφ0‖ ≤ ‖∆φ0‖ ≤ C.

By substituting the second equation in Eq. (3.10) into the first one, we obtain

(

3φn+1
N − 4φn

N + φn−1
N

2τ
, q

)

=(L̃δGδφ
n+1
N , q) + β(L̃δφ

n+1
N , q) + rn+1(L̃δH(φ̄n+1

N ), q).

Testing the above equation with q = ∆2φn+1
N to yield

1

4τ
(‖∆φn+1

N ‖2 − ‖∆φn
N‖2 + ‖∆(2φn+1

N − φn
N )‖2

−‖∆(2φn
N − φn−1

N )‖2 + ‖∆(φn+1
N − 2φn

N + φn−1
N )‖2)

= (L̃δGδ∆φn+1
N ,∆φn+1

N ) + β(L̃δ∆φn+1
N ,∆φn+1

N ) + rn+1(∆H(φ̄n+1
N ), L̃δ∆φn+1

N )

≤ (L̃δGδ∆φn+1
N ,∆φn+1

N ) + β(L̃δ∆φn+1
N ,∆φn+1

N ) + C(∆H(φ̄n+1
N ), L̃δ∆φn+1

N ).

With Gδ = (Lδ + I)2, the above inequality can be further evaluated as

1

4τ
(‖∆φn+1

N ‖2 − ‖∆φn
N‖2 + ‖∆(2φn+1

N − φn
N )‖2

−‖∆(2φn
N − φn−1

N )‖2 + ‖∆(φn+1
N − 2φn

N + φn−1
N )‖2)

=

(

Lδ

(

3

4
Lδ

2 +

(

1

2
Lδ + 2

)2
)

∆φn+1
N ,∆φn+1

N

)

+((β − 3)Lδ∆φn+1
N ,∆φn+1

N ) + C(∆H(φ̄n+1
N ), L̃δ∆φn+1

N )

≤
(

3

4
Lδ

3∆φn+1
N ,∆φn+1

N

)

+ C

(

1

2
‖∆H(φ̄n+1

N )‖2 + 1

2
‖Lδ∆φn+1

N ‖2
)

:= Ir,
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where β > 3 is chosen and the non-negative definite property of the operator Lδ is

used. By L̃δ = Lδ, ∆U(φ) = (U ′′(φ)|∇φ|2 + U ′(φ)∆φ), Eq. (3.9) and interpolation

inequality, it follows that

‖∆H(φ)‖ ≤ C(‖U ′′‖∞‖∇φ‖2L4 + ‖U ′‖∞‖∆φ‖)

≤ C‖∇φ‖ ‖∆φ‖+ C‖∆φ‖ ≤ C‖∆φ‖,
where assumption (3.4) ensures the L∞-bound of U ′ and U ′′. We then simplify Ir
into

Ir ≤
((

3

4
Lδ

3 +
C

2

)

∆φn+1
N ,∆φn+1

N

)

+
C

2
(‖∆φn

N‖2 + ‖∆φn−1
N ‖2).

With the constant C as appeared in the above, for the function

g(λδ) =
3

4
λ3
δ +

C

2
λ2
δ =

3

4
λ2
δ

(

λδ +
2

3
C

)

,

we can note that g(λδ) ≤ 0 for λδ ≤ − 2
3C. And for − 2

3C < λδ < 0, g(λδ) is bounded

since g is continuous and g
(

− 2
3C
)

= 0, g(0) = 0. Thus

Ir ≤ C(‖∆φn+1
N ‖2 + ‖∆φn

N‖2 + ‖∆φn−1
N ‖2).

Combining the above yields

1

4τ
(‖∆φn+1

N ‖2 − ‖∆φn
N‖2 + ‖∆(2φn+1

N − φn
N )‖2

−‖∆(2φn
N − φn−1

N )‖2 + ‖∆(φn+1
N − 2φn

N + φn−1
N )‖2)

≤ C(‖∆φn+1
N ‖2 + ‖∆φn

N‖2 + ‖∆φn−1
N ‖2),

from which ‖∆φn
N‖ ≤ C follows with the help of Gronwall’s inequality. Due to

Sobolev embedding theorem H1+ε ⊂ L∞ for any ε > 0 in two dimensions, we have

the desired estimate ‖φn
N‖L∞ ≤ ‖φn

N‖H2 ≤ C.

A.2. Proof of Lemma 3.2

Proof. Without loss of generality, let us assume the Lipschitz continuity of v.

Denote by

L(x, y) =
g(x)− g(y)

x− y
.

Since g is globally Lipschitz continuous from the assumption, L(x, y) is thus

bounded. Note the following splitting

g(u(y))− g(v(y))− (g(u(x))− g(v(x)))

= g(u(y))− g(u(x))− (g(v(y))− g(v(x)))

= (u(y)− u(x))L(u(y), u(x))− (v(y)− v(x))L(v(y), v(x))

= (u(y)− u(x))L(u(y), u(x))− (v(y)− v(x))L(u(y), u(x))
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+(v(y)− v(x))L(u(y), u(x))− (v(y)− v(x))L(v(y), v(x))

= {(e(y)− e(x))L(u(y), u(x))}+ {(v(y)− v(x))(L(u(y), u(x))

−L(v(y), u(x)))}+ {(v(y)− v(x))(L(v(y), u(x))− L(v(y), v(x)))}

:= I1 + I2 + I3.

With the first term I1 = (e(y)− e(x))L(u(y), u(x)), it holds that
∫∫

Ω

ρδ(|x− y|)|I1|2dydx ≤ C

∫∫

Ω

ρδ(|x− y|)(e(y)− e(x))2dydx = C(−Lδe, e).

To estimate the last two terms I2 and I3, we first note that

L′
u(u, v) :=

∂L(u, v)

∂u
=

g′(u)(u− v)− (g(u)− g(v))

(u− v)2
=

g′(u)− g′(ζ)

u− v

for ζ in between u and v. By the Lipschitz continuity of g′, we thus see that

|L′
u(u, v)| ≤ C

|u− ζ|
|u− v| ≤ C,

which implies L(u, v) is globally Lipschitz continuous in u. Similarly, L(u, v) is also

globally Lipschitz continuous in v. Hence, the last two terms can be estimated as
∫∫

Ω

ρδ(|x− y|)|I2|2dydx

=

∫∫

Ω

ρδ(|x− y|)|(v(y)− v(x))(L(u(y), u(x))− L(v(y), u(x)))|2dydx

≤ C

∫∫

Ω

ρδ(|x− y|)(v(y)− v(x))2|e(y)|2dydx

= C

∫

Ω

e2(y)

∫

Ω

ρδ(|y − x|)|y − x|2dxdy

= C(e, e)

and
∫∫

Ω

ρδ(|x− y|)|I3|2dydx

=

∫∫

Ω

ρδ(|x− y|)|(v(y)− v(x))(L(v(y), u(x))− L(v(y), v(x)))|2dydx

≤ C

∫∫

Ω

ρδ(|x− y|)(v(y)− v(x))2|e(x)|2dydx

= C

∫

Ω

e2(x)

∫

Ω

ρδ(|y − x|)|y − x|2dydx

= C(e, e),
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where the second moment condition
∫

Bδ(0)
ρδ(|s|)s2ds = C and Lipschitz continuity

of v are used. Finally, the desired estimate is derived by

(−Lδ(g(u)− g(v)), g(u)− g(v))

=
1

2

∫∫

Ω

ρδ(|x− y|)(g(u(y))− g(v(y))− (g(u(x))− g(v(x))))2dydx

≤ C

3
∑

k=1

∫∫

Ω

ρδ(|x− y|)|Ik|2dydx

≤ C((−Lδe, e) + (e, e)).

From the symmetry, we see that the same proof works with u being Lipschitz if a

different splitting is used. In turn, we can also do the splitting with a convex linear

combination of u and v.

A.3. Proof of Theorem 3.2

Proof. For simplicity, we set

enφ = φn
N −Πhφ(tn) + Πhφ(tn)− φ(tn) = ēnφ + ěnφ,

enµ = µn
N −Πhµ(tn) + Πhµ(tn)− µ(tn) = ēnµ + ěnµ,

enr = rn − r(tn),

where Πh is spectral orthogonal projection defined by Eq. (3.7). Subtracting

Eq. (3.8) from Eq. (3.10) at t = tn+1, we have






































































(3ēn+1
φ − 4ēnφ + ēn−1

φ , q) = 2τ(L̃δ ē
n+1
µ , q) + (Qn+1

1 , q) ∀ q ∈ SN ,

(ēn+1
µ , w)

= (Gδ ē
n+1
φ , w) + (βēn+1

φ , w)

+ (rn+1H(φ̄n+1
N ), w)− (r(tn+1)H(φ(tn+1)), w) ∀w ∈ SN ,

3en+1
r − 4enr + en−1

r

=
1

2
(H(φ̄n+1

N ), 3ēn+1
φ − 4ēnφ + ēn−1

φ ) +Qn+1
2 −Qn+1

3

+
1

2
(H(φ̄n+1

N )−H(φ(tn+1)), 3φ(tn+1)− 4φ(tn) + φ(tn−1)),

where φ̄n+1
N is the extrapolation as defined in Eq. (3.11) and

Qn+1
1 = 2τ∂tφ(tn+1)− (3φ(tn+1)− 4φ(tn) + φ(tn−1))

= 2

∫ tn

tn+1

(tn − s)2∂3
t φ(s)ds−

1

2

∫ tn−1

tn+1

(tn−1 − s)2∂3
t φ(s)ds,

Qn+1
2 = 2τdtr(tn+1)− (3r(tn+1)− 4r(tn) + r(tn−1))
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= 2

∫ tn

tn+1

(tn − s)2d3t r(s)ds−
1

2

∫ tn−1

tn+1

(tn−1 − s)2d3t r(s)ds,

Qn+1
3 =

1

2
(H(φ(tn+1)), Q

n+1
1 ).

Taking q = ēn+1
µ , w = 3ēn+1

φ − 4ēnφ + ēn−1
φ as the test functions in the above and

taking the inner product of the equation for en+1
r with 2en+1

r , we get

(3ēn+1
φ − 4ēnφ + ēn−1

φ , ēn+1
µ ) + 2τ‖(−L̃δ)

1
2 ēn+1

µ ‖2 = (Qn+1
1 , ēn+1

µ ), (A.1)

(ēn+1
µ , 3ēn+1

φ − 4ēnφ + ēn−1
φ )

= (Gδ ē
n+1
φ , 3ēn+1

φ − 4ēnφ + ēn−1
φ ) + β(ēn+1

φ , 3ēn+1
φ − 4ēnφ + ēn−1

φ )

+ (rn+1H(φ̄n+1
N ), 3ēn+1

φ − 4ēnφ + ēn−1
φ )

− (r(tn+1)H(φ(tn+1)), 3ē
n+1
φ − 4ēnφ + ēn−1

φ ), (A.2)

2en+1
r (3en+1

r − 4enr + en−1
r )

= en+1
r (H(φ̄n+1

N ), 3ēn+1
φ − 4ēnφ + ēn−1

φ ) + 2en+1
r (Qn+1

2 −Qn+1
3 )

+ en+1
r (H(φ̄n+1

N )−H(φ(tn+1)), 3φ(tn+1)− 4φ(tn) + φ(tn−1)). (A.3)

The term on the right-hand side of Eq. (A.1) can be estimated by

(Qn+1
1 , ēn+1

µ ) = ((−L̃δ)
− 1

2Qn+1
1 , (−L̃δ)

1
2 ēn+1

µ )

≤ τ

4
‖(−L̃δ)

1
2 ēn+1

µ ‖2 + 1

τ
‖(−L̃δ)

− 1
2Qn+1

1 ‖2

≤ τ

4
‖(−L̃δ)

1
2 ēn+1

µ ‖2 + Cτ4
∫ tn+1

tn−1

‖(−L̃δ)
− 1

2 ∂3
t φ(s)‖2ds.

On the right-hand side of Eq. (A.2), the first two terms can be estimated using

Eq. (3.12), i.e.

(Gδ ē
n+1
φ , 3ēn+1

φ − 4ēnφ + ēn−1
φ ) + β(ēn+1

φ , 3ēn+1
φ − 4ēnφ + ēn−1

φ )

=
β

2
(‖ēn+1

φ ‖2 − ‖ēnφ‖2 + ‖2ēn+1
φ − ēnφ‖2 + ‖ēn+1

φ − 2ēnφ + ēn−1
φ ‖2

−‖2ēnφ − ēn−1
φ ‖2) + 1

2
(‖(I + Lδ)ē

n+1
φ ‖2 − ‖(I + Lδ)ē

n
φ‖2

+ ‖(I + Lδ)(2ē
n+1
φ − ēnφ)‖2) + ‖(I + Lδ)(ē

n+1
φ − 2ēnφ + ēn−1

φ )‖2)

−‖(I + Lδ)(2ē
n
φ − ēn−1

φ )‖2)
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and the last two terms can be transformed to

(rn+1H(φ̄n+1
N ), 3ēn+1

φ − 4ēnφ + ēn−1
φ )− (r(tn+1)H(φ(tn+1)), 3ē

n+1
φ − 4ēnφ + ēn−1

φ )

= (en+1
r H(φ̄n+1

N ), 3ēn+1
φ − 4ēnφ + ēn−1

φ ) + r(tn+1)(H(φ̄n+1
N )

−H(φ(tn+1)), 3ē
n+1
φ − 4ēnφ + ēn−1

φ ).

Due to the boundedness of numerical solution (3.13), we have ‖ēnφ‖L∞ bounded and

thus the last term on the right-hand side of the above equation can be controlled as

r(tn+1)(H(φ̄n+1
N )−H(φ(tn+1)), 3ē

n+1
φ − 4ēnφ + ēn−1

φ )

= r(tn+1)(H(φ̄n+1
N )−H(φ(tn+1)), 2τ L̃δ ē

n+1
µ )

+ r(tn+1)(H(φ̄n+1
N )−H(φ(tn+1)), Q

n+1
1 )

≤ τ

4
‖(−L̃δ)

1
2 ēn+1

µ ‖2 + Cτ‖(−L̃δ)
1
2H(φ̄n+1

N )− (−L̃δ)
1
2H(φ(tn+1))‖2

+
C

τ
‖(−L̃δ)

− 1
2Qn+1

1 ‖2.

Note that with

W(φ) =

∫

Ω

{F (φ)} − β

2
φ2 + CH ,

then

H(φ̄n+1
N )−H(φ(tn+1)) =

U(φ̄n+1
N )

√

W(φ̄n+1
N )

− U(φ(tn+1))
√

W(φ(tn+1))

=
U(φ̄n+1

N )− U(φ(tn+1))
√

W(φ̄n+1
N )

+
U(φ(tn+1))

√

W(φ̄n+1
N )

√

W(φ(tn+1))

× W(φ̄n+1
N )−W(φ(tn+1))

√

W(φ̄n+1
N ) +

√

W(φ(tn+1))
.

Since φn
N is bounded due to Lemma 3.1 with L̃δ = Lδ, then |

√

W(φ̄n+1
N )|,

|
√

W(φ(tn+1))|, |U(φ(tn+1))| are bounded, and

φ̄n+1
N − φ(tn+1) = 2enφ − en−1

φ +

∫ tn+1

tn−1

(t− s)∂2
t φ(s)ds,

using Lemma 3.2 with above splitting yields

‖(−Lδ)
1
2 (H(φ̄n+1

N )−H(φ(tn+1)))‖2

= (−Lδ(H(φ̄n+1
N )−H(φ(tn+1))), H(φ̄n+1

N )−H(φ(tn+1)))

≤ C(−Lδ(U(φ̄n+1
N )− U(φ(tn+1))), U(φ̄n+1

N )− U(φ(tn+1)))
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+C(−Lδ(W(φ̄n+1
N )−W(φ(tn+1))),W(φ̄n+1

N )−W(φ(tn+1)))

≤ C(−Lδ(2e
n
φ − en−1

φ ), 2enφ − en−1
φ ) + C(2enφ − en−1

φ , 2enφ − en−1
φ )

+C

(

−Lδ

∫ tn+1

tn−1

(t− s)∂2
t φ(s)ds,

∫ tn+1

tn−1

(t− s)∂2
t φ(s)ds

)

+C

(

∫ tn+1

tn−1

(t− s)∂2
t φ(s)ds,

∫ tn+1

tn−1

(t− s)∂2
t φ(s)ds

)

≤ C(‖(I + Lδ)(2e
n
φ − en−1

φ )

)

‖2 + ‖2enφ − en−1
φ ‖2)

+Cτ4
∫ tn+1

tn−1

(‖(−Lδ)
1
2 ∂2

t φ(s)‖2 + ‖∂2
t φ(s)‖2)ds,

where the last inequality follows from the following inequality: for any u,

‖(−Lδ)
1
2u‖2 = ((−Lδ)u, u) = (−(Lδ + I)u, u) + (u, u) ≤ C(‖(I + Lδ)u‖2 + ‖u‖2).

(A.4)

Thus

r(tn+1)(H(φ̄n+1
N )−H(φ(tn+1)), 3ē

n+1
φ − 4ēnφ + ēn−1

φ )

≤ τ

4
‖(−Lδ)

1
2 ēn+1

µ ‖2 + Cτ(‖2ēnφ − ēn−1
φ ‖2 + ‖(−Lδ)

1
2 (2ēnφ − ēn−1

φ )‖2)

+Cτ4
∫ tn+1

tn−1

(‖(−Lδ)
1
2 ∂2

t φ(s)‖2 + ‖∂2
t φ(s)‖2)ds

+Cτ4
∫ tn+1

tn−1

‖(−Lδ)
− 1

2 ∂3
t φ(s)‖2ds,

where in the last inequality we use the Lipschitz continuity assumption on φ and

Lemma 3.2 which holds due to assumption (3.4) and Eq. (3.9). Qn+1
2 is, similar to

Qn+1
1 , estimated as

|Qn+1
2 |2 ≤ Cτ5

∫ tn+1

tn−1

|d3t r(s)|2ds

and

|Qn+1
3 |2 ≤ Cτ5‖(−Lδ)

1
2H(φ(tn))‖2

∫ tn+1

tn−1

‖(−Lδ)
− 1

2 ∂3
t φ(s)‖2ds

≤ Cτ5
∫ tn+1

tn−1

‖(−Lδ)
− 1

2 ∂3
t φ(s)‖2ds.
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Then the second term on the right-hand side of Eq. (A.3) can be estimated as

2en+1
r (Qn+1

2 −Qn+1
3 ) ≤ τ |en+1

r |2 + C

τ
(|Qn+1

2 |2 + |Qn+1
3 |2)

≤ τ |en+1
r |2 + Cτ4

∫ tn+1

tn−1

(|d3t r(s)|2 + ‖(−Lδ)
− 1

2 ∂3
t φ(s)‖2)ds.

The last term on the right-hand side of Eq. (A.3) can be controlled as

en+1
r (H(φ̄n+1

N )−H(φ(tn+1)), 3φ(tn+1)− 4φ(tn) + φ(tn−1))

= en+1
r ((−Lδ)

1
2 (H(φ̄n+1

N )−H(φ(tn+1))), (−Lδ)
− 1

2 (3φ(tn+1)

− 4φ(tn) + φ(tn−1)))

= en+1
r

(

(−Lδ)
1
2 (H(φ̄n+1

N )−H(φ(tn+1))), (−Lδ)
− 1

2

×
(
∫ tn+1

tn

∂tφ(s)ds+

∫ tn−1

tn

∂tφ(s)ds

))

≤ Cτ‖∂tφ‖2
L∞((0,T ];H((−Lδ)

−
1
2 ))

(|en+1
r |2 + ‖(−Lδ)

1
2H(φ̄n+1

N )

− (−Lδ)
1
2H(φ(tn+1))‖2)

≤ Cτ‖∂tφ‖2
L∞((0,T ];H((−Lδ)

−
1
2 ))

(|en+1
r |2 + ‖2ēnφ − ēn−1

φ ‖2

+ ‖(−Lδ)
1
2 (2ēnφ − ēn−1

φ )‖2) + Cτ4‖∂tφ‖2
L∞((0,T ];H((−Lδ)

−
1
2 ))

×
∫ tn+1

tn−1

(‖(−Lδ)
1
2 ∂2

t φ(s)‖2 + ‖∂2
t φ(s)‖2)ds,

where Lemma 3.2 is applied in the second inequality.

Combining the above equations, we have

2τ‖(−Lδ)
1
2 ēn+1

µ ‖2 + |en+1
r |2 − |enr |2

+ |2en+1
r − enr |2 + |en+1

r − 2enr + en−1
r |2 − |2enr − en−1

r |2 + β

2
(‖ēn+1

φ ‖2

−‖ēnφ‖2 + ‖2ēn+1
φ − ēnφ‖2 + ‖ēn+1

φ − 2ēnφ + ēn−1
φ ‖2 − ‖2ēnφ − ēn−1

φ ‖2)

+
1

2
(‖(I + Lδ)ē

n+1
φ ‖2 − ‖(I + Lδ)ē

n
φ‖2 + ‖(I + Lδ)(2ē

n+1
φ − ēnφ)‖2)

+ ‖(I + Lδ)(ē
n+1
φ − 2ēnφ + ēn−1

φ )‖2)− ‖(I + Lδ)(2ē
n
φ − ēn−1

φ )‖2)

≤ τ

2
‖(−Lδ)

1
2 ēn+1

µ ‖2 + Cτ4
∫ tn+1

tn−1

(‖(−Lδ)
− 1

2 ∂3
t φ(s)‖2
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+ ‖(−Lδ)
1
2 ∂2

t φ(s)‖2 + ‖∂2
t φ(s)‖2 + |d3t r(s)|2)ds

+Cτ(‖2ēnφ − ēn−1
φ ‖2 + ‖(−Lδ)

1
2 (2ēnφ − ēn−1

φ )‖2 + |en+1
r |2),

which directly, by Gronwall’s inequality and Eq. (A.4), results in

‖(I + Lδ)ē
n+1
φ ‖2 + |en+1

r |2 + ‖ēn+1
φ ‖2

≤ Cτ4
∫ T

0

(‖(−Lδ)
− 1

2 ∂3
t φ(s)‖2 + ‖(−Lδ)

1
2 ∂2

t φ(s)‖2 + ‖∂2
t φ(s)‖2

+ |d3t r(s)|2)ds.

Finally, together with existing results on Fourier spectral method

‖Πhu− u‖k ≤ C‖u‖mhm−k, ∀ 0 ≤ k ≤ m,

for u ∈ Hm
per(Ω) and

‖Πhu− u‖L∞ ≤ Ce−c/h

for analytic solution u, it holds that

‖φn
N − φ(tn)‖2 + |rn − r(tn)|2 ≤ C(h2m + τ4)

for φ ∈ Hm
per(Ω) and that

‖φn
N − φ(tn)‖2 + |rn − r(tn)|2 ≤ C(e−c/h + τ4)

for analytic solution φ, where constants C and c are independent of temporal step

size and spatial step size.

A.4. Proof of Lemma 4.1

Proof. Since we have

φδ
MN − φ0

MN = (L−1
0 − L−1

δ )fMN ,

then

‖φδ
MN − φ0

MN‖2 =

|m|≤M,|n|≤N
∑

m2+n2 6=0

∣

∣

∣

∣

1

λδ(m,n)
− 1

λ0(m,n)

∣

∣

∣

∣

|f̂mn|2.

Thus it suffices to prove

1

δ2

∣

∣

∣

∣

1

λδ(m,n)
− 1

λ0(m,n)

∣

∣

∣

∣

:= Smn ≤ C, ∀ |m| ≤ M, |n| ≤ N with m2 + n2 6= 0.
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Due to 1− cos θ ≤ θ2

2 , we have

0 ≤ δ2|λδ(m,n)| = δ2
∫ δ

0

rρδ(r)

∫ 2π

0

(1− cos(r
√

m2 + n2 cos θ))dθdr

= δ2
∫ δ

0

rδ−4ρ
(r

δ

)

∫ 2π

0

(1− cos(r
√

m2 + n2 cos θ))dθdr

=

∫ 1

0

rρ(r)

∫ 2π

0

(1− cos(δr
√

m2 + n2 cos θ))dθdr

≤
∫ 1

0

rρ(r)

∫ 2π

0

(

δ2r2(m2 + n2) cos2 θ

2

)

dθdr

= δ2(m2 + n2)

∫ 1

0

ρ(r)r3dr

∫ 2π

0

cos2 θ

2
dθ

= δ2(m2 + n2),

where we used the form of the kernel and the second moment condition

ρδ(s) =
1

δ4
ρ

( |s|
δ

)

,

∫ 1

0

ρ(s)s3ds =
2

π
.

Hereafter we denote by a = δ
√
m2 + n2. Noting that λ0(m,n) = −m2 − n2, the

above inequality yields 0 ≤ |λδ(m,n)| ≤ |λ0(m,n)|.
Since 1− cos θ ≥ θ2

2 − θ4

24 holds for any θ ∈ R, we have

δ2|λδ(m,n)| =
∫ 1

0

rρ(r)

∫ 2π

0

(1− cos(ar cos θ))dθdr

≥
∫ 1

0

rρ(r)

∫ 2π

0

(

a2r2 cos2 θ

2

)

dθdr

−
∫ 1

0

rρ(r)

∫ 2π

0

(

a4r4 cos4 θ

24

)

dθdr

≥ a2 − a4

12

∫ 1

0

rρ(r)

∫ 2π

0

r2 cos2 θ

2
dθdr = a2 − a4

12
,

where we used the second moment condition twice, respectively, in the second

inequality and the last equality and the fact r2 cos2 θ ≤ 1 for ∀ r ∈ [0, 1].

Case A: a = δ
√
m2 + n2 ≤ π. We obtain

Smn =
1

δ2|λδ(m,n)| −
1

δ2(m2 + n2)
≤ 1

a2 − a4

12

− 1

a2
=

1

12− a2
≤ 1

12− π2
.

Case B : a = δ
√
m2 + n2 > π. Denote by

I(r; a) = 4

∫ π
2

0

(1− cos(ar cos θ))dθ, ∀ r ∈ (0, 1).



Nonlocal phase-field crystal models in two dimensions 2131

With the fact that 1− cos t ≥ t2/4 for any t ∈ [0, 11/4], it holds, for r ∈ (0, 2
a ], that

I(r; a) ≥
∫ π

2

0

a2r2 cos2 θdθ =
π

4
a2r2 ≥ π3

4
r2.

For r ∈ ( 2a , 1), if we denote by ξ = ar, then function

J(ξ) = I(r; a) = 4

∫ π
2

0

(1− cos(ξ cos θ))dθ

is increasing for ξ ∈ (2, π), thus

I(a; r) = J(ξ) ≥ J(2) ≥ J(2)r2.

For ξ ∈ (π, a), i.e. r ∈ (πa , 1),

I(r; a) = J(ξ) =
4

ξ

∫ ξ

0

1− cos t

1− (t/ξ)2
dt ≥ 4

ξ

∫ ξ

0

(1− cos t)dt

=
4

ξ
(ξ − sin ξ) ≥ 4− 4

ξ
> 2r2.

By taking C = 1 such that C ≤ min{π3

4 , J(2), 2} ≈ 6/5, we then get

I(r; a) ≥ r2

for any r ∈ (0, 1) and a ≥ π. Thus,

δ2|λδ(m,n)| = 4

∫ 1

0

∫ π
2

0

rρ(r)(1− cos(δr
√

m2 + n2 cos θ))dθdr

≥ 4

∫ 1

0

r3ρ(r)dr =
8

π
.

As a result

Smn =
1

δ2|λδ(m,n)| −
1

δ2(m2 + n2)
≤ 1

δ2|λδ(m,n)| ≤
π

8
.

Hence we obtain the desired result by considering the above two cases.

A.5. Proof of Theorem 4.1

Proof. We denote

E(t) = ‖φδ
N (t, ·)− φ0

N (t, ·)‖.

Then it is easy to verify

1

2

d

dt
E2 =

(

∂

∂t
φδ
N − ∂

∂t
φ0
N , φδ

N − φ0
N

)

.
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Substituting (3.6) into the above equation yields that

E
dE

dt
= (L̃δGδφ

δ
N − L̃0G0φ

0
N , φδ

N − φ0
N ) + (PN [L̃δF

′(φδ
N )]

−PN [L̃0F
′(φ0

N )], φδ
N − φ0

N )

:= I + II,

where

I = (L̃δGδφ
δ
N − L̃0G0φ

0
N , φδ

N − φ0
N )

= ((L̃δGδ − L̃0G0)φ
0
N , φδ

N − φ0
N ) + (L̃δGδ(φ

δ
N − φ0

N ), φδ
N − φ0

N )

≤ ‖(L̃δGδ − L̃0G0)φ
0
N‖E + (L̃δGδ(φ

δ
N − φ0

N ), φδ
N − φ0

N )

and

II = (L̃δF
′(φδ

N )− L̃0F
′(φ0

N ), φδ
N − φ0

N )

= (L̃δF
′(φδ

N )− LδF
′(φ0

N ), φδ
N − φ0

N ) + (L̃δF
′(φ0

N )− L̃0F
′(φ0

N ), φδ
N − φ0

N )

:= II1 + II2.

Note that

II1 = (L̃δF
′(φδ

N )− L̃δF
′(φ0

N ), φδ
N − φ0

N )

= (F ′(φδ
N )− F ′(φ0

N ), L̃δ(φ
δ
N − φ0

N ))

≤ 1

2
‖F ′(φδ

N )− F ′(φ0
N )‖2 + 1

2
‖L̃δ(φ

δ
N − φ0

N )‖2

≤ κ2

2
E2 +

1

2
(L̃2

δ(φ
δ
N − φ0

N ), φδ
N − φ0

N ),

where we used Young’s inequality in the first inequality and Lipschitz continuity of

F ′(φ) in the second inequality, and

II2 = (L̃δF
′(φ0

N )− L̃0F
′(φ0

N ), φδ
N − φ0

N )

≤ ‖(L̃δ − L̃0)F
′(φ0

N )‖E = ‖L−2
0 (L̃δ − L̃0)L2

0F
′(φ0

N )‖E

≤ Cδ2‖L2
0F

′(φ0
N )‖E.

Thus we have

E
dE

dt
≤ κ2

2
E2 + ‖(L̃δGδ − L̃0G0)φ

0
N‖E + Cδ2‖L0F

′(φ0
N )‖E

+

(

L̃δ

(

Gδ +
1

2
L̃δ

)

(φδ
N − φ0

N ), φδ
N − φ0

N

)

.

Specifically with L̃δ = Lδ and L̃0 = L0, by referring to expressions of Gδ and

G0, we have

‖(L̃δGδ − L̃0G0)φ
0
N‖ ≤ Cδ2(‖L4

0φ
0
N‖+ ‖L3

0φ
0
N‖+ ‖L2

0φ
0
N‖).
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Then it yields that

E
dE

dt
≤ κ2

2
E2 + Cδ2(‖L4

0φ
0
N‖+ ‖L3

0φ
0
N‖+ ‖L2

0φ
0
N‖+ ‖L0F

′(φ0
N )‖)E

+

(

Lδ

(

I + Lδ
2 +

5

2
Lδ

)

(φδ
N − φ0

N ), φδ
N − φ0

N

)

.

To estimate g(λδ) =
5
2λ

2
δ + λ3

δ + λδ with λδ < 0, we note that g(λδ) ≤ 0 when

λδ ≤ − 5
2 . This yields that

dE

dt
≤ κ2

2
E + Cδ2(‖L4

0φ
0
N‖+ ‖L3

0φ
0
N‖+ ‖L2

0φ
0
N‖+ ‖L0F

′(φ0
N )‖).

For the case − 5
2 < λδ < 0, we note that g(− 5

2 ) < 0 is finite and independent

of δ, g(0) = 0. Due to the fact that g(λδ) is continuous on the interval [− 5
2 , 0], we

know that g(λδ) is bounded for − 5
2 < λδ < 0. Thus we have

dE

dt
≤
(

κ2

2
+ C

)

E + Cδ2(‖L4
0φ

0
N‖+ ‖L3

0φ
0
N‖+ ‖L2

0φ
0
N‖+ ‖L0F

′(φ0
N )‖).

Again Gronwall’s inequality yields the desired estimate.

A.6. Proof of Theorem 4.2

Proof. With errors enφ = φδ,n
N − φ0,n

N , enµ = µδ,n
N − µ0,n

N , enr = rδ,n − r0,n, error

equations are written as

(3en+1
φ − 4enφ + en−1

φ , q)− 2τ(L̃δe
n+1
µ , q) = 2τ((L̃δ − L0)µ

0,n+1
N , q),

(en+1
µ , w)

= (Gδe
n+1
φ , w) + ((Gδ − G0)φ

0,n+1
N , w) + β(en+1

φ , w)

+(en+1
r H(φ̄δ,n+1

N ), w) + r0,n+1(H(φ̄δ,n+1
N )−H(φ̄0,n+1

N ), w),

3en+1
r − 4enr + en−1

r

=
1

2
(H(φ̄δ,n+1

N ), 3en+1
φ − 4enφ + en−1

φ )

+
1

2
(H(φ̄δ,n+1

N )−H(φ̄0,n+1
N ), 3φ0,n+1

N − 4φ0,n
N + φ0,n−1

N ).

Testing with q = en+1
µ in the first equation, w = 3en+1

φ − 4enφ + en−1
φ in the second

equation and multiplying the third equation with 2en+1
r lead to

(3en+1
φ − 4enφ + en−1

φ , en+1
µ ) + 2τ‖(−L̃δ)

1
2 en+1

µ ‖2

= 2τ((L̃δ − L0)µ
0,n+1
N , en+1

µ ),

(en+1
µ , 3en+1

φ − 4enφ + en−1
φ )

= (Gδe
n+1
φ , 3en+1

φ − 4enφ + en−1
φ ) + ((Gδ − G0)φ

0,n+1
N , 3en+1

φ − 4enφ + en−1
φ )
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+β(en+1
φ , 3en+1

φ − 4enφ + en−1
φ ) + (en+1

r H(φ̄δ,n+1
N ), 3en+1

φ − 4enφ + en−1
φ )

+ r0,n+1(H(φ̄δ,n+1
N )−H(φ̄0,n+1

N ), 3en+1
φ − 4enφ + en−1

φ ),

2en+1
r (3en+1

r − 4enr + en−1
r )

= en+1
r (H(φ̄δ,n+1

N ), 3en+1
φ − 4enφ + en−1

φ )

+ en+1
r (H(φ̄δ,n+1

N )−H(φ̄0,n+1
N ), 3φ0,n+1

N − 4φ0,n
N + φ0,n−1

N ).

Summing up the above equations yields

2τ‖(−L̃δ)
1
2 en+1

µ ‖2 + 1

2
(‖(I + Lδ)e

n+1
φ ‖2 − ‖(I + Lδ)e

n
φ‖2

+ ‖(I + Lδ)(2e
n+1
φ − enφ)‖2 + ‖(I + Lδ)(e

n+1
φ − 2enφ + en−1

φ )‖2

−‖(I + Lδ)(2e
n
φ − en−1

φ )‖2) + β

2
(‖en+1

φ ‖2 − ‖enφ‖2 + ‖2en+1
φ − enφ‖2

+ ‖en+1
φ − 2enφ + en−1

φ ‖2 − ‖2enφ − en−1
φ ‖2) + |en+1

r |2 − |enr |2

+ |2en+1
r − enr |2 + |en+1

r − 2enr + en−1
r |2 − |2enr − en−1

r |2

= {2τ((L̃δ − L0)µ
0,n+1
N , en+1

µ )}+ {−((Gδ − G0)φ
0,n+1
N , 3en+1

φ − 4enφ + en−1
φ )}

+ {−r0,n+1(H(φ̄δ,n+1
N )−H(φ̄0,n+1

N ), 3en+1
φ − 4enφ + en−1

φ )}

+ {en+1
r (H(φ̄δ,n+1

N )−H(φ̄0,n+1
N ), 3φ0,n+1

N − 4φ0,n
N + φ0,n−1

N )}

:=

4
∑

i=1

Ii + 2τ(Lδe
n+1
µ , en+1

µ ).

We next estimate the four terms one by one. By L̃δ = Lδ, the first term can be

controlled as

|I1| = |2τ((Lδ − L0)µ
0,n+1
N , en+1

µ )|

= |2τ((Lδ − L0)(−Lδ)
− 1

2µ0,n+1
N , (−Lδ)

1
2 en+1

µ )|

≤ Cτδ4 +
τ

6
‖(−Lδ)

1
2 en+1

µ ‖2,

where the inequality holds due to Lemma 4.1. The second term is bounded by

|I2| = |((Gδ − G0)φ
0,n+1
N , 3en+1

φ − 4enφ + en−1
φ )|

≤ |2τ((Gδ − G0)φ
0,n+1
N ,Lδe

n+1
µ )|+ |2τ((Gδ − G0)φ

0,n+1
N , (L̃δ − L0)µ

0,n+1
N )|
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= |2τ((Gδ − G0)(−L̃δ)
1
2φ0,n+1

N , (−L̃δ)
1
2 en+1

µ )|

+ |2τ((Gδ − G0)φ
0,n+1
N , (L̃δ − L0)µ

0,n+1
N )|

≤ Cτδ4 +
τ

6
‖(−L̃δ)

1
2 en+1

µ ‖2,

where we use the expression Gδ −G0 = (Lδ −L0)(Lδ +L0+2I). Similarly, the third

term can be estimated as

|I3| = |r0,n+1(H(φ̄δ,n+1
N )−H(φ̄0,n+1

N ), 3en+1
φ − 4enφ + en−1

φ )|

≤ |2r0,n+1τ(H(φ̄δ,n+1
N )−H(φ̄0,n+1

N ), L̃δe
n+1
µ )|

+ |2r0,n+1τ(H(φ̄δ,n+1
N )−H(φ̄0,n+1

N ), (L̃δ − L0)µ
0,n+1
N )|

= |2r0,n+1τ((−L̃δ)
1
2 (H(φ̄δ,n+1

N )−H(φ̄0,n+1
N )), (−L̃δ)

1
2 en+1

µ )|

+ |2r0,n+1τ(H(φ̄δ,n+1
N )−H(φ̄0,n+1

N ), (L̃δ − L0)µ
0,n+1
N )|

≤ Cτ(‖H(φ̄δ,n+1
N )−H(φ̄0,n+1

N )‖2 + ‖(−L̃δ)
1
2 (H(φ̄δ,n+1

N )−H(φ̄0,n+1
N ))‖2)

+
τ

6
‖(−L̃δ)

1
2 en+1

µ ‖2 + Cτδ4

≤ Cτ(‖2enφ − en−1
φ ‖2 + ‖(I + Lδ)(2e

n
φ − en−1

φ )‖2) + τ

6
‖Lδe

n+1
µ ‖2 + Cτδ4,

where in the last second inequality we note with

W(φ) =

∫

Ω

{F (φ)} − β

2
φ2 + CH

that

H(φ̄δ,n+1
N )−H(φ̄0,n+1

N ) =
U(φ̄δ,n+1

N )
√

W(φ̄δ,n+1
N )

− U(φ̄0,n+1
N )

√

W(φ̄0,n+1
N )

=
U(φ̄δ,n+1

N )− U(φ̄0,n+1
N )

√

W(φ̄δ,n+1
N )

+
U(φ̄0,n+1

N )
√

W(φ̄δ,n+1
N )

√

W(φ̄0,n+1
N )

× W(φ̄δ,n+1
N )−W(φ̄0,n+1

N )
√

W(φ̄δ,n+1
N ) +

√

W(φ̄0,n+1
N )

.

Since |
√

W(φ̄δ,n+1
N )|, |

√

W(φ̄0,n+1
N )|, |U(φ̄0,n+1

N )| are bounded, using Lemma 3.2

with above splitting yields

‖(−Lδ)
1
2 (H(φ̄δ,n+1

N )−H(φ̄0,n+1
N ))‖2

= (−Lδ(H(φ̄δ,n+1
N )−H(φ̄0,n+1

N )), H(φ̄δ,n+1
N )−H(φ̄0,n+1

N ))

≤ C(−Lδ(U(φ̄δ,n+1
N )− U(φ̄0,n+1

N )), U(φ̄δ,n+1
N )− U(φ̄0,n+1

N ))
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+C(−Lδ(W(φ̄δ,n+1
N )−W(φ̄0,n+1

N )),W(φ̄δ,n+1
N )−W(φ̄0,n+1

N ))

≤ C(−L̃δ(2e
n
φ − en−1

φ ), 2enφ − en−1
φ ) + C(2enφ − en−1

φ , 2enφ − en−1
φ )

≤ C(‖(I + Lδ)(2e
n
φ − en−1

φ )‖2 + ‖2enφ − en−1
φ ‖2),

where the last inequality follows from inequality (A.4). The last term I4 is controlled

by

|I4| = |en+1
r (H(φ̄δ,n+1

N )−H(φ̄0,n+1
N ), 3φ0,n+1

N − 4φ0,n
N + φ0,n−1

N )|

= |2τ(H(φ̄δ,n+1
N )−H(φ̄0,n+1

N ), en+1
r L0µ

0,n+1
N )|

≤ Cτ‖2enφ − en−1
φ ‖2 + Cτ |en+1

r |2.
Then we arrive at

2τ‖(−Lδ)
1
2 en+1

µ ‖2 + 1

2
‖(I + Lδ)e

n+1
φ ‖2 +

(

1

2
− Cτ

)

‖(I + Lδ)(2e
n+1
φ − enφ)‖2

+(1− Cτ)|en+1
r |2 +

(

β

2
− Cτ

)

(‖en+1
φ ‖2 + ‖2en+1

φ − enφ‖2)

≤ τ

2
‖(−Lδ)

1
2 en+1

µ ‖2 + 1

2
‖(I + Lδ)e

n
φ‖2 +

(

1

2
+ Cτ

)

‖(I + Lδ)(2e
n
φ − en−1

φ )‖2

+(1 + Cτ)|enr |2 +
(

β

2
+ Cτ

)

(‖enφ‖2 + ‖2enφ − en−1
φ ‖2) + Cτδ4.

Finally applying the discrete Gronwall’s inequality on the above inequality leads to

the desired estimate

‖en+1
φ ‖+ |en+1

r |+ ‖(I + Lδ)e
n+1
φ ‖ ≤ C(T, φ0)δ

2.
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