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A nonlocal phase-field crystal (NPFC) model is presented as a nonlocal counterpart of
the local phase-field crystal (LPFC) model and a special case of the structural PFC
(XPFC) derived from classical field theory for crystal growth and phase transition. The
NPFC incorporates a finite range of spatial nonlocal interactions that can account for
both repulsive and attractive effects. The specific form is data-driven and determined
by a fitting to the materials structure factor, which can be much more accurate than
the LPFC and previously proposed fractional variant. In particular, it is able to match
the experimental data of the structure factor up to the second peak, an achievement not
possible with other PFC variants studied in the literature. Both LPFC and fractional
PFC (FPFC) are also shown to be distinct scaling limits of the NPFC, which reflects
the generality. The advantage of NPFC in retaining material properties suggests that
it may be more suitable for characterizing liquid—solid transition systems. Moreover,
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we study numerical discretizations using Fourier spectral methods, which are shown
to be convergent and asymptotically compatible, making them robust numerical dis-
cretizations across different parameter ranges. Numerical experiments are given in the
two-dimensional case to demonstrate the effectiveness of the NPFC in simulating crystal
structures and grain boundaries.

Keywords: Nonlocal phase-field crystal models; Fourier spectral methods; asymptotically
compatible schemes; crystal lattices; structure factor; grain boundary.
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1. Introduction

Over the years, various continuum models have been developed to describe different
aspects of crystal growth and liquid—solid transitions. One such model that has
generated considerable interest is the phase-field crystal (PFC) model proposed by
Elder et al.?3 2* The PFC model is a conserved form of the non-conserved Swift—
Hohenberg equation.*® It introduces a periodic order parameter ¢ to represent
the local-time-averaged atomic density field, with the associated dimensionless free
energy

£0) = 3180+ 0l + [ F (o) (1)

where (2 is the unit period domain of ¢. Thus, the PFC model can be viewed as an
H~1-gradient flow of energy (1.1) with a constant mobility:
8¢ 2 /

E:AM’ where = (A+1)*¢p+ F'(¢). (1.2)

Although initially proposed to model elasticity in crystal growth, the PFC mod-
els have been applied to various other fields, such as thin film growth, dendrite
formation, single dislocation, alloy solidification, and spontaneous elastic interac-
tion. They have been successfully applied to study crystals with 2D triangular and
3D BCC symmetries. More studies and applications of PFC models can be found in

25, 37, 48 and references provided therein. To allow for effective simu-

recent reviews
lations of other common metallic crystal structures, various extensions have been
studied. These extensions include the use of higher-order derivatives in free energy
formulations!® 28 30: 35, 55 and structural PFC (XPFC) models that adopt a nonlo-
cal integral form in the free energy formulation.? 3% 47 A special type of fractional
nonlocal interactions has also been studied in Refs. 2 and 3.

In this work, we focus on a nonlocal analog of the original phase-field crystal
model (1.2). For easy reference, the latter model (1.2) is referred to as the local
phase field crystal (LPFC) model and (1.1) as the local energy. We first define the

nonlocal free energy

£s(0) = 5130+ 013 + [ Flo) (13
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obtained by replacing the Laplace operator A in (1.1) with the nonlocal Laplacian,
also named nonlocal diffusion (ND) operator, £s parameterized by a constant J:

Ls0(x) = /B ol X (66— 90)a (1.4)

Here, ¢ is the horizon parameter measuring the range of interactions, Bs(x) is a
d-neighborhood of the center x, and the kernel ps(s) is a nonnegative radial-type
function with a compact support in [0,4]. Moreover, the kernel ps is taken such
that we recover £y = A as the limit of L5 as § — 0.

Then, by introducing the nonlocal chemical potential using the variational
derivative of the energy with respect to ¢,

= (Ls+ 120+ F'(0), (1.5)
a nonlocal phase-field crystal (NPFC) model can be formulated as
9 y y
80 = Lo® = Lol(Ls + 10+ F'(9), (16)

where L is a given self-adjoint and positive-definite linear operator, NPFC can be
mathematically interpreted as a gradient flow of the energy (1.3) associated with
the inner product (v, (—Ls) " v), similar to the original PFC. While the operator
Ls can take on a general form, it is assumed to satisfy, for any constant function
o =c, £~5(q§) = 0, which in particular implies that (£~5f, 1) = (f, £~51) = 0 for any
periodic function f, where (-, ) is the standard L? inner product. This leads to the
conservation of total mass

d
— t)dr = t>0.
dt/ﬂqﬁ(z,)x 0, vVt>0

Thus, (1.6) represents conservative dynamics, just like its local counterpart (1.2).
For computational convenience, we also assume that Ls is simultaneously diago-
nalizable with A and Ls. Moreover, to have consistency with the local model, we
assume further that £o = A is also the limit of L5 as § — 0. Some special cases of
Ls include L5 = A and L = Ls.

There are several motivations for the study of the NPFC model that involves
the ND operator with a finite range of nonlocal interactions. First, this choice is
in line with the XPFC approach, which explores more general forms of free energy
than the original LPFC models. Second, as the nonlocal interaction kernel becomes
more localized, we can recover the local partial differential operators in the limit,
which enables us to make connections between the NPFC model and the original
PFC model. Third, by choosing special fractional kernels and setting the interaction
domain to be the entire space, we can also recover fractional PFC (FPFC) models
as another limiting case. In addition, it is worth noting that nonlocal operators are
integral operators that have been widely used to model problems in physics, chem-
istry, and materials science. Although the PFC model was originally derived from
a phenomenological approach, it can be reinterpreted as a simplified and approxi-
mated version of the dynamic density functional theory (DDFT).52 In this sense,
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the NPFC model is in the same spirit while offering us more flexibility in choosing
the interaction kernels. Moreover, the ND operators are of the convolution type and
are diagonalizable in the Fourier space. Thus, fast algorithms proposed in Ref. 21
can be used to evaluate the Fourier symbols associated with various choices of ker-
nels. This significantly reduces the computational complexities in the simulations of
NPFC and makes the simulation costs comparable to that of simulating the LPFC
models. Furthermore, one of the features of ND operators is that they avoid the
explicit use of spatial derivatives, allowing us to handle more singular solutions.
Unlike diffusive interfaces generated by LPFC models, the NPFC can capture sharp
interfaces among bulk phases without causing further complications. In some cases,
these sharp interfaces have important physical meanings.

The use of ND operators involving a finite range of interactions, as formulated
by (1.4) has been widely studied in various fields.'® These operators have been used

to model nonlocal heat conduction,'® phase transitions,” '3 27 kinetic equations,3?

8, 36, 43, 45, 46 among others. Significant

progress has been made in the rigorous mathematical analysis® % 12 17,18, 26 554

11, 14, 31, 33, 38, 44, 53, 57 Ty particu-

nonlocal Dirichlet forms,” and peridynamics,

the algorithmic development of these operators.
lar, asymptotically compatible (AC) schemes have been developed to preserve the
limiting behavior of ND operators in discretizations.®® ®! Du and Yang?® success-
fully extended this AC concept to semidiscrete Fourier spectral methods for solving
nonlocal nonlinear Allen-Cahn equations. Moreover, Du and Yang?® derived a uni-
form and optimal error estimate of O(§?) for the convergence of numerical nonlocal
solutions to the numerical solution of the local limit. However, the study of Ref. 20
was limited to one-dimensional problems.

In this paper, we carefully investigate NPFC models from both modeling
and numerical simulation perspectives. We first employ the data-driven modeling
approach to illustrate that a more accurate fitting of the structure factors of mate-
rials in the liquid state can be obtained by selecting special forms of the nonlocal
interaction kernels used in the NPFC that involve both repulsive and attractive
interactions. This desirable feature helps to demonstrate the advantages of NPFC
the LPFC and FPFC models on the physical ground. We then develop suitable
numerical algorithms for the efficient simulations of NPFC. For time discretization,
we show that SAV schemes can be used to preserve the features and structures
of the original continuum models. For spatial discretization, we utilize the Fourier
spectral discretization and fast algorithms for the evaluation of nonlocal operators
in the spectral space. Moreover, we prove that Fourier spectral methods are not only
convergent but also give AC discretizations of the 2D NPFC models together with
a uniform and optimal error estimate. Additionally, we present simulations with
sharp interfaces by NPFC models with integrable kernels which allows for more
singular solutions to be captured, demonstrating the capability of NPFC models
in generating sharp interfaces instead of typical diffusive interfaces associated with
LPFC models.
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2. Physical Motivation and Model Development

Let us first recall some basic features of the free energy functional and the material
structure factor to motivate the development of NPFC, particularly with sign-
changing kernels that account for both repulsive and attractive interactions.

2.1. Free energy and structure factor

During the transition from liquid to solid phases, there is a significant change in
density. Specifically, the density is relatively uniform in the liquid phase but becomes
spatially periodic in the solid phase. To model this behavior, a free energy functional
given by Eq. (2.1) has been developed in Ref. [23, Sec. I(C)]:

e0) = [ {5o+ro . (2.)

The first term in the above energy functional is associated with the Laplacian oper-
ator A. It induces spatial dependence and is responsible for the periodicity observed
in the solid phase. The second term fﬂ F(¢) captures the thermodynamic proper-
ties of the system, such as the energy required for the formation of the solid-liquid
interface and density changes. The model is also prescribed by specific forms of
G(A), which can be determined by experimental data or theoretical considerations.
Overall, the free energy functional in Eq. (2.1) yields a simple yet effective model
for studying the liquid—solid transition in a system and has been widely used in the
literature.

For elastic materials, the simplest possible forms of the free energy (2.1) capable
of producing periodic structures have been constructed in Ref. [23, Sec. I(C)] via
the following representation G:

G(A) = A(k2 + A)2. (2.2)

The parameters used in (2.2) are to fit the structure factor for 6Ar, which was
determined by experiments at 85 K as reported in Ref. 56. That is, the fitting was
done with respect to the wave number k for the structure factor function

509 = st

where & (k) = G(—k?) — € with

e:=—F"(0)
being a constant with its physical significance proportional to the undercooling, i.e.
e ~ T, — T, where T is the temperature of the system and T, is the equilibrium

temperature at which the phase transition occurs. Here, the term G(—k?) that
resulted from the Fourier transform of (2.2) is of the following form:

G(—k?) = Mk2 — k).
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It is worth noting that the fitted curve was often able to match the experimental
data up to the first peak, which has been the usual practice since small wave num-
bers carry more information on the material. For comparison, we briefly introduce
the FPFC which is demonstrated in Ref. 3. In the FPFC model, instead of Eq. (2.2),
the following operator

G(A,7) = AkZ + D)7 or G(A,7) = Ak = (-A))? (2.3)

is considered with a parameter . Obviously, FPFC reduces to the classical PFC
with v = 1. Instead of using local operators in the above models, we can replace
them with nonlocal operators defined in (1.4), that is,

G(Ls) = A2 — L5)°. (2.4)

In particular, with kernels ps that are allowed to be sign-changing, we can incorpo-
rate both repulsive and attractive interactions and offer better approximations to
the structure factor, thus making it possible to produce and match beyond a single
peak. The latter has not been achieved in the literature before.

2.2. NPFC models with sign-changing kernels

To describe the 2D NPFC models with the relevant ND operator L5 defined on the
domain [0, L] x [0, L,], we first introduce a couple of truncated and normalized
fractional kernels

2(4 — ij)

WX[—%@]» s €(0,95), 0; € (0,00), aj €[0,4). (2.5)

P65 (S) =

Now, we focus on the ND operator L5 involving a kernel represented by a linear
combination of two fractional kernels with fractional powers a1 and as and horizon
parameters d; and s, that is, the kernel ps in (1.4) is taken to be of the following
form:

pa,é(s) = C1Paq,61 (5) — C2Pay,62 (S)
Mz 1 dzee 1 g5 (26)

™ of s ™ 052 02

where a = {a1, a2} and 6 = min{dq,d2}. To satisfy the normalized moment condi-
tion, we require that
Cl1 — Cy = 1.
It is trivial to check that for a pair of integers (k,1), e Loty
function of L5 with periodic boundary conditions. The correspondmg eigenvalue is
As(k, 1) = c1)ay 5, (K, 1) — c2hay 0, (K, 1), where

27 k2 l2
Aaj,5; (k1) = / / 27rd; i L2 cos b dldr

(2.7)

is an eigen-
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for j = 1, 2. The evaluation of the above double integrals can be performed using the
accurate and efficient hybrid algorithm proposed in Ref. 21. For suitable parameter
values, the kernel p, s could change sign, being positive around the origin but
negative at r = 9.

2.3. Fitting the structure factor with NPFC having
sign-changing kernels

As an illustration of NPFC models, we investigate the fitting of the structure factor
with sign-changing kernels. Comparisons with the fitting results associated with
the local Laplace operator and the FPFC studied in Ref. 3 are also carried out.
For the local operator £y = A, the parameters {\, k.} are selected by fitting the
functional form G(A) to the first-order peak in the experimental measurements?*
of the structure factor represented by
1
S(k) = 76’(—192) —
For the nonlocal operator Ls, we are able to select parameters {\, k., a1, as, d1, 02,
c1,c2} by fitting the functional form to the first-order peak in the experimental
measurements with sign-changing kernels, i.e. we fit
1
G()\a}(;) — ~€7
where parameters k. and € are chosen in advance by referring to experimental data.
Similarly to earlier studies, we utilize experimental data on the liquid structure
factor of 3°Ar at a temperature of 85K, which is near the melting point of argon,
where the material remains in a liquid state. The fitted structure factor profiles
are shown in Fig. 1, where the experimental data are displayed with black dotted
line. We observe that the fitted curves with a local operator (presented with a
magenta dotted line) and FPFC (presented with blue solid-dotted line) match well
with the experimental data up to the first peak. However, the fitted profile with
sign-changing kernels (presented with a solid red line) agrees almost up to the
first two peaks. In contrast, it should be noted that the fitted curves with a local
operator and FPFC can only have one peak. Moreover, for small wave numbers k,

S(Aas) =

the fitting by the nonlocal operator with sign-changing kernels, like that for the
FPFC, is much closer to the experimental data than the case with a local operator.
This demonstrates that the nonlocal operator with sign-changing kernels has an
advantage in capturing the energy compared to the local operator. The improvement
in fit quality is remarkable. As an illustration, we present here the results of the
fitting and the values of parameters used when k. = 1.997, ¢ = —0.3725: for the local
case we have A = 0.8115 as the only fitting parameter; for the FPFC case, the two
parameters are A = 0.8666 and v = 1.237; meanwhile, for the nonlocal case, the
parameters used are, respectively, A = 1.8315,0; = 2.21,a7 = 1,02 = 3.01, a0 =
0,c1 = 3, and ¢ = 2. The combined kernel with parameters resulted from fitting is
checked to be positive, and the resulted operator is still negative definite.
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®  experimental data
nonlocal case

o5+ €y e local case 4
=====fractional order

Structure factor S(k)

Fig. 1. Fit of structure factor of 36Ar.

The corresponding structure factors fitting of some other materials reported in
Refs. 22 and 54 are presented in Fig. 2. In each case, the improvement made by
the NPFC model with sign-changing kernels is striking compared with the LPFC
and FPFC models. This shows that the resulting NPFC model will have better
performance in capturing phases in modeling liquid—solid transition systems.

Next, we make some comparisons with XPFC models with multi-peak Gaus-
sians. For XPFC models,’ the free energy is expressed as

e0) = [ |50 - 560+ 10| - 5 [ p@calls - oot las'as

where the pair correlation function is approximated by a combination of modulated
Gaussian functions in Fourier space via

Cy(k) = max(G'(k), G (k),..., GV (k)),

with N being the total number of Gaussian functions used in the approximation of
the direct correlation function, and

, 2K2 k—k;)?
G'(k) = exp(—g)\ié) exp (—(20[2)>

the modulated Gaussian function (i.e. a Gaussian function with its height modified
by an exponential function). The parameter k; specifies the position of the ith

Gaussian peak, «a; corresponds to the root-mean-square width of the ith Gaussian
peak and controls the excess energy associated with defects, interfaces, and strain,
o controls the heights of the Gaussian peaks and is related to temperature, A\; and
B; are the planar atomic density and the number of planar symmetries of the ith
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Fig. 2. Structure fitting for different materials at various temperatures.

family of crystallographic planes. In this XPFC model, the structure factor S(k)
can be obtained from the peak position via

zo—zexp( <k2 k)’ )

Note that here we simplify the parameters to o; associated with the height of the
peak and «; associated with the width of the peak. The results are shown in Fig. 3.
Here we set N = 2 to fit the first two peaks with k; = 1.9971 and ko = 3.6417.
While XPFC models using multi-peak Gaussians can fit the structural factor with
more peaks, NPFC models not only offer a much better fitting than the XPFC
around the second peak but also lead to slightly better fitting even at the first peak.
This provides further support for the use of NPFC over XPFC variants of the PFC.

Note that linear combinations of truncated power-like kernels are adopted for
nonlocal operators. They are specifically chosen to achieve good fittings of structure
factors. Despite the sign changes of the kernels, the resulting nonlocal operators
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Fig. 3. Fit of structure factor of 36Ar with XPFC.

can remain positive definite; see Ref. 34 for related discussions. One may verify
this easily for the specific choices used here by evaluating their eigenvalues that
can be efficiently obtained, see later discussions. In the rest of this paper, without
ambiguity, we always simplify pq, s, to ps.

3. Properties of the NPFC and the Discretization Schemes

To present some theoretical analysis, we assume that the operators —Ls and —Ls
are all positive definite, which are reasonable assumptions that can be verified for
the fitting parameters used.

The NPFC equation given in (1.6) is a gradient flow of nonlocal free energy
(1.3) associated with the dual space norm of the energy norm associated with the
operator —Ls. By the assumption on its positive-definiteness, we have the following
energy identity:

d&s(4°)

= (Lsp°, p°) <0, (3.1)
dt
which is analogous to the LPFC equation, an H ! gradient flow satisfying

d&(¢°)
dt

= (Ap’,p%) <0. (3.2)

We note that the nonlocal chemical potential ;0 is given by (1.5) and u° is the local
chemical potential defined analogously with A in place of L£5. They are also the
first variations of the energy functionals (1.3) and (1.1), respectively. If we define

Gop = (A+1)°¢ and G5® = (L5 +1)°¢",
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the NPFC (1.6) and the associated LPFC model can be, respectively, written as

d¢° _7 s 108 ¢’ 0 1010
B = 5(Gs0° + F'(¢°)) and e A(Gog” + F'(¢7)). (3.3)
Here, we discuss the nonlinear term F'(¢) in more detail. The energy dissipation
law of local models has sufficient regularities to guarantee the L°°-boundedness
of both the exact solution and numerical solutions due to the Sobolev embedding
H? — L, which plays a crucial role in proving the error bounds. However, for
nonlocal models, the energy dissipation does not have sufficient regularities to derive
such boundedness. In order to derive the L°°-boundedness for nonlocal models
following the Sobolev embedding H? «— L°°, we need to handle the term AF’(¢).
Therefore, we make the following assumption on the nonlinear term:

Assumption.
FeC*Q) and ||F"]. <C. (3.4)

However, for the quartic polynomials, such as the typical choice F(¢) = (¢ —€)?,
the assumption is not satisfied. To address this, we perform a Lipschitz truncation
modification. Choosing a sufficiently large number D, we modify F(¢) with F(¢)
as follows:

1 2 _ )2
P PR E 0l < D, .

ag? + blog || +ce ", |¢| > D,

where coefficients a, b, and ¢ are determined such that F(¢), F'(¢), and F”(¢) are
continuous at |¢| = D. It is easy to check that with such a modification F(¢) (still
denoted as F'(¢) subsequently) satisfies assumption (3.4).

We remark that in our numerical tests we set D = 1 and in fact, the maximum
value of the numerical solution is always smaller than D. Hence, this modification
does not actually affect the numerical simulation.

3.1. Fourier spectral approxrimation in space

We solve both LPFC and NPFC models numerically using Fourier spectral methods.
The numerical solutions are of the following form:

27rkw+ 27rly)
hn (,y) ag(t ;

k|<M [€|<N

27rkz+ 21r£y)
Oun (@, y) E E age(t Fy 27

[kK|<M [¢|<N
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and satisfy

993 ; ;
¢81\t4N = L5Gs0 N + IL[LsF' (% 5)],
(3.6)
o 0
CUN — LoGoin + TLoF ()]

respectively, with same initial value ¢g, where Il is the spectral orthogonal pro-
jection onto

2nk

i(FEat Thy)
Syn =spanfe Tz "LV | M < k< M,-N <{< N},

defined for any ¢ by Ilp¢ € Sy/n that satisfies

(no, ) = (d,9), Ve € Sun. (3.7)

Note that II;, commutes with L5 and Lo = A.

3.2. Fully discrete SAV scheme for time discretization

We now discuss the time discretization of the time-dependent NPFC model. First,
the NPFC models are reformulated with some scalar auxiliary variables (SAV),
which follow steps proposed in Refs. 41 and 42:

0 ~
£ = ‘C(?Ma
1= Gsé+ Bé+ rH(6), (3.8)

dr 1 oo}
at §/§2H(¢)ad$,

with
U(o)

H(9) = and U(9) = F'(6) ~ p6.  (39)
Vo F@)dz = 81613+ Cn

where C'y and (8 are any chosen positive constants.
The energy dissipation law follows by noting that

dE(¢(t))

. 1
A — (L) <0, with £(6) = 5(6,Go0) + 5 (6.6) + 1.

which is derived by taking inner products of the first two equations in scheme (3.8)
against p, %f, respectively, multiplying the third equation with 2r and summing up
the resulted equations.
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By making discretization with second-order backward difference formula
(BDF2) in time and Fourier spectral method in space, the fully discrete SAV/BDF2
scheme is given in (3.10):

(304in — 40 n + D @) = 27(Lspiin, @), V4 € Suw,
(i w) = (Gsdhin,w) + B4 N, w) + " (H(Sf),w),  Yw € S,

1
3ot — g 4l = 2( (Phin): 30N — 40N + Phin)s

(3.10)

where

DN = 200N — O (3.11)

3.3. Energy stability and error estimates for the SAV/BDF2
scheme

Multiplying the above three equations with M](j]\l,, (3¢”+1 4o N + qbﬁ/fl\l,) /(27)
and r"*1 /7 respectively, integrating the first two equations and using the following
elementary identity:

2(a**1 3a*t — 4a® + oY)
_ |ak+1|2 + ‘2ak+1 _ ak|2 + |ak+1 _ 2ak + ak—l‘Q _ ‘ak|2 _ |2ak _ ak—l‘Q’

(3.12)

we obtain

1 = ~
LB, B 7))~ El 7™, (i)
1 (1
+ 2 { OO — 208w + 011 Go0R) — 208w + 63 |

1 1 i n T n—
+ - {4( N — 200N + N BOhN — 200N + ¢M1\1r))}

T |2

where for the positive semidefinite operator Gs, the modified discrete energy is
defined as

Elhin "), (DR, r™)]

= SO 4 @ ) 4 (65 6o

1 (1
+ = {(Tn+1 — oy 4 Tn—l)Z} (Nrﬂl/;r]\lla£5un+1)

1
+ (2074 N — Phuns Gs (200N — ¢71(4N)))+Z(5( NN BN

+ 5(2¢n+1 O INE 2¢n+1 Phin))s
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which is always non-negative. Thus, with —Ls being positive definite, we get the
following theorem.

Theorem 3.1. The SAV/BDF2 scheme (3.10) is unconditionally energy stable in
the sense that the modified energy E[(Srfn, "), (¢4, 5> T™)] is non-increasing in n.

In what follows we always assume M = N for simplicity and use notation wuy
instead of upsn to represent the spatial discrete solution for any variable u. Without
specific statement || - || stands for L? norm hereafter. We use C' to denote a generic
positive constant that may take different values in its each occurrence, but is always
independent of the temporal step size and spatial step size.

Lemma 3.1. Let {¢%, 7"} be solutions to scheme (3.10) with L5 = Ls and
let assumption (3.4) hold. Assuming that ¢o € H?(S), then numerical solutions
{¢%,r"} are bounded, that is,

ol + 17" < C. (3.13)

The proof of the lemma is left to A.1. We now present a technical lemma to
handle the operation of the nonlocal operators on nonlinear terms, which will be
used to prove Theorem 3.2.

Lemma 3.2. Assume that the functions u and v satisfy ||ullcc < C and ||v|lcc < C

and either u or v is globally Lipschitz continuous. Let g = g(x) be any Lipschitz

continuous function in x € [—C, C] and its derivative ¢’ is also Lipschitz continuous.
Define e = u — v, and then the following inequality holds:

(=Ls(g(u) = g(v)), g(u) — g(v)) < C((=Lse, e) + (e, ¢€)).
Remark 3.1. In Ref. 40, the following inequality, analogous to that in Lemma 3.2,
IVg(u) = Vg)|| < C([lell + [[Vel])

is proved with the assumptions |¢'(z) — ¢'(y)| < L|z — y| and |g| + ||v| < C.
However, the chain rule used in Ref. 40 is not applicable to the nonlocal operator
considered here. Thus, we establish the conclusion in the above lemma subject to
the assumption on the Lipschitz continuity of either u or v, or its convex linear
combination, see the proof in the appendix. In the application of the lemma, we
take one of the u and v as the true solution for which the Lipschitz continuity can
be assumed or rigorously established.

Next, we present an error estimate of the fully discrete SAV/BDF2 scheme for
the NPFC model, under sufficient regularity assumptions on the true solution ¢.

Theorem 3.2. Let {¢(t,z),r(t)} and {o%,r"} be solutions to FEgs. (3.8)
and (3.10), respectively, with L5 = Ls. Suppose that r € H3(0,T), ¢y € H?(Q),
97¢ € L*(0,T; H), (), 87 ¢ € L*(0,T; H-'(Q)), and assumption (3.4) hold, then
the following error estimation holds:

lo% = d(ta)ll + 1" = r(ta)] < O (tn) = d(ta)ll +7%),
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and in particular,
168 — d(ta) | + 1" = r(ta)| < C(A™ +72),
for ¢ € L>=(0,T; HZ, () and
lo% — bt + | — r(tn)| < Cle /" +72),

for analytical solution ¢, where constants C' and ¢ are independent of the temporal
step size T and spatial step size h.

Remark 3.2. The proof of the above theorem is given in A.3. We note that the
conclusion can be directly generalized to the case with any positive definite oper-
ator —Ls and non-negative definite operator Gs. Moreover, an error estimate of y,
omitted in the statement of the theorem, can also be obtained from the proof.

4. Asymptotic Compatibility

It is known that the horizon parameter § in the definition of nonlocal operator
measures the range of nonlocal interactions. With § — 0, only local interactions
take effect, that is, the limit of nonlocal operator as § goes to zero is the local
differential operator. Numerical schemes that preserve this limit behavior are called
AC schemes.!? 59 51 Mathematically, let u® and ud; be solutions to a continuous
local model and its discrete nonlocal counterpart, respectively, then the asymptotic
compatibility can be formulated as

|ud —ul|| =0 asd — 0, N — oo. (4.1)
Further the estimate can be derived by following the triangle inequality below:
lufy = u®l| < fluly = uly |l + [lufy — |- (4.2)

The reason why we adopt such a triangle inequality is explained in Ref. 20.

In this section, we aim to prove the asymptotic compatibility of the discretiza-
tion of the 2D NPFC models. The analysis is similar to that studied for nonlocal
Allen—Cahn equations,?? so some details are skipped to keep the presentation short.
Note that similar techniques can be used to establish the well-posedness of the
NPFC model as well as its local limit as § — 0.

4.1. Analysis of asymptotic compatibility

The asymptotic compatibility for the fully discrete scheme is presented in Theo-
rem 4.2. Before presenting the theorem, we introduce Lemma 4.1 and Theorem 4.1
which will be used in the proof of Theorem 4.2.

Lemma 4.1. Let ¢ (z,y) and ¢%;(z,y) be numerical solutions to the steady linear
nonlocal problem

—Ls¢s(,y) = f(z,y) V(z,y) € (=m ) x (=7, 7),
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and local problem

—Logo(z,y) = fz,y) V(z,y) € (=7, m) X (=m,7),

respectively, subject to periodic conditions. Thus, it holds that

lon — oXll < GO 11,
where the generic constant C' is independent of spatial step size.

The result can be seen as an extension of similar conclusions presented in the
one-dimensional case in Ref. 20. The proof can be found in A.4., together with the
proof of the following theorem.

Theorem 4.1. Assume that quSV and %, are solutions to (3.6), respectively, and
assumption (3.4) hold. Then for any finite t < T, it holds that

163 (¢, ) = % (t, )2 < C(T, $0)8°, (4.3)
where C' is independent of spatial step size.

Theorem 4.2 (Asymptotic compatibility). Let {¢}y
ical solutions to the above fully discrete nonlocal SAV scheme (3.10) and
{(;50 L R0t 1Y o corresponding local scheme, respectively. Suppose ¢o € H2(Q).
Then the following asymptotic convergence holds:

||¢6 n+l 0, n+1|| + |7"5 n+l 0,n+1| < C’(T, ¢0)52,

omtl POt 1l be pumer-

where the constant C' is independent of spatial step size and temporal step size.

Remark 4.1. Theorems proved above can be generalized to any negative definite
operator L5 and non-negative definite operator Gs.

Remark 4.2. In proving asymptotic compatibility, the requirement of global Lip-
schitz continuity assumption on nonlinear term F' can be relaxed to local Lipschitz.
In this setting, the locally Lipschitz continuous nonlinear term F'(¢) can be modified
with the cut-off function Eq. (3.5), and the resulted nonlinear term F(¢) = F(¢) for
considered domain ¢ € D. Thus all remaining details hold and so is the conclusion.

4.2. Numerical implementation

In the following numerical examples, we will use the free energy (1.3) and the
residual of the equation to decide whether the evolution is close enough to the
steady state or not. In all numerical examples presented in this paper, we take
quartic polynomial form of the nonlinear term F(¢) = ;(¢* — €)%. We approximate
the continuum energy (1.3) as

Yo D I As(mn)Plamn?

|m|<M |n|<N

Eyn =

2M 2N

4(2M+1 )2N +1) ZZ|¢ —el

=0 k=0
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where

o A O N L _ kL
o |mz<:Mln|z<:Namne YT oM+ FToON 1

The residual is calculated as

3¢n+1 _ 4(I)n + q)nfl

27 I
where || - || denotes Frobenius norm and ® = {¢;i} is a (2M + 1) x (2N + 1)
matrix.

Res = H

4.3. Numerical tests on the asymptotic compatibility
for NPFC models

Example 4.1. We first verify the asymptotic compatibility for a 2D NPFC model
in [0,107] x [0,107] with periodic boundary conditions being considered in this
example and initial value is given by ¢o(x) = 0.05sin(z) cos(x) + 0.07. We fix
€ = 0.025 and take the kernel defined in (2.5) with a = 1 and « = 3 respectively.

In both cases of & = 1 and o = 3, we take a small time step with At = 0.001
and M = N = 64. The numerical differences between the solutions of the NPFC
and LPFC models are shown in Table 1. The convergence speed is seen to be about
O(6?), which is in good agreement with the theoretical results. Thus, we achieve
the optimal convergence rate for asymptotic compatibility.

4.4. Numerical experiments

Next, we present examples that offer comparisons between lattices simulated with
LPFC and NPFC models, respectively.

Example 4.2. Consider both 2D NPFC and LPFC models in [0,50] x [0, 50] with
periodic boundary conditions and the random initial value (RIV) with average mean
value ¢ = 0.07. In both nonlocal and local models we fix € = 0.025. The fractional
power kernel defined in (2.5) is taken as a = 1.

We set At =1, M = N = 64. In the nonlocal cases, we choose small § = 0.2
and large 0 = 2. The numerical solutions at T' = 250, 500, 1000, 2000 are presented

Table 1. (Example 4.1) Errors between numerical
solutions of NPFC and LPFC models.

6=04 a=1 a=3

6% — X ll2  Rate [} — ¢l Rate
1) 3.49e—04 — 1.71e—04 —
8/2 7.08e—05 2.30 3.81e—05 2.16
0/4 1.68e—05 2.07 9.27e—06 2.04

5/8 4.15e—06 2.01 2.30e—06 2.01
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Local
-

Fig. 4. (Example 4.2) Numerical evolutions of NPFC and LPFC models.

in Fig. 4. It is observed that the dynamics and steady state of NPFC models with
small § look nearly identical to the LPFC model. However, with a large d, there are
visible differences between the dynamics and steady state of the NPFC models and
the local ones. However, without considering the slight rotation, the steady states
all have the same periodic patterns.

4.5. Grain boundary simulation

Example 4.3. Simulations of the grain boundaries with NPFC model are pre-
sented in this example. On a period grid of [0, L,] x [0, L,], we specify a one-mode
approximation of the stationary hexagonal state ¢y (x, y) in one orientation between
0 <y < L, /2, while another hexagonal state of a different orientation is specified
between L, /2 < y < L,. The hexagonal lattice is given by

Or.y) = b+ A [cosm) (%) Los <2q75>}

with ¢ = \/Tg’ ¢ being the mean value of ¢ and

Ay = % (<;‘5+ %\/156—36(52>.

In the middle of two hexagonal states with various orientations, random values
with mean value ¢; = ¢ are specified so as not to influence the nature of the
grain boundary that emerged. The parameters for the simulation are taken as:
€ =4/15,¢ = 0.2, the time step size is 0.5 and the space step size is around 7/4.

The results of numerical simulations corresponding to different values of grain
mismatch angle § = 11.6°,26.3°,39.4° at time T" = 10,000 are shown in Fig. 5. It
is observed that around interfaces 5|7 dislocation dipoles are formed instead of the
original hexagonal lattice. We mark 5|7 dislocation dipoles with green pentagons
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60=11.6

6=26.3

0=39.4

Fig. 5. (Color online) (Example 4.3) Snapshots of the grain boundary mismatch of § = 11.6°
(top), 6 = 26.3° (middle), and 6 = 39.4° (bottom). The green pentagons and red heptagons are
located at the 5|7 dislocation dipoles.

and red heptagons in the corresponding figures for the ease of reading. These phe-
nomena are similar to the results presented in Ref. 3.

4.6. NPFC models with integrable kernels

In Ref. 20, it was proved that NAC equations with integrable kernels admit discon-
tinuous steady states under reasonable assumptions. Here we extend such a result
to NPFC models.

First, the steady state of the conserved NPFC model with periodic boundary
conditions satisfies

L36+2Ls0+ (1 —€)p+ ¢ = co, (4.4)

where ¢q is a constant. On the other hand, for integrable kernels, we split the ND
operator as

Ls¢ = ps*x ¢ — cs5¢, (4.5)
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Fig. 6. (Example 4.4) Phase evolution for NPFC models starting from initial hexagonal lattice.

where ¢5 = |, B5(0) ps(Jz|)dx > 0, and * represents the convolution. Then, the steady
state equation becomes

¢°+ ((cs —1)> —€)p = —ps * (ps % &) + 2¢s(ps x ) —2ps x  + co.  (4.6)

Example 4.4. In this example, we fix « = 0.5 and § = 3 in the fractional kernel
(2.5). The domain is taken as [0,127] x [0, 127], and the discretization parameters
are taken as M = N = 128.

We conduct two experiments in this example. The first one starts from a hexag-
onal lattice as the initial value with ¢ = 0.49, while the other one starts from a
square lattice as the initial value with ¢ = 0.017. In both experiments, we solve
NPFC models by proposed SAV scheme with discretizations of Fourier spectral
method in space and BDF2 in time.

The phase evolutions are shown in Figs. 6 and 7. We observe that the interface
phase among bulk phase becomes from diffusive ones initially to sharp ones finally.
These are exactly the discontinuities we have expected in this case. We believe that
these sharp interface phenomena have important physical meaning, since we only
choose suitable kernels without any other extra conditions to achieve the sharp
interface. Meanwhile, with the help of the hybrid algorithm provided in Ref. 21, the
computation complexities of NPFC models are almost the same as LPFC models.

For concrete proof of such a discontinuity with integrable kernels, we present
the following theorem for one-dimensional case. In two-dimensional case, one may
observe the intersection of the graph of numerical solutions and plane Y = 0, in
which it reduces to one-dimensional case.

Theorem 4.3. Assume ¢* is a solution to the aforementioned conserved NPFC
model (4.4) and ¢*(x) = 0 at point x = x*. Then ¢* is continuous at x = x* when
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Fig. 7. (Example 4.4) Phase evolution for NPFC models starting from initial square lattice.
les — 1] > V€ ¢* is discontinuous at x = x* when |cs — 1| < /€ and ps + 2 —

2 <0.
Proof. Without loss of generality, we set ¢co = 0. Eq. (4.6) can be rewritten as
¢* (2)((¢"(2))* + (cs = 1)* — €)
= —lps * (ps + ¢)(x) + 2¢5[ps + ¢*](x) = 2[ps * ¢"] ()
= I(x).
Note that

I(z) = - {<p5+2—c26>*p5*¢*} (7).

Assume ¢* is increasing over [z* — 2§, 2* + 24], since ¢*(z*) = 0, then ¢*(z) > 0
for any x € (z*,2* + 9). Therefore I(z*) = 0 and
I(z)=I1(x)—I(z*) >0
if ps +2—2/cs < 0. With this setting, when |c¢s — 1| > /€, ¢* is continuous at
x = z*; when |cs — 1| < /€, it requires that (¢*(x))? + (cs — 1)2 — € > 0, that is
¢ (x) > Ve—(cs —1)2 > 0,

which yields discontinuity of ¢*(z) at « = z* since ¢*(z*) = 0. O

Remark 4.3. Restriction ps+2—2/¢s < 0 is not necessary in numerical examples.
Its introduction is just for the ease of proof. The existence of discontinuous solutions
established here is similar to that given in Ref. 20. We also note a related study of
discontinuous solutions to the nonlocal Cahn—Hilliard equation in Ref. 13.
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Fig. 8. (Example 4.5) Graph of numerical solutions for various values taken by 4.

The following example is designated to verify Theorem 4.3.

Example 4.5. We verify Theorem 4.3 over the domain [0, 10] by choosing constant
integrable kernel p; = 5% in one-dimensional case. Parameter ¢ = 1/4. The initial
value is given by ¢¢ = sin(%mc). We plot numerical solutions in Fig. 8 for different
values of § at T" = 500.

Note that in this case c¢5 = 5%. We see from Fig. 8 that with § = 1.5 in which
case 0 satisfies the condition |cs — 1| > /e, the graph of numerical solution is
continuous; with § increasing to 2.5, discontinuity appears between phases. In this
case ¢ satisfies |cs — 1| < /€ while ps +2 — 2/¢s > 0. For § = 2.6 which satisfies
les — 1] < e and ps +2 —2/cs < 0, the graph is still discontinuous. With § = 4.5
satisfying |cs—1| > /€, we see the graph of numerical solution deforms to continuous
interface again. This example confirms the findings of Theorem 4.3.

5. Concluding Remarks

This work presents a new data-driven 2D NPFC model. We first propose a nonlocal
analogue free energy with the ND operators, which are more general than the
original local PFC and also can encompass other fractional variants. Our studies
show that the NPFC can provide much better fitting of the structure factor obtained
by experiment data, thus enhancing its modeling capability.

The NPFC model can be viewed as the gradient flow in the dual space of the
energy space associated with the ND operator. We numerically solve NPFC models
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using an SAV scheme with Fourier spectral methods in space and BDF2 in time,
together with the hybrid algorithm proposed in Ref. 21 to evaluate Fourier symbols
of ND operator with specially chosen kernels. Numerical examples show that the
proposed NPFC models, in particular those with sign-changing kernels that incor-
porate both repulsive and attractive interactions, can offer significant advantages
in modeling the liquid—solid transition systems, such as in characterizing elastic
and plastic deformations, as well as the anisotropy of solid—solid and solid-liquid
interfaces.

While this work is focused on the 2D case, the model can in principle be extended
to three dimensions, which could be of greater relevance to applications in materials
science. More careful studies in this direction will be pursued in the future.

Appendix A
A.1. Proof of Lemma 3.1

Proof. We have, from the energy stability, that

IR + 1 LsdR [l + |r"| < € since || Lsgol| < |Ado]l < C.
By substituting the second equation in Eq. (3.10) into the first one, we obtain
(3%3“ —AgR +

n—1
5 O 7Q>=(£595¢R¢+1,Q)+3(£5 v a) T LsH (o), 9).

Testing the above equation with ¢ = A? ;ﬁ,“ to yield
(||A<b”“||2 [AGR N + AR — oR)|1?
— AR — N HIP + AR = 20% + o D)%)
— (iagéAqsn—Q—l, A¢n+l) + 6(£6A¢n+1’ A¢n+l) 4 Tn+1(AH( _n+1),£5A¢7\}+1)
< (LsGs APy AR + BILs AR APRT) + CAH (G3), LsAdRH).
With G5 = (Ls + I)?, the above inequality can be further evaluated as
1 T n n n
E(”AQSN-H”Q — [|AGR N + AR — oR)|1?

—1AQeR — o DIP + 1AGRT — 208 + &% I

2
= </;5 <i£52 + (;55 +2> ) A¢7&+17A¢%+1>
+((B = 3)LsAQNT, Ag™) + C(AH(S3™), Z5A¢’fv“>

3 n n 1 n n
< (Jeraomrtant) + 0 (FIAH@ I + 516863 17) = 1o,
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where 8 > 3 is chosen and the non-negative definite property of the operator L; is
used. By L5 = Ls, AU(¢) = (U"(¢)|V¢|? + U’ (¢)A¢), Eq. (3.9) and interpolation
inequality, it follows that

IAH ()] < CUIT o IVEIIT + 1T [l [ A])
< OVl lagl + CllAgl < CllAg,

where assumption (3.4) ensures the L>°-bound of U’ and U"”. We then simplify I,.
into

3 O\ oy c. -
fos (G4 5 ) Aor aom) + S OIAGRIE + a0k IP)

With the constant C' as appeared in the above, for the function
3 C 3 2
g(As) = 1>\§ + 5)\3 = Z>\§ ()\6 + 3C>7
we can note that g(As) < 0 for A\s < —2C. And for —2C < A5 < 0, g(Xs) is bounded
since ¢ is continuous and g (—%C) =0,¢9(0) = 0. Thus
L < C(IAQR P + [|AgK[I* + [Adx %)
Combining the above yields
AR P — AN I1* + Ao — &%)
—[A@2e% — o5 HIIP + AN —20% + o3 IIP)
< O(AdR 12 + [1AdK 1% + 1 A¢x %),

from which [[A¢Y| < C follows with the help of Gronwall’s inequality. Due to
Sobolev embedding theorem H'*¢ C L* for any € > 0 in two dimensions, we have
the desired estimate ||@% |1 < ||[o%||g2 < C. O

1
=

A.2. Proof of Lemma 3.2

Proof. Without loss of generality, let us assume the Lipschitz continuity of v.
Denote by

9(x) —g(y)

T—y
Since g is globally Lipschitz continuous from the assumption, L(z,y) is thus
bounded. Note the following splitting

9(u(y)) = g(v(y)) — (9(u(z)) — g(v(2)))

= 9(u(y)) — g(u(z)) = (9(v(y)) — g(v(2)))
u(y) — u(@))L(u(y), u(z)) = (v(y) — v(@))L(v(y), v(z))
u(y) — u(@)) L(u(y), u(z)) = (v(y) — v(@))L(u(y), u(z))

L(l‘,y) =

(
(
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+ (v(y) = v(@)) Luly), u(z)) = (v(y) = v(x)) L(v(y), v(z))
= {(e(y) = e(@)) Lu(y), w(z))} + {(v(y) = v(2))(L(u(y), u(z))
= L(v(y), u(@))} +{(v(y) = v(@))(L(v(y), u(z)) = L(v(y), v(z)))}

= Il + IQ + Ig.
With the first term I; = (e(y) — e(x))L(u(y), u(x)), it holds that
J [ pstia = ainPays < c// pale = yl)(e(y) — e(a))?dyde = C(~Lae,c).

To estimate the last two terms I, and I3, we first note that

L (u,v) == OL(u,v) _ g (u)(u—v) = (g(u) —g(v)) g'(u) —g'(()

ou (u—v)2 u—wv

for ¢ in between u and v. By the Lipschitz continuity of ¢’, we thus see that

L) O _C: <c

which implies L(u,v) is globally Lipschitz continuous in u. Similarly, L(u,v) is also
globally Lipschitz continuous in v. Hence, the last two terms can be estimated as

J[ pstia =iy

- / /Q pi(Jz = y)|(v(y) — v(@) (L(uly), u(z)) — L(o(y), u(x))) Pdyda

<c / / ps(1z — ¥ () — v(@))?le(y) Pdydz

—C/ /pa ly — x|)ly — x[*dzdy

=Cle,e)

and

/ / ps(|z — y)|Is[2dyda

— //Q ps(|z =y (v(y) — v(@))(L(v(y), w(x)) — L(v(y),v(z)))*dydx
< [[ sl = s (wlo) (@) Ple(o) Py

= 62 T — X 7",52 X
fc/ﬂ ( >/Qp5<|y Dly — 2[2dyd
=C(e,e),
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where the second moment condition [, 55(0) ps(|s])s?ds = C and Lipschitz continuity
of v are used. Finally, the desired estimate is derived by

(~La(g(u) — g(v)). g(w) — g(v))
// ps(1z — yD)(a(u(v)) — 9(v(v)) — (9(u(z)) — g(v(x)))) dydz

3
<cy | /Q pal — DIk Pdyde
k=1

< C((—Lse,e) + (e,e)).

From the symmetry, we see that the same proof works with u being Lipschitz if a
different splitting is used. In turn, we can also do the splitting with a convex linear
combination of u and v. O

A.3. Proof of Theorem 3.2

Proof. For simplicity, we set

ez =¢N — Hh¢(tn) + Hh¢(tn) - ¢(tn) = éz + éga
ez = py — Hpp(tn) + Opp(tn) — p(tn) = EZ + éZa
er =r" —r(ty),

where II; is spectral orthogonal projection defined by Eq. (3.7). Subtracting
Eq. (3.8) from Eq. (3.10) at ¢ = t,41, we have

(Beptt —dep+eptq) = 2r(Lsentt q) + (Q1,q9) Vg€ Sy,
(e, w)

= (Gsey ' w) + (Bey ™ w)

+ (T H (O, w) = (r(tns1 ) H((tns1)),w)  Yw € S,
3entl — gen 4 ent

1

= SHGR).3e5™ —aey +ep™) + @+ - Q!

(H(ON) = H((tn+1)), 36(tn+1) — 46(tn) + d(tn-1)),

DO =

+

where Q_%H is the extrapolation as defined in Eq. (3.11) and
Q?Jrl = 2Tat¢(tn+1) - (3¢(tn+1) - 4¢(tn) + ¢(tn71>)
tn tn—1
_9 / (t — )20%(s)ds — % / (tn1 — 5)2006(s)ds

trni1 tnt1

Q5 = 2rdir(tns1) — (3r(tns1) = 4r(tn) + (1))
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tn tn—1
= 2/ (tn — 5)2d3r(s)ds — 1/ (th_1 — s)2d3r(s)ds,

tnt1 tnt1

1
pH = E(H(¢(tn+1))’Q7f+1)~

Taking g = e”Jr1 w = 3e”+1 —dey + ég_l as the test functions in the above and

taking the inner product of the equation for e?™! with 2e"+!, we get

(Begtt —dep +ep et + 27l (—Lo) e P = (@1 e, (A1)

(ept!,3ep™ —dep +ep ")
= (Gselt!, 3l —den v en) + plent, 3eltt — el v enh)
+ (" H (o), 3ep T —deg +ep )
— (r(tn+1)H(o(tn11)), 352“ ey + ey D, (A.2)
2e/ ! (3ep Tt —dey e
= e HOR), 3ep e e+ 2 Q3 - Q5

+el THHONT) — H(¢(tar1)), 30(tur1) — 46(tn) + Sltn—1)).  (A.3)
The term on the right-hand side of Eq. (A.1) can be estimated by
(@ ™) = (—La) 2 Q™ (—La) et

T 5 \1_n 1 S 1 n
Ti-Lobet e+ L2 tart e

\ /\

T

IN
=~ |

- tn+1 o
I(~Ls)¥ert2 + ort / I(—Ls)~036(s)|ds.

tn—l

On the right-hand side of Eq. (A.2), the first two terms can be estimated using
Eq. (3.12), i.e

(Gseitt 3! —del + en ) + Blentt,3entt — el el
S et 17 — gl + g™ — eBl + g™ — 22 + 572
~ 12} — e IP) + SN+ La)egt IR — T + Loy P
I+ L) (265t — ER)I?) + 1T + La)(Ept - 2e + €5 h)?)

— I + L5)(2ef, — eg™H)|?)
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and the last two terms can be transformed to
(F T H(GN), 3ep ! —del + el ) = (r(tap) H(B(tnsn)), 3E5 T — 4 + &)
= (e L H(GR), Bt — de + e ) (b)) (H(GR)
— H(¢(tny1)),3e, " —def +eyt).

Due to the boundedness of numerical solution (3.13), we have [|€3|[ L~ bounded and
thus the last term on the right-hand side of the above equation can be controlled as

Ptas) (HGR™) — H(@(tnr1)), 385 — e +e57)
= r(tn) (H(O) = H($(tws1)) 27Loe; )
(b ) (R = H((tns1). Q7 )
< JILo)be 1P + OTll(~Lo) H(GRT™) = (L) H(@(tas1))]”

C —5 n+1 2
+ =) Ry

Note that with
/ {F(¢ ¢2 + Ch,

then

U@ U<¢<tn+1>>
WV ) VW)

Ul "+1> astnm) nm)
W ?V“)fww(tm» |
WL + Wl 1))

H($y) — H(d(tnr1)

Since ¢%; is bounded due to Lemma 3.1 with L5 = L;, then |[\/W(&%™),

IWW(d(tns1)), |[U(¢(tn+1))| are bounded, and
) 1 tny1
Fhett = Bltaar) = 2¢ — et + / (t — 5)026(s)ds
tn—1

n—

using Lemma 3.2 with above splitting yields
I(—L5)2 (H(@3™) — H(é(tns1)))]?

= (—Ls(H(ON™) = H(d(tn41))), H(ON) = H(P(tn11)))

< C(=Ls(U (PR = U(6(tn11)), U(Sx) = U((tnr1)))



Nonlocal phase-field crystal models in two dimensions 2127

T+ O(—LsVFET) = W(B(tn ) WERT) = W(@(tas1)))

< C(—Ls(2e — eg_l), 2e5 — eg_l) +C(2e — eg_l, 2 — en™h

[l
e <—c5 / " = $)820(s)ds, / t"+1(t—s)a§¢(s)ds>
e, ( /t "= )02(s)ds, /t ”“(ts)afgb(s)ds)

< C([(I + L5)(2eg — 621)> I1” + 12e5 — 3™ 11%)

tnt1 N
+CT4/ (I(=L5)2070(3) 1> + 07 6 (s)[1*)ds,

tn—1

where the last inequality follows from the following inequality: for any u,

I(—L5)2ull? = ((—Ls)u,u) = (—(Ls + Du,u) + (u,u) < C(|(I + Loyull? + [[ull?).
(A.4)
Thus

P(tnsn) (H(G) — H(S(tns)), 365 — del + 1Y)

T 1 _ e 1 o
< <(=Ls)zep 1 + Cr(l12e —ep 12+ 11(—£5)% (22 — e~ HIP)

cort [ L oo + 10261

tn—1

tni1 N
Lot / I(—Ls) 203 0(s)|2ds,

tn—1

where in the last inequality we use the Lipschitz continuity assumption on ¢ and
Lemma 3.2 which holds due to assumption (3.4) and Eq. (3.9). Q57! is, similar to
Q7T estimated as

tnt1
Q3 H? < 075/ |d7r(s)[*ds

tn—1

and

tnal 1
Q5 < 0Lt I [ 20 R0t s

tn—1

tnt1 )
<or / I(—Ls)™ 203 (s)|%ds.

tnfl
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Then the second term on the right-hand side of Eq. (A.3) can be estimated as

2 QF - Q) < 7l P+ S(1Qs T + Ias )

tnt1 .
< rlef P+ 074/ (Id7r(s)* + [1(=L5) 207 ¢(s)[|*)ds

ty—

The last term on the right-hand side of Eq. (A.3) can be controlled as

"L H (%) — H(G(tns1)), 30(tnsr) — 46(tn) + d(tn—1))
= el (—Lo) T (H(S5™) — H((tn41))), (—L5) ™2 (30 (tnr1)
— 49(tn) + D(tn-1)))

=ert! <<—£a>%<H(¢;c“> — H(¢(tns1))), (—L5) "%

x ( /t t+ ,0(s)ds + /t t_ atq’)(s)ds>)

2 ent1|2 - 1 Tn+1
< OTNOBI o ryanieay- 2y 8T T I(—L0) EH (G

— (=L5)2 H(&(tns1))”)

< 2 ) n+12 —n —n 112
O PN (= e A

. 1 _ zn—1 4 2
+(=Ls)2 (285 —eg™")|*) + Cr Ha”b”mo (0.TLH((—L5)"2))

x / L5207 + 1026(5) )

tn—l

where Lemma 3.2 is applied in the second inequality.
Combining the above equations, we have

27[(=Ls) e P + e — et
2t 2 et = 2 4 e [2ef — e P D (e
—He¢||2+||2’”“ gl + et — 26 4+ a2 — e — e ?)

(H(I +Lo)eg P = (1 + La)egl* + (1 + L) (2™ — eg)|®)

+I( + Lo) eyt — 26 + e HIP) = (7 + Ls) (285 — &5~ )|1?)

IN

FleeabarE s ort [T co Aot

n
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1
+(=L6)2076(s)I” + 107 o (s)II” + |dir(s)[*)ds
n n— Lo m _pe
+07 (265 — &g+ 1(—Ls)2 (2e5 — e II* + [ef ),
which directly, by Gronwall’s inequality and Eq. (A.4), results in

I+ Lo)eg M I + lef 2 + e ™1

T
<ort / (I(=£8)" 20} ()II* + | (~L5) 2076 (5)|* + 0 (s) |
+|dir(s)[*)ds.
Finally, together with existing results on Fourier spectral method
IThu — ullx < Cllul|mh™F, VO <k <m,
for u € HJJ;, (Q2) and
ITTpu — ul|fe < Ce¢</h

for analytic solution w, it holds that

o — ¢(tn)|I* + " = r(ta)|* < C(R*™ +77)
for ¢ € H: () and that

6% — G(ta)lI* + | = r(ta)[* < Cle™/" 4+ 7%)
for analytic solution ¢, where constants C' and ¢ are independent of temporal step

size and spatial step size. O

A.4. Proof of Lemma 4.1

Proof. Since we have

¢§\4N - ¢9\4N = (ﬁal - Egl)fMNa

then
|m|<M,|n|<N 1 1
10— SnlP= 3 \ - ol
40 As(m,m)  Ao(m,n)
Thus it suffices to prove
1 1 1

572 >\5(man) - )‘O(mvn)
=8 <O, V|m| <M, |n|<N withm?+n?#0.
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2
Due to 1 —cosf < %, we have

é 27
0 < 82[As(m,n)| = 52/ 7‘,()5(7“)/ (1 — cos(rvm?2 + n?cos0))dodr
0 0

]

) 2
= 62/ T6_4p (f) / (1 - COS(T‘\/’IWCOS 9))d6dr
0 0

1 2m
= / rp(r) / (1 = cos(drv/m? + n? cos 0))dbdr
0 0

1 2w/ $2,20 2 | 2y 2
g/O Tp(T)/O ((5r (m —;n ) cos a)der

1 o 2
= 6%(m?* + n2)/ p(r)r?’dr/ COSZ adﬁ
0 0

= 6%(m? +n?),
where we used the form of the kernel and the second moment condition

ps(s) = 5*14;7 <§> /01 p(s)s’ds = %

Hereafter we denote by a = dv'm? + n2. Noting that \g(m,n) = —m?

above inequality yields 0 < |[As(m,n)| < [Ag(m,n)|.

Since 1 — cosf > % — % holds for any 6 € R, we have

52| \s(m,n)| :/0 rp(r)/o 7r(1—cos(arcos@))clt?dr

1 2 ;2.2 2
> / rp(r) / (6”0%9) d0dr
0 0 2
! 2™/ atrt cost 0
7/0 rp(r)/o <24 >d0dr

at [t I 12 cos? 0 at
>a2 -2 % dgdr = a® — L
2 a”— 15 ; Tp(r)/o 5 r=a -5

— n?, the

where we used the second moment condition twice, respectively, in the second

inequality and the last equality and the fact 2 cos® < 1 for Vr € [0,1].

Case A: a = §v/m? + n? < w. We obtain

1 1 1 1 1
Smn =

1

?As(m,n)]  02(m2+n?) T o2 -2 a? 12-a? T 12

Case B: a = 6v/m? + n? > 7. Denote by

[SE]

I(r;a) = 4/0 (1 — cos(arcos6))dd, VYr e (0,1).

g2
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With the fact that 1 —cost > t2/4 for any ¢t € [0,11/4], it holds, for r € (0, 2], that
2 ™ w3
I(r;a) > / a’r?cos? 0dO = —a*r? > —r?.
o 4 4

For r € (%, 1), if we denote by £ = ar, then function

™

J(&) = I(r; )—4/O (1 — cos(&cosB))db
is increasing for £ € (2, ), thus
I(a;r) = J(&) > J(2) > J(2)r?.

For { € (m,a),ie re(5,1),

€ 1—cost
I(r;a)=J f/ l—t/f 75/ —cost)d
:E(ﬁ—sm§“)>4—§>2r

By taking C' =1 such that C < rni1r1{7§‘7 J(2),2} ~ 6/5, we then get
I(r;a) > r?

for any r € (0,1) and a > 7. Thus,

L 3
82| As(m,n)| = 4/ / rp(r)(1 — cos(drv/m? + n? cos 6))dbdr
0o Jo

! 8
> 4/ rp(r)dr = —.
0 7r
As a result
g 1 1 < 1 T
82 \s(mum)| 62(m2 +n2) T 82| \s(m,n)| T 8
Hence we obtain the desired result by considering the above two cases. O

A.5. Proof of Theorem 4.1
Proof. We denote

E(t) = [|oX(t,-) — &% (¢, ).
Then it is easy to verify

1d o (0.5 9 .o 5 0
555 = (30k — gyt — o)
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Substituting (3.6) into the above equation yields that
dE

BE—= = (LsGsy — LoGodh, oy — #fy) + (PNILsF' (9]

= Px[LoF' (3], 6% — o)

=I+1I,
where
I = (L£sG56% — LoGodN, 6% — %)
= ((£5G5 — L0Go)$s Ox — ON) + (LG5 (0% — &%), dx — &%)
< (£5Gs — LoGo)N I E + (LsGs(6 — 6%), 6% — 6%)
and

IT = (L5 F'(¢%) — LoF' (6%), & — o)
= (LsF'(¢%) — LsF' (6%, oN — %) + (LsF' (%) — LoF' ($%), ox — o%)
=11 + 1.
Note that
I = (LsF' () — Lo F'(¢%), o3 — &%)
= (F'(¢}) = F'(6%), Ls(dx — &%)
< ZIF@}) — FU@RIP + 3 I1£s(0k — I

Ko Liaa s oy s o
< 2E +2(‘C6(¢N PN )s O — O )

where we used Young’s inequality in the first inequality and Lipschitz continuity of
F'(¢) in the second inequality, and

I = (LsF'(¢%) — LoF' (8%), d% — %)
< |[(Ls — Lo)F ($N)IIE = 1I£5%(Ls — Lo)LGF (%) | E
< C8||L3F (%) E.

Thus we have

dE _ K? 5 5
B2 < B+ (£6Gs — LoGo) Oy | B + C%||LoF (943 |1E

+ (L5 (5 + 5£5) (0% - R0 0% — R ).

Specifically with Ls = Ls and Lo = Ly, by referring to expressions of G5 and
Go, we have

1(£5Gs — LoGo)d |l < CE*(I1Loo% || + I3 Nl + 1£56%1)-
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Then it yields that

dE
E- < sz + C(ILooN | + 1L5oN | + IL5oN | + [ILoF" (65) D E

(s (1 £+ 504 ) (65 - oo ok — o)

To estimate g(As) = 2AZ + A} + As with A5 < 0, we note that g(As) < 0 when
As < —g. This yields that

dE K2
a S E+C52(||ﬁ Sl + L3N N + 1L3SN N + 1o F" (63)1])-

For the case —3 < As < 0, we note that g(—f) < 0 is finite and 1ndependent
of 4, g(0) = 0. Due to the fact that g(\s) is continuous on the interval [—32,0], we
know that g()\s) is bounded for —3 < A5 < 0. Thus we have

dE K2 9

o S\ 5 +C) B+ Co(Lodn | + I1£50% N + 1£56% | + 1 Lo F" (65)1)-
Again Gronwall’s inequality yields the desired estimate. D

A.6. Proof of Theorem 4.2
Proof. With errors e} = gb‘];\’," — N, ey = u?\’," — N e = ron — 0 error
equations are written as

(3ez+l - 462 + eg—l’ Q) - 2T(£5€Z+ ) - 27—((‘65 - ‘CO) ¢ n+1a Q)>

(enJrl

w0 w)

(g5en+17 ) ((g(sigo) On+1’ )+ﬂ( n+1, )
() ) + 10 @) — HEY), ),

n+1 n n—1
e, T —de + e

1 _
= 5 (H( N, Ben T — e + el

1 _
+*(H( ?\}n—&-l)_H( 0n+1) 3¢On+1 4¢(])\}n+¢?\[n 1).

2
n+1

Testing with ¢ = eﬁ“‘l in the first equation, w = 3ey " — dey + e$71 in the second

equation and multiplying the third equation with 2e7*! lead to

(3en™t —de + el en ) 4 27| (—Ls) Fep |2

=27((Ls — Lo)uy" " e ™),

(eZ“7 3(3’”rl —dey + egfl)

= (Gsey ™, 3ep Tt —del + el ) + (G5 — Go)oN T Bep ! —del + e )
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+B(ep ™t Beptt —delp + el ) + (ef THH( 5%, Bel Tt —delf +ef )
O ) — B, 30 —deg+ e ),
2en (3T — 4el 4 )
= 67+1(H(7‘;\}”+1),Seg+1 —del+ enfl)

+6?+1(H(q;f\}n+l) —H( On+1) 3¢0 ,n+1 4¢0, +¢On 1).

Summing up the above equations yields

27|[(~Ls) e + (||(1+135)6Z+1||2 = 1T + Lo)eg|®
I+ L5)2eg™ = e)|® + 11+ Ls)(eg™ — 2e5 + g™

— (I + £5)(2e — e~ H)II*) + (He"“ll2 legll® + l[2ep™ — egll?

g™ — 23+ eZ*IP = 1265 = e5TH P + e — e

+|2en T — el 4 |entl — 2e" 4 e 1|2 |2em — e 1|2
={27((Ls = Lo)uy™ ™ el ™)} + {=((Gs — Go)oN" " Bey ™ — def + 1)}

F A HEGY) — HEY), 3T def )

+{B:L+1(H(Q_Sf\}n+1) 7H( 0n+1) 3¢0 ;n+1 4¢0, +Q§On 1)}

4
= Zli + 27'(/.3(;ez+1 emth).

»Cp
i=1

We next estimate the four terms one by one. By L5 = L, the first term can be
controlled as

|11 = [27((Ls — Loy et

= [27((Ls — Lo)(—L5) "2 p" ! (—L5) et

< Oro' + Cll(~La) eyt 2,
where the inequality holds due to Lemma 4.1. The second term is bounded by

T2 = |((Gs — Go)dN" ", 3eptt —del + e )|

< [27((Gs — Go) o™ Lo ™)+ 27((Gs — Go)oi™ " (L5 — Loy ")
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= [27((Gs — Go)(—Ls)2¢N" ", (— L) Zelt )]
+127((Gs — Go)o " (Ls — Lo)uX™ ™))
< Ors' + Zl|(=Lo) et 2,

where we use the expression Gs — Gy = (Ls — Lo)(Ls + Lo + 21). Similarly, the third
term can be estimated as

|5 = PO (H (@) — HGY™),3ept! — def + 57|

< 20 (H (N — H(@R™), Lsep ™)
+2r 0 (H (@Y — H(OY), (£s — Lo)uy™ )|

= |20 (= L) (H(ON") = H(@Y"™), (—Ls)2ep )]
+2r0Hr (H (@3 — H(oW™), (£s — Lo)uy™ ™)

< Cr([H@Y™) = H@Y IR+ (=Ls)2 (H($X"™) = H@¥" )P
+ Sl (Lot + orat

< Or(|2€f — e M2+ I+ Ls)(2ey — e ™I?) + TlLaep 2 + Cro,

where in the last second inequality we note with

¢) = /Q{F(¢>)} - §¢>2 +Cx

that
H 7o,n+1 _H 0n+1 U( ?Vn—i_l) U(_?\/n+1)
( N ) ( 70, +1 0n+1
ST
B U( ;5\,[n+1) _ U( ?\}nJrl) N U( 0n+1)
B *5n+1) \/ 6n+1 \/W 5oty
W(dy

L WO - Wy
\/ 6n+1 +\/W 0n+1

Since \\/W 55", |\/W PN U (%" )| are bounded, using Lemma 3.2
with above sphttmg yields

I(~L5)* (H (@) — H@% )P
( £5( ( 5n+1) H( ’?\}n+1))7H(*(13\,[n+1) _ H( ’?\}n—i-l))
S C=LUE@Y™) — U@ ), U@ ™) - U@y"™)
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+C(,,¢5(W(-&n+1) = WO, W) = W)
< 0(725(262 ), 2e4 — ey 1)+C(2e¢ e¢_1,26; ey H
< C(I(I + 56)(26$ —eg DI +112e5 — 3,

where the last inequality follows from inequality (A.4). The last term Iy is controlled
by

n 79, m R
Is| = |ep ™ (H (o) — HGN), 863" — 49" + 0" )|
76,7 20, n
= [2r(H @) — H@Y™), e Loy
< O7l|2e5 — eg_lH2 + Crlem 2
Then we arrive at

i n
27([(=Ls)2 el P +

1 1 " "
S0+ L P+ (5 - On) I+ Loaeg™ - e

B

= Cnlertp o+ (5 - on) (gt + e - epIP)

1 n n—
< Tl=Lo)ber i + ||<I+£5>eg||2+(2+07) 0T+ L5)2el — en )P

(G

+(1+C71)|er? + (g + CT) (||e:;|\2 + [|2e5 — 645 H12) + ot

Finally applying the discrete Gronwall’s inequality on the above inequality leads to
the desired estimate

e+ e 4+ (T + La)el ™| < O(T, o). .

Acknowledgments

The work of Q. Du is supported in part by the NSF DMS 2309245 and DMS-
1937254. The work of J. Yang is supported by the National Science Foun-
dation of China (NSFC-12271240), and the Shenzhen Natural Science Fund
(RCJC20210609103819018).

ORCID

Qiang Du® https://orcid.org/0000-0002-1067-8937
Kai Wang © https: / /orcid.org /0000-0002-9219-875X
Jiang Yang ® https://orcid.org/0000-0002-6431-7483

References

1. C. V. Achim, M. Karttunen, K. R. Elder, E. Granato, T. Ala-Nissila and S. C. Ying,
Phase diagram and commensurate—incommensurate transitions in the phase field crys-
tal model with an external pinning potential, Phys. Rev. E 74 (2006) 021104.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Nonlocal phase-field crystal models in two dimensions 2137

. M. Ainsworth and Z. Mao, Phase field crystal based prediction of temperature and

density dependence of elastic constants through a structural phase transition, Phys.
Rev. B 100 (2019) 104101.

M. Ainsworth and Z. Mao, Fractional phase-field crystal modelling: Analysis, approx-
imation and pattern formation, IMA J. Appl. Math. 85 (2020) 231-262.

B. Aksoylu and M. L. Parks, Variational theory and domain decomposition for non-
local problems, Appl. Math. Comput. 217 (2011) 6498-6515.

F. Andreu, J. M. Mazén, J. D. Rossi and J. Toledo, Nonlocal Diffusion Problems,
Mathematical Surveys and Monographs, Vol. 165 (American Mathematical Society,
2010).

V. Ankudinov, Structural phase-field crystal model for Lennard-Jones pair interaction
potential, Model. Simul. Mater. Sci. Eng. 30 (2022) 064002.

. D. Applebaum, Levy Processes and Stochastic Calculus, Cambridge Studies in

Advanced Mathematics, Vol. 93 (Cambridge Univ. Press, 2004).

E. Askari, F. Bobaru, R. B. Lehoucq, M. L. Parks, S. A. Silling and O. Weckner,
Peridynamics for multiscale materials modeling, J. Phys. Conf. Ser. 125 (2008) 12—-78.
P. W. Bates and A. Chmaj, An integrodifferential model for phase transitions: Sta-
tionary solutions in higher space dimensions, J. Statist. Phys. 95 (1999) 1119-1139.
F. Bobaru and M. Duangpanya, The peridynamic formulation for transient heat con-
duction, Internat. J. Heat Mass Transfer 53 (2010) 4047-4059.

F. Bobaru, M. Yang, L. F. Alves, S. A. Silling, E. Askari and J. Xu, Convergence,
adaptive refinement and scaling in 1D peridynamics, Internat. J. Numer. Methods
Engrg. 77 (2009) 852-877.

N. Burch and R. B. Lehoucq, Classical, nonlocal, and fractional diffusion equations
on bounded domains, Internat. J. Multiscale Comput. Eng. 9 (2011) 661-674.

O. Burkovska and M. Gunzburger, On a nonlocal Cahn-Hilliard model permitting
sharp interfaces, Mod. Meth. Appl. S. 31 (2021) 1749-1786.

X. Chen and M. Gunzburger, Continuous and discontinuous finite element methods
for a peridynamics model of mechanics, Comput. Methods Appl. Mech. Engrg. 200
(2011) 1237-1250.

M. Cheng and J. Warren, An efficient algorithm for solving the phase field crystal
model, J. Comput. Phys. 227 (2008) 6241-6248.

Q. Du, Nonlocal modeling, analysis and computation, CBMS-NSF Regional Conf.
Series in Applied Mathematics, Vol. 94 (2020).

Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, Analysis and approximation of
nonlocal diffusion problems with volume constraints, STAM Rev. 56 (2012) 676-696.
Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, A nonlocal vector calculus, non-
local volume-constrained problems, and nonlocal balance laws, Math. Models Methods
Appl. Sci. 23 (2013) 493-540.

Q. Du, Y. Tao, X. Tian and J. Yang, Asymptotically compatible discretization of
multidimensional nonlocal diffusion models and approximation of nonlocal Green’s
functions, IMA J. Numer. Anal. 39 (2019) 607-625.

Q. Du and J. Yang, Asymptotically compatible spectral approximations of nonlocal
Allen—Cahn equations, SIAM J. Numer. Anal. 54 (2016) 1899-1919.

Q. Du and J. Yang, Fast and accurate implementation of Fourier spectral approxi-
mations of nonlocal diffusion operators and its applications, J. Comput. Phys. 332
(2017) 118-134.

O. Eder, B. Kunsch, M. Suda, E. Erdpresser and H. Stiller, The structure factor of
liquid copper at 1319K and 1833K, J. Phys. F: Metal Phys. 10 (1980) 183.



2138 Q. Du, K. Wang & J. Yang

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilib-
rium processing using phase field crystals, Phys. Rev. E 70 (2004) 051605.

K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal
growth, Phys. Rev. Lett. 88 (2002) 245701.

H. Emmerich, H. Léwen, R. Wittkowskib, T. Gruhna, G. I. Téth, G. Tegze and
L. Granésy, Phase-field-crystal models for condensed matter dynamics on atomic
length and diffusive time scales: An overview, Adv. Phys. 61 (2012) 665-743.

E. Emmrich and O. Weckner, On the well-posedness of the linear peridynamic model
and its convergence towards the Navier equation of linear elasticity, Commun. Math.
Sci. 5 (2007) 851-864.

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends
in Nonlinear Analysis (Springer, 2003), pp. 153-191.

H. Gomez and X. Nogueira, An unconditionally energy-stable method for the phase
field crystal equation, Comput. Methods Appl. Mech. Engrg. 249/252 (2012) 52—61.
M. Greenwood, N. Provatas and J. Rottler, Free energy functionals for efficient phase
field crystal modeling of structural phase transformations, Phys. Rev. Lett. 105 (2010)
045702.

Z. Hu, S. Wise, C. Wang and J. Lowengrub, Stable and efficient finite-difference
nonlinear-multigrid schemes for the phase-field crystal equation, J. Comput. Phys.
228 (2009) 5323-5339.

B. Kilic and E. Madenci, Coupling of peridynamic theory and the finite element
method, J. Mech. Mater. Struct. 5 (2010) 707-733.

J. Liu and L. Mieussens, Analysis of an asymptotic preserving scheme for linear kinetic
equations in the diffusion limit, STAM J. Numer. Anal. 48 (2010) 1474-1491.

R. Macek and S. A. Silling, Peridynamics via finite element analysis, Finite Elem.
Anal. Des. 43 (2007) 1169-1178.

T. Mengesha and Q. Du, Analysis of a scalar nonlocal peridynamic model with a sign
changing kernel, Discrete Contin. Dyn. Syst. Ser. B 18 (2013) 1415-1437.

S. K. Mkhonta, K. R. Elder and Z. F. Huang, Exploring the complex world of two-
dimensional ordering with three modes, Phys. Rev. Lett. 111 (2013) 035501.

G. Palatucci, O. Savin and E. Valdinoci, Peridynamic analysis of fiber-reinforced
composite materials, J. Mech. Mater. Struct. 7 (2012) 45-84.

N. Provatas, J. A. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld and
K. R. Elder, Using the phase-field crystal method in the multiscale modeling of
microstructure evolution, JOM 59 (2007) 83.

P. Seleson, M. Parks, M. Gunzburger and R. Lehoucq, Peridynamics as an upscaling
of molecular dynamics, Multiscale Model. Simul. 8 (2009) 204-227.

M. Seymour and N. Provatas, Structural phase field crystal approach for modeling
graphene and other two-dimensional structures, Phys. Rev. B 93 (2016) 035447.

J. Shen and J. Xu, Convergence and error analysis for the scalar auxiliary variable
(SAV) schemes to gradient flows, SIAM J. Numer. Anal. 56 (2018) 2895-2912.

J. Shen, J. Xu and J. Yang, The scalar auxiliary variable (SAV) approach for gradient
flows, J. Comput. Phys. 353 (2018) 407-416.

J. Shen, J. Xu and J. Yang, A new class of efficient and robust energy stable schemes
for gradient flows, SIAM Rev. 61 (2019) 474-506.

S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range
forces, J. Mech. Phys. Solids 48 (2000) 175-209.

S. A. Silling and E. Askari, A meshfree method based on the peridynamic model of
solid mechanics, Comput. Struct. 83 (2005) 1526-1535.



45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

Nonlocal phase-field crystal models in two dimensions 2139

S. A. Silling and R. B. Lehoucq, Peridynamic theory of solid mechanics, Adv. Appl.
Mech. 44 (2010) 73-168.

S. A. Silling, O. Weckner, E. Askari and F. Bobaru, Crack nucleation in a peridynamic
solid, Internat. J. Fracture 162 (2010) 219-227.

N. Smith and N. Provatas, Generalization of the binary structural phase field crystal
model, Phys. Rev. Mater. 1 (2017) 053407.

I. Starodumov, V. Ankudinov and I. Nizovtseva, A review of continuous modeling of
periodic pattern formation with modified phase-field crystal models. Eur. Phys. J.
Spec. Top. 231 (2022) 1135-1145.

J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability,
Phys. Rev. A 15 (1977) 319.

X. Tian and Q. Du, Analysis and comparison of different approximations to nonlocal
diffusion and linear peridynamic equations, SIAM J. Numer. Anal. 51 (2013) 3458—
3482.

. X. Tian and Q. Du, Asymptotically compatible schemes and applications to robust

discretization of nonlocal models, SIAM J. Numer. Anal. 52 (2014) 1641-1665.

S. van Teeffelen, R. Backofen, A. Voigt and H. Lowen, Derivation of the phase-field-
crystal model for colloidal solidification, Phys. Rev. E 79 (2009) 051404.

H. Wang and H. Tian, A fast Galerkin method with efficient matrix assembly and
storage for a peridynamic model, J. Comput. Phys. 240 (2012) 49-57.

Y. Waseda and K. Suzuki, Structure factor and atomic distribution in liquid metals
by X-ray diffraction, Phys. Status Solidi (b) 49 (1972) 339-347.

S. Wise, C. Wang and J. Lowengrub, An energy-stable and convergent finite-difference
scheme for the phase-field crystal equation, SIAM J. Numer. Anal. 47 (2009) 2269—
2288.

J. Yarnell, M. Katz, R. Wenzel and S. Koenig, Structure factor and radial distribution
function for liquid argon at 85K, Phys. Rev. A 7 (1973) 21-30.

K. Zhou and Q. Du, Mathematical and numerical analysis of linear peridynamic
models with nonlocal boundary conditions, SIAM J. Numer. Anal. 48 (2010) 1759—
1780.



