THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November
© 2024. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

Impacts of Data Preprocessing and Sampling Techniques on Solar Flare Prediction from

Multivariate Time Series Data of Photospheric Magnetic Field Parameters

MohammadReza EskandariNasab' , Shah Muhammad Hamdi @, and Soukaina Filali Boubrahimi

Received 2024 March 17; revised 2024 September 3; accepted 2024 September 7; published 2024 October 25

Abstract

The accurate prediction of solar flares is crucial due to their risks to astronauts, space equipment, and satellite
communication systems. Our research enhances solar flare prediction by employing sophisticated data preprocessing and
sampling techniques for the Space Weather Analytics for Solar Flares (SWAN-SF) data set, a rich source of multivariate
time series data of solar active regions. Our study adopts a multifaceted approach encompassing four key methodologies.
Initially, we address over 10 million missing values in the SWAN-SF data set through our innovative imputation
technique called fast Pearson correlation-based k-nearest neighbors imputation. Subsequently, we propose a precise
normalization technique, called LSBZM normalization, tailored for time series data, merging various strategies (log,
square root, Box—Cox, Z-score, and min—max) to uniformly scale the data set’s 24 attributes (photospheric magnetic field
parameters), addressing issues such as skewness. We also explore the “near decision boundary sample removal”
technique to enhance the classification performance of the data set by effectively resolving the challenge of class overlap.
Finally, a pivotal aspect of our research is a thorough evaluation of diverse oversampling and undersampling methods,
including SMOTE, ADASYN, Gaussian noise injection, TimeGAN, Tomek links, and random undersampling, to
counter the severe imbalance in the SWAN-SF data set, notably a 60:1 ratio of major (X and M) to minor (C, B, and FQ)
flaring events in binary classification. To demonstrate the effectiveness of our methods, we use eight classification
algorithms, including advanced deep-learning-based architectures. Our analysis shows significant true skill statistic scores,
underscoring the importance of data preprocessing and sampling in time-series-based solar flare prediction.

Unified Astronomy Thesaurus concepts: Solar flares (1496); Solar active regions (1974); Solar active region

https://doi.org/10.3847/1538-4365 /ad7c4a

CrossMark

Computer Science Department, Utah State University, Logan, UT 84322, USA; reza.eskandarinasab@usu.edu, s.hamdi@usu.edu, soukaina.boubrahimi @usu.edu

magnetic fields (1975); Time series analysis (1916); Classification (1907); Space weather (2037); Neural

networks (1933)

1. Introduction

Solar flares pose a significant threat to humans and equipment
in space due to their intense radiation (J. J. Curto 2020). These
events can cause sudden and substantial increases in radiation,
including extreme ultraviolet, X-rays, and gamma rays, across
the electromagnetic spectrum. Since 1974, the National Oceanic
and Atmospheric Administration’s (NOAA) Geostationary
Operational Environmental Satellites (GOES; W. P. Menzel &
J. F. W. Purdom 1994) have been detecting and classifying solar
flares within the 1-8 A wavelength spectrum. The classification
of these flares is logarithmically based on their peak soft X-ray
flux, with categories labeled as A, B, C, M, and X, in ascending
order of intensity, starting from a flux of 10 Wm 2
Therefore, an X-class flare’s peak flux is typically 10 times
more intense than that of an M-class flare and 100 times more
intense than a C-class flare.

Recent research on flare prediction has focused on data science-
based approaches, particularly using the spatiotemporal magnetic
field data provided by the Helioseismic Magnetic Imager (HMI;
P. H. Scherrer et al. 2012; J. Schou et al. 2012; J. T. Hoeksema
et al. 2014) on board the Solar Dynamics Observatory (SDO;
W. D. Pesnell et al. 2012; A. Ahmadzadeh et al. 2021). This data
is transformed into multivariate time series (MVTS) instances for

! Corresponding author.

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

temporal window-based flare prediction (R. A. Angryk et al.
2020). In these instances, 24 photospheric magnetic field
parameters, as outlined in Table 1 (M. G. Bobra & S. Couvidat
2015), are presented as time series, based on two key time
windows: the prediction window (the period before the flare
occurs) and the observation window (the period during which the
active region (AR) parameter values are measured). The MVTS
instances are then labeled with one of five classes, ranging from
flare-quiet (FQ) instances (including both FQ and A class) to flare
classes of increasing intensity (B, C, M, X). This classification
approach has shown enhanced accuracy in predicting flares
compared to models that use single time stamp-based magnetic
field vector classification. A pivotal resource in this area of
research is the Space Weather Analytics for Solar Flares (SWAN-
SF) data set (R. A. Angryk et al. 2020), derived from solar
photospheric vector magnetograms by the Space weather HMI
Active Region Patch (SHARP) series (M. G. Bobra et al. 2014).
This data set is notable for its accurate reflection of the class
imbalance, which is inherent in solar flare prediction. It features a
60:1 imbalance ratio for GOES M- and X-class flares (major
flaring) compared to B-, C-, and FQ-class flares (minor flaring),
and an even more pronounced 800:1 imbalance ratio for X-class
flare instances against FQ instances.

Data collected to address real-world problems is seldom clean
or ready for immediate use, regardless of the thoroughness of the
screening process (A. Behfar et al. 2023). Such data sets often
inherit challenges related to the nature of the subject under study
or the data collection strategy. These challenges, which include
missing values, multiscaled attributes, skewness, class overlap,
and class imbalance, are prevalent in many nonlinear dynamical

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

EskandariNasab, Hamdi, & Filali Boubrahimi

Table 1
AR Magnetic Field Parameters in the SWAN-SF Data Set
Abbreviation References Description Formula
ABSNIJZH K. D. Leka & G. Barnes (2003) Absolute value of the net current helicity Hepo < 12°B; - L|
EPSX G. H. Fisher et al. (2012) Sum of x-components of normalized Lorentz force OF, Z;;fz
EPSY G. H. Fisher et al. (2012) Sum of y-components of normalized Lorentz force OF, o 7;?-‘2'82
EPSZ G. H. Fisher et al. (2012) Sum of z-components of normalized Lorentz force SE B + B} — B2)
4 EBZ
MEANALP K. D. Leka & A. Skumanich (1999) Mean characteristic twist parameter, o Qpotal X 221;12?:
MEANGAM K. D. Leka & G. Barnes (2003) Mean angle of field from radial 7 = Ly arctan (ﬂ)
N B,
MEANGBH K. D. Leka & G. Barnes (2003 Mean gradient of the horizontal field =5 | (0B, \2 o8y \2
e : VBl = oy (5) + ()
MEANGBT K. D. Leka & G. Barnes (2003 Mean gradient of the total field [(98\2 o8\?
(2009 e VBl = 75 (2) + (%)
MEANGBZ K. D. Leka & G. Barnes (2003) Mean gradient of the vertical field o] = (08, \2 o8, \?
IVB| = NZ\/ (T) %
MEANIZD K. D. Leka & G. Barnes (2003) Mean vertical current density T o L Z(f:)B,\ _ iﬁ)
< N Ox y
MEANIJZH K. D. Leka & G. Barnes (2003) Mean current helicity (B, contribution) H. x %ZBZ J,
MEANPOT J. Wang et al. (1996) Mean photospheric magnetic free energy p o %Z(BO'JS — BPot)2
MEANSHR J. Wang et al. (1996) Mean shear angle T = LS arccos BObsBPot
N >\ B0bs | gPot |
R_VALUE C. J. Schrijver (2007) Sum of flux near polarity inversion line ® = ¥|Bpos| dA (within R mask)
SAVNCPP K. D. Leka & G. Barnes (2003) Sum of the modulus of the net current per polarity Joum X |ZBz+ JdA| + |EB; J.dA|
SHRGT45 K. D. Leka & G. Barnes (2003) Fraction of area with shear >45° Area with shear >45°/total area
TOTBSQ G. H. Fisher et al. (2012) Total magnitude of Lorentz force Fx YB?
TOTEX G. H. Fisher et al. (2012) Sum of x-components of Lorentz force F, o —Y_B.B.dA
TOTFY G. H. Fisher et al. (2012) Sum of y-components of Lorentz force F, o >B,B.dA
TOTFZ G. H. Fisher et al. (2012) Sum of z-components of Lorentz force F. o SXB? + Bf — Bzz)dA
TOTPOT K. D. Leka & G. Barnes (2003) Total photospheric magnetic free energy density Prot € SABOYS — BPY2dA
TOTUSIJH K. D. Leka & G. Barnes (2003) Total unsigned current helicity He < 2B -
TOTUSIZ K. D. Leka & G. Barnes (2003) Total unsigned vertical current oo = 2| dA
USFLUX K. D. Leka & G. Barnes (2003) Total unsigned flux & =3B, dA

systems such as solar flare prediction (R. A. Angryk et al. 2020),
and auditory attention detection (M. EskandariNasab et al.
2024c). For instance, the distribution of peak X-ray fluxes from
solar flares follows a strong power law, covering a wide range
across multiple orders of magnitude. This distribution is often
explained by viewing flares as random events that exhibit self-
organized criticality (M. J. Aschwanden et al. 2016). This
distribution points to a significant class imbalance in flare
occurrences. For example, data from solar cycle 23 (1996-2008)
indicates that around half of the ARs (S. K. Dhakal &
J. Zhang 2023) produced at least one C-class flare, but less
than 2% produced an X-class flare (M. K. Georgoulis 2012).
Moreover, solar cycle 24 (2009 to present) showed a similar

trend in major flare occurrences despite having a similar number
of ARs as cycle 23, emphasizing the criticality of addressing the
class imbalance in flare prediction (A. Ahmadzadeh et al. 2021).
Such significant challenges emphasize the necessity of develop-
ing sophisticated machine learning-based approaches for solar
flare prediction.

Previous studies on solar flare prediction have concentrated
on the development and optimization of machine learning
algorithms to improve prediction accuracy (N. Nishizuka et al.
2017, 2018; K. D. Leka et al. 2019; S. Sinha et al. 2022).
Among photospheric vector magnetogram-based methods,
M. G. Bobra & S. Couvidat (2015) utilized preflare
instantaneous values of AR magnetic field parameters to

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

Low TSS Score

Classification

RAW SWAN-SF
e 10 Million Missing Values

FPCKNN Imputation c

EskandariNasab, Hamdi, & Filali Boubrahimi

SWAN-SF
Zero Missing Values

e Varying Scales & Skewness
e ClassOverlap
e ClassImbalance

1

\/

e Varying Scales & Skewness
e ClassOverlap
e ClassImbalance

LSBZN Normalization
2

SWAN-SF

e Zero Missing Values

Near Decision Boundary
Sample Removal o

SWAN-SF

Zero Missing Values

e 0Oto1Scale & No Skewness
e ClassOverlap
e Class Imbalance

3

\ 4

e 0Oto1Scale & No Skewness
e NoClass Overlap
e ClassImbalance

Over- and Under-sampling
4

Pre-processed SWAN-SF

e Zero Missing Values
e 0to1Scale & No Skewness

Classification

e NoClass Overlap
e ClassBalance

» High TSS Score

Figure 1. Our four essential data preprocessing and sampling techniques to enhance classification performance on the SWAN-SF data set.

forecast solar flares with a support vector machine (SVM)
classifier. S. M. Hamdi et al. (2017) proposed a flare prediction
method by extracting time series samples of AR parameters and
employing k-nearest neighbors (k-NN) classification on the
univariate time series. A. Ahmadzadeh et al. (2021) addressed
specific challenges in solar flare forecasting, such as class
imbalance and temporal coherence. They discussed strategies
like undersampling and oversampling to manage class
imbalance in the SWAN-SF data set and emphasized the
importance of proper data splitting and validation techniques to
ensure model robustness against temporal coherence.
A. A. M. Muzaheed et al. (2021) utilized long short-term
memory (LSTM) networks for effective end-to-end classifica-
tion of MVTS in solar flare prediction, outperforming
traditional models and underscoring the potential of deep
learning. Similarly, S. M. Hamdi et al. (2022) developed a
novel approach that combines graph convolutional networks
with LSTM networks, effectively capturing both spatial and
temporal relationships in solar flare prediction and surpassing
other baseline methods. K. Alshammari et al. (2022) addressed
the forecasting of magnetic field parameters related to flaring
events using a deep sequence-to-sequence learning model with
batch normalization and LSTM networks.

Unlike previous studies on solar flare prediction that
primarily concentrated on enhancing classification methodolo-
gies, our study focuses on novel and comprehensive data
preprocessing and sampling techniques for improving the data
set quality. It addresses challenges within the SWAN-SF
data set, including over 10 million missing values, significant
class overlap and imbalance, and heterogeneity in attribute
magnitudes across its photospheric magnetic field parameters.

Techniques such as missing value imputation, which is crucial
for creating a complete data set, and normalization, essential for
harmonizing the magnitudes of heterogeneous attributes, play a
key role in our methodologies. These techniques assist in
resolving skewness, facilitating faster learning, and ensuring
numerical stability. Moreover, addressing class overlap and
employing sampling techniques such as oversampling and
undersampling are essential for managing class imbalance,
enhancing minority-class representation, and reducing major-
ity-class dominance. Our contributions are as follows:

1. Introducing an advanced imputation technique called fast
Pearson correlation-based k-NN (FPCKNN) imputation
to effectively address missing values, ensuring high data
quality and realism.

2. Introducing a comprehensive normalization technique
called LSBZM (log, square root, Box—Cox, Z-score, and
min-max) normalization, specifically tailored for time
series data. This technique merges various strategies to
uniformly scale the data set’s 24 attributes (photospheric
magnetic field parameters), effectively addressing skew-
ness and ensuring data consistency.

3. Applying “near decision boundary sample removal
(NDBSR)” techniques to enhance classification perfor-
mance by resolving class overlap.

4. Evaluating of diverse oversampling and undersampling
methods to counter the significant imbalance in the
SWAN-SF data set.

In Figure 1, we summarize all the proposed preprocessing
techniques and their respective order of importance to enhance
the classification performance on the SWAN-SF data set.

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

EskandariNasab, Hamdi, & Filali Boubrahimi

Partitions of SWAN-SF Dataset

Partition 1: Partition 2: Partition 3: Partition 4: Partition 5:
Start: 2010-05 Start: 2012-03 Start: 2013-10 Start: 2014-06 Start: 2015-03
End: 2012-03 End: 2013-10 End: 2014-06 End: 2015-03 End: 2018-08

Figure 2. This figure presents a timeline indicating the occurrence of ARs within each partition of SWAN-SF. The first number represents the year, while the second

number denotes the month.

Imbalanced Ratio: (FQ + B+ C) / (M + X)

Partition5 B 751
B:5,924 C:5,763 X:19

Partition4 [43:1
B:846 C:5,956 X:153

Partition3 I 291
B:685 C:5,639 X:136

Partition2 N 621
B:4,978 C:8,810 X:72

Partition1 L PEeH
B:5,692 C:6,416 X:165

0 20,000 40,000 60,000 80,000
Sample Size

Figure 3. A stacked bar chart representing the population distribution of various flare classes in each partition of the SWAN-SF benchmark data set over time. Flare
classes X, M, C, and B are derived and confirmed using the GOES classification, whereas FQ represents instances of FQ and those classified as A class by GOES. This
visualization is based on the current methodology of time series slicing used in SWAN-SF, which involves steps of 1 hr, an observation period of 12 hr, and a
prediction span of 24 hr. Each slice of the MVTS is categorized according to the most intense flare reported within its prediction window.

This paper is further organized as follows: Section 2 details
the SWAN-SF data set and its challenges. Section 3 delves into
our comprehensive methodologies. Specifically, Section 3.1
presents our innovative approach for imputation and normal-
ization, while Sections 3.2 and 3.3 provide an in-depth
discussion of our advanced sampling techniques. Sections 4
and 5 present the results of our data preprocessing and
sampling methods and discuss the classification algorithms
used for MVTS classification. Finally, Section 6 concludes the
paper with a summary and a look toward future work. For
hyperparameters, notations, and additional figures, refer to
Appendices A, B, and C.

2. SWAN-SF Data Set
2.1. SWAN-SF Benchmark Data Set

In our study, the SWAN-SF data set (R. A. Angryk et al.
2020) is employed as a foundational data set for solar flare
prediction, leveraging MVTS of photospheric magnetic field
parameters. It classifies solar flares into five categories: GOES X,
M, C, B, and FQ, where class FQ covers both FQ and GOES
A-class events. The data set is segmented into five partitions,
each part maintaining a roughly equal distribution of X- and
M-class flares and aligning with a specific AR time frame. These
partitions are organized in a sequential manner, as shown in
Figure 2. Figure 3 displays the class distribution across these
partitions. The data set includes time series data from solar
photospheric vector magnetograms and NOAA'’s flare history,
sourced from the SHARP. Each MVTS entry in SWAN-SF
comprises 24 time series of magnetic field parameters from the
ARs, as listed in Table 1. These series are recorded at 12 minute

intervals over 12 hr, totaling 60 time steps. In this paper, T = 60
denotes the time steps, and N =24 the magnetic field
parameters. Our experiment involves binary classification within
MVTS data to distinguish between major-flaring (classes X and
M) and minor-flaring (classes C, B, and FQ) ARs.

2.2. Missing Values in SWAN-SF

In the realm of time series classification, particularly in the
context of solar flare prediction using SWAN-SF MVTS data,
the significance of missing value imputation is paramount. This
process is vital as it directly influences the accuracy and
reliability of subsequent analyses. Missing values, often
resulting from sensor malfunctions, data transmission errors,
or human oversight, pose a considerable challenge, especially
in data sets such as SWAN-SF, which contains over 10 million
missing values across its five partitions. As outlined in Table 2,
the distribution and volume of missing values vary for different
attributes, with some, such as the R-value, exhibiting a
significantly higher number of not a number (NaN) values. In
machine learning, missing values can severely compromise
model accuracy, distorting the data distribution and structure,
and leading to flawed pattern recognition and biased training
(T. Emmanuel et al. 2021). This issue is exacerbated in time
series classification, where sequences are categorized based on
time-dependent patterns, necessitating data continuity and
completeness. Classification algorithms, such as SVM and
neural networks, generally require complete data sets; missing
values, if not adequately addressed, can skew model outcomes,
resulting in inaccurate classifications (T. Emmanuel et al.
2021).

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

EskandariNasab, Hamdi, & Filali Boubrahimi

Missing Value Distribution for AR Magnzztc)l;iild Parameters in the SWAN-SF Data Set
Abbreviation Partition 1 Partition 2 Partition 3 Partition 4 Partition 5
R_VALUE 2,399,220 2,934,918 1,361,095 1,748,394 2,755,911
SHRGT45 81,406 134,585 84,113 103,943 185,217
TOTBSQ 652 93,300 2718 4844 4964
TOTFX 652 93,300 2718 4844 4964
TOTFY 652 93,300 2718 4844 4964
TOTFZ 652 93,300 2718 4844 4964
TOTPOT 652 93,300 2718 4844 4964
TOTUSJH 652 93,300 2718 4844 4964
TOTUSJZ 652 93,300 2718 4844 4964
USFLUX 652 93,300 2718 4844 4964
ABSNIJZH 652 93,300 2718 4844 4964
SAVNCPP 652 93,300 2,725 4844 4964

Note. For the attributes that are not listed in this table, there are zero missing values.

The choice between imputation methods should be guided
by the specific characteristics of a data set and the objectives of
the analysis. For instance, in time series data, where temporal
patterns and correlations are significant, k-NN might be more
appropriate. However, mean imputation might suffice in cases
where data is randomly missing and lacks intricate patterns
(D. P. Anil Jadhav & K. Ramanathan 2019). In dealing with
imbalanced data sets such as SWAN-SF, where the major-
flaring class may have limited samples, the handling of missing
values becomes a critical task. The potential loss of valuable
information represents a significant concern, particularly given
that there may only be approximately 1000 samples for the
major-flaring class per partition. Ignoring or deleting these
samples with missing values could lead to a substantial
reduction in the already scarce data, adversely affecting the
model’s ability to learn and predict accurately. Therefore, it is
crucial to employ effective imputation techniques that can
preserve and utilize every possible instance of the data set. This
approach not only maintains the integrity of the data set but
also ensures that the predictive model is trained on the most
comprehensive data available, enhancing its performance and
reliability in forecasting solar flare events.

2.3. Multiscaled Features in SWAN-SF

Normalization is a critical preprocessing step in machine
learning and data analysis, crucial for managing data sets that
feature attributes of different scales and distributions. This
technique adjusts the data features to a uniform scale,
minimizing the influence of outliers and skewed data. It
guarantees that each attribute equally influences the analysis,
boosting the accuracy and efficiency of models, especially
those sensitive to data scale. Figure 4 shows the minimum and
maximum values of each attribute across all the partitions of
the SWAN-SF data set. It demonstrates the heterogeneous
scales of these values and the complexity involved in
normalizing them. Although the concept seems simple, its
importance is often overlooked. There are various normal-
ization methods, including linear, nonlinear, and data-specific

transformations, which can be applied either globally or
locally. Global normalization uses the data set’s overall
statistics by adjusting based on the minimum and maximum
values of each feature. In contrast, local normalization focuses
on adjusting for local extremes within subsets of data, treating
each part distinctly. Beyond just scaling, normalization tackles
issues such as skewness in data distribution, which can
introduce bias into machine learning models. Skewed data
can lead to inaccurate predictions by overemphasizing certain
parts of the data. Normalization helps in differentiating attribute
values across different classes, simplifying classification tasks
for models. Relying on a single method, such as min—-max or
Z-score normalization, may not suffice for complex data types
such as MVTS, where each time series has unique character-
istics. Table 3 identifies the attributes of the SWAN-SF data set
that are not ideal for normalization using the Z-score technique.
These attributes are also unsuitable for min—max normalization,
as neither method effectively addresses left or right skewness.
Advanced techniques that are tailored to the specific attributes
of the data can normalize more effectively. Effective normal-
ization is essential, as it enables a machine learning model to
accurately interpret the inherent relationships among variables
rather than being skewed by their disparate scales. This critical
procedure substantially impacts the performance of machine
learning models in data analysis tasks.

2.4. Class Overlap in SWAN-SF

Class overlap in data sets occurs when different categories or
groups within the data exhibit similar or identical character-
istics, making it challenging to distinguish them accurately.
This issue is common in real-world data where the boundaries
between classes are not always clear. The impact of class
overlap on classification performance is significant. When
classes significantly overlap, machine learning models have
difficulty classifying new instances accurately, leading to a
decrease in both accuracy and stability. This happens because
the model struggles to find an effective decision boundary that
can separate the classes. Consequently, the model may either

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

EskandariNasab, Hamdi, & Filali Boubrahimi

Min and Max values for Active Region Magnetic Field Parameters

le+28[o Max
le+24}f o Min l

le+20

le+16

le+12

le+08

le+04 I [
0e+00 H

-le+04
-le+08
-le+12
-le+16
-le+20
-le+24
-le+28

Values (Log Scale)

EPSX

R_VALUE!
TOTUSJH|
TOTBSQ
TOTPOT!
TOTUS)Z
ABSNJZH
SAVNCPP|
USFLUX
TOTFZ
MEANPOT}

EPSY

EPSZ
MEANSHR}
SHRGT45

MEANGAM
MEANGBT}
MEANGBZ
MEANGBH -
MEANJZH -
TOTFY
MEAN)ZD -
MEANALP
TOTFX|

Parameters

Figure 4. This plot demonstrates the significant variation in minimum and maximum values across different attributes of the SWAN-SF data set. The diverse scales
underscore the need for an advanced normalization technique to effectively analyze and process the data.

overfit to the training data, excessively adjust to the intricacies
of the overlap, or exhibit suboptimal performance due to
insufficient generalization capacity, otherwise known as under-
fitting. To mitigate the effects of class overlap, methods such as
NDBSR can be employed to improve the model’s ability to
distinguish between overlapping classes. Figure 5 illustrates the
decision boundary before and after the removal of class
overlap. The elimination of class overlap leads to a more
precise decision boundary, thereby enhancing classification
performance on test data.

Since the mid-1970s, the detection and categorization of
X-ray flares have been conducted by NOAA’s GOES within
the 1-8 A wavelength spectrum. Flares are assessed on a
logarithmic scale from A to X, indicating ascending strength,
with the minimum threshold value set at 107 *Wm 2. An
X-class flare exceeds an M-class flare in peak flux by an order
of magnitude and is a hundredfold more intense than a C-class
flare. Each class includes a subdivision ranging from 1.0 to 9.9,
providing a finer granularity of classification. Based on this
categorization, the M and C classes exhibit a high degree of
similarity, with many samples from these classes being nearly
indistinguishable. This significant overlap between the two
classes poses a substantial challenge for any classifier tasked
with differentiating between them. This overlap significantly
contributes to the difficulty in surpassing a high true skill
statistic (TSS) score in the binary classification of flares in the
SWAN-SF data set.

2.5. Class Imbalance in SWAN-SF

We identify a data set as class imbalance when one or more
of its class populations are substantially smaller than those of
the majority classes. These smaller groups are termed minority
instances, or positive instances, in forecasting contexts. On the
other hand, the larger class groups are known as majority or
negative instances, especially when the forecasting is focused
on the relative importance of minority instances. An example
of this is seen in the SWAN-SF benchmark data set, where

GOES M- and X-class flares are used as the minority class, as
shown in Figure 3. However, its significance is sometimes not
fully recognized in complex tasks of forecasting, leading to
inconsistencies in the performance of models. The problem of
class imbalance affects classification models that aim to
minimize the overall misclassification. Due to the prevalence
of the majority class, an optimal classification boundary, such
as that created by an SVM classifier, is often biased. This bias
can lead to misclassifying many instances of the minority class,
resulting in a disproportionate number of false negatives (FNs)
for the minority class and a reduced number of true positives
(TPs). This indicates a tendency for models in imbalanced
scenarios to favor the majority class, which is a significant
concern in fields focusing on minority instances, such as flare
forecasting. The issue also impacts the selection and effective-
ness of performance metrics such as accuracy, precision
(excluding recall), and the F1-score. A model that erroneously
classifies all instances as the majority class might appear highly
accurate but offers little insight into the minority class.

3. Data Preprocessing and Sampling Methodologies
3.1. Missing Value Treatment and Feature Scaling

The treatment of missing values and the scaling of features
are critical elements in the preprocessing stages of time series
classification, ensuring that the data is adequately prepared for
analysis. It is essential to recognize that most machine learning
models require a complete data set and inherently lack the
capability to process missing data (T. Emmanuel et al. 2021).
The choice of technique for dealing with missing values,
whether it be imputation or deletion, is crucial and depends on
the nature of the data and the pattern of missing values.
Effective handling of missing values ensures the model’s
robustness and its applicability in real-world scenarios where
data imperfections are common (T. Emmanuel et al. 2021). On
the other hand, feature scaling (normalization) brings all
variables to a common scale, which is crucial since different
features often exist on varying scales and units. This uniformity

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

Feature 2

Data with Class Overlap

X x x

Class 1

Feature 1

\ % s 1% % X Class 2
\ " xx
\ X x x
o ap 3
Vx| RN e,
x x
x
\x)g()XXXXX;&’KX&‘ x %
®\ x x*% $oc: WX *x % x
X RN X i" I
x
& xxx)\&xx’&g x * x
i xx,‘gf‘\ ><><X X X X 5
x ., X X 3 X xx
X X ™ X X\X x X
x ” x X>;‘ \\\\
x X x % 3 il T
x X
X x 3
x
x
x
0 i 2 3 1’1 5 6 %

After Removing
Class Overlap

EskandariNasab, Hamdi, & Filali Boubrahimi

Data without Class Overlap

6 *— 3 x Class 1 (No Overlap)
N % 1% a5 x Class 2
\Nox X X
5 N N % X x X
X xx X %
2N AL X ¥
4 N x %8 X
X X
x \< x xx’& &’X”’f % 3%
~ X \X X % % x
3 3 XX TN i X :)2(" x*
2 e & % N e x x
4 x X % §
£ 5 Xy X xx N x =
R " X x X Xx \
X x x x %
X X X o X x
Y I x x N
x X % X % xx N
x x % N N
0 x N
x N
x
-1
0 1 2 3 4 5 6 7

Feature 1

Figure 5. These scatter plots illustrate the distribution of two classes and their overlap. The dashed line highlights a decision boundary built by a classifier. It
demonstrates the impact of class overlap on the complexity and effectiveness of the decision boundary and therefore the potential for higher classification performance

on test data.

Table 3

Optimal Normalization Techniques for SWAN-SF Data Set’s Attributes, the
Best Method for Each, and an Overview of Their Characteristics

Attribute Best Method Right Skewness Left Skewness
R_VALUE Z-score

TOTUSJH Box—Cox Yes

TOTBSQ Log Yes

TOTPOT Log Yes

TOTUSJZ Log Yes

ABSNJZH Box—Cox Yes

SAVNCPP Log Yes

USFLUX Log Yes

TOTFZ Sqrt Yes
MEANPOT Log Yes

EPSX Z-score

EPSY Z-score

EPSZ Z-score

MEANSHR Box—Cox Yes

SHRGT45 Box—-Cox Yes

MEANGAM Box—Cox Yes

MEANGBT Z-score

MEANGBZ Z-score

MEANGBH Z-score

MEANJZH Z-score

TOTFY Sqrt Yes Yes
MEANIJZD Box—Cox Yes

MEANALP Z-score

TOTFX Z-score

Note. These include right and left skewness.

is vital for algorithms, especially those relying on distance
calculations, such as SVM, k-NN, or even neural networks, as
it accelerates convergence. Without scaling, certain features
with larger ranges can dominate the model, leading to a skewed
influence and potentially inaccurate predictions (D. Singh &
B. Singh 2020). Moreover, for algorithms utilizing gradient
descent optimization, such as linear and logistic regression and
neural networks, feature scaling can significantly expedite the
convergence process, making model training more efficient and
effective.

In the realm of MVTS classification, especially in predicting
solar flares, the importance of these processes is amplified.
MVTS data typically consists of various features with distinct
scales. Feature scaling is essential in this context to ensure that
these varying scales do not negatively impact the model’s
capability to identify underlying patterns. Likewise, time series
data may contain gaps resulting from issues such as sensor
malfunctions. Addressing these gaps appropriately is vital for
preserving the temporal continuity and precision of the
analysis. Therefore, both feature scaling and missing value
treatment are crucial in preparing data for machine learning
models. They help in standardizing the data, ensuring
algorithms work efficiently and accurately, and making models
robust enough to handle real-world data with its inherent
imperfections and complexities.

3.1.1. Missing Value Imputation

To address missing values in time series data, we typically
have two main options: either removing the samples with
missing values or imputing them (T. Emmanuel et al. 2021). In
specific contexts such as solar flare prediction, where data sets
often encounter issues such as class imbalance, retaining
samples is recommended. This is because doing so may lead to
the loss of critical data, potentially from the minority class.
Furthermore, every sample represents valuable real-world data,
and its removal could diminish the data set’s integrity.
Imputation, therefore, emerges as a preferable strategy, aiming
to create a more comprehensive data set for the benefit of future
research. When it comes to imputing missing values in an
MVTS, the choice of technique is crucial, yet there is no one-
size-fits-all solution. For instance, mean imputation might be a
convenient approach for filling one or two consecutive missing

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

time stamps in a univariate time series attribute. However, its
applicability reduces significantly in scenarios where multiple
consecutive time stamps are missing. In such cases, mean
imputation might fail to generate realistic values for these gaps.
Therefore, a more nuanced strategy involves employing a
primary missing value imputation technique for general use,
supplemented by alternative methods tailored for specific, less
common scenarios. This approach acknowledges the complex-
ity and variability of time series data. The selection of the
primary imputation technique is critical, as it significantly
influences the overall quality and reliability of the imputed
data. Making an informed choice requires a careful considera-
tion of the data set’s unique characteristics and the specific
challenges posed by its missing values. Determining the
superiority of one missing value imputation technique over
another for time series data requires a holistic evaluation of
several factors.

The chosen method must preserve the inherent character-
istics of the time series, such as seasonality, trend, and
autocorrelation. This preservation is crucial for maintaining the
integrity and interpretability of the time series data. Moreover,
the scalability and computational efficiency of the method play
a significant role, especially in handling large data sets.
Techniques that offer a balance between imputation quality and
computational demand are often preferred in practical applica-
tions. In the case of MVTS, the ability to handle interdepen-
dencies and correlations between different variables is
paramount. Techniques that can effectively leverage informa-
tion from related variables tend to produce more accurate
imputation. Additionally, the method’s performance should not
be overly sensitive to the proportion of missing data. A robust
technique maintains its effectiveness even with a high
percentage of missing data. Practical considerations, such as
ease of implementation and integration into existing data
processing pipelines, also influence the choice of technique. In
many cases, the simplicity and usability of a method can be as
important as its statistical performance. Furthermore, the
flexibility and customizability of the method to adjust to
specific data set characteristics can offer a significant
advantage, allowing for more tailored and effective imputation.
In summary, the selection of the best imputation technique for a
given time series data set is a multifaceted decision, balancing
statistical properties, data set characteristics, and practical
considerations. It often involves a trade-off between various
factors, including accuracy, robustness, efficiency, and
usability.

3.1.1.1. FPCKNN Imputation

In the SWAN-SF data set, there are over 10 million missing
values in total. Table 2 displays the count of missing values for
each attribute and for each partition of the data set. k-NN
imputation effectively handles a variety of missing value
patterns, including sequences of consecutive missing values. It
imputes values based on the most similar samples, referred to
as the nearest neighbors (O. Troyanskaya et al. 2001).
However, to fully address the issue of missing values,
augmenting k-NN imputation with additional concepts is
crucial in formulating an accurate algorithm. In FPCKNN
imputation, the Pearson correlation coefficient (PCC) is used
for identifying the nearest neighbors, specifically finding the
two most similar samples for imputation. The missing values
are then imputed using data from these nearest neighbors. The

EskandariNasab, Hamdi, & Filali Boubrahimi

algorithm typically calculates the mean of the values from these
“k” neighbors for numerical variables, and this calculated mean
is used to replace the missing data. In scenarios where
consecutive missing values occur in time series data, the
k-NN imputation method can sequentially impute these values.
Each missing value is replaced by the mean of the corresp-
onding time stamps from the k-NN. This approach ensures the
preservation of the time series’ temporal dynamics.

In an MVTS data set such as SWAN-SF, there are two main
types of missing values. The first type occurs when all the
values of an attribute within an MVTS instance are missing. In
such instances, we simply replicate all values from the
corresponding attribute of the most similar sample that does
not have missing values. The second type arises when only
some values of an attribute in an MVTS are missing. In these
cases, we identify the most similar MVTS samples to the ones
with missing values. In other words, we perform one nearest
neighbor imputation to accurately impute the best values for the
missing data. For the similarity measure, we initially substitute
the NaN values with zero values and then employ the PCC to
calculate the similarity between two MVTS. The PCC is a
robust method for this purpose, owing to its efficacy in
capturing linear relationships between variables. It quantifies
the degree of correlation between variables, offering valuable
insights, particularly in time series analysis where under-
standing these dynamics is crucial. A major advantage of the
PCC is its ability to normalize correlation values, ensuring they
always fall between —1 and 1. This scaling enables an intuitive
interpretation and comparison of the strength of relationships,
irrespective of the scale of the variables involved. Additionally,
the mathematical simplicity and computational efficiency of
PCC are advantageous, especially in handling large data sets
common in time series analysis. One of the critical attributes of
PCC is its insensitivity to the scale and location changes in the
time series data, ensuring its consistent applicability across
various data sets. The computation of the PCC between two
MVTS X and Y is detailed in Algorithm 1, providing a
systematic approach to this analysis.

To reduce the computational load in identifying the most
similar sample for imputation, we employ a heuristic based on
the classification system used for solar flares. This method
classifies solar flares based on their peak soft X-ray flux into
five categories: A, B, C, M, and X, each indicating increasingly
stronger flares. An X-class flare, for instance, is about 10 times
more intense in peak flux than an M-class flare and 100 times
more than a C-class flare. Additionally, within each category,
flares are further ranked on a scale from 1.0 to 9.9, which
specifies the intensity of the X-ray flux. For example, an X9.9
flare represents the maximum intensity within the X class,
whereas X1.0 is considered the minimum, followed closely by
M9.9 as the next most intense category. Since X1.0 flares and
M9.9 flares are comparable in terms of their X-ray flux, this
classification system effectively narrows the focus for identify-
ing the most comparable samples. The heuristic is outlined as
follows:

1. Initiate the imputation procedure with the most intense
flare sample, X9.9, and advance sequentially to X1.0.
Subsequently, proceed from M9.0 to the least intense
flare samples, finishing with FQ 1.0.

2. If missing values are encountered, identify the most
similar sample by calculating the PCC with the 50
previous samples. Since there is a logical order and

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

samples close to each other are more likely to be similar
in terms of category and X-ray flux, the highest PCC
score among these 50 samples will likely identify the
most similar sample. These 50 samples are either imputed
or free of missing values.

3. If there are fewer than 50 previously imputed samples
available, calculate the PCC with all available imputed
samples.

4. If there are fewer than 10 previous samples, calculate the
PCC using the next 10 samples (instead of the previous
ones), even if they contain missing values. In such cases,
NaN values should be substituted with zeros solely for
the purpose of calculation.

By applying this heuristic, we limit PCC calculations to the
50 previous samples, rather than all 60,000 samples in the first
partition of the SWAN-SF data set. This approach significantly
reduces computational effort. In our FPCKNN imputation, we
address two types of missing values that can occur in an
attribute of an MVTS sample. k-NN imputation, our primary
technique, is capable of imputing multiple consecutive missing
values effectively. For rare cases where all values of an
attribute are NaN, we employ the “replication” method.
Additionally, we use the PCC technique to identify similar
samples, which is both fast and robust. Lastly, we implement a
heuristic to narrow down the search space for finding similar
samples, further optimizing the process. In Algorithm 2, the
FPCKNN imputation is described.

3.1.2. Data Normalization

Data normalization is an essential step in data preprocessing,
particularly in the context of machine learning and data
analysis. Its importance arises from the fact that data sets often
contain attributes with varying scales and units. When different
attributes are measured on different scales, it can lead to
challenges in analysis, as some algorithms might incorrectly
interpret the significance of certain features based on their
scale. This can adversely affect the model’s performance, as
larger-scale attributes might dominate the outcome, while
smaller-scale attributes might not contribute significantly,
regardless of their actual importance in the data set (D. Singh
& B. Singh 2020). Skewness, on the other hand, refers to the
degree of asymmetry observed in the data distribution of a
single attribute. It is an entirely separate aspect of data
characteristics and is not a direct consequence of varying scales
and units across different attributes. Skewness can affect the
performance of many machine learning algorithms, especially
those that assume a normal distribution of the input data
(D. Singh & B. Singh 2020).

Algorithm 1. PCC Calculation for Two MVTS

Require: two MVTS X and Y (X, Y € RT*M)
Ensure: PCC between X and Y
1: FlattenedX < Flatten(Transpose(X))
: FlattenedY «— Flatten(Transpose(Y))
: meanX < mean(FlattenedX)
: meanY < mean(FlattenedY)
: stdX «+ standard_deviation(FlattenedX)
: stdY < standard_deviation(FlattenedY)
: covariance <— mean((FlattenedX — meanX) x (FlattenedY — meanY))
:CorrCoef - covariance

stdX x stdY
:return CorrCoef

O 00 NN WL AW

EskandariNasab, Hamdi, & Filali Boubrahimi

In the context of the SWAN-SF data set, which is an MVTS
data set with diverse attributes, normalization becomes even
more crucial. Each attribute might require a different normal-
ization approach to ensure that all the attributes contribute
equally to the analysis and that the model’s performance is not
biased toward certain features simply because of their scale.
This tailored approach to normalization helps in better
capturing the underlying patterns in the data, leading to
improved classification performance. The following section
will explore various normalization techniques that are particu-
larly beneficial for handling data sets, such as SWAN-SF.
These techniques address the challenges posed by different
scales and distributions in the data, ensuring that each attribute
is processed in a way that optimizes its contribution to the
overall analysis and model performance. Additionally, some of
these techniques are specifically designed to address various
types of skewness in the data.

1. Log normalization. Primarily used for data with right
skewness (C. Feng et al. 2014). It transforms data into a more
normally distributed data set,

x' =log,(x + ¢). (1

Here, x’ is the transformed value, x is the original value, b is
the logarithm base (typically 10, e, or 2), and ¢ is a constant
added to ensure all values are positive, necessary for data sets
with zero or negative values.

2. Square-root normalization. Effective for reducing left
skewness in data (P. Muhammad Ali & R. Faraj 2014).

x'=Jx+ec. 2)

In this formula, x’ is the transformed value, and x is the original
value. A constant ¢ is added to each value in the data set to
ensure positivity, especially if the data set includes negative
values.

3. Box—Cox normalization (R. M. Sakia 1992). A more
versatile technique, suitable for both right- and left-skewed
data, designed to stabilize variance and make data more closely
resemble a Gaussian distribution.

x+)—1 .
Y= if A =0, 3)
log(x + ¢) if A=0.

In this formula, x’(\) represents the transformed value, x is
the original value, and c is a constant added to ensure that x+c
is positive and nonzero. The parameter A\ is known as the
transformation parameter, which dictates the nature of the
transformation applied to the data. The choice of A is crucial for
the effectiveness of the transformation:

1. When A =0, the transformation becomes a logarithmic
transformation.

2. As A approaches 1, the transformation becomes closer to
the identity transformation, where no change is applied to
the data.

3. Different values of A\ can be used to address varying
degrees and directions of skewness in the data.

Selecting the optimal value of A usually involves finding the
value that maximizes the log-likelihood of the transformed data
fitting a normal distribution, often facilitated by statistical
software.

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

EskandariNasab, Hamdi, & Filali Boubrahimi

Feature 1 Feature 2 Feature 3
MVTS - [i | Do Normalization
_—
Sample 1 \ ——— S
MVTS - Pr— A,O’I;;C/o"’a/ e — Do Normalization
3 K) —
Sample 2 2an,
on Do Normalizati
MVTS - Q 5> ¢ 5 o Normalization
Sample 3 _ _ S _
time series
Ao, bx Do Normalization
KN L |] —
R3¢
“n .
Do Normalization
o —
Do Normalization
q X ey —————

Figure 6. This figure demonstrates the application of both global and local normalization techniques on an MVTS data set. Global normalization is employed to
preserve the relative magnitudes of time stamps across different time series, ensuring that the values are comparable between samples. This is particularly crucial in the
SWAN-SF data set, where the magnitudes of values within each time series hold significant importance. Conversely, local normalization is used when the temporal
dynamics or the structural patterns of a time series are more critical than the actual magnitudes of the values. This method emphasizes the importance of the time

series’ shape and trends over their absolute values.

Algorithm 2. FPCKNN Imputation

Require: data set data, number of partitions numParts, number of attributes
numAttrs, number of time stamps numTimes, comparison limit kMax
Ensure: imputed data
1: for partldx = 1 to numParts do
2: partition « data|partldx] {The shape of partition
is (numTimes, numAttrs, numSamples) }

3: for sampleldx = 1 to shape(partition)[2] do

4: currSample «— partition|:,:,sampleldx]

S: Fill in all the missing values in currSample with NaN

6: Initialize list missingldx

7 if NaN exists in currSample then

8: compCount «— min(sampleldx, kMax)

9: Initialize array corrCoeff of size compCount with -2.0

10: sampleX «— replace NaN with O in currSample

11: for compldx = 1 to compCount do

12: sampleY «— partition|:,:,sampleldx — compldx]

13: corrCoeff [compldx]«— calcPearson(sampleX [:,:], sampleY [:,:])
14: end for

15: for artrldx = 1 to numAttrs do

16: if all values in currSample|:,attrldx] are NaN then

17: Duplicate the entire values of the attribute attrldx to
currSample|:,attrldx] from the sample that has the highest PCC score in
corrCoeff

18: else

19: Perform k-NN imputation for currSample|:,attrldx] based on the
samples that have the highest PCC scores in corrCoeff

20: end if

21: end for

22: end if

23: partition[:,:,sampleldx] < currSample

24: end for

25: data[partldx] < partition

26: end for

27: return data

4. Z-score normalization (standardization). Used for normal-
izing the distribution of values in a data set, particularly
effective for data without skewness.

X—p

)

“)

g

where z is the standardized value, x is the original value, y is
the mean, and o is the standard deviation. This method is

10

suitable for any range of values and is often used to bring
different variables to the same scale.

5. Min—-max normalization (min—-max scaling). A simple
method to rescale features to a standard range, usually between
0 and 1.

;L x — min(x)

&)

max(x) — min(x) ’

where x' is the normalized value, x is the original value, min(x)
and max(x) are the minimum and maximum values, respec-
tively. This method is sensitive to outliers but is popular due to
its simplicity.

Each technique has its specific application, chosen based on
data characteristics and analysis requirements.

3.1.2.1. LSBZM Normalization

The SWAN-SF data set, being an MVTS data set, presents a
diverse array of attributes, each exhibiting distinct character-
istics. A notable aspect of these attributes is their varying
scales; some attributes are confined within a small range,
fluctuating between —1 and 1, while others exceed 100,000,
displaying tendencies of either right or left skewness. The
skewness and magnitude of these values necessitate a tailored
approach for each attribute, achievable through conditional
programming techniques. To effectively normalize the data, it
is imperative to uniformly apply the normalization process
across the corresponding attributes of all samples. Figure 6
clarifies our methodology for normalizing an MVTS data set, a
critical step especially when calculating the mean or standard
deviation of the values, such as the implementation of the
Z-score normalization technique.

In our LSBZM normalization, the criteria for selecting an
appropriate normalization technique for each attribute include
its magnitude and skewness. For the primary normalization
technique, our choices are varied and depend on the data’s
characteristics. For attributes with right skewness, the logarith-
mic transformation is applied. In contrast, for left-skewed data,
the square root transformation is preferable. The Box—Cox
transformation, effective for both right and left skewness, is
most suitable when dealing with values that are not extremely
small or large. In cases where skewness is absent, the Z-score

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

normalization is utilized. Following the primary normalization,
we employ the min—-max normalization technique to ensure
all attribute values range between O and 1. This scaling is
particularly crucial for certain machine learning techniques,
including neural networks. It is crucial to note that min—max
normalization does not alter the data distribution; it merely
adjusts the range of the values. Consequently, this preserves the
integrity and impact of the primary normalization technique
employed. Algorithm 3 in this paper provides a detailed
description of these conditions and the corresponding normal-
ization technique.

Using the LSBZM normalization technique, we have
gathered essential information on the data set’s 24 attributes
(photospheric magnetic field parameters). This process helped
us identify the most effective normalization method for each
attribute, as detailed in Table 3. After applying Algorithm 3 to
the SWAN-SF data set, we obtained the information presented
in Table 3. To assess the skewness of the time series data, we
calculate the skewness value using statistical methods.
Skewness, mathematically, measures the asymmetry of the
probability distribution of a real-valued random variable
around its mean. As indicated in line eight of Algorithm 3,
which presents the formula for skewness calculation, if an
attribute’s skewness value is between —1 and 1, it signifies
minimal skewness. In such cases, we use Z-score normal-
ization. For attributes with very small or very large values, we
apply either Log normalization or square root normalization.
Specifically, if the skewness indicates right skewness (value
greater than 1), we use Log normalization; for left skewness
(value less than —1), we use square root normalization. If an
attribute that is neither excessively small nor large exhibits
skewness, we use Box—Cox normalization. Consequently,
Table 3 can be used to determine the optimal normalization
approach for different attributes in the SWAN-SF data set
without directly implementing the LSBZM technique. Addi-
tionally, the table identifies which attributes exhibit right
skewness (skewness values greater than 1) or left skewness
(skewness values less than —1).

3.2. NDBSR

In the realm of machine learning, particularly in classification
tasks, the distinctiveness of classes plays a crucial role. The
essence of a classification task lies in the algorithm’s ability to
accurately discern between different classes. When these classes
exhibit significant similarities or overlap, it becomes challenging
for machine learning techniques to identify and establish an
effective decision boundary (J. Zhang et al. 2019). This
boundary is fundamental, as it defines the criteria by which
data points are categorized into one class or another. A lack of
sufficient differentiation between classes often results in
suboptimal classification performance. This is because the
algorithm struggles to develop a clear and robust criterion for
class separation, leading to increased instances of misclassifica-
tion. In such scenarios, the decision boundary, rather than being
a clear demarcation, tends to become ambiguous and less
effective in its purpose, as shown in Figure 5.

To address this issue, techniques such as NDBSR are
employed. These techniques focus on enhancing the distinctive-
ness of classes. NDBSR, in particular, involves the identification
and removal of data points that are situated too close to the
decision boundary (J. Zhang et al. 2019). These data points are
typically those that the model finds most challenging to classify

11

EskandariNasab, Hamdi, & Filali Boubrahimi

and are often the source of uncertainty. By removing or
otherwise handling these near-boundary samples, NDBSR helps
to create a more defined and discernible separation between
classes. The SWAN-SF data set presents significant challenges
for classification due to extensive overlap between classes,
affecting both binary and multiclass classification. This
complexity stems from the data set’s structure, which includes
five distinct classes. Each class is defined by a numerical value
that represents the intensity of the flare, ranging from 1.0 to 9.9.
As a result, some classes share notable similarities; for example,
the X1.0 samples are quite similar to the M9.9 samples.
However, this overlap is more complex than it appears at first
glance. For instance, X1.0 samples might resemble samples
ranging from M9.9 down to M2.0. Similarly, class-M samples
can appear similar to many samples from classes B and C,
leading to difficulties for a machine learning model in
distinguishing these similarities. Therefore, due to the presence
of similar samples from two classes regarding major-flaring (M
and X) and minor-flaring (B, C, and FQ) instances, classifiers
struggle to learn an accurate decision boundary. This results in
lower TSS scores, even after applying proper imputation and
normalization techniques.

In the realm of binary classification of SWAN-SF, a
significant overlap is observed between the C- and M-class
samples. Addressing this issue necessitates the exploration of
multiple solutions. A primary strategy involves the selective
removal of samples from the minor-flaring categories (namely,
C, B, and FQ classes), as opposed to those from the major-
flaring class (M. G. Bobra & S. Couvidat 2015). This approach
is justified by the relatively scarce availability of samples in the
major-flaring class, underscoring the importance of preserving
these data points. There are two straightforward strategies to
reduce class overlap in the binary classification of the SWAN-SF
data set. First, we can eliminate class-C samples during training.
This action helps resolve many similarities between classes M
and C, making it easier for the classifier to successfully identify
major-flaring samples (M and X) and distinguish between major-
flaring and minor-flaring samples. Second, we can remove both
the class-B and -C samples during training. This is because there
might still be overlap between classes M and B, and removing
only class C may not fully help the classifier to clearly separate
the two classes. As demonstrated in Figure 7, this objective can
be achieved by removing the minor-flaring class samples
postimputation and prior to any further preprocessing steps. As
a result, by keeping all major-flaring samples and achieving a
high recall score while reducing the false positive rate (FPR), we
can improve the TSS scores.

3.3. Sampling Techniques

To address the issue of data imbalance, it is essential to
generate additional synthetic samples for the underrepresented
minority class. In our binary classification task using the
SWAN-SF data set, the minority class comprises X and M
flares, whereas the majority class includes C, B, and FQ
classes. Generating more synthetic samples will help achieve a
more balanced data set. When selecting an oversampling
technique for our time series data, two critical factors must be
considered. First, the technique must maintain the temporal
dynamics inherent in the samples. Second, it should generate
samples across the entire distribution range of the minority
class. Techniques that are genuinely generative, capable of
creating new samples, are preferable. These are more beneficial

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

EskandariNasab, Hamdi, & Filali Boubrahimi

Other Preprocessing
Steps (e.g., Sampling)

Imputation NDBSR
Raw SWAN-SF Dataset —— —
First Step

Normalization

> Final Dataset
Last Step

Figure 7. The diagram illustrates the proper placement of NDBSR within a data preprocessing pipeline.

compared to methods that merely perform random sampling
from the original data without the generative aspect (J. Yoon
et al. 2019).

We propose two distinct strategies to address the issue of
imbalanced classification. The initial approach concentrates
exclusively on utilizing oversampling techniques to generate
additional synthetic samples for the minority class, targeting a 1:1
imbalance ratio, where there are approximately equal numbers of
samples for each class. However, having over 100,000 samples for
a binary classification task could lead to extended training time. To
mitigate this, our second approach combines both oversampling
and undersampling techniques. In this approach, we reduce the
number of samples from the majority class while also generating
fewer synthetic samples for the minority class than in the first
approach. This balanced strategy seeks to mitigate the challenges
associated with a large number of samples while effectively
tackling the issue of imbalance in the data set.

3.3.1. Oversampling Techniques

In our oversampling approach, we utilize techniques such as
the Synthetic Minority Oversampling Technique (SMOTE;
N. V. Chawla et al. 2002), adaptive synthetic sampling
(ADASYN; H. He et al. 2008), and Gaussian noise injection
(GNI). These methods are perturbation based, meaning they do
not generate new data in the true sense but create synthetic
samples through random variations of the original samples.
According to P. Hosseinzadeh et al. (2024), these techniques
are effective for time series generation. However, we also
explore the time series generative adversarial networks (Time-
GAN; J. Yoon et al. 2019), an advanced deep learning-based
data augmentation technique for MVTS data. Distinct from the
earlier mentioned techniques, TimeGAN has the capability to
generate completely new data, offering a novel and potentially
more effective solution for our needs. Additionally, it uniquely
preserves the temporal dynamics of the attributes.

3.3.1.1. SMOTE

SMOTE (N. V. Chawla et al. 2002) is a statistical technique
used to increase the number of instances in a data set in a
balanced way. It is primarily used in the context of imbalanced
data sets, where the number of instances for one class (often the
minority class) is much less than those for other classes.

The core idea of SMOTE is to create synthetic samples from the
minority class instead of creating copies. This is done as follows:

1. Randomly pick a sample from the minority class.
Compute the k-NN for this sample. The neighbors are
chosen from the minority class only.

2. Randomly select one of these neighbors and compute the
vector difference between this neighbor and the chosen
sample.

3. Multiply this difference by a random number between 0
and 1, and add it to the chosen sample to create a new
sample.

12

Algorithm 3. LSBZM Normalization

Require: data set data, number of partitions numParts, number of attributes
numAttrs, number of time stamps numTimes
Ensure: normalized data
1: for partldx = 1 to numParts do
2: partition < data[partldx] {The shape of partition
is (numTimes, numAttrs, numSamples) }
for attrldx = 1 to numAttrs do
Initialize attributeVector, normalizedVector as empty lists
theAttribute «— partition|:,attrldx, :]
attributeVector < Flatten (theAttribute)
Calculate min and max of attributeVector
Calculate skewness of attributeVector using the formula:
NEN (X - %)}
V= DN =&Y (X - 0H¥2
X; is each individual sample, and X is the mean of attributeVector
9: if (max—min>100,000) then

AN AN

skewness =

where N is the number of samples,

10: if skewness > 1 then

11: attributeVector < Log(attributeVector)

12: else if skewness < —1 then

13: attributeVector «— Sqrt(attributeVector)

14: else

15: attributeVector < Zscore(attributeVector)

16: end if

17: normalizedVector «— MinMaxScale(attributeVector)
18: else if (max<1 and min>—1) then

19: Apply a similar normalization logic based on the previously men-
tioned conditions.

20: else

21: if skewness > 1 or skewness < —1 then

22: attributeVector < BoxCox (attributeVector)

23: else

24: attributeVector < Zscore(attributeVector)

25: end if

26: normalizedVector «— MinMaxScale(attributeVector)

27: end if

28: for sampleldx = 1 to shape(partition)[2] do

29: Update the values of the attribute attrldx for all the samples in partition
using the normalizedVector values

30: end for

31: end for

32: datalpartldx] < partition

33: end for

34: return data

This process can be expressed in the following formula,
where x; is a randomly chosen minority-class sample, x,; is one
of its k-NN,) is a random number between O and 1, and xl»' is
the new sample:

(6)

This method effectively forces the decision region of the
minority class to become more general. It helps in overcoming
the problem of overfitting, which is common when using
simple random oversampling. SMOTE does not change the
number of majority-class instances but augments the data set by
adding more examples from the minority class, thus balancing
the class distribution.

X/ =xi 4+ XX (g — x).

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

3.3.1.2. ADASYN

ADASYN (H. He et al. 2008) represents a sophisticated
oversampling methodology designed to address imbalanced
data sets analogous to SMOTE. The technique focuses on
generating synthetic data by using a weighted distribution that
prioritizes minority-class examples based on their learning
difficulty. Consequently, it produces more synthetic data for the
minority-class examples that are more challenging to learn.

ADASYN works as follows:

1. Calculate the class imbalance ratio. Determine the degree
of imbalance by calculating the ratio of the number of
instances in the minority class to the majority class.

2. Compute the Euclidean distance and k-NN. For each
sample in the minority class, compute the Euclidean
distance to find its k-NN. The neighbors are chosen from
the entire training set, not just the minority class.

3. Determine the number of synthetic samples to generate for
each minority sample. This is based on the density of
majority-class examples around each minority-class exam-
ple. More synthetic examples are generated for minority
examples that have more majority-class neighbors.

4. Generate synthetic samples. Similar to SMOTE, for each
minority-class sample, synthetic samples are generated by
linearly interpolating between the minority-class sample
and its nearest neighbors. The number of samples
generated is proportionate to the level of difficulty in
learning that particular minority-class example.

The key formula in ADASYN is the calculation of the number
of synthetic samples to be generated for each minority sample,
represented by G;, where G is the total number of synthetic
samples to generate, and A; is the ratio of majority-class
neighbors among the k-NN of the ith minority-class sample:

G,‘:GX

S A)

This technique adapts to the intrinsic distribution of the
minority class and focuses on the samples that are more
difficult to classify, thereby improving the learning behavior of
the classifier. Unlike SMOTE, which treats all minority-class
samples equally, ADASYN shifts the focus toward the regions
where the class imbalance is more pronounced.

3.3.1.3. GNI

GNI is an oversampling technique used for addressing
imbalanced data sets. It involves augmenting the minority class
by adding small variations, or noise, to existing samples. This
method relies on injecting random noise, following a Gaussian
distribution, into the data.

The process can be described as follows:

1. Determine the standard deviation o. Calculate the
standard deviation of the data set (or a subset of features),
denoted as o. This measures the variation or dispersion
from the average value.

2. Set a noise proportion «. Define «, a user-determined
parameter that specifies the proportion of noise to be added.
It is a small fraction used to scale the standard deviation.

3. Calculate the noise level). The noise level,), is obtained
by multiplying the standard deviation o with the noise

EskandariNasab, Hamdi, & Filali Boubrahimi

proportion «. This determines the scale of the Gaussian
noise to be added, i.e., A\=0 X a.

4. Generate Gaussian noise. Generate Gaussian noise, 7,
with a mean of 0 and a standard deviation equal to
the noise level A, for each sample in the data set.
Thus, ~ N0, X2).

5. Create new samples. The generated noise 7 is added to
the existing samples x to create new, slightly altered
samples x’.

The key formula for GNI is
X' =x+n ®)

This technique effectively creates more diverse training data,
preventing overfitting by providing variations of the training
samples and enabling the model to generalize better. GNI is
favored for its simplicity and effectiveness, particularly in
scenarios where more complex oversampling techniques may
not be necessary.

3.3.1.4. TimeGAN

TimeGAN (J. Yoon et al. 2019) is a sophisticated method for
generating synthetic time series data. It aims to capture the complex
temporal dynamics inherent in time series data, making it
particularly useful for dealing with imbalanced time series data sets.

The process of TimeGAN can be mathematically described
as follows:

1. Embedding function (e). This function maps the original
time series data x to a latent space Z. The embedding
function is given by e: X — Z.

2. Recovery function (r). This is the inverse of the
embedding function, mapping the latent representation
back to the data space, represented by r: Z — X.

3. Sequence generator (G). The generator creates synthetic
data in the latent space from a noise vector €, given
by G: ¢ — Z.

4. Sequence discriminator (D). The discriminator differenti-
ates between original and synthetic data, represented by a
function D: Z \J Z — {0, 1}, where 0 indicates synthetic
data and 1 indicates original data.

5. Joint training scheme. TimeGAN employs both super-
vised and unsupervised loss functions for training. The
supervised loss ensures the model accurately captures the
conditional distributions of the data, while the unsuper-
vised loss (typical of GANs) aims to model the overall
data distribution.

The key equations governing these components are:

1. For the embedding function. h,= e(x;, h,_), where h,
represents the latent representation at time ¢, and x; is the
original data at time 7.

2. For the recovery function. X, = r(h,;) where %, is the
recovered data at time ¢ from the latent representation.

3. For the generator. hf = g(z;, h2 |) where h® represents
the generator’s latent state at time ¢, and z, is the input
noise vector at time .

L. 0 if le i theti
4. For the discriminator. D (h;, h#) = { tl sample 1s synthetic

1 if sample is original

TimeGAN’s uniqueness lies in its ability to effectively learn
and replicate the temporal dynamics of time series data, which

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

is crucial for generating realistic synthetic sequences. This
characteristic makes it highly suitable for augmenting time
series instances, particularly in scenarios where additional data
is required for effective model training.

3.3.2. Combination of Oversampling and Undersampling Techniques

Using only oversampling to achieve a balanced ratio of 1:1
might lead to an excessively large data set. This is particularly
true for the SWAN-SF data set, where the majority class could
exceed 60,000 samples, potentially resulting in a longer
training duration. To mitigate this, we combine oversampling
and undersampling techniques. Initially, we reduce the size of
the majority class by employing random undersampling (RUS),
which involves randomly removing samples. Given that the
SWAN-SF data set is prone to class overlap, it is advisable to
employ a class overlap removal method, such as Tomek links
(TLs). Thus, following RUS, we apply TLs to eliminate
samples near the decision boundary from the majority class.
After these two stages of undersampling, we use one of the four
discussed oversampling techniques to synthetically augment
the minority class, aiming for a balanced 1:1 ratio. This
approach results in a smaller overall data set, substantially
reducing the likelihood of overfitting.

3.3.2.1. RUS

RUS is a technique used for handling imbalanced data sets,
particularly focusing on the undersampling of the majority
class. Unlike oversampling techniques that increase the size of
the minority class, undersampling reduces the size of the
majority class to balance the data set. The key idea of RUS is to
randomly eliminate instances from the majority class to prevent
its dominance when training a machine learning model. This
method is straightforward and can be very effective, especially
when the data set is sufficiently large, and the reduction does
not lead to a significant loss of information. However, one must
be cautious as undersampling can lead to the loss of potentially
important information from the majority class.

3.3.2.2. TLs

TL (I. Tomek 1976) is a more nuanced undersampling
technique used in the context of imbalanced data sets,
specifically focusing on the elimination of instances from the
majority class. Unlike RUS, which removes instances
randomly, TL identifies and removes certain specific samples
that contribute to class overlap, thus improving the class
separability.

The process can be described as follows:

1. Identify TLs. A TL is defined between two instances x;
and x; from different classes if they are each other’s
nearest neighbor. Formally, a pair of instances (x; x;)
form a TL if x; is the nearest neighbor of x; and vice versa,
and they belong to different classes.

2. Remove instances. The common approach in using TLs
for undersampling involves removing the majority-class
instances that are part of TLs. This is based on the idea
that in a TL, one of the instances is likely noise or
borderline, and removing it can help in making the
decision boundary more distinct.

14

EskandariNasab, Hamdi, & Filali Boubrahimi

3. Refine the data set. After the removal of these instances,
the data set typically exhibits a clearer separation between
classes.

The key idea behind TL is to enhance class separability
rather than directly achieving class balance. This method is
particularly effective in reducing class overlap, aiding classi-
fiers in better distinguishing between classes. However, it may
not significantly alter the class distribution balance, as its
primary focus is on improving the decision boundary clarity.

Figure 8 illustrates the implementation of two sampling
approaches on the SWAN-SF data set.

4. Experiments and Prediction Methods

4.1. Cleaned SWAN-SF Data Set and Code Repository of the
Study

We have released the cleaned SWAN-SF data set across all
five partitions. The training set in this improved version uses our
FPCKNN imputation technique, removes samples from Classes
B and C to reduce class overlap, and includes both oversampling
and undersampling methods such as RUS, TL, and TimeGAN.
Additionally, LSBZM normalization has been applied. The test
set includes only the FPCKNN imputation technique and
LSBZM normalization. This optimized data set allows research-
ers to concentrate on developing more accurate classifiers rather
than preprocessing, thus saving time in space weather analysis.
The “Cleaned SWAN-SF” can be accessed on GitHub” and is
also archived on Zenodo at doi:10.5281/zenodo.11566472
(M. EskandariNasab et al. 2024a).

All Jupyter notebooks related to imputation, normalization,
NDBSR, sampling algorithms, and classification algorithms in
this study are meticulously documented and available for
comprehensive review and application. The “SWAN-SF Data
Preprocessing and Sampling Notebooks” are accessible on
GitHub® and are also archived on Zenodo at doi:10.5281/
zenodo.11564789 (M. EskandariNasab et al. 2024b). This
repository not only contains the key algorithms but also offers
precise specifications of the hyperparameters used in the
analyses. The primary aim of making this resource available is
to enhance transparency, ensure reproducibility, and foster
further exploration into the methodologies utilized within the
confines of our research. The hyperparameters of the classifiers
and the oversampling techniques are also explained in
Appendix A.

4.2. Train and Test Sets

The SWAN-SF data set consists of five distinct partitions,
each representing a specific timeline of ARs. For our
experiments, we utilize four unique train—test combinations,
as illustrated in Figure 9. Given the temporal ordering of the
partitions, it was optimal to select combinations that are
consecutive. This approach ensures that the training set
precedes the test set in terms of the temporal sequence, which
is a crucial factor in our analysis.

%2 The “Cleaned SWAN-SF” is available on GitHub at https://github.com/

samresume/Cleaned-SWANSF-Dataset.

3 The “SWAN-SF Data Preprocessing and Sampling Notebooks” are
available on GitHub at https://github.com/samresume/SWANSF-Data
Preprocessing-Sampling-Notebooks.

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November EskandariNasab, Hamdi, & Filali Boubrahimi

A)Over-sampling

Maijority class (C, B, and FQ) Nothing _| Majority class
60000 samples ~| 60000 samples
Minority class (X and M) SMOTE, ADASYN, GNI, or TimeGAN _| Minority class
1000 samples ~| 60000 samples

B)Combination of Over- and Under-sampling

Maijority class (C, B, and FQ) RUS Maijority class Tomek Links | Majority class
—_— —_—

60000 samples 10000 samples 9800 samples

Minority class (X and M) SMOTE, ADASYN, GNI, or TimeGAN _| Minority class

1000 samples " 9800 samples

Figure 8. Illustration of two sampling approaches for SWAN-SF data set: the top panel (A) shows the original data set with a majority class having 60,000 samples
and a minority class with 1000 samples. It demonstrates oversampling techniques (SMOTE, ADASYN, GNI, TimeGAN) applied to the minority class to match the
majority class’s 60,000 samples. The bottom panel (B) depicts a combination of oversampling and undersampling, where the majority class is reduced using RUS, and
TL to 9800 samples, and the minority class is augmented to 9800 samples using the same oversampling techniques.

Train and Test Sets

Train: Partition 1 Train: Partition 2 Train: Partition 3 Train: Partition 4
Test: Partition 2 Test: Partition 3 Test: Partition 4 Test: Partition 5

Figure 9. This figure showcases four distinct train—test sets employed in each classification experiment. This approach ensures a more comprehensive and accurate
assessment of algorithms across all data set partitions.

4.3. Classification Algorithms As the evaluation metric, we employ the TSS (M. G. Bobra
& S. Couvidat 2015). The TSS is a valuable metric for
evaluating imbalanced binary classification models, especially
in solar flare prediction. It effectively balances the model’s
recall (TP rate) and its ability to limit the FPR, thus providing a
comprehensive measure of model performance. The TSS is
recalculated as follows:

To evaluate the impact of preprocessing and sampling
techniques on the binary classification of flares in the SWAN-
SF data set, we employed various classification algorithms to
thoroughly assess these techniques’ effects on classification
performance. Testing with diverse classifiers is essential to
confirm their efficacy in enhancing classification outcomes.
First, we converted the MVTS data into vector data through TP FP
hand-engineered feature extraction. We then compared the TSS = recall — FPR = TN P LIN
performance of each step in our preprocessing and sampling + +
pipeline against baseline techniques using four widely
recognized classifiers, namely, SVM, multilayer perceptron is the number of false negatives, FP is the number of false

(MLP), k-NN, and randorp forest '(RF)~ Seconq, we imple- positives, and TN is the number of true negatives. The TSS value,
mented all four preprocessing algorithms, including FPCKNN ranging from —1 to +1, indicates perfect skill at +1, no skill

©))

In this equation, TP represents the number of true positives, FN

imputation, LSBZM normalization, NDBSR, and sampling on (similar to random chance) at 0, and inverse skill at —1. This
the data set. The performance of the thoroughly preprocessed metric’s independence from conditions such as the proportion of
SWAN-SF data set was subsequently compared to that of the actual positives or negatives makes it particularly useful for
unprocessed SWAN-SF data set, utilizing the actual MVTS evaluating models on imbalanced data sets. By encompassing
data on advanced time-series-based classifiers, including both the ability of the model to correctly identify positive cases
LSTM, recurrent neural network (RNN), gated recurrent unit (recall) and its effectiveness in avoiding FP, TSS provides a
(GRU), and 1D convolutional neural network (1D-CNN). thorough insight into the classifier’s overall performance.

15

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

Based on the formula for calculating the TSS, achieving a
high TSS score necessitates obtaining the highest possible
recall. For example, if the recall is only 0.9, considering that
TSS also requires minimizing the FPR as part of its calculation,
the maximum TSS score attainable would be limited to 0.9.
Therefore, our objective should be to achieve the highest
possible recall, ideally 1, while concurrently striving to reduce
the FPR as much as possible to optimize the TSS score.

4.3.1. Feature Extraction-based Classification

In the field of machine learning and data science, traditional
classifiers such as SVM (C. Cortes & V. Vapnik 1995), MLP
(M. W. Gardner & S. R. Dorling 1998), k-NN (L. E. Peter-
son 2009), and RF (L. Breiman 2001) are not specifically
designed for handling time series data. However, with proper
feature extraction techniques, these conventional models can be
as effective as the latest deep-learning algorithms in classifying
time series data.

Therefore, a crucial step is the strategic extraction of
important features from each attribute of the MVTS data set,
which typically consists of univariate time series. By
transforming the MVTS data set into a set of statistical
features, we can accelerate the training process and enhance the
model’s performance, leading to a more efficient and effective
approach to time series classification. For example, consider
the SWAN-SF data set, which includes 24 attributes, each
recorded at 60 time stamps. This results in a total of 1440 data
points (60 x 24), a volume that surpasses the processing
capacity of most conventional classifiers. Many of these data
points may be redundant or have minimal impact on
distinguishing between classes.

To achieve this, we employ a methodical strategy for feature
extraction by focusing on nine statistical properties. These
properties collectively define the key characteristics of each
univariate time series in an MVTS data set. These nine
statistical features are shown below. In these formulas, ¢ refers
to the number of time stamps of a feature in an MVTS data set,
which is set to 60 for the SWAN-SF data set.

1. First value. X,
2. Last value.)](,
3. Mean. ;1 = 7ZE:1X1‘
4. Median. Median(X)
5. Weighted average. X,, = szliwwx
i=1"i

6. Standard deviation. o = \/ ﬁzl{: (X — p)?

t 1 Xi—p 3
7. Skewness. —— 1)072)2,4:1(.)

. 1+ 1) 1 Xi—p)* -1

8. Kurtosis. mzi — 1(-) T i—20-3
9. Slope. a = ‘S0

1(x%) — (Cx)?

By concentrating on these statistical properties, we can
greatly reduce the dimensionality of the data set without losing
essential information necessary for accurate classification. This
not only makes training the model more straightforward but
also enhances the classifiers’ ability to differentiate between
various classes in the data set more precisely and efficiently.
Through careful feature extraction and selection, traditional
machine learning classifiers can be successfully adapted to the
specifics of time series data, allowing them to compete with
more complex deep-learning models in certain scenarios.

16

EskandariNasab, Hamdi, & Filali Boubrahimi

4.3.2. Time-series-based Classification

In the domain of time series data analysis, advanced deep
learning-based models enable us to perform classification using
the actual MVTS data set without feature extraction (J. Chen
et al. 2022; Z. Sun et al. 2022). Models such as LSTM
(S. Hochreiter & J. Schmidhuber 1997), RNN (A. Sherstin-
sky 2020), GRU (J. Chung et al. 2014), and 1D-CNN
(Y. Lecun et al. 1998) are particularly adept at enhancing
classification accuracy in MVTS data. Therefore, there is no
need for any feature extraction techniques such as those in
Section 4.3.1. This approach is especially effective in scenarios
where understanding complex temporal patterns and structural
details in the time series data is difficult to achieve through
mere statistical feature extraction. Our study rigorously
evaluates these advanced classifiers to gain a deeper under-
standing of how preprocessing and sampling strategies impact
the performance of classification on the SWAN-SF data set.

In the context of MVTS data analysis, it is vital to recognize
the inherently three-dimensional nature of this data. Each
sample in an MVTS data set can be viewed as a two-
dimensional matrix, where each attribute represents a one-
dimensional time series. Deep-learning models such as LSTM,
RNN, GRU, and 1D-CNN are inherently designed to handle
three-dimensional data structures. This capability eliminates the
need for transforming each two-dimensional data point into a
one-dimensional vector (concatenation). Additionally, these
neural network-based classifiers come with an embedded
feature learning mechanism within their architecture. This
feature significantly reduces the need for handcrafted feature
engineering, thereby streamlining the model training process.
The incorporation of this automatic feature extraction is a
substantial benefit, as it saves a considerable amount of time
and resources that would otherwise be spent on feature
engineering, and it also enhances the model’s ability to detect
and learn complex patterns in the data.

4.4. Visualization Techniques

We utilized various visualization techniques with distinct
properties to facilitate the understanding of the experiment’s
results. The main techniques employed were bar charts, scatter
plots, and box plots. Here is an explanation of these techniques.

Bar chart. A bar chart, as shown in Figures 11, 13, 16, and
20, visually represents data using rectangular bars, with the
length of each bar proportional to its corresponding value. Bar
charts are frequently used to compare different categories of
data, where each bar stands for a category, and its height or
length reflects the magnitude of the value it represents. They
can be displayed vertically or horizontally. In these figures,
each bar displays two values: the first value from left to right
indicates the mean TSS, and the second value represents the
max TSS.

Scatter plot. A scatter plot, as shown in Figures 12 and 19,
depicts the results of an experiment more intuitively compared
to the bar chart we have used. The scatter plots have TSS on the
x-axis and recall on the y-axis, illustrating the importance of
both values in imbalance classification tasks. To achieve a high
TSS, a high recall is essential. In these plots, the size of each
shape indicates the mean TSS, while the placement of the
shape is determined by the max TSS and max recall. This
visualization technique helps in identifying patterns and

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

EskandariNasab, Hamdi, & Filali Boubrahimi

Other Preprocessing
Steps (e.g., Sampling)

Imputation
Raw SWAN-SF Dataset =
First Step

Normalization .
» Final Dataset

Last Step

Figure 10. This figure illustrates the sequence of imputation and normalization tasks in a data preprocessing pipeline.

potential outliers in the data, making it easier to analyze and
interpret the results of imbalance classification tasks.

Box plot. A box plot, as shown in Figures 17, 18, 21, and 22,
visually represents the distribution of data in an experiment. It
displays the median, quartiles, and potential outliers. The box
indicates the interquartile range (IQR), which contains the
middle 50% of the data, with the line inside the box
representing the median. The “whiskers” extend to the smallest
and largest values within 1.5 times the IQR from the quartiles.
An outlier is a data point that significantly deviates from other
observations. It lies far outside the expected range, typically
more than 1.5 times the IQR above the third quartile or below
the first quartile. Outliers can result from data variability or
measurement errors and are often marked with diamond
symbols in box plots to highlight these extreme values.

5. Prediction Results
5.1. Impact of FPCKNN Imputation and LSBZM Normalization

In the preprocessing pipeline for the SWAN-SF data set,
FPCKNN imputation is employed as the initial step. This is
crucial for addressing missing values before any subsequent
preprocessing techniques are implemented. Following this, the
final step in the preprocessing sequence involves LSBZM
normalization. It is essential that other preprocessing opera-
tions, such as sampling, are executed postimputation but
prenormalization. The justification behind this sequencing is
that sampling methods, along with other preprocessing
techniques, can potentially alter the data set by either omitting
or introducing additional samples. These changes consequently
affect the data set’s mean and standard deviation, which in turn
impacts the efficacy of normalization procedures. If feature
extraction-based classification is our choice, we need to extract
the statistical features and create the new data set before
normalization. Figures 10 and 14 visually represent the
sequential order of these preprocessing stages.

To analyze the impact of FPCKNN imputation and LSBZM
normalization on our data, we first implemented the FPCKNN
imputation technique, proceeded with the extraction of
statistical features, and then applied the LSBZM normalization
method. Both the training and test data sets undergo these
techniques before proceeding to the model training phase.
Subsequently, we establish baseline methodologies for the
comparative analysis of our results. For baseline comparisons,
we have selected two distinct imputation strategies: mean
imputation and next value imputation. Additionally, we have
chosen two normalization techniques: Z-score normalization
and min—-max scaling. Our analysis focuses on comparing the
outcomes of combining three imputation methods (FPCKNN,
next value, and mean) with three normalization techniques
(LSBZM, Z-score, and min-max) to identify the highest-
performing combination.

In Section 3.1.2, we explored the methodologies behind
Z-score normalization and min—max scaling. The following

17

section delves into the mechanisms of mean imputation and next
value imputation, two established techniques in data preproces-
sing. Mean imputation replaces missing values in a data set with
the mean value of the entire feature column. While straightfor-
ward, this method can lead to an underestimation of the true
variability in the data, as it artificially reduces variance by
replacing missing values with the mean, affecting statistical
analyses and model performance. On the contrary, the next value
imputation substitutes a missing value with the next available
(nonmissing) value in the data sequence. This method relies on the
temporal or sequential structure of the data, making it well suited
for time series data sets where the missing value can be reasonably
estimated by the subsequent observed value (S. I. Khan &
A. S. M. L. Hoque 2020).

5.1.1. Classification Results

Based on Figures 11 and 12, as well as Table 4, it is evident
that our combined imputation and normalization technique
(FPCKNN-I + LSBZM-N) significantly enhances the mean
TSS scores compared to the baseline methods used for
comparison, as discussed in Section 5.1. Specifically, as shown
in Figure 11, the SVM classifier achieved a mean TSS score of
0.154 with the best baseline approach (next value-I 4+ min—
max-N) and a mean TSS score of 0.2 by utilizing our
normalization technique with a baseline imputation (next
value-I + LSBZM-N). In contrast, our combined imputation
and normalization technique (FPCKNN-I + LSBZM-N)
improved the mean TSS score to 0.255. Similarly, for the
MLP classifier, our combined imputation and normalization
method alone resulted in a mean TSS score of 0.321, without
the need for additional preprocessing steps such as sampling.

Figure 12 simply illustrates the significance of the two
pivotal evaluation metrics for achieving optimal classification
performance in the SWAN-SF imbalanced data set. Following
the TSS formula, maximizing the recall value is paramount for
attaining the highest TSS score in the binary classification of
flares within the SWAN-SF data set. Consequently, the recall
value holds a crucial position within the TSS score, making it
imperative to display both metrics in a 2D space for a more
intuitive visualization. As shown in the figure, the green
markers, representing our combined imputation and normal-
ization methods, achieve the highest TSS and recall scores
compared to the baseline techniques, indicated by the red and
blue markers.

5.2. Impact of NDBSR

To demonstrate the effectiveness of eliminating class overlap
in enhancing classification performance, we have dedicated a
separate section to this topic in our paper, even though it
essentially involves a sampling technique. The NDBSR method
should be applied after imputation in the preprocessing
pipeline. It is important to perform the NDBSR technique, or
potentially additional sampling strategies, before feature

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

EskandariNasab, Hamdi, & Filali Boubrahimi

Mean and Max TSS Values for Different Imputation (I)-Normalization (N) Techniques

MLP(FPCKNN-I + LSBZM-N)
MLP(FPCKNN-I + MinMax-N)
MLP(FPCKNN-I + Zscore-N)
MLP(Nextvalue-I + LSBZM-N)
MLP(Mean-I + LSBZM-N)
MLP(Nextvalue-I + Zscore-N)
MLP(Nextvalue-I + MinMax-N)
MLP(Mean-I + MinMax-N)
MLP(Mean-I + Zscore-N)
SVM(FPCKNN-I + LSBZM-N)
SVM(FPCKNN-I + MinMax-N)
SVM(FPCKNN-I + Zscore-N)
SVM(Nextvalue-I + LSBZM-N)
SVM(Mean-I + LSBZM-N)
SVM(Nextvalue-I + Zscore-N)
SVM(Nextvalue-I + MinMax-N)
SVM(Mean-I + MinMax-N)
SVM(Mean-I + Zscore-N)
KNN(FPCKNN-I + LSBZM-N)
KNN(FPCKNN-I + MinMax-N)
KNN(FPCKNN-I + Zscore-N)
KNN(Nextvalue-I + LSBZM-N)
KNN(Mean-I + LSBZM-N)
KNN(Nextvalue-I + Zscore-N)
KNN(Nextvalue-I + MinMax-N)
KNN(Mean-I + MinMax-N)
KNN(Mean-I + Zscore-N)
RF(FPCKNN-I + LSBZM-N)
RF(FPCKNN-I + MinMax-N)
RF(FPCKNN-I + Zscore-N)
RF(Nextvalue-I + LSBZM-N)
RF(Mean-I + LSBZM-N)
RF(Nextvalue-I + Zscore-N)
RF(Nextvalue-I + MinMax-N)
RF(Mean-I + MinMax-N)
RF(Mean-I + Zscore-N)

0.154
[__0.095 0.146
0.200

0.134
0.094

0.105

Different Imputation-Normalizatio

0.228
0.211

0.189

0

0.0 0.2

0.

0.27

0.254

L] e —— 0.729

e 0.825
0.469
0.382
0.458
0.462
0.378
0.497
0.399
0.435
295
0.640
3
0.634

(PZ0N I — 0.551
0.247

0.231

0.426

0.272

0.235

0.415

0.282

0.253

0.514

0.390
0.384

0.279

.260

0.337
0.318

0.4
TSS Value

0.6 0.8

Figure 11. Comparative analysis of the mean and max TSS values across nine combinations of imputation (I) and normalization (N) techniques. Efficacy evaluated via
four classifiers: SVM, MLP, k-NN, and RF. For each bar, the first value indicates the mean TSS, and the second value indicates the max TSS of four train—test

combinations.

extraction. Normalization is invariably the final step, executed
after feature extraction. Our baseline method for this section is
the data set with FPCKNN imputation and LSBZM normal-
ization but without class overlap removal. Based on Figure 13
and Table 5, our findings suggest that removing both classes B
and C is more effective, resulting in fewer FPs, and
consequently, a higher TSS score. For comparative analysis
and to assess the impact of these methods, we first apply our
imputation technique, followed by the removal of class C, or
classes B and C, then feature extraction, and finally, our
normalization technique. The order and integration of these
steps in the preprocessing pipeline are clearly illustrated in
Figure 14. It is important to note that for the test sets, we do
not remove classes B and C or any instances; instead, we
perform the remaining steps. Implementing these methods is

18

straightforward: researchers simply need to exclude classes B
and C entirely or only class C. This results in a minor-flaring
class that contains only FQ or FQ and B samples.

5.2.1. Classification Results

Based on Figure 13 and Table 5, removing classes B and C
together is more effective than removing only class C. This
approach leads to higher mean TSS scores for SVM, MLP,
k-NN, and REF classifiers. Both methods significantly enhance
TSS results compared to not addressing class overlap.
Specifically, for the MLP classifier, the mean TSS improved
from 0.321 to 0.671 by eliminating classes B and C from
the training data set. Among the classifiers tested, MLP and
SVM were the most effective. These results underscore the

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

EskandariNasab, Hamdi, & Filali Boubrahimi

Max TSS and Recall Values for Different Imputation (I)-Normalization (N) Techniques

0.8

0.6

Recall

0.4

0.2

0.0
0.0

Mean-I + Zscore-N
Nextvalue-I + Zscore-N
Mean-I + MinMax-N
Nextvalue-I + MinMax-N
FPCKNN-I + LSBZM-N

(R 3 KX}

.,‘,xl

0.1 0.2 0.3

0.4 0.5
TSS

0.6 0.7 0.8 0.9

Figure 12. The comparative analysis of max TSS and max recall across different imputation (I) and normalization (N) techniques is illustrated. The efficacy of these
algorithms is assessed using SVM, MLP, k-NN, and RF classifiers. In the plot, each shape represents the result of classification using the four train—test combinations with
one of the mentioned classifiers. The size of each shape indicates the mean TSS, while the position of the shape is determined by the max TSS and max recall values.

MLP(Removing Classes B & C)
MLP(Removing Class C)
MLP(No NDBSR)
SVM(Removing Classes B & C)
SVM(Removing Class C)
SVM(No NDBSR)
RF(Removing Classes B & C)
RF(Removing Class C)

RF(No NDBSR)
KNN(Removing Classes B & C)
KNN(Removing Class C)
KNN(No NDBSR)

Different NDBSR Techniques

Mean and Max TSS Values for Different Near Decision Boundry Sample Removal Techniques

671 LY

0.544

0.506

0.856

0.825

O

0.539

0.729

0.492
0.526
0.440
0.519
0.0 0.2 0.4 0.6
TSS Value

0.774
0.776

0.8

0.839
0.847

0.837
0.853

1.0

Figure 13. This figure presents a comparison of the mean and max TSS scores achieved by various NDBSR methods when applied to different classifiers. These classifiers
include MLP, RF, SVM, and k-NN. For each bar, the first value indicates the mean TSS, and the second value indicates the max TSS of four train—test combinations.

Mean TSS Values for Nine Combinations o’lf‘a}rbéll;u‘:ation (I) and Normalization (N) Techniques

Technique k-NN SVM RF MLP

FPCKNN-I and LSBZM-N 0.260 +0.171 0.255 + 0.274 0.228 £+ 0.173 0.321 + 0.299
FPCKNN-I and min-max-N 0.165 4 0.059 0.154 £ 0.092 0.135 £ 0.062 0.192 4 0.162
FPCKNN-I and Z-score-N 0.138 4 0.068 0.095 £ 0.036 0.147 £ 0.046 0.215 4+ 0.153
Next value-I and LSBZM-N 0.216 +0.128 0.223 +0.141 0.175 £ 0.124 0.264 £+ 0.176
Mean-I and LSBZM-N 0.199 +0.126 0.154 £+ 0.145 0.213 £0.114 0.204 £+ 0.192
Next value-I and min—-max-N 0.203 + 0.072 0.133 £ 0.096 0.157 £ 0.138 0.266 £ 0.152
Next value-I and Z-score-N 0.172 4+ 0.055 0.064 £ 0.030 0.165 £ 0.098 0.244 £ 0.115
Mean-I and min—max-N 0.200 + 0.071 0.128 £ 0.087 0.141 £ 0.118 0.274 £+ 0.141
Mean-I and Z-score-N 0.170 & 0.063 0.067 £ 0.030 0.147 £ 0.076 0.278 + 0.146

Note. The method in bold achieved the top scores.

19

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

EskandariNasab, Hamdi, & Filali Boubrahimi

A)Train Sets

Removing Classes

Imputation BandC Sampling Technique
Raw SWAN-SF Dataset > > >
Train Sets <
Normalization Statistical Feature
Generation
B) Test Sets
Statistical Feature
Imputation Generation Normalization

Raw SWAN-SF Dataset ——— > —_— —_— Test Sets

Figure 14. This figure effectively showcases the preprocessing pipelines, detailing the specific steps and methods employed for both training (panel (A)) and test sets
(panel (B)). To ensure an unbiased comparison of the sampling results, it is crucial that the test sets remain unaltered, with no samples being either removed or added.

Table 5
Mean TSS Values for Different NDBSR Techniques
NDBSR Technique k-NN SVM RF MLP
No NDBSR 0.227 £ 0.171 0.255 £0.274 0.227 +£0.174 0.321 4+ 0.299
Removing class C 0.416 +0.210 0.539 £ 0.182 0.492 +0.212 0.544 + 0.201
Removing classes B and C 0.440 £ 0.195 0.574 £+ 0.160 0.506 + 0.192 0.671 £+ 0.169

Note. The method in bold was the best-performing NDBSR technique.

importance of these techniques for data sets such as SWAN-SF,
which show significant class overlap in both binary and
multiclass classification scenarios.

5.3. Impact of Sampling Techniques

As illustrated in Figure 14, our initial step involved applying
our imputation technique to all training samples. We then
purposefully removed classes B and C due to their significant
overlap with class M. This decision was aimed at improving the
classification results by excluding all classes B and C samples
from the majority class. Following this exclusion, we applied
sampling techniques to the training sets. Additionally, we
generated nine statistical features for each attribute within the
data set, culminating the process with normalization. In contrast,
the test sets underwent a different treatment: we did not apply
sampling and chose to retain classes B and C samples. The
processing for these test sets was limited to imputation, the
generation of statistical features, and normalization.

5.3.1. t-Distributed Stochastic Neighbor Embedding Visualizations

Following the generation of synthetic samples for the minority
class, we conduct a balanced selection, choosing an equal number
of synthetic samples as there are in the original minority class
(approximately 1000). Subsequently, we utilize t-distributed
stochastic neighbor embedding (t-SNE; L. van der Maaten &
G. Hinton 2008) for the visualization of both original and

20

synthetic samples. This technique facilitates the assessment of
similarity in distribution between the synthetic and original
samples by representing them in a two-dimensional space, thereby
offering a visual comparison of their respective distributions.

As illustrated in Figure 15, which shows the t-SNE
visualizations between original and synthetic samples, the
distributions of synthetic samples created by SMOTE and GNI
are most effective, while ADASYN struggles to replicate the
entire distribution of original samples. This limitation stems from
ADASYN'’s strategy of concentrating on generating synthetic
samples for instances that classifiers find more difficult to learn.
TimeGAN also produces synthetic data that closely mirrors the
distribution of original data. However, the synthetic data
generated by TimeGAN holds greater value as it represents
entirely new and unique data, rather than perturbing the original
samples. As a result, TimeGAN’s data is less prone to overfitting
since the synthetic samples are not mere replications of the
original samples. Overall, samples generated by TimeGAN are
highly valuable, as they not only represent new and unique data
but also effectively encompass the full distribution of the original
samples. For the principal component analysis (PCA) visualiza-
tions, please refer to Appendix C.

5.3.2. Discriminative Score

For a quantitative measure of similarity, we train an SVM
classifier to distinguish between synthetic and original samples.

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

t-SNE plot of SWAN-SF Dataset (Partition 1) with Smote

40 \
®
20
~
°
]
3
s 0
u
z
2
“ 20
-40 @ Original
® Synthetic
-4 -20 0 20 40

t-SNE Feature 1

t-SNE plot of SWAN-SF Dataset (Partition 2) with Smote
60

geE

40
Luyey S
8., o .
20 o S e
: i S
5
g 0 - d: LAY
3 3 .
he SR8 . aygee “ol
o . “'> “‘*
% -20 iy - /
2 STad .ﬂ';;
"
-40 N
Y
ﬂ. ® Original
60 @ Synthetic
-60 -40 -20 0 20 40
t-SNE Feature 1
t-SNE plot of SWAN-SF Dataset (Partition 3) with Smote
60 o original
® Synthetic
40
.2
]
3
g o
b
H
%20 &%
-40
-60
-60 -40 -20 0 20 40 60

t-SNE Feature 1

t-SNE plot of SWAN-SF Dataset (Partition 4) with Smote
60

@ Original
@ Synthetic

-SNE Feature 2
=Y

t-SNE Feature 1

t-SNE plot of SWAN-SF Dataset (Partition 5) with Smote

40
20
~
°
5 []
g
g0 #
u
z
2
-20
—40 @ Original
@ Synthetic

20

0 40
-SNE Feature 1

60

-SNE Feature 2

40 @ Original
@ Synthetic
20
0
-20
-40

-SNE Feature 2

-SNE Feature 2

-SNE Feature 2

-SNE Feature 2

t-SNE plot of SWAN-SF Dataset (Partition 1) with TimeGAN

-20 0

20
t-SNE Feature 1

40 60

t-SNE plot of SWAN-SF Dataset (Partition 2) with TimeGAN

w 2

® Original
@ Synthetic

-20 0 20 40

t-SNE Feature 1

t-SNE plot of SWAN-SF Dataset (Partition 3) with TimeGAN

@ Original
® Synthetic

-20 0 20
-SNE Feature 1

40

SNE plot of SWAN-SF Dataset (Partiion 4) with TimeGAN
® Original
® Synthetic

20

t-SNE Feature 1

t-SNE plot of SWAN-SF Dataset (Partition 5) with TimeGAN

e Original
@ Synthetic

20

-20 40

0
t-SNE Feature 1

EskandariNasab, Hamdi, & Filali Boubrahimi

t-SNE plot of SWAN-SF Dataset (Partition 1) with GNI t-SNE plot of SWAN-SF Dataset (Partition 1) with Adasyn

® Original
40 ® Synthetic
~ ~ 20
© ©
3 3
3 3
2 2 0
] 4
z z
-20
® Original
-60 @ Synthetic -40
-40 -20 20 40 60 -60 -40 -20 0 20 40

0
t-SNE Feature 1 t-SNE Feature 1

t-SNE plot of SWAN-SF Dataset (Partition 2) with GNI t-SNE plot of SWAN-SF Dataset (Partition 2) with Adasyn
60

@ Original 4‘ ® Original
60 @ Synthetic ® Synthetic
40 =
“ pi-Y
.)
~ < 20 \
E A
g v % o —ﬁ“r{!
0 ot N 2 \
=t &&-
“ < -20
0 w}
-40
-40
-60 :
-60

40

-40

-20 0 20
t-SNE Feature 1

-20 0 20
t-SNE Feature 1

t-SNE plot of SWAN-SF Dataset (Partition 3) with GNI t-SNE plot of SWAN-SF Dataset (Partition 3) with Adasyn

60 ® Original ~
® Synthetic o I
w0 ynihete p oY
40 S
i
K -
N 20 2 2 - i
> > £ e |
5 s -
£, $ ’W’
H g 0
2 2
20 %
40 @ Original 94
® Synthetic -40
-60
50 25 0 25 50 -4 20 0 20 40

t-SNE Feature 1 t-SNE Feature 1

t-SNE plot of SWAN-SF Dataset (Partition 4) with GNI t-SNE plot of SWAN-SF Dataset (Partition 4) with Adasyn

60 40 .
s SN
40
20
2 2
T g 0
2o 2
] 4
z z
-20 -20
-40 pt N
® Original —40 Y. ® Original
® Synthetic @ Synthetic
-60
-40 -20 0 20 40 -40 -20 0 20 40

t-SNE Feature 1 t-SNE Feature 1

t-SNE plot of SWAN-SF Dataset (Partition 5) with GNI t-SNE plot of SWAN-SF Dataset (Partition 5) with Adasyn
60

@ Original 40 g ® Original
@ Synthetic - ® Synthetic
40
20
N 20 ~N
® °
3 E
3 5 0
2 0 £
o o
z z
5 2
-20 -20
-40
-40

20 40

-20

0 20
t-SNE Feature 1

-40

-20 0
t-SNE Feature 1

Figure 15. t-SNE visualizations demonstrating the distributional alignment of original and synthetic data samples for each oversampling technique across data set
partitions. These visualizations highlight the efficacy of each oversampling method in replicating the comprehensive distribution characteristics of the original data

samples.

21

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November EskandariNasab, Hamdi, & Filali Boubrahimi

Comparison of Discriminative Scores for the OTV‘Z:)sl:r:pling Techniques across the Data Set Partitions
Technique Partition 1 Partition 2 Partition 3 Partition 4 Partition 5
SMOTE 0.000664 0.037456 0.021638 0.016452 0.023569
TimeGAN 0.238379 0.300237 0.259064 0.389842 0.287878
GNI 0.023241 0.008918 0.020468 0.019314 0.001683
ADASYN 0.213147 0.347800 0.185380 0.252503 0.306397

Note. The bold scores correspond to the lowest discriminative scores for each partition, indicating the best results, as lower discriminative scores reflect better
performance.

Table 7
Mean TSS Values for Different Sampling Techniques

Sampling Technique k-NN SVM RF MLP

No Sampling 0.227 £ 0.171 0.255 £0.274 0.227 £0.174 0.321 £+ 0.299
SMOTE 0.685 £ 0.067 0.704 £ 0.140 0.568 £+ 0.122 0.757 + 0.051
ADASYN 0.667 £+ 0.051 0.656 £+ 0.137 0.513 £0.118 0.662 £ 0.107
GNI 0.627 £ 0.111 0.692 £ 0.106 0.705 £ 0.083 0.792 £ 0.056
TimeGAN 0.576 £ 0.106 0.718 £ 0.077 0.716 £ 0.080 0.700 £ 0.059
RUS-TL-SMOTE 0.739 £ 0.014 0.726 £ 0.126 0.681 £ 0.098 0.808 £ 0.044
RUS-TL-ADASYN 0.715 £ 0.036 0.704 £0.143 0.651 £0.071 0.776 £+ 0.044
RUS-TL-GNI 0.655 £ 0.056 0.783 + 0.068 0.792 + 0.065 0.778 £ 0.055
RUS-TL-TimeGAN 0.649 £ 0.097 0.742 £+ 0.107 0.789 £ 0.049 0.794 £ 0.038

Note. The bold scores represent the highest scores achieved for each classifier.

Initially, each original sample is labeled as “real,” and each while the RF classifier attains a mean TSS of 0.227. However, after
synthetic sample as “not real.” Then, the training of the SVM is applying a combination of oversampling and undersampling
conducted to categorize these two distinct classes in a typical techniques, the performance significantly improves. The mean
supervised learning framework. We then obtain the classifica- TSS score for the MLP classifier increases to a range of 0.776
tion accuracy on a held-out test set, which constitutes 30% of (RUS-TL-ADASYN) to 0.808 (RUS-TL-SMOTE), and for the RF
the data. Afterward, we compute the error using the formula classifier, it rises to between 0.651 (RUS-TL-ADASYN) and 0.792

(RUS-TL-GNI), indicating a substantial enhancement. Addition-
ally, as illustrated in Figures 17 and 18, the combination of
oversampling and undersampling techniques produces better
results compared to oversampling alone in most cases. Therefore,
it is recommended to perform undersampling alongside over-
sampling to reduce the number of majority-class samples and
prevent overfitting. Based on Figure 16, all four techniques,
including SMOTE, ADASYN, GNI, and TimeGAN, achieve a
high mean TSS score depending on the classifier used. Therefore,
any of these techniques can be used to achieve satisfying results,
with the choice depending on the specific classifier. However,
given that TimeGAN is a generative model capable of producing
unique synthetic samples that closely align with the original data
distribution, and considering the t-SNE visualization results shown
in Figure 15, it can be concluded that TimeGAN is the optimal
oversampling technique for the SWAN-SF data set.

In situations where researchers cannot use TimeGAN for
oversampling, SMOTE and GNI stand out as the second and
Based on Figures 16, 17, 18, and 19, as well as Table 7, third recommended techniques for the SWAN-SF data set due to

e=a— 0.5, (10)

where e represents the error and a the accuracy. Finally, we
report this error to provide a quantitative assessment. Lower
scores indicate better performance, with the ideal score being 0.

Based on Table 6, SMOTE and GNI exhibit the lowest error
values, signifying their effectiveness in producing high-quality
synthetic data for the minority class of the SWAN-SF data set.
However, the data they generate lacks ingenuity and uniqueness.
The discriminative score results for ADASYN are unsatisfactory,
indicating its inability to produce synthetic data resembling the
original. Additionally, while the results for TimeGAN are also
unsatisfactory, the data it generates holds greater value due to its
originality and uniqueness. A comparison of the classification
results is essential to make a final decision.

5.3.3. Classification Performance

sampling significantly enhances classification performance when their high TSS scores. Additionally, the synthetic data generated
compared to the absence of sampling. For example, as illustrated in by these two methods closely resemble the distribution of the
Figure 16, when sampling techniques are not employed (No original data. However, it is important to note that the synthetic
Sampling), the MLP classifier achieves a mean TSS score of 0.321, data, while similar, are not new or genuine.

22

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

Sampling Technique

MLP(RUS-TL-TimeGAN)
MLP(RUS-TL-GNI)
MLP(RUS-TL-ADASYN)
MLP(RUS-TL-SMOTE)
MLP(TimeGAN)
MLP(GNI)
MLP(ADASYN)
MLP(SMOTE)

MLP(No Sampling)
RF(RUS-TL-TimeGAN)
RF(RUS-TL-GNI)
RF(RUS-TL-ADASYN)
RF(RUS-TL-SMOTE)
RF(TimeGAN)
RF(GNI)

RF(ADASYN)
RF(SMOTE)

RF(No Sampling)
SVM(RUS-TL-TimeGAN)
SVM(RUS-TL-GNI)
SVM(RUS-TL-ADASYN)
SVM(RUS-TL-SMOTE)
SVM(TimeGAN)
SVM(GNI)
SVM(ADASYN)
SVM(SMOTE)

SVM(No Sampling)
KNN(RUS-TL-TimeGAN)
KNN(RUS-TL-GNI)
KNN(RUS-TL-ADASYN)
KNN(RUS-TL-SMOTE)
KNN(TimeGAN)
KNN(GNI)
KNN(ADASYN)
KNN(SMOTE)

KNN(No Sampling)

EskandariNasab, Hamdi, & Filali Boubrahimi

Mean and Max TSS Values for Different Sampling Techniques

1 7 [0.533
I 7773 B .56
1 77 S 0.843
1 -3 S 0.360
1 7ol SN 0.796
N) S 0.863
1 7 S S 0,541
1) SN 0,530
0.825
1 7/ B 0.846
1 0773 S 0.551
1 -5 S 0.749
Y5 Sy 0.507
N P 0 S 0.790
I /) S 0,641
N T £ S 0.698
-3 B S 0.776
0.526

e T
1 07 =) NS 0.653
1 07 | SN 0.337
1 77 S 0.636
1 077 - SN 0,545
1 Y7 S 0.771
I -1} IS 0.508
1 7 S 0.834
0.729
0.734
0.731

0.760

0.757

0.649
0.655
0.715

0.739
0.655

0.748
0.721
0.752
0.519

0.2 0.3 0.4 0.5 0.6

TSS Value

0.7 0.8 0.9

Figure 16. Comparative analysis of mean and max TSS across various sampling techniques and classifiers: This figure illustrates the performance of different
sampling methods, including exclusive oversampling techniques (SMOTE, ADASYN, GNI, TimeGAN) and a combination of oversampling and undersampling
approaches (RUS and TL with one of the oversampling methods). The efficacy of these techniques is evaluated using four distinct classifiers: SVM, MLP, k-NN, and
RF. For each bar, the first value indicates the mean TSS, and the second value indicates the max TSS of four train—test combinations.

TSS Scores: Over-sampling vs. Over- & Under-sampling

g
8
o
£
£ Over- & Under-sampling . 3 ¢ 04 _—|
]
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
TSS Score

Figure 17. This analysis evaluates the performance of oversampling techniques vs. combined oversampling and undersampling methods across eight classifiers and
four unique training and testing combinations. The top box displays the results of four oversampling techniques applied to the eight classifiers, each with four different
train—test combinations, resulting in a total of 128 experiments. The bottom box presents the same set of experiments but uses four combined oversampling and
undersampling techniques. In the plot, diamond-shaped symbols indicate outliers.

3.4. Comparison Using Time-series-based Classifiers and then proceed with our normalization process. For the test

sets, we do not remove classes B and C, nor do we perform
sampling, but we do apply our imputation and normalization
techniques. In this comparison, we omit feature extraction
and instead focus on time-series-based classification using

In the final comparison, we first apply our imputation
technique, followed by the removal of classes B and C.
Subsequently, we conduct both solely oversampling and a
combination of oversampling and undersampling on the data,

23

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

EskandariNasab, Hamdi, & Filali Boubrahimi

TSS Scores for Sampling Techniques

SMOTE k

ADASYN k

GNI *

TimeGAN ¢ ¢ ¢ k

RUS-TL-SMOTE k

Sampling Technique

i

RUS-TL-ADASYN ‘
RUS-TL-GNI ¢ e ‘) 3] | —
RUS-TL-TimeGAN ¢ ¢ b I
0.2 0.3 0.4 05 06 07 0.8 0.9
TSS Score

Figure 18. Assessing TSS scores of the eight sampling techniques across our eight classifiers and four unique training and test combinations. Each box shows the
result of a specific sampling technique on eight classifiers and four train—test combinations, totaling 32 experiments. In the plot, diamond-shaped symbols indicate

outliers.

Max TSS and Recall Values After and Before Sampling

® No Sampling
V¥ Over Sampling
B Both Over & Under Sampling v

1.0

0.9

0.8

Recall

0.7

0.6

0.5

0.50 0.55 0.60 0.65

= W VY EERN
v Ve
v
u v v
v o
v
]
| Vv
®
v
070 075 080 085 0.90
TSS

Figure 19. In-depth comparison of max TSS and max recall across different sampling techniques and classifiers: This figure illustrates the performance of various
sampling methods, including exclusive oversampling techniques and combinations of oversampling and undersampling techniques. The efficacy of these methods is
evaluated using four distinct classifiers: SVM, MLP, k-NN, and RF. Each shape in the plot represents the result of classification using four train—test combinations,
resulting in four values. Generally, each shape in the plot shows the result of one of the three categories on one of the four classifiers across four train—test combinations,
totaling four experiments. The size of each shape indicates the mean TSS, while the placement of the shape is determined by the max TSS and max recall.

state-of-the-art classifiers, including LSTM, RNN, GRU, and
1D-CNN.

Leveraging insights from Figure 20 and Table 8, which
clearly demonstrate the efficacy of deep learning-based
architectures in our time series classification task, it becomes
evident that the GRU model outperforms others on the SWAN-
SF data set. Furthermore, the integration of both oversampling
and undersampling strategies enhances the TSS score more
effectively than relying on oversampling alone. This approach
not only elevates the TSS but also markedly reduces training
duration by minimizing the generation of minority-class
instances and eliminating a substantial number of majority-class
samples. The LSTM network and the 1D-CNN are identified as
the second and third top-performing deep-learning models,
respectively, on the SWAN-SF data set. Except for the RNN
classifier, the combined application of RUS, TL, and ADASYN,
as well as RUS, TL, and SMOTE, has yielded the highest mean
TSS outcomes for the SWAN-SF data set. Nonetheless, the
absence of any preprocessing steps on the SWAN-SF data set

24

predominantly results in a TSS score of zero, underscoring the
critical role of a comprehensive preprocessing pipeline. The TSS
of zero is primarily due to the large and differing scales of
attributes and the low number of major-flaring samples, leading
to non-convergence. Consequently, the model outputs a recall
value of 0, resulting in a TSS of 0. Specifically, our approach
increased the TSS from 0.0 (no preprocessing) to a mean of
0.835 (I-N-NDBSR-RUS-TL-ADASYN) for the GRU model.
Additionally, for the LSTM model, the mean TSS improved
from 0.302 (no preprocessing) to 0.736 (I-N-NDBSR-RUS-TL-
ADASYN), demonstrating the effectiveness of our preproces-
sing methodology in enhancing solar flare prediction.

5.5. Comparison of Classifiers and Partitions

Based on Figure 21, the MLP and SVM classifiers demonstrate
the highest effectiveness for feature extraction-based binary

classification of major and minor-flaring events within the
SWAN-SF data set. Additionally, the GRU and LSTM classifiers

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

GRU(I_N_NDBSR_RUS-TL-TimeGAN)
GRU(I_N_NDBSR_RUS-TL-GNI)
GRU(I_N_NDBSR_RUS-TL-ADASYN)
GRU(I_N_NDBSR_RUS-TL-SMOTE)
GRU(I_N_NDBSR_TimeGAN)
GRU(I_N_NDBSR_GNI)
GRU(I_N_NDBSR_ADASYN)
GRU(I_N_NDBSR_SMOTE)

GRU(No Preprocessing)
LSTM(I_N_NDBSR_RUS-TL-TimeGAN)
LSTM(I_N_NDBSR_RUS-TL-GNI)
LSTM(I_N_NDBSR_RUS-TL-ADASYN)
LSTM(I_N_NDBSR_RUS-TL-SMOTE)
LSTM(I_N_NDBSR_TimeGAN)
LSTM(I_N_NDBSR_GNI)
LSTM(I_N_NDBSR_ADASYN)
LSTM(I_N_NDBSR_SMOTE)

LSTM(No Preprocessing)
1DCNN(I_N_NDBSR_RUS-TL-TimeGAN)
1DCNN(I_N_NDBSR_RUS-TL-GNI)
1DCNN(I_N_NDBSR_RUS-TL-ADASYN)
1DCNN(I_N_NDBSR_RUS-TL-SMOTE)
1DCNN(I_N_NDBSR_TimeGAN)
1DCNN(I_N_NDBSR_GNI)
1DCNN(I_N_NDBSR_ADASYN)
1DCNN(I_N_NDBSR_SMOTE)
1DCNN(No Preprocessing)
RNN(I_N_NDBSR_RUS-TL-TimeGAN)
RNN(I_N_NDBSR_RUS-TL-GNI)
RNN(I_N_NDBSR_RUS-TL-ADASYN)
RNN(I_N_NDBSR_RUS-TL-SMOTE)
RNN(I_N_NDBSR_TimeGAN)
RNN(I_N_NDBSR_GNI)
RNN(I_N_NDBSR_ADASYN)
RNN(I_N_NDBSR_SMOTE)

RNN(No Preprocessing)

Sampling Technique

0.0

EskandariNasab, Hamdi, & Filali Boubrahimi

Mean and Max TSS Values Before and After Preprocessing

] B 0.854
N =7/ —— 0.855

EES I 0.869
0.816] UKL

0.835
e 0.605] 0.731

0.852
0.810

0.000

[X7 PSS, 0.861
LT S, 0842
[AT R, 0.842
[I s 0.860

0.863
0.618 0.814

0.554 0.695
0.637 0.734

0.461

I (7] B, 0,651
I Y1) S 0.816
I 7] S 0.622
N 7[°FY S 0.766

K7 S — 0.701
I 1) | S 0.837
I 7] IS 0.850

(EKE] . 0.670
0.000

0.843
0.864
0.730
0.592
0.833
0.847
0.755
0.720
0.000
0.2 0.4 0.6 0.8
TSS Value

Figure 20. This figure presents the outcomes of employing no preprocessing on the data set vs. the application of our imputation (I), our normalization (N), NDBSR,
and various sampling techniques in combination. The efficacy of these techniques is evaluated using four time-series-based classifiers: LSTM, GRU, RNN, and 1D-
CNN. For each bar, the first value indicates the mean TSS, and the second value indicates the max TSS of four train—test combinations.

are identified as the optimal time-series-based classifiers for this
data set. As illustrated in Figure 22, the selection of Partition 3 as
the training set and Partition 4 as the test set yields the highest
TSS scores.

5.6. Comparison with Flare Prediction Baselines

In the final section, we aim to compare our findings and
results with similar flare prediction baselines conducted by
A. Ahmadzadeh et al. (2021). In this comparison, we evaluate
the max TSS achieved by A. Ahmadzadeh et al. (2021) against
our own max TSS scores for each train—test combination of
the SWAN-SF data set. Based on Figure 23, our results
significantly surpass the baseline results, achieving a max TSS

25

of over 0.8 in many cases and reaching a max TSS of 0.87.
This highlights the impact of thorough preprocessing and
sampling before classification. The experiments were con-
ducted on four train—test combinations, as explained earlier.
Our best result, with a max TSS ranging from 0.8 to 0.87, was
achieved by employing a GRU as the classifier. This was
followed by the implementation of our FPCKNN imputation
technique, along with LSBZM normalization, and employing
the NDBSR technique to remove classes B and C. Addition-
ally, we utilized a combination of oversampling and under-
sampling techniques, including RUS, TL, and ADASYN.
Unlike feature extraction-based classifiers such as SVM,
ADASYN performs well with deep learning-based classifiers.

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November EskandariNasab, Hamdi, & Filali Boubrahimi

TSS Scores for Different Classifiers After our Four Preprocessing Steps

' | I
svm = T
17
&
I
LSTM F i | A
v) o K3 © Q K3 Q

TSS Score

Figure 21. This plot depicts a comparative analysis of TSS scores obtained by different classifiers on the SWAN-SF data set. Each box represents the results of a
specific classifier on a fully preprocessed version of the SWAN-SF data set, which includes FPCKNN imputation, LSBZM normalization, and the removal of classes
B and C. The analysis also incorporates four combinations of oversampling and undersampling techniques applied to four train—test combinations, resulting in each
box representing the outcome of 16 experiments. In the plot, diamond-shaped symbols indicate outliers.

TSS Scores Across Train-Test Combinations

c
S Train:P1 - Test:P2 U = ey
2
i) .
E TrainP2-TestP3 ¢ ¢ = I
o
(&)
G TrainP3 - TestP4 v = I B
i
£
& Train:P4 - Test:P5 = I
(=
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
TSS Score

Figure 22. This plot presents a comparative analysis of the performance across various training and testing combinations applied to the SWAN-SF data set. “P”
signifies partition. Each box represents the results of our fully preprocessed version of the SWAN-SF data set, which includes FPCKNN imputation, LSBZM
normalization, and the removal of classes B and C. The analysis also incorporates four combinations of oversampling and undersampling techniques applied to eight
classifiers on a specific train—test combination, resulting in each box showing the outcome of 32 experiments. In the plot, diamond-shaped symbols indicate outliers.

Mean TSS Values before and after Preprocessing, including Our lz?)llﬂzt?on (I), Our Normalization (N), NDBSR, and Sampling Techniques

Technique RNN ID-CNN LSTM GRU

No preprocessing 0.0+0.0 0.0+ 0.0 0.302 £ 0.180 0.0+0.0

I and N and NDBSR and SMOTE 0.521 £ 0.116 0.533 £ 0.126 0.637 £ 0.109 0.625 4+ 0.238
I and N and NDBSR and ADASYN 0.571 £ 0.151 0.648 £+ 0.198 0.554 £ 0.149 0.795 £+ 0.070
I and N and NDBSR and GNI 0.692 £+ 0.189 0.591 £ 0.212 0.618 £0.188 0.605 £+ 0.140
I and N and NDBSR and TimeGAN 0.772 £ 0.041 0.413 £0.183 0.649 £ 0.224 0.718 £ 0.111
I and N and NDBSR and RUS-TL-SMOTE 0.558 £+ 0.034 0.701 £+ 0.104 0.710 £ 0.174 0.816 £+ 0.033
I and N and NDBSR and RUS-TL-ADASYN 0.509 £ 0.132 0.733 £+ 0.086 0.736 £+ 0.074 0.835 £+ 0.031
I and N and NDBSR and RUS-TL-GNI 0.562 £+ 0.271 0.601 £ 0.230 0.690 £ 0.201 0.676 & 0.160
I and N and NDBSR and RUS-TL-TimeGAN 0.642 £ 0.252 0.602 £+ 0.218 0.647 £+ 0.153 0.689 4+ 0.192

Note. The bold scores highlight the best results.

6. Conclusions GRU as the classifier, supported by FPCKNN and LSBZM for

Through extensive experiments incorporating our FPCKNN
imputation, LSBZM normalization, NDBSR, and eight distinct
sampling techniques across eight classifiers, we have demonstrated
a remarkable improvement in the TSS score following each
preprocessing step. A mean TSS score of 0.835 was achieved using

imputation and normalization, with the exclusion of classes B and
C as NDBSR and the application of RUS, TL, and ADASYN as
sampling techniques, underscoring the pivotal importance of a
robust preprocessing pipeline. This is particularly relevant in the
field of solar flare prediction and when dealing with challenging

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

EskandariNasab, Hamdi, & Filali Boubrahimi

Comparison with Flare Prediction Baselines

0.22

0.53
e 0.62
Qv ‘ 0.8l .
<& 0.76 ’
- 0.6/
<
X 0.13
«® 0.50
5 038
= P : 0.80
£ £ g7e" 080
2 d ->0.78
S &
VRN 0.22
g 0.36
< %83
£ & ' 08’
& 0.83 .
’ 0.85
L
5 0.20
“® : 0.52
S 0.66
e ‘ 0.86
X 0.77 0.83
h,’\z 0.82
Q . . . A
& 0.0 0.2 0.4 0.6 0.8
«® TSS Score

Model (Ahmadzadeh et al. 2021)
B over-sampling and SVM
Em misclassification weights in SVM

SVM only
B under-sampling and SVM

Model (EskandariNasab et al. 2024)
GRU: FPCKNN-I + LSBZM-N + NDBSR + RUS-TL-ADASYN
GRU: FPCKNN-I + LSBZM-N + NDBSR + RUS-TL-SMOTE
BN MLP: FPCKNN-I + LSBZM-N + NDBSR + RUS-TL-TimeGAN
EEm SVM: FPCKNN-I + LSBZM-N + NDBSR + RUS-TL-GNI

Figure 23. This figure displays a comparison of our best results, depicted in shades of green, against the results from A. Ahmadzadeh et al. (2021), shown in shades of
red. “T” stands for imputation, “N” for normalization, and “P” for partition of the SWAN-SF data set. Each plot shows the best TSS achieved for both A. Ahmadzadeh

et al. (2021) and our technique.

data sets such as SWAN-SF, which pose distinct preprocessing
challenges. The combination of FPCKNN imputation and LSBZM
normalization outperformed the baseline imputation and normal-
ization techniques, demonstrating the efficacy of our imputation
and normalization methods in improving classification perfor-
mance. As an NDBSR technique, removing classes B and C from
the minor-flaring category (FQ, B, and C) improved the TSS score
compared to only removing class C or not addressing the class
overlap issue at all. The combination of oversampling and
undersampling techniques, specifically RUS, TL, and GNI (or
SMOTE), yielded the most favorable outcomes, significantly
enhancing TSS scores compared to the sole use of oversampling or
the complete absence of sampling. When evaluating solely
oversampling techniques, TimeGAN and SMOTE emerged as
the top performers, outperforming scenarios where sampling was
not utilized. In deep learning-based classifiers, the integration of
RUS, TL, and ADASYN proved most effective. ADASYN’s
capacity to generate samples of the minority class, which are
challenging to learn due to their scarcity, stood out. For the SWAN-
SF data set, the MLP, SVM, GRU, and LSTM models were
identified as the most suitable classifiers. For future work, we aim
to integrate TimeGAN with adversarial autoencoders, striving to
create a more accurate oversampling technique tailored for MVTS
data. Furthermore, we aspire to devise a sophisticated deep
learning-based method to diminish the class overlap within the
SWAN-SF data set. Lastly, we plan to develop a deep learning-
based imputation technique specifically for MVTS data, utilizing
autoencoders.

Acknowledgments

This project received support from the Division of Atmo-
spheric and Geospace Sciences within the Directorate for

27

Geosciences, under NSF award Nos. 2301397, 2204363, and
2240022, as well as from the Office of Advanced Cyberin-
frastructure within the Directorate for Computer and Informa-
tion Science and Engineering, under NSF award No. 2305781.

Appendix A
Hyperparameters

Hyperparameters are a crucial aspect of any machine
learning task. These parameters, adjusted before training,
significantly influence the model’s performance. By carefully
tuning hyperparameters, such as learning rate and batch size,
one can optimize the model to achieve maximum performance.
Effective hyperparameter tuning leads to more accurate
predictions and improved model stability, making it an
essential step in developing high-performing machine learning
models. Explaining hyperparameters is essential to ensure
reproducibility in machine learning experiments. Therefore, in
this section, we provide a comprehensive list of all the
hyperparameters used in our sampling techniques and classi-
fiers. By detailing these parameters, we aim to facilitate the
replication of our work and contribute to the transparency and
reliability of our research.

A.l. Sampling Techniques

Among our oversampling and undersampling techniques,
only GNI and TimeGAN require hyperparameter tuning. For
the other methods, such as SMOTE, ADASYN, RUS, and TL,
no hyperparameter adjustments are necessary. In addition, for
the oversampling techniques, we augment sufficient data for
the minority class to match the amount of the majority class.
However, when combining oversampling and undersampling

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

techniques, we reduce the majority-class samples to approxi-
mately 10,000, and augment the minority-class data to also
reach approximately 10,000 samples.

1. GNI. We set the noise proportion («) to 0.05 for the GNI
algorithm.

2. TimeGAN. For the TimeGAN framework, the module is
set to GRU, with a hidden dimension of 24. The
framework utilizes three layers and runs for 8000
iterations. Additionally, the batch size is configured
to 128.

A.2. Classifiers

We utilize eight classifiers to demonstrate the effectiveness
of our preprocessing and sampling techniques. The hyperpara-
meters for each classifier are explained in detail below.

1. MLP. The model consists of an input layer with 216
features (nine features for 24 attributes), followed by
hidden layers with 64, 32, 16, and 8 units, respectively,
each using ReL.U activation. The output layer consists of
a single unit with sigmoid activation for binary
classification. The model is compiled with the Adam
optimizer, binary cross-entropy loss, and precision at a
recall of 0.95 as the evaluation metric. We train the model
for 15 epochs with a batch size of 32. Predictions on the
test data are then converted to binary outcomes using a
threshold of 0.5.

2. SVM. For the SVM classifier, we use an RBF kernel with
the regularization parameter C set to 1.0.

3. k-NN. For the k-NN classifier, we set the number of
neighbors to 5.

4. RF. For the RF classifier, we use 64 estimators, set the
random state to 42, and use entropy as the criterion.

5. RNN. The model consists of a simple RNN layer with 120
units and ReLU activation, with an input shape of (60,
24). This is followed by a dropout layer with a rate of 0.3.
The subsequent layers include a dense layer with 120
units and ReLU activation, a dense layer with two units
and ReLU activation, and a final dense layer with one
unit and sigmoid activation for binary classification. The
model is compiled with the Adam optimizer, binary
cross-entropy loss, and specificity at a sensitivity of 0.95
as the evaluation metric.

6. LSTM. The model consists of an LSTM layer with 120
units and an input shape of (60, 24), followed by a
dropout layer with a rate of 0.3. The subsequent layers
include a dense layer with 120 units and ReLU activation,
a dense layer with two units and ReL.U activation, and a

28

EskandariNasab, Hamdi, & Filali Boubrahimi

final dense layer with one unit and sigmoid activation for
binary classification. The model is compiled with the
Adam optimizer, binary cross-entropy loss, and specifi-
city at a sensitivity of 0.95 as the evaluation metric.

7. GRU. The model consists of a GRU layer with 120 units
and ReLU activation, with an input shape of (60, 24).
This is followed by a dropout layer with a rate of 0.3. The
subsequent layers include a dense layer with 120 units
and ReLU activation, a dense layer with two units and
ReLU activation, and a final dense layer with one unit
and sigmoid activation for binary classification. The
model is compiled with the Adam optimizer, binary
cross-entropy loss, and specificity at a sensitivity of 0.95
as the evaluation metric.

8. ID-CNN. The model consists of a Conv1D layer with 64
filters, a kernel size of 5, and ReLLU activation, with an
input shape of (60, 24). This is followed by a Dropout
layer with a rate of 0.2 and a MaxPooling1D layer with a
pool size of 2. The next layer is another Conv1D layer
with 128 filters, a kernel size of 5, and ReL.U activation,
followed by a dropout layer with a rate of 0.3 and another
MaxPooling1D layer with a pool size of 2. The model
then includes a flatten layer, a dense layer with 357 units
and ReLU activation, a dense layer with 128 units and
ReLU activation, a dense layer with two units and ReLU
activation, and a final dense layer with one unit and
sigmoid activation for binary classification. The model is
compiled with the Adam optimizer, binary cross-entropy
loss, and specificity at a sensitivity of 0.95 as the
evaluation metric.

For the LSTM, GRU, RNN, and 1D-CNN models, we
configure the parameters with the number of epochs set to 15
and the batch size to 32. Additionally, we evaluate predictions
on the test data across various thresholds to determine the
optimal one based on the TSS. This is done by iterating from
0.01 to 0.99 in increments of 0.01 and calculating the TSS for
each threshold. The threshold yielding the highest TSS is
selected as the optimal threshold.

Appendix B
Notations

Table 9 provides a detailed compilation of the notations
employed throughout the document, aimed at ensuring concise
writing and facilitating the efficient design of figures. This table
serves as a reference point, enabling readers to quickly
understand the shorthand terms used in the text and in the
graphical representations, thereby enhancing readability and
comprehension.

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

EskandariNasab, Hamdi, & Filali Boubrahimi

Table 9
List of Notations

Abbreviation Complete Name Abbreviation Complete Name
SWAN-SF Space Weather Analytics for Solar Flares AR Active region

NOAA National Oceanic and Atmospheric Administration HSS Heidke skill score
GOES Geostationary Operational Environmental Satellites TSS True skill statistic

HMI Helioseismic Magnetic Imager I Imputation

SHARP Spaceweather HMI Active Region Patch N Normalization

SDO Solar Dynamics Observatory FQ Flare-quiet

FPCKNN Fast Pearson correlation-based k-nearest neighbors SVM Support vector machine
LSBZM Log, square root, Box—-Cox, Z-score, min—max k-NN k-nearest neighbors
MLP Multilayer perceptron RF Random forest

RNN Recurrent neural networks GRU Gated recurrent unit
1D-CNN 1D convolutional neural network LSTM Long short-term memory
GCN Graph convolution network TP True positive

NDBSR Near decision boundary sample removal TN True negative
TimeGAN Time series generative adversarial network FP False positive
ADASYN Adaptive synthetic sampling FN False negative

PCA Principal component analysis FPR False positive rate
SMOTE Synthetic Minority Oversampling Technique TL Tomek links

GNI Gaussian noise injection ML Machine learning

RUS Random undersampling NaN Not a number

t-SNE t-distributed stochastic neighbor embedding MVTS Multivariate time series
T Number of time stamps SQRT Square root

PCC Pearson correlation coefficient

N Number of magnetic field parameters (attributes)

Appendix C
PCA Visualizations

After generating synthetic samples to augment the minority
class, we proceed with a balanced selection strategy. This involves
selecting an equal number of synthetic samples to match the count
of the original minority class, roughly 1000 in number. Following
this, we employ PCA to visualize both the original and synthetic

29

samples (Figure 24). PCA is instrumental in mapping these samples
onto a two-dimensional space, which allows for an intuitive
comparison of their distributions. This visual representation is key
to evaluating how closely the synthetic samples mimic the
distribution of the original ones, providing insight into the
effectiveness of the synthetic sample generation process in
maintaining the underlying data characteristics.

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

PCA plot of SWAN-SF Dataset (Partition 1) with Smote
2000

® Original
o’ ® Synthetic
1500 .
o~) Y . :
1000 . “
2 '
500 ; -
0 7 .
500 FIFLY
3
-1000 >
0 5000 10000

PCA Component 1

PCA plot of SWAN-SF Dataset (Partition 2) with Smote

i @ Original

1500
® Synthetic

1000

500

-500

-1000

-1500 :

0 5000
PCA Component 1

10000

PCA plot of SWAN-SF Dataset (Partition 3) with Smote

e oOrgnal .
2000 8 ® Synthetic
1000 1+
0
‘ 2
3 <
0 g s
L3 M
1000 $
-2000 .
-5000 0 5000 10000 15000

PCA Component 1

PCA plot of SWAN-SF Dataset (Partition 4) with Smote

® Original

1500 0 @ Synthetic

1000

500

-500

-1000

-1500 hid

5000
PCA Component 1

-5000 0 10000

PCA plot of SWAN-SF Dataset (Partition 5) with Smote

@ Original
Syntheti ¢ .
0o | @ Synthetic
1000 o -
0 ’
3 i

-1000 -
-2000

0 5000 10000 15000
PCA Component 1

20000 25000

FunsupUne 2

PCA plot of SWAN-SF Dataset (Partition 1) with TimeGAN
1e13

“ e Original
® Synthetic

2
PCA Component 1 1e14

PCA plot of SWAN-SF Dataset (Partition 2) with TimeGAN
1e14

1.00 e Original
® Synthetic

-0.25
-0.50

-0.75

PCA Component 1

PCA plot of SWAN-SF Dataset (Partition 3) with TimeGAN

125 1e14

® Original
® Synthetic

1.00

0.00

-0.25

-0.50

-0.75
0 2 4

6
PCA Component 1 1e14

PCA plot of SWAN-SF Dataset (Partition 4) with TimeGAN
1e13

FunsupUne 2
o
°

-25
-5.0
-75 e ® Original
® Synthetic
-1 0 1 2 3

PCA Component 1 1e14

PCA plot of SWAN-SF Dataset (Partition 5) with TimeGAN
1e14
® Original

1.0
® Synthetic

e
2

Fun Cupunen o
o
°

4 6

2
PCA Component 1 114

PCA plot of SWAN-SF Dataset (Partition 1) with GNI

£1Y @ Original

1500 * . ® Synthetic
1000 . “

500 O I

0 v -

-500

-1000 L)

4 5000 10000

PCA Component 1

PCA plot of SWAN-SF Dataset (Partition 2) with GNI

. ® Original

1500 ® Synthetic

1000

500

-500

-1000

-1500 o

0 5000
PCA Component 1

10000

PCA plot of SWAN-SF Dataset (Partition 3) with GNI

2000 .

1000 .
~3
0 .,i
-1000
— . o
w0 S et BN
-5000 0 5000 10000 15000

PCA Component 1

PCA plot of SWAN-SF Dataset (Parttion 4) with GNI
e Orignal
1500 o ® Synthetic

1000

500

-500

-1000

-1500

-5000 0 5000

PCA Component 1

10000

PCA plot of SWAN-SF Dataset (Partition 5) with GNI
@ Original o0

Synthetic .
2000 ° d = :

1000

-1000

-2000

0 5000 10000 15000 20000 25000
PCA Component 1

EskandariNasab, Hamdi, & Filali Boubrahimi

PCA plot of SWAN-SF Dataset (Parition 1) with Adasyn
000

@ Original
1500 ® Synthetic
1000
500
o F

-500

-1000 % Y =

0 5000 10000

PCA Component 1

PCA plot of SWAN-SF Dataset (Partition 2) with Adasyn

@ Original

1500 -
® Synthetic

1000 *

500

-500

-1000
-1500

0 5000 10000 15000

PCA Component 1

PCA plot of SWAN-SF Dataset (Partition 3) with Adasyn

® Original
2000 ® Synthetic

1000

. 3

0 b ;
-1000
-2000

0 5000 10000 15000

PCA Component 1

PCA plot of SWAN-SF Dataset (Parition 4) with Adasyn

@ Original
@ Synthetic

2000

1500

1000

500

-500

-1000

-5000 0 5000 10000

PCA Component 1

PCA plot of SWAN-SF Dataset (Partition 5) with Adasyn

@ Original
® Synthetic
2000
1000
0
-1000
-2000

0 5000 10000 15000 20000 25000
PCA Component 1

Figure 24. PCA visualizations demonstrating the distributional alignment of original and synthetic data samples for each oversampling technique across data set
partitions. These visualizations highlight the efficacy of each oversampling method in replicating the comprehensive distribution characteristics of the original data

samples.

30

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 275:6 (31pp), 2024 November

ORCID iDs

MohammadReza EskandariNasab ® https: //orcid.org/0009-
0004-0697-3716

Shah Muhammad Hamdi
9303-7835

Soukaina Filali Boubrahimi
5693-6383

https: //orcid.org/0000-0002-

https: //orcid.org /0000-0001-

References

Ahmadzadeh, A., Aydin, B., Georgoulis, M. K., et al. 2021, ApJS, 254, 23

Alshammari, K., Hamdi, S. M., Muzaheed, A. A., & Filali Boubrahimi, S.
2022, CEUR Workshop Proc. 3375, Workshop on Applied Machine
Learning Methods for Time Series Forecasting (AMLTS 2022), ed.
W. Liu & L. Pang, (CEUR Workshop Proceedings), https://ceur-ws.org/
Vol-3375 /paper4.pdf

Angryk, R. A., Martens, P. C., Aydin, B., et al. 2020, NatSD, 7, 227

Anil Jadhav, D. P., & Ramanathan, K. 2019, Appl. Artif. Intell., 33, 913

Aschwanden, M. J., Crosby, N. B., Dimitropoulou, M., et al. 2016, SSRv,
198, 47

Behfar, A., Atashpanjeh, H., & Al-Ameen, M. N. 2023, in CSCW ’23
Companion Publication of the 2023 Conf. on Computer Supported
Cooperative Work and Social Computing, ed. C. Fiesler (New York:
Association for Computing Machinery), 164

Bobra, M. G., & Couvidat, S. 2015, ApJ, 798, 135

Bobra, M. G., Sun, X., Hoeksema, J. T., et al. 2014, SoPh, 289, 3549

Breiman, L. 2001, Mach. Learn., 45, 5

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. 2002,
J. Artif. Intell. Res., 16, 321

Chen, J., Li, W., Li, S., et al. 2022, SpScT, 2022, 9761567

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. 2014, arXiv:1412.3555

Cortes, C., & Vapnik, V. 1995, Mach. Learn., 20, 273

Curto, J. J. 2020, JSWSC, 10, 27

Dhakal, S. K., & Zhang, J. 2023, ApJ, 960, 36

Emmanuel, T., Maupong, T., Mpoeleng, D., et al. 2021, J. Big Data, 8, 140

EskandariNasab, M., Hamdi, S. M., & Boubrahimi, S. F. 2024a, Cleaned
SWANSF Dataset, v1.0.0, Zenodo, doi:10.5281/zenodo.11566472

EskandariNasab, M., Hamdi, S. M., & Boubrahimi, S. F. 2024b, SWAN-SF
Data Preprocessing and Sampling Notebooks, v1.0.0, Zenodo, doi:10.5281/
zenodo.11564789

EskandariNasab, M., Raeisi, Z., Lashaki, R. A., & Najafi, H. 2024¢, NatSR,
14, 8861

Feng, C., Wang, H., Lu, N., et al. 2014, Shanghai Arch. Psychiatry, 26, 105

Fisher, G. H., Bercik, D. J., Welsch, B. T., & Hudson, H. S. 2012, Solar Flare
Magnetic Fields and Plasmas (New York: Springer), 59

Gardner, M. W., & Dorling, S. R. 1998, AtmEn, 32, 2627

Georgoulis, M. K. 2012, SoPh, 276, 161

31

EskandariNasab, Hamdi, & Filali Boubrahimi

Hamdi, S. M., Ahmad, A. F., & Boubrahimi, S. F. 2022, CEUR Workshop
Proc. 3375, Workshop on Applied Machine Learning Methods for Time
Series Forecasting (AMLTS 2022), ed. W. Liu & L. Pang, (CEUR
Workshop Proceedings), https://ceur-ws.org/Vol-3375 /paper3.pdf

Hamdi, S. M., Kempton, D., Ma, R., Boubrahimi, S. F., & Angryk, R. A. 2017, in
Proc. of the IEEE Int. Conf. on Big Data (BigData) (Piscataway, NJ: IEEE), 2543

He, H., Bai, Y., Garcia, E. A., & Li, S. 2008, in 2008 IEEE Int. Joint Conf. on
Neural Networks (IEEE World Congress on Computational Intelligence)
(Piscataway, NJ: IEEE), 1322

Hochreiter, S., & Schmidhuber, J. 1997, Neural Comput., 9, 1735

Hoeksema, J. T., Liu, Y., Hayashi, K., et al. 2014, SoPh, 289, 3483

Hosseinzadeh, P., Filali Boubrahimi, S., & Hamdi, S. M. 2024, ApJS, 270, 31

Khan, S. I, & Hoque, A. S. M. L. 2020, J. Big Data, 7, 37

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998, IEEEP, 86, 2278

Leka, K. D., & Barnes, G. 2003, ApJ, 595, 1296

Leka, K. D., Park, S.-H., Kusano, K., et al. 2019, ApJS, 243, 36

Leka, K. D., & Skumanich, A. 1999, SoPh, 188, 3

Menzel, W. P., & Purdom, J. F. W. 1994, BAMS, 75, 757

Muhammad Alj, P., & Faraj, R. 2014, Data Normalization and Standardization:
A Technical Report, Machine Learning Technical Reports doi:10.13140/
RG.2.2.28948.04489

Muzaheed, A. A. M., Hamdi, S. M., & Boubrahimi, S. F. 2021, in Proc. of the
20th IEEE Int. Conf. on Machine Learning and Applications (ICMLA)
(Piscataway, NJ: IEEE), 435

Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., & Ishii, M. 2018, ApJ,
858, 113

Nishizuka, N., Sugiura, K., Kubo, Y., et al. 2017, ApJ, 835, 156

Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, SoPh, 275, 3

Peterson, L. E. 2009, SchpJ, 4, 1883

Sakia, R. M. 1992, J. R. Stat. Soc. D, 41, 169

Scherrer, P. H., Schou, J., Bush, R. I, et al. 2012, SoPh, 275, 207

Schou, J., Scherrer, P. H., Bush, R. 1, et al. 2012, SoPh, 275, 229

Schrijver, C. J. 2007, ApJL, 655, L117

Sherstinsky, A. 2020, PhyD, 404, 132306

Singh, D., & Singh, B. 2020, Appl. Soft Comput., 97, 105524

Sinha, S., Gupta, O., Singh, V., et al. 2022, ApJ, 935, 45

Sun, Z., Bobra, M. G., Wang, X., et al. 2022, ApJ, 931, 163

Tomek, I. 1976, ITSMC, SMC-6, 769

Troyanskaya, O., Cantor, M., Sherlock, G., et al. 2001, Bioin, 17, 520

van der Maaten, L., & Hinton, G. 2008, JMLR, 9, 2579, https://www.jmlr.
org/papers/volume9 /vandermaaten08a/vandermaaten08a.pdf

Wang, J., Shi, Z., Wang, H., & Lue, Y. 1996, ApJ, 456, 861

Yoon, J., Jarrett, D., & van der Schaar, M. 2019, Advances in Neural Information
Processing Systems 32 (NeurIPS 2019), ed. H. Wallach et al. (NeurIPS), https://
papers.nips.cc/paper_files/paper/2019 /hash/c9efe526cd17ba6216bbe2a7d26
d490-Abstract.html

Zhang, J., Wang, T., Ng, W. W. Y., Zhang, S., & Nugent, C. D. 2019, in 2019
Int. Conf. on Machine Learning and Cybernetics (ICMLC) (Piscataway,
NJ: IEEE)

	1. Introduction
	2. SWAN-SF Data Set
	2.1. SWAN-SF Benchmark Data Set
	2.2. Missing Values in SWAN-SF
	2.3. Multiscaled Features in SWAN-SF
	2.4. Class Overlap in SWAN-SF
	2.5. Class Imbalance in SWAN-SF

	3. Data Preprocessing and Sampling Methodologies
	3.1. Missing Value Treatment and Feature Scaling
	3.1.1. Missing Value Imputation
	3.1.1.1. FPCKNN Imputation
	3.1.2. Data Normalization
	3.1.2.1. LSBZM Normalization

	3.2. NDBSR
	3.3. Sampling Techniques
	3.3.1. Oversampling Techniques
	3.3.1.1. SMOTE
	3.3.1.2. ADASYN
	3.3.1.3. GNI
	3.3.1.4. TimeGAN
	3.3.2. Combination of Oversampling and Undersampling Techniques
	3.3.2.1. RUS
	3.3.2.2. TLs

	4. Experiments and Prediction Methods
	4.1. Cleaned SWAN-SF Data Set and Code Repository of the Study
	4.2. Train and Test Sets
	4.3. Classification Algorithms
	4.3.1. Feature Extraction-based Classification
	4.3.2. Time-series-based Classification

	4.4. Visualization Techniques

	5. Prediction Results
	5.1. Impact of FPCKNN Imputation and LSBZM Normalization
	5.1.1. Classification Results

	5.2. Impact of NDBSR
	5.2.1. Classification Results

	5.3. Impact of Sampling Techniques
	5.3.1. t-Distributed Stochastic Neighbor Embedding Visualizations
	5.3.2. Discriminative Score
	5.3.3. Classification Performance

	5.4. Comparison Using Time-series-based Classifiers
	5.5. Comparison of Classifiers and Partitions
	5.6. Comparison with Flare Prediction Baselines

	6. Conclusions
	Appendix AHyperparameters
	A.1. Sampling Techniques
	A.2. Classifiers

	Appendix BNotations
	Appendix CPCA Visualizations
	References

