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Abstract. Classifying solar flares is essential for understanding their
impact on space weather forecasting. We propose a novel approach us-
ing a multi-head attention and transformer mechanism to classify mul-
tivariate time series (MVTS) instances of photospheric magnetic field
parameters of the flaring events in the solar active regions. Attention
mechanisms and transformer architectures capture complex temporal de-
pendencies and interactions among features in multivariate time series
data. Our model simultaneously attends to relevant features and learns
their dependencies, enabling accurate classification of solar flare events.
We evaluated our approach on SWAN-SF, the largest MVTS dataset
for predicting solar flares, and compared its performance against several
state-of-the-art methods. The experimental results demonstrate that our
approach achieves superior classification performance, even when dealing
with a highly imbalanced dataset characterized by the scarcity of ma-
jor flaring events. These findings highlight the effectiveness of attention
mechanisms and transformer models in learning discriminatory features
from MVTS-based space weather data.

Keywords: Solar flares · Multivariate time series · Attention-based frame-
work · Classification · Space weather forecasting.

1 Introduction

A solar flare is an intense, localized eruption of electromagnetic radiation in the
Sun’s atmosphere. Flares occur in active regions and are often accompanied by
coronal mass ejections, solar particle events, and other solar phenomena. The
occurrence of solar flares varies with the 11-year solar cycle. Solar flares tend
to be more frequent and intense during periods of high solar activity, which
coincide with the solar maximum phase of the solar cycle. Solar flares result
from the abrupt release of accumulated magnetic energy within the Sun’s atmo-
sphere. This energy can be stored in twisted magnetic fields above sunspots or
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in other active regions. When magnetic energy is released, it heats the surround-
ing plasma to millions of degrees Celsius and accelerates particles to near the
speed of light. Solar flares can produce a wide range of electromagnetic radiation,
from radio waves to X-rays and gamma rays. Solar flares can have a significant
impact on Earth and the space environment. They can cause radio blackouts,
damage power grids, and disrupt satellite communications. Solar flares can also
produce high-energy particles that can pose a hazard to astronauts and aircraft
crews [14,18,19]. Effective predictions of solar flares are facilitated by employing
time series modeling on magnetic field data collected by The Solar Dynamics Ob-
servatory’s Helioseismic Magnetic Imager (HMI). Consequently, spatiotemporal
magnetic field data is mapped into multiple instances of Multivariate Time Se-
ries (MVTS) [7]. Each MVTS instance contains solar magnetic field parameters
such as flux, current, helicity, and Lorentz force. The time series associated with
these parameters are derived from two distinct time windows: the observation
window, which encompasses the recording of magnetic field parameter values,
and the subsequent prediction window, corresponding to the period when peak
X-ray flux was observed. The instances are then labeled into six classes: Q, A,
B, C, M, and X. "Q" represents flare quiet active regions, while the other la-
bels represent flaring events with increasing intensity. Notably, X and M-class
flares denote the most intense flaring events. Recent advances in Multivariate
Time Series (MVTS) models have demonstrated their superior effectiveness in
predicting solar flaring activities when compared to earlier models that relied on
single timestamps for magnetic field vector classification [7]. MVTS-based mod-
els for flare prediction can be broadly categorized into two main groups. The
first category is the statistical feature-based method [16]. In this approach, low-
dimensional representations of MVTS instances are computed by aggregating
summary statistics from the individual univariate time series components. Sub-
sequently, traditional classifiers such as k-nearest Neighbors (kNN) and Support
Vector Machines (SVM) are trained using these labeled MVTS representations.
The second category comprises end-to-end deep learning-based methods [24],
which utilize Recurrent Neural Network (RNN) or Long Short-Term Memory
(LSTM) based deep sequence models. These models learn by sequentially in-
putting vectors representing magnetic field parameters into the cells of the se-
quence model. The cell weights are optimized through backpropagation based
on gradient descent. However, a limitation of these models is that they can only
leverage the temporal dimension of the MVTS instances, resulting in suboptimal
classification performance due to their limited ability to exploit the underlying
patterns within the data. Vaswani et al. proposed the Transformer model, a neu-
ral network architecture based solely on self-attention mechanisms, to address the
limitations of previous models [29]. The introduction of the transformer model
marked a significant breakthrough in the field of natural language processing
(NLP) and served as the cornerstone for numerous subsequent advancements,
including cutting-edge language models such as BERT [13] and GPT [32]. One of
its primary advantages lies in its efficiency in capturing long-range dependencies
in data, all while allowing for parallel processing. This leads to faster training
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and inference times in comparison to previous models. The effectiveness of the
transformer model, makes it a powerful choice for MVTS classification, lever-
aging its ability to capture long-range dependencies and handle multi-variable,
temporal data effectively [29]. In our study, we aim to explore an alternative
approach using attention and transformer techniques. By harnessing the power
of self-attention mechanisms in transformers, our objective is to capture the
extended temporal relationships among magnetic field parameters within the
MVTS data, improving solar flare classification performance and deepening our
understanding of these events. In this paper, we propose an attention-based
model for the MVTS classification by leveraging the self-attention mechanisms
to improve the MVTS classification performance. Our experimental results of
our model demonstrate a test score of 70% on the solar flare MVTS dataset
when using the proposed attention-based model, outperforming the baselines by
more than 10%.

2 Related Work

Historically, systems for predicting solar flares heavily relied on human exper-
tise and manual inputs. One early system known as THEO, implemented by the
Space Environment Center (SEC) of NOAA back in 1987, required human inter-
vention to input sunspot characteristics to categorize flare classes [22]. However,
as recent NASA missions have generated a wealth of magnetic field data, the
focus has shifted towards data-driven approaches, moving away from purely the-
oretical models. These data-driven approaches can be broadly categorized into
linear and nonlinear statistical models, depending on the nature of the dataset
used. These models can further be divided into line-of-sight magnetogram-based
and full-disk photospheric vector magnetogram-based models. Line-of-sight mag-
netogram data captures only the component of the magnetic field along the line
of sight, while full-disk photospheric vector magnetic field data provides a more
comprehensive magnetic field state of solar active regions. Linear statistical mod-
els aimed to identify highly correlated magnetic field features associated with
flare occurrences. For instance, Cui et al. [11] used line-of-sight magnetogram
data to establish correlation-based statistical relationships between magnetic
field parameters and flare events. Even before the launch of the Solar Dynamics
Observatory (SDO), Leka et al. [20] utilized linear discriminant analysis (LDA)
to classify flaring events using vector magnetogram data from the Mees So-
lar Observatory. In contrast, nonlinear statistical models employed a range of
machine learning classifiers such as logistic regression, decision trees, neural net-
works, support vector machines (SVM), and more. For example, Song et al. [28]
and Yu et al. [31] applied various classifiers to line-of-sight magnetogram-based
datasets. Bobra et al. [9] utilized SVM with SDO-based vector magnetogram
data for flare classification, while Nishizuka et al. [26] compared the performance
of k-Nearest Neighbors (kNN), SVM, and Extremely Randomized Tree (ERT)
on both line-of-sight and vector magnetogram data. Furthermore, Convolutional
Neural Networks (ConvNets) have been employed for solar flare prediction using
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SDO AIA/HMI images [21, 33]. Recently, Angryk et al. introduced a novel ap-
proach to solar flare prediction based on temporal windows, which represents an
extension beyond the earlier single timestamp-based models [7]. In their method,
they employed a Multivariate Time Series (MVTS) dataset consisting of active
regions, which recorded magnetic field data over a predefined observation period
at a consistent sampling rate. Each instance in this dataset was labeled based
on the flare classes that occurred after a specified prediction time. Other efforts,
such as Hamdi et al. [17] and Muzaheed et al. [24], utilized statistical summariza-
tion, decision trees, and Long Short-Term Memory (LSTM)-based deep sequence
modeling for flare prediction. Furthermore, Alshammari et al. [6] addressed the
task of forecasting future values of magnetic field parameters within the MVTS
representations. This involved predicting forthcoming values based on past data
in the MVTS dataset. The transformer model, introduced by Vaswani et al. [29],
offers several strengths for MVTS classification, including long-range dependency
modeling. The transformer model can capture long-range dependencies in the
data, which is effective for MVTS classification. Parallel computation of the
transformer model makes it efficient for training and inference on large MVTS
datasets. Transformer models can support contextual learning, enabling them to
discern contextual relationships between magnetic field parameters without the
need for explicit sequential processing. This is important for the classification of
MVTS instances, as the context of a particular time step can be informative for
predicting the occurrence of a solar flare.

3 Methodology
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Fig. 1: Transformer Model for MVTS Classification
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3.1 Notations

The solar event instance i is represented by an MVTS instance mvtsi. The MVTS
instance mvtsi ∈ R

T×N is a collection of individual time series of N magnetic
field parameters, where each time series contains periodic observation values of
the corresponding parameter for an observation period T . The MVTS instance
can be expanded as mvtsi = {vt1 , vt2 , ., ., ., vtT }, where vti ∈ R

N represents a
timestamp vector.

3.2 Data Preprocessing and Normalization

The magnetic field parameter values are recorded in different scales, so we per-
form z-score normalization of each individual time series of each MVTS instance.
At mvtsi, parameter-based individual time series are denoted by P1, P2, . . . , PN .
For each individual time series Pj , we perform z-normalization as follows.

x
(j)
k =

x
(j)
k − µ(j)

σ(j)

Here, x
(j)
k is the k-th value of the time series Pj , where 1 ≤ k ≤ T , µ(j)

is the mean of time series Pj , and σ(j) is the standard deviation of the time
series Pj . We apply the z-normalization for each partition individually. When
partition i is used for training and partition j is used for test, we perform above
z-normalization independently in the MVTS instances of partition i and j.

3.3 Transformer Model for MVTS Classification

In this work, we harness an attention-based model (transformer) to enhance
the classification performance in an MVTS-based solar flare dataset. Within
our model, we have designed the transformer encoder block. The foundation for
this approach is rooted in the work of Vaswani et al. [29], where they intro-
duced the transformer. The transformer architecture comprises both an encoder
and a decoder, each comprising multiple layers that integrate self-attention and
feed-forward neural networks. In our specific application, we primarily focus on
the encoder component. This encoder is responsible for processing the input se-
quence, which, in the context of our study, corresponds to the solar flare data.
The encoder structure consists of a stack of identical layers, with each layer
housing two sub-layers:

– Self-attention layer: This layer plays a pivotal role by enabling each times-
tamp within the input time series to attentively consider all other timestamps
within the same sequence. This mechanism empowers the layer to capture in-
tricate temporal dependencies between individual timestamps and generate
context-aware representations for each timestamp.
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– Feed-forward neural network layer: Following the self-attention mechanism,
a feed-forward neural network layer is independently applied to each times-
tamp representation. This layer introduces non-linearity into the model, al-
lowing it to incorporate additional information and enhance its overall per-
formance.

In this model, we incorporate the transformer encoder block and leverage the
advantages of the multi-head attention architecture, a critical component of the
transformer model. This architecture empowers the model to simultaneously fo-
cus on various segments of the input sequence, thereby enhancing its capacity to
capture intricate temporal dependencies and extract pertinent features. By em-
ploying multiple attention heads, our model can acquire diverse representations
and attend to distinct aspects of the input data concurrently. In the context of
classifying MVTS data, multi-head attention offers several significant benefits:

– Enhanced Representational Capacity: Multi-head attention permits the model
to attend to different portions of the input sequence in parallel, facilitating
the capture of both local and global dependencies effectively. This capability
empowers the model to discern complex patterns within the time series data,
ultimately leading to improved classification performance.

– Robustness to Variable-Length Sequences: MVTS data frequently comprises
sequences of varying lengths. Multi-head attention adeptly manages sequences
of different lengths by assigning varying attention weights to different seg-
ments of the input. This adaptability enables the model to accommodate
sequences with differing lengths without compromising its classification ac-
curacy.

The key equations governing the multi-head attention mechanism are presented
and explained in [29]. Our model, illustrated in Figure 1 is described in algo-
rithms 1 and 2. Algorithm 1 operates as follows:

Algorithm 1 MVTS Transformer Encoder

1: function transformer_encoder( inputs, head_size, num_heads, ff_dim)
2: x← LayerNormalization(inputs, ϵ = 1e− 6)
3: x ← MultiHeadAttention(x, x, key_dim = head_size, num_heads =

num_heads)
4: res← x+ inputs

5: x← LayerNormalization(res, ϵ = 1e− 6)
6: x← Conv1D(x, filters = ff_dim, kernel_size = 1, activation = ”relu”)
7: x← Conv1D(x, filters = inputs.shape[−1], kernel_size = 1)
8: return x+ res

9: end function

1. Layer Normalization: The tensor representation of MVTS instances is first
normalized along each feature dimension by passing it through a layer nor-
malization layer.
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2. Self-Attention: The normalized tensor is then fed into a multi-head attention
layer, where a self-attention mechanism is applied. Each attention head at-
tends to different parts of the input sequence and learns to capture distinct
relationships between time steps. The output of the attention layer retains
the same shape as the input.

3. Residual Connection: The output of the multi-head attention layer is element-
wise added to the original input tensor (inputs). This residual connection
facilitates the direct flow of gradients from the input to the output, easing
the learning process for the model.

4. Feed-forward layer: The result of the residual connection is passed through
another layer normalization layer.

5. Convolutional Layer: A 1D convolutional layer with ff_dim filters and ker-
nel size 1 is applied to the normalized tensor. This layer acts as a feed-forward
neural network layer, applying non-linear transformations independently to
each position in the sequence.

6. Second Convolutional Layer: Another 1D convolutional layer with inputs of
shape[-1] filters and kernel size 1 is applied to the result obtained from the
previous layer.

7. Residual Connection: The output of the second convolutional layer is element-
wise added to the result obtained from the first residual connection layer.

8. Final Output: The sum of the previous residual connection and the original
input tensor (inputs) is returned as the final output.

Algorithm 2 Build MVTS Transformer(Attention) Model

1: function build_transformer_model(input_shape,
head_size, num_heads, ff_dim, num_transformer_blocks, mlp_units)

2: n_classes← Length(unique_y_train)
3: inputs← Input(shape = input_shape)
4: x← inputs

5: for i← 1 to num_transformer_blocks do
6: x← transformer_encoder( x, head_size, num_heads, ff_dim )
7: end for
8: x← GlobalAveragePooling1D( x, data_format = ”channels_first" )
9: for dim in mlp_units do

10: x← Dense(x, dim, activation = ”relu”)
11: end for
12: outputs← Dense(x, n_classes, activation = ”softmax”)
13: return Model(inputs, outputs)
14: end function

Algorithm 2 incorporates several parameters, each described as follows: input_shape

specifies the shape of the input data, head_size determines the size of each at-
tention head in the transformer, num_heads denotes the number of attention
heads in the transformer, ff_dim represents the dimension of the feed-forward
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network in the transformer, num_transformer_blocks indicates the number of
transformer blocks to be stacked, and mlp_units is a list of integers specifying
the number of units in each MLP layer. Within the algorithm, it first deter-
mines the number of classes (n_classes) based on the unique labels present
in the training data. It then defines the input layer and sets it as the current
layer, denoted as x. The algorithm proceeds by applying the transformer en-
coder block through the transformer_encoder function. After the transformer
encoder blocks, a global average pooling layer is applied to reduce the spatial
dimensions of the data. Subsequently, a series of MLP layers are implemented
as specified by the mlp_units parameter, with each layer employing ReLU ac-
tivation. Finally, an output layer is added with n_classes units and a softmax

activation function for classification.

4 Experiments

In this section, we present our experimental findings, where we compare the per-
formance of our model with five other MVTS-based flare prediction baselines us-
ing a benchmark dataset. We implemented our attention-based MVTS classifier
using TensorFlow on the A100 Nvidia GPU. The hyper-parameters were found
by random hyper-parameter search, and set as head_size=256, num_heads=4,
ff_dim=4, num_transformer_blocks=10, mlp_units= 64. The source code
of our model, along with the experimental dataset, is available in our GitHub
repository.4

4.1 Evaluation Metrics

We used True Skill Statistic (TSS) as a performance measure for our experiments.
The True Skill Statistic (TSS) takes into account both the hits and false alarms
in the prediction. It is calculated as

TSS =
TP

TP + FN
−

FP

FP + TN

where TP is the number of true positives (correct predictions of flares), FN is the
number of false negatives (missed predictions of flares), FP is the number of false
positives (incorrect predictions of flares), and TN is the number of true negatives
(correctly predicted non-flares). The TSS ranges from −1 to 1, where a value of
1 represents a perfect prediction, a value of 0 represents a random prediction,
and −1 indicates that the model is wrong in all of its predictions [8]. We use
TSS as a performance metric because it has been used frequently to report the
performance of machine learning models for the prediction of rare events, e.g.,
solar flares [1,7,17]. TSS can accurately measure the model’s ability to distinguish
between the classes, regardless of how common or rare they are. TSS is widely
used in machine learning and statistical modeling, especially for tasks such as

4 https://github.com/Kalshammari/Transformer-Model.git
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binary classification [15]. One advantage of using TSS as a performance metric
in datasets with high-class imbalance is that it takes into account both the true
positive rate and the true negative rate of the classifier, which is important when
the classes are imbalanced [15]. TSS can also be used to compare models with
different thresholds for presence-absence predictions [3].

4.2 SWAN-SF Benchmark Data Set

As the benchmark dataset of our experiments, we used the MVTS-based solar
flare prediction dataset SWAN-SF published in [7]. The SWAN-SF benchmark
dataset is a collection of multivariate time series (MVTS) data instances that fa-
cilitate unbiased flare forecasting. The MVTS instances of the SWAN-SF bench-
mark dataset are labeled by five different flare classes, namely, GOES X, M, C,
and B, and a non-flaring class denoted by Q. Class Q includes flare-quiet events
and GOES A-class events. The dataset comprises five temporally segmented
partitions and is designed in a way that each partition includes approximately
the same number of X- and M-class flares. Table 1 shows the partition-wise la-
bel statistics of the SWAN-SF dataset. The dataset contains various time series
parameters derived from solar photospheric magnetograms along with NOAA’s
flare history of active regions. The magnetograms and their metadata are ob-
tained from the Spaceweather HMI Active Region Patch (SHARP) data product.
The magnetic field parameters are physics-based and were recalculated and en-
hanced for validation purposes. Each MVTS instance in the dataset is made up
of a 24-time series of active region magnetic field parameters (the full list can be
found in [4, 9]. The time series instances are recorded at 12-minute intervals for
a total duration of 12 hours (that results in 60-time steps). In this paper, T = 60
is used to denote the number of observation time steps, and N = 24 to denote
the number of magnetic field parameters. In this study we use all 24 magnetic
field parameters. In our experiments of feature selection from MVTS data, we
conduct the binary classification between flaring and non-flaring AR, where we
consider flaring AR (class X and M) to be in a positive class and non-flaring
Active Regions (class Q) to be in the negative class. We removed the B and C
class events since the opposite event classes (X + M vs Q) help in contrastive
learning. The removal of B and C class flares for maximizing flare prediction per-
formance was also suggested by the experimental findings of multiple previous
studies [2, 5, 9, 17,27].

4.3 Baseline Models

We evaluated our model with five other baselines.

1. Long Short-Term Memory (LSTM) The LSTM-based approach was
proposed by Muzaheed et. al. [24]. Each MVTS instance was considered as
a T -length sequence of x<t> ∈ R

N timestamp vectors. After sequentially
feeding the LSTM model with each timestamp vector, the last hidden repre-
sentation was considered as the MVTS representation. As suggested by the
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paper, we set the number of cell state and hidden state dimensions to 64,
the number of training epochs to 500, and the learning rate in stochastic
gradient descent to 0.01.

2. Support Vector Machine (SVM) SVM is known for its ability to handle
linear and non-linear data effectively, making it a versatile choice for various
applications. It employs support vectors, which are data points closest to the
decision boundary, to determine the orientation and placement of the hyper-
plane. This approach allows SVM to excel in complex and high-dimensional
datasets [10].

3. Canonical Interval Forest (CIF) The time series forest (TSF) classifier,
known for its high performance, quick training, and prediction, is commonly
regarded as a powerful interval method proposed by [23].

4. Multiple Representations SEQuence Learner (MRSEQL) MRSEQL,
proposed by [25], is a robust univariate time series classifier that trains
on features derived from multiple symbolic representations of time series.
These representations include Symbol Aggregation Approximation (SAX)
and Symbol Fourier Approximation (SFA), which are used with linear clas-
sification models (logistic regression).

5. MINImally RandOm Convolutional KErnels Transform (MINIROCKET)
MINIROCKET is a fast and accurate algorithm for time series classification.
It is a (nearly) deterministic reformulation of the ROCKET algorithm, which
is a state-of-the-art algorithm for time series classification [12].

4.4 Train/validation/test splitting method

The SWAN-SF dataset has a temporal coherence property that measures
how stable and consistent the magnetic field structures of a solar active re-
gion are over time. It poses a challenge for predicting rare events such as
solar flares using time series data. It requires that the predictions for a given
time point are in agreement with past and future predictions. If temporal co-
herence is ignored, the model performance may be artificially inflated. This
problem stems from the data collection method and affects the data splitting
into training, validation, and testing sets. To address the issue of temporal
coherence, we use different time-segmented partitions of the dataset for train-
ing and testing samples. This is the reason why the SWAN-SF dataset has
multiple non-overlapping partitions. Table 1 shows each partition statistics.
By using different partitions of SWAN-SF for training and testing, we avoid
testing the model on time series that are partly identical to those used for
training [1]. In this study, we use the following settings: partition 1 for train-
ing and validation and partition 2 for testing, partition 2 for training and
validation and partition 3 for testing, partition 3 for training and validation
and partition 4 for testing, partition 4 for training and validation and parti-
tion 5 for testing, and partition 5 for training and validation and partition
1 for testing.
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Table 1: Event type statistics of each partition of the SWAN-SF dataset
Flare
Type

Partitions
P1 P2 P3 P4 P5

Q 60,130 73,368 34,762 43,294 62,688
B 5,692 4,978 685 846 5,924
C 6,416 8,810 5,639 5,956 5,763
M 1,089 1,329 1,288 1,012 971
X 165 72 136 153 19

sum 73,492 88,557 42,510 51,261 75,365

4.5 Binary classification performance

Binary classification plays a significant role in distinguishing major flar-
ing events from minor flaring events or flare quiet events. In this exper-
iment, we focus on classifying X and M class MVTS instances as flaring
events, while considering all other instances (Q) as non-flaring events. Fig-
ure 2 depicts the binary classification performances of all models. The results
demonstrate that the transformer-based MVTS model outperforms all other
baseline models, and achieves an average improvement of approximately 8%
to 20% compared to the second-best performing MINIROCKET algorithm.
These findings highlight the superior performance of our model in binary
classification. This consistency reinforces the efficacy and reliability of our
Transformer-based model in accurately predicting flaring events.

Train/Test partitions

TS
S

 s
co

re

0.0

0.2

0.4

0.6

0.8

P1/P2 P2/P3 P3/P4 P4/P5 P5/P1

SVM MININROCKET CIF MRSEQL LSTM Transformer

Fig. 2: Binary classification performance of all baselines compared to the trans-
former model.
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4.6 Ablation Study of the Transformer-base MVTS Classification
Model

To get a better understanding of the effectiveness of the different layers in our
model, we conducted several experiments to evaluate the significance of various
layers. First, we evaluated the importance of the self-attention mechanism by
removing it from the model architecture and comparing the results. The removal
of the attention mechanism (when partition 1 was used for training and partition
2 for testing) led to a noticeable drop in the TSS score, from 70% to 54%. This
outcome highlights the significant role played by the multi-head attention layer
in capturing relevant patterns and relationships within the MVTS data. Second,
we examined the impact of layer normalization by removing it from the model.
This resulted in a decrease in TSS from 70% to 44%. This finding underscores
the importance of layer normalization in maintaining the model’s performance
and stability. Finally, we investigated the effect of the 1D convolutional layers.
When these layers were removed from the model, there was a significant drop in
TSS from 70% to 51%. This result demonstrates the crucial role played by the 1D
convolutional layers in capturing important temporal features and contributing
to the overall performance of the model. The ablation study provided valuable
insights into the contributions of different layers in our model. The significant
decrease in TSS upon removing the attention mechanism, layer normalization,
and 1D convolutional layers highlights their importance in capturing relevant
patterns, maintaining stability, and extracting essential temporal features. These
findings underscore the effectiveness and significance of each layer in our model
architecture.

Train/Test partitions
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All Layers No MultiHeadAttention No LayerNormalization No Conv1D

Fig. 3: Ablation Study: The Contributions of Model Components in MVTS Clas-
sification of Solar Flares.
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Table 2: Experimental Results (TSS scores) for Different Hyperparameters Val-
ues on (Train/Test) Partitions.
Head Size Num FF Num of MLP TSS TSS TSS TSS

Heads Dim Transformer Blocks Units (P1/P2) (P2/P3) (P4/P5) (P5/P1)

256 4 4 10 64 0.70 0.69 0.58 0.57

512 4 4 10 64 0.62 0.68 0.52 0.63

512 8 8 20 128 0.68 0.68 0.57 0.64

128 2 2 5 32 0.69 0.65 0.47 0.29

256 2 2 5 32 0.58 0.65 0.41 0.45

256 4 4 10 128 0.58 0.60 0.32 0.46

4.7 The Impact of Different Hyperparameters Values on The Model
Performance

Table 2 presents the performance of various Transformer model configurations,
highlighting key hyperparameters such as head size, number of heads, feed-
forward dimensions, number of Transformer blocks, and MLP units. The To-
tal Sum of Squares (TSS) scores across different train/test partitions (P1/P2,
P2/P3, P4/P5, and P5/P1) demonstrate the model’s effectiveness in capturing
data variance. For the first row in the table, the model configuration includes
an attention head size of 256, 4 attention heads, a feed-forward dimension of
4, and 10 Transformer blocks. Additionally, the MLP (Multi-Layer Perceptron)
units are set to 64. The computational complexity for this configuration is ap-
proximately O(10 · (n2 · 256+n · 2562)), where n represents the sequence length.
This complexity estimate indicates how the computational cost grows with the
sequence length (n) and model size (256), helping to understand the resource
requirements for this specific model setup.

5 Discussion

We acknowledge that the application of the vanilla transformer architecture is
not novel in a methodological sense, we believe that the contribution of our
study lies in its specific adaptation to the solar flare prediction domain. The uti-
lization of self-attention mechanisms within the transformer framework, tailored
to the characteristics of solar flare MVTS datasets, addresses unique challenges
in time series classification. Our primary focus was to explore the effectiveness
of self-attention mechanisms in capturing long-range dependencies and intri-
cate patterns inherent in solar flare data. We believe that the context-specific
adaptation of the transformer architecture contributes valuable insights to the
solar flare prediction community. The impact of this study in the field of space
weather forecasting is significant. Accurate prediction of solar flares is important
for mitigating the adverse effects of space weather on satellite communications,
power grids, and other critical infrastructure. By leveraging the advanced ca-
pabilities of Transformer models, this research provides a robust framework for
enhancing the prediction accuracy of solar flare events. The use of self-attention
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mechanisms enables the model to capture intricate temporal dependencies and
interactions among multiple magnetic field parameters, which are essential for
understanding the complex dynamics of solar flares. The proposed model’s abil-
ity to handle large-scale multivariate time series data and its applicability to
real-world scenarios make it a practical tool for operational space weather fore-
casting. By addressing the limitations of previous models and demonstrating
superior performance, this research contributes to the development of more re-
liable and effective space weather prediction systems. The Transformer model is
important, particularly in the context of solar flare prediction. The self-attention
mechanism used in the Transformer model allows it to focus on different parts
of the input sequence, providing insights into which features and time steps are
most influential in making predictions. This capability can help identify key mag-
netic field parameters and their interactions that contribute to the occurrence
of solar flares. Furthermore, by analyzing the attention weights, researchers can
gain a better understanding of the physical mechanisms underlying solar flare
events. The model’s ability to capture long-range dependencies and complex
temporal relationships in multivariate time series data makes it a powerful tool
for studying the dynamics of solar active regions. This can lead to improved
predictions and a deeper understanding of the processes that drive solar flare
activity, ultimately contributing to advancements in space weather forecasting.

6 Conclusion

In this work, we introduced a transformer-based model for predicting solar flares,
employing the self-attention mechanism for the classification of Multivariate
Time Series (MVTS) instances. Our study presents an innovative approach that
harnesses the capabilities of the transformer model and the self-attention mech-
anism for MVTS classification. Through an end-to-end learning process, our
proposed model effectively captures the temporal relationships inherent within
MVTS instances. This includes the recognition of higher-order inter-variable
relationships as well as local and global temporal changes. By incorporating
attention-based techniques, our experiments conducted on a solar flare predic-
tion dataset showcase the remarkable performance of our model in binary class
MVTS classification, achieving an impressive TSS score of 70%. These outcomes
underscore the potential of our approach to offer more comprehensive and pre-
cise predictions in the realm of solar physics and space weather forecasting.
For future research, we intend to apply the Graph Attention Network [30] on
the functional network constructed from the time series correlation so that the
model can capture both spatial (inter-variable) and temporal dependencies for
learning robust representations of the MVTS instances.
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