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Γ -CONVERGENCE OF NONLOCAL DIRICHLET ENERGIES WITH

PENALTY FORMULATIONS OF DIRICHLET BOUNDARY DATA∗
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Abstract. We study nonlocal Dirichlet energies associated with a class of nonlocal diffusion
models on a bounded domain subject to the conventional local Dirichlet boundary condition. The
goal of this paper is to give a general framework to correctly impose the Dirichlet boundary condition
in a nonlocal diffusion model. To achieve this, we formulate the Dirichlet boundary condition as a
penalty term and use the theory of Γ -convergence to study the correct form of the penalty term.
Based on the analysis of Γ -convergence, we prove that the Dirichlet boundary condition can be
correctly imposed in a nonlocal diffusion model in the sense of Γ -convergence as long as the penalty
term satisfies a few mild conditions. This work provides a theoretical foundation for the approximate
Dirichlet boundary condition in a nonlocal diffusion model.
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1. Introduction. Nonlocal models have been extensively studied in various sci-
entific disciplines [2, 3, 4, 9, 18, 23, 36, 40]. Among them, nonlocal models with
operators that only consider nonlocal interactions of a limited range are of particular
interest [11, 10], as they are closely related to peridynamic [36] and some meshless
numerical-like smoothed particle hydrodynamics (SPH) [21, 26, 29]. In this paper, we
concentrate on nonlocal energies associated with the nonlocal Laplacian that are the
nonlocal counterpart of the local Laplacian. While various theoretical and numeri-
cal studies have been devoted to problems associated with nonlocal Laplacians, also
called nonlocal diffusion models [14, 12, 28, 39, 45], establishing nonlocal analogues
of the boundary conditions remains a topic of ongoing discussion. One approach is
to extend the boundary to a small volume adjacent to the boundary, known as vol-
ume constraints [11]. Designing nonlocal models or volume constraints properly can
achieve better convergence rates to their local limit, such as for Neumann boundary
condition in one [38] and two dimensions [44]. The point integral method [25, 34] is
also an effective approach to construct nonlocal approximations of the Poisson equa-
tion with the Neumann boundary condition. As for the Dirichlet boundary condition,
the constant extension method [27] may be the most straightforward, but it only pro-
vides first-order convergence at best. Enforcing the no-slip condition for higher-order
convergence may be costly due to the need to calculate particle distances from domain
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7440 WEIYE GAN, QIANG DU, AND ZUOQIANG SHI

boundaries [22, 43]. Recently, there have been many studies devoted to constructing
nonlocal models with respect to the Dirichlet condition in different implementations
[15, 42, 24, 34, 35, 46, 32].

In this paper, we mainly analyze a nonlocal counterpart of the following well-
known Dirichlet energy defined on a bounded domain Ω⊂R

d:
∫

Ω

|∇u(x)|pdx, p∈ (1,∞),(1.1)

for functions u∈W 1,p(Ω), subject to Dirichlet boundary conditions on ∂Ω.
Given a nonlocal horizon parameter δ > 0 that controls the range of nonlocal

interaction, a commonly studied nonlocal Dirichlet energy is given by

1

δp

∫

Ω

∫

Ω

Rδ(|x− y|)|u(x)− u(y)|pdydx,(1.2)

where Rδ(s) =
1
δd
R
(

s2

δ2

)

is a scaled nonlocal kernel.

It is well known that variational problems associated with the minimization of the
functional (1.1) for a Dirichlet data a being a proper function prescribed on boundary
∂Ω lead to the following homogeneous Poisson equation, also called the p-Laplace
equation or diffusion equation, with the Dirichlet boundary condition:

{

∇ · (|∇u|p−2∇u) = 0 in Ω,
u= a on ∂Ω.

(1.3)

For example, for p= 2, we get the linear Dirichlet boundary value problem
{

∆u= 0 in Ω,
u= a on ∂Ω.

(1.4)

For widely used kernels, particularly those smoothly defined Rδ, functions with a fi-
nite nonlocal energy are not expected to have sufficient regularity to have well-defined
traces on ∂Ω, thus making it hard to directly impose the Dirichlet boundary condition
like that in (1.4). A possible remedy is to adopt the technique of heterogeneous local-
ization that leads to improved regularity at the boundary; see [32] and the references
cited therein.

There are other attempts to impose the Dirichlet boundary condition for the
nonlocal diffusion model. For p = 2, by taking a constant 0 < β � 1 and using the
Robin boundary condition,

u+ β
∂u

∂n
= a,

to approximate the Dirichlet boundary condition u = a, a nonlocal model was pro-
posed in [35] as follows:

4

δ2

∫

Ω

Rδ(|x− y|)(u(x)− u(y))dy−
2

β

∫

∂Ω

R̄δ(|x− y|)(a(y)− u(y))dSy = 0,

where R̄δ(s) =
1
δd
R̄
(

s2

δ2

)

and R̄(s) =
∫ +∞

s
R(r)dr. This nonlocal model is proved to

converge to the local Laplace equation as δ, β→ 0 [35], and an error estimate in terms
of δ and β is also given. However, the symmetry is destroyed in the above nonlocal
model such that it does not have variational form with nonlocal Dirichlet energy. By
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Γ -CONVERGENCE OF NONLOCAL DIRICHLET ENERGIES 7441

introducing ∂u
∂n as an auxiliary variable, a nonlocal energy with penalty term can be

derived [41].

F (u,a) =
1

δ2

∫

Ω

∫

Ω

Rδ(|x− y|)(u(x)− u(y))2dxdy(1.5)

+

∫

∂Ω

2

δ2 ¯̄ωδ(x)

(∫

Ω

R̄δ(|x− y|)(a(x)− u(y))dy

)2

dx,

where

¯̄ωδ(x) =

∫

Ω

¯̄Rδ(|x− y|)dy,

¯̄Rδ(s) =
1
δd

¯̄R
(

s2

δ2

)

, and ¯̄R(s) =
∫ +∞

s
R̄(r)dr. It can be proved that minimal solution

of the above energy function converges to the solution of (1.4) as δ → 0 and the
convergence rate is O(δ) in the H1 norm [41]. To get H1 convergence, we need a
specifically designed penalty term in (1.5). Previous research primarily focused on
carefully designing penalty terms to ensure the best possible convergence of nonlocal
models. In contrast, in this paper, we are more concerned with identifying the con-
ditions under which the convergence of the nonlocal model can be guaranteed. Since
these conditions should be as weak as possible, we are committed to studying a more
general form of the penalty term.

Motivated by the penalty formulation of the Dirichlet boundary value problems
for elliptic PDEs and nonlocal energy (1.5), we first consider the following nonlocal
energy with a general penalty term:

1

δp

∫

Ω

∫

Ω

Rδ(|x− y|)|u(x)− u(y)|pdxdy+Bp(u,a)

where Bp(u,a) =

∫

∂Ω

∣

∣

∣

∣

1

δ

∫

Ω

Kδ(|x− y|)(a(x)− u(y))dy

∣

∣

∣

∣

p

dx,

(1.6)

and Kδ is a nonlocal kernel that depends on the horizon parameter δ. Our interest
is to give the correct form of Kδ such that the above nonlocal model converges to
the local model with Dirichlet boundary condition as δ → 0. Since we want to get
a general form of Kδ, Γ -convergence of the above nonlocal model is analyzed rather
than other strong convergence studied in previous works.

In fact, Γ -convergence among functionals is significant in describing the relation-
ship between nonlocal operators and local ones in semisupervised learning and other
fields [5, 37, 31, 20, 30]. With a property of Γ -convergence, we can also demon-
strate the convergence of the minimizers (or solutions of the stationary equations).
Nevertheless, it does not provide any information about the convergence rate of the
minimizers. Hence, Γ -convergence is a weaker convergence and allow us to consider
more relaxed conditions for the penalty term.

For p= 2, our Γ -convergence result covers the case of linear variational problems
associated with the nonlocal energy (1.2) with p= 2 and the boundary penalty term
of the form

E(u,a) =
1

δ2

∫

∂Ω

(∫

Ω

Kδ(|x− y|)(u(y)− a(x))dy

)2

dx(1.7)

that has been previously considered in [41] for some special choices of Kδ connected to
Rδ (see more details in Remark 2.5). In this paper, we work with more general choices
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7442 WEIYE GAN, QIANG DU, AND ZUOQIANG SHI

of Kδ that enable the Γ -convergence analysis, which remains valid for more general p.
The kernel Kδ only needs to fulfill some regularization conditions and does not need
to have any connection with the kernel Rδ. Moreover, as another contribution, we
also discuss the convergence of associated nonlocal eigenvalue problems. In addition,
specializing to linear problems corresponding to p = 2, we consider a penalty form
more general than that in (1.7) to illustrate the broad applicability of the method
developed here.

Based on the analysis of Γ -convergence, we establish a class of penalty models
which are guaranteed to be the correct approximation of the local Dirichlet boundary
condition. This is also the main contribution of this paper.

The rest of the paper is organized as follows. In section 2, we state the main
results and all assumptions that we need. Some related work considering special
cases of our results is discussed in section 3. In section 4, Γ -convergence and some
estimations employed in our proof procedure are introduced. Γ -convergence of the
nonlocal models and compactness results are demonstrated in section 5 and section
6, respectively. In section 7, we conclude this paper and present several aspects for
future research.

2. Assumptions and main results. Let p > 1 be a finite constant. Suppose
that Ω is a Lipschitz bounded domain in R

d. K,R are two kernel functions satisfying
the following regularity conditions:

(K1) K,R : [0,∞)−→ [0,∞) belong to C1;
(K2) K,R are monotonically decreasing;
(K3) supp(K)⊂ [0, r2K ] and supp(R)⊂ [0, r2R] for some rK , rR > 0.

For the kernel R, we define a normalization constant

σR :=

∫

Rd

R(|z|2)|z · e1|
pdz(2.1)

that only depends on a kernel R with e1 := (1,0, . . . ,0). For an arbitrary positive

constant δ, we also employ the scaled kernelsKδ(s) :=
1
δd
K( s

2

δ2 ) and Rδ(s) :=
1
δd
R( s

2

δ2 ).
We consider the p-Laplace equation with Dirichlet boundary condition (1.3), where a
is the trace of some function in W 1,p(Ω). Then the weak solution of (1.3) is also the
minimizer of the following functional:

F (u) =







∫

Ω

|∇u(x)|pdx if u∈W 1,p, Tu= a on ∂Ω,

∞ otherwise,
(2.2)

where T is the trace operator for W 1,p function. We first establish a specific nonlocal
model for (2.2):

Fn(u) =
1

δ
p
n

∫

Ω

∫

Ω

Rδn(|x− y|)|u(x)− u(y)|pdxdy

+

∫

∂Ω

∣

∣

∣

∣

1

δn

∫

Ω

Kδn(|x− y|)(a(x)− u(y))dy

∣

∣

∣

∣

p

dx

(2.3)

and prove the Γ -convergence from Fn(u) to σRF (u) as the following theorem.

Theorem 2.1. Suppose that Ω is a Lipschitz bounded domain in R
d. 1< p <∞

is a constant. K,R are two kernel functions satisfying (K1)–(K3), with σR given by
(2.1). {δn} is a sequence of positive constants tending to 0 as n→∞. Then we have

Fn
Γ

−→ σRF in Lp(Ω),

where Fn, F are defined as in (2.3), (2.2).
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Γ -CONVERGENCE OF NONLOCAL DIRICHLET ENERGIES 7443

Subsequently, We consider the eigenfunctions of the Laplace operator with Dirich-
let condition (2.4). In this part we set p= 2.







−∆u= λu in Ω,
u= 0 on ∂Ω,

‖u‖L2(Ω) = 1.
(2.4)

From the standard theory of second-order elliptic equations (for example, section 6.5
in [17]), if we denote by Σ the set of all eigenvalues of Laplace operator ∆, then
Σ= {λk}

∞
k=1, where

0<λ1 <λ2 ≤ · · · ≤ λk ≤ . . . .

Moreover,

λ1 =min{‖∇u‖L2(Ω)

∣

∣ u∈H1
0 (Ω),‖u‖L2(Ω) = 1},

and the corresponding eigenfunction µ1 (which means (µ1, λ1) is the solution of (2.4))
is the minimizer of the following functional:

F 1
e (u) =







∫

Ω

|∇u(x)|2dx if u∈H1
0 ,‖u‖L2(Ω) = 1,

∞ otherwise.

For k≥ 1, let Vk = span{µ1, µ2, . . . , µk}. Then,

λk+1 =min{‖∇u‖L2(Ω)

∣

∣ u∈H1
0 (Ω),‖u‖L2(Ω) = 1, u⊥ Vk},

and µk is the minimizer of

F k+1
e (u) =







∫

Ω

|∇u(x)|2dx if u∈H1
0 ,‖u‖L2(Ω) = 1, u⊥ Vk,

∞ otherwise.
(2.5)

For this problem, we select a≡ 0, p= 2; then the local functional (2.2) becomes

F (u) =







∫

Ω

|∇u(x)|2dx if u∈H1
0 ,

∞ otherwise.
(2.6)

Note that (2.5) is actually (2.6) with additional constraints. We can construct the
nonlocal approximation of F k

e by defining the unnormalized functionals:

F k
e,n(u) =

{

Fn(u) if ‖u‖L2(Ω) = 1, u⊥ V n
k−1,

∞ otherwise,
(2.7)

where V0 = ∅, V n
k = span{µn

1 , . . . , µ
n
k} and µn

k is the minimizer of F k
e,n. Moreover, with

a kernel function W satisfying conditions (K1)–(K3) and
∫

Rd

W (|z|2)dz = 1,(2.8)

we can consider the inner product defined as

〈u, v〉n =

∫

Ω

∫

Ω

Wδn(|x− y|)u(x)v(y)dxdy

and the normalized functionals defined as

F̃ k
e,n(u) =

{

Fn(u) if 〈u,u〉n = 1, u⊥ Ṽ n
k−1,

∞ otherwise,
(2.9)

where Wδ(s) :=
1
δd
W ( s

2

δ2 ), Ṽ0 = ∅, Ṽ n
k = span{µ̃n

1 , . . . µ̃
n
k}, and µ̃n

k is the minimizer of

F̃ k
e,n. We also have the Γ -convergence from F k

e,n or F̃ k
e,n to F k

e .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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7444 WEIYE GAN, QIANG DU, AND ZUOQIANG SHI

Theorem 2.2. Suppose that Ω is a Lipschitz bounded domain in R
d. K,R,W

are three kernel functions satisfying (K1)–(K3), with W satisfying additionally (2.8),
and σR being given by (2.1). {δn} is a sequence of positive constants tending to 0 as
n→∞. Then we have

F k
e,n

Γ
−→ σRF

k
e in L2(Ω),

and

F̃ k
e,n

Γ
−→ σRF

k
e in L2(Ω),

for all k ∈N, where F k
e,n, F̃

k
e,n, and F k

e are defined as in (2.7), (2.9), and (2.5).

Proceeding to focus on the case where a ≡ 0 and p = 2, we can consider a more
general nonlocal functional Fn:

Fn(u) =
1

δ2n

∫

Ω

∫

Ω

Rδn(|x− y|)|u(x)− u(y)|2dxdy+En(u,0),(2.10)

where the more general formulation of the boundary term is given by

En(u,a) =

∫

∂Ω

∫

Ω

∫

Ω

ρδn,x(y, z)(u(y)− a(x))(u(z)− a(x))dydzdx(2.11)

with a kernel ρδn,x(y, z) symmetric with respect to y and z. Theorem 2.1 offers the
Γ -convergence for the special choice

ρδn,x(y, z) =
1

δ2n
Kδn(|x− y|)Kδn(|x− z|).(2.12)

To maintain this property in general situations, some restrictions on ρδn,x(y, z) should
be imposed. First, in order for En(u,0) to capture information about the boundary,
the kernel should rapidly decay or directly vanish when |(y, z)−(x,x)| is large. Hence,
we require ρδn,x to be compactly supported and the support set to be shrinking
when n tends to infinity, ensuring increasingly precise delineation for the boundary.
Specifically, there should exist a sequence of positive constants {cn}, limn→∞ cn = 0,
such that ρδn,x is only nonzero when |x− y|, |x− z| ≤ cn.

Moreover, as n→∞, we expect the convergence of the minimizers of {Fn}, which
are confined only in L2(Ω), to a minimizer of F in the L2 norm. As the minimizer of
F , we have u∈H1 and Tu≡ 0. Thus, intuitively speaking, the sequence of minimizers
of {Fn} should take small absolute value near the boundary. To quantify this and
to overcome the possible lack of regularity, we pick a kernel K̂ satisfying (K1)–(K3),

K̂δ(s) =
1
δd
K̂( s

2

δ2 ), and a regularized form of {un}:

ũn(x) :=
1

ωδn(x)

∫

Ω

K̂δn(|x− y|)un(y)dy, and ωδn(x) :=

∫

Ω

K̂δn(|x− y|)dy.(2.13)

Note that the normalization coefficient ωδn(x) has uniformly positive lower and upper

bounds with respect to δn as δn → 0. Should K̂δ(s) be
1
δd
K̂( s

2

δ2 )? Mollifications like
(2.13) have been utilized in other works, such as, for example, [32]. We then require
a coercivity condition,

CnEn(un,0)≥ ‖ũn‖
2
L2(∂Ω) ∀un ∈L2(Ω),

for some K̂ and positive constants {Cn} satisfying limn→∞Cn = 0. Effectively, this
means that the penalty functional is placed on matching with the boundary data,
not directly by un but by a more regular ũn. As a summary, we have the following
theorem.
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Γ -CONVERGENCE OF NONLOCAL DIRICHLET ENERGIES 7445

Theorem 2.3. Suppose that Ω is a Lipschitz bounded domain in R
d. R is a kernel

satisfying (K1)–(K3), and σR is given by (2.1). {δn}, {cn}, {Cn} are sequences of
positive constants tending to 0 as n → ∞. ρδn,x is a kernel satisfying the following
two conditions:

(compact support) ρδn,x is only nonzero when |x− y|, |x− z| ≤ cn,
(coercivity) CnEn(un,0)≥ ‖ũn‖

2
L2(∂Ω) for any un ∈L2(Ω),

where En, {ũn} are defined as in (2.11) and (2.13) for some K̂ satisfying (K1)–(K3).
Then, we have

Fn
Γ

−→ σRF in L2(Ω),

where Fn, F are defined as in (2.10), (2.6).

Remark 2.4. For general p > 1, a similar conclusion can be derived in the same
way as in subsection 5.3. However, we do not yet have a unified formulation, like
(2.11) for p= 2, that also works for more general p 6= 2, i.e., a formulation that covers
both

E1
n(u,a) =

∫

∂Ω

∣

∣

∣

∣

1

δn

∫

Ω

Kδn(|x− y|)(u(y)− a(x))dy

∣

∣

∣

∣

p

dx

and

E2
n(u,a) =

1

δ
p
n

∫

∂Ω

∫

Ω

Kδn(|x− y|)|u(y)− a(x)|pdydx.

Hence, for the purpose of conciseness, we only discuss the p= 2 case in Theorem 2.3.

Remark 2.5. The main contribution of Theorem 2.3, in comparison with Theorem
2.1, is to formulate a more general boundary term. This general form contains a large
class of kernel ρδn,x such as ρδn,x(y, z) =

1
δ2n
Kδn(|x− y|)δ(|y − z|), where δ(·) means

the Dirac-delta measure. See more details in subsection 5.3. The subscript x in the
kernel ρδn,x(y, z) means not only that it is centered at x but also that other parts of
kernel expression can depend on x. For example, [38, 41] actually considered a special
case covered by Theorem 2.3,

ρδn,x(y, z) =
2

δ2 ¯̄ωδn(x)
R̄δn(|x− y|)R̄δn(|x− z|),

where ¯̄ωδn is a bounded function depending on x. And in [33], another special case is
considered:

ρδn,x(y, z) =
4

δ2nµδn(x)
R̄δn(|x− y|)δn(|y− z|),

where µδn(x) is also a bounded function.

With the Γ -convergence, the convergence of their minimizers follows.

Theorem 2.6. Suppose that Ω is a Lipschitz bounded domain in R
d. 1< p <∞

is a constant. K,R are two kernel functions satisfying (K1)–(K3), with W satisfying
additionally (2.8) and σR being given by (2.1). {δn} is a sequence of positive constants
tending to 0 as n → ∞. Fn, F are defined as in (2.3), (2.2). Then any sequence
{un} ⊂Lp(Ω) satisfying

lim
n→∞

(Fn(un)− inf
u∈Lp(Ω)

Fn(u)) = 0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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is relatively compact in Lp(Ω) and

lim
n→∞

Fn(un) = min
u∈Lp(Ω)

σRF (u).

Furthermore, every cluster point of {un} is a minimizer of F .

Theorem 2.7. Suppose that Ω is a Lipschitz bounded domain in R
d. K,R,W

are three kernel functions satisfying (K1)–(K3) with W satisfying additionally (2.8)
and σR being given by (2.1). {δn} is a sequence of positive constants tending to 0
as n → ∞. F k

e,n, F̃
k
e,n, and F k

e are defined as in (2.7), (2.9), and (2.5). Then any
sequence {un} ⊂L2(Ω) satisfying

lim
n→∞

(F k
e,n(un)− inf

u∈L2(Ω)
F k
e,n(u)) = 0

is relatively compact in L2(Ω) and

lim
n→∞

F k
e,n(un) = min

u∈L2(Ω)
σRF

k
e (u).

Furthermore, every cluster point of {un} is a minimizer of F k
e . The conclusions still

hold if {F k
e,n} is replaced by {F̃ k

e,n}.

Theorem 2.8. Suppose that Ω is a Lipschitz bounded domain in R
d. R is a kernel

satisfying (K1)–(K3), and σR is given by (2.1). {δn}, {cn}, {Cn} are sequences of
positive constants tending to 0 as n → ∞. ρδn,x is a kernel satisfying the following
two conditions:

(compact support) ρδn,x is only nonzero when |x− y|, |x− z| ≤ cn,
(coercivity) CnEn(un,0)≥ ‖ũn‖

2
L2(∂Ω) for any un ∈L2(Ω),

where En and {ũn} are defined as in (2.11) and (2.13) for some K̂ satisfying (K1)–
(K3), and Fn and F are defined as in (2.10), (2.6). Then any sequence {un} ⊂L2(Ω)
such that

lim
n→∞

(Fn(un)− inf
u∈L2(Ω)

Fn(u)) = 0

is relatively compact in L2(Ω) and

lim
n→∞

Fn(un) = min
u∈L2(Ω)

σRF (u).

Furthermore, every cluster point of {un} is a minimizer of F .

3. Quantitative discussion. All results in this paper are based on Γ -
convergence. As shown by Lemma 4.2, this concept can lead to the convergence
of minimizers but does not provide information about the convergence rate. Such
weak conclusions allow us to consider a general class of nonlocal model. It is abso-
lutely better if one can derive some quantitative results without strengthening our
assumptions. But it may be difficult since the kernels of the boundary and interior
term do not need any connection. Nevertheless, in some special cases, if the kernels
are carefully designed and have good linkage, one can obtain a specific nonlocal model
with stronger quantitative properties. For example, as mentioned in Remark 2.5, [41]
studies the nonlocal model (2.10) with

ρδn,x(y, z) =
2

δ2 ¯̄ωδn(x)
R̄δn(|x− y|)R̄δn(|x− z|),
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where

¯̄ωδn(x) :=

∫

Ω

¯̄Rδn(|x− y|)dy,

and demonstrates the first order H1 convergence of the minimizers (Theorem 3.2 in
[41]). Select

ρδn,x(y, z) =
4

µδn(x)
R̄δn(|x− y|)δn(|y− z|),

where µδn(x) := min{2δn,max{δ2n, d(x)}} and d(x) = miny∈∂Ω |x − y|. It is shown
in [33] that (2.10) with such ρδn,x fulfills the maximum principle and second order
convergence for the minimizers (Theorem 5.1 in [33]).

Moreover, except for the convergence rate of minimizers, one may also directly
explore the convergence rate of the nonlocal functional. In [7], the author proves that
Fh−F0

h2 Γ-converges to a nonzero functional. F0, Fh are defined as follows:

F0(u) :=

∫

Rd

∫

Rd

K(z)f

(∣

∣

∣

∣

∇u(x) ·
z

|z|

∣

∣

∣

∣

)

dzdx,

Fh(u) :=

∫

Rd

∫

Rd

Kh(y− x)f

(

|u(y)− u(x)|

|y− x|

)

dydx,

where f(·) is a convex function that fulfills some conditions. This conclusion can
be understood as nonlocal energy Fh second order converges to F0. If we choose
f(x) = xp with p > 1, Fh is quite similar to the interior term in our nonlocal model.
The differences are that we change 1

|y−x| to 1
h and R

d to a bounded domain Ω. We
believe that these differences are not essential and that a similar conclusion can be
demonstrated in the cases we consider. However, much of the proof of this conclusion
may be devoted to the treatment of interior terms, and the specific form of kernel in
the boundary term has little influence. This goes against our topic of boundary terms
and may be more suitable as future work. Specifically, consider the nonlocal model
(2.10) for Theorem 2.3:

Fn(u) =
1

δ2n

∫

Ω

∫

Ω

Rδn(|x− y|)|u(x)− u(y)|2dxdy+En(u,0)

=: Iδn(u) +En(u,0).

Define

I0(u) =

∫

Rd

∫

Ω

R(|z|)|∇u(x) · z|pdxdz.

Suppose that with a method similar to that in [7], one can prove that
Iδn−I0

δ2n
Γ -

converges to a nonzero functional I(u). With the coercivity condition in Theorem
2.3, there exists a sequence of positive constants {Cn} tending to zero such that

CnEn(u,0)≥ ‖ũ‖L2(∂Ω)

for all u ∈ L2(Ω). Combining this with Lemma 4.3, we can prove that Fn−I0
δ2n

=
Iδn−I0

δ2n
+ 1

δ2n
En(u,0) Γ-converges to

Ĩ(u) =

{

I(u) if Tu≡ 0 on ∂Ω,
∞ otherwise

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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7448 WEIYE GAN, QIANG DU, AND ZUOQIANG SHI

when Cn

δ2n
→ 0. So the specific form of boundary term En does not matter, whereas

proving the conclusion that
Iδn−I0

δ2n
Γ -converges to a nonzero functional requires much

more effort, especially for analyzing near the boundary of Ω.
Even if we prove the Γ -convergence above, there is still a gap for the convergence

of minimizers. However, such convergence of functionals may derive the convergence
of minimizers with some stronger assumptions. For example, a simple situation is that
Iδn−I0

δ2n
uniformly converges to a bounded functional I(u) and I0 is strongly convex.

In this case, we can obtain the second order convergence of the minimizers. This gap
is also one of the obstacles we hope to overcome in future work.

4. Preliminaries. For easy reference, we first recall the concept of Γ -convergence
or functionals. We then present a technical lemma concerning the nonlocal energy
with the kernel rescaled by different constants.

4.1. Γ -convergence. The Γ -convergence proposed by De Giorgi is often used
to study the convergence of minimizers of functionals under compactness assumptions.
More detailed overviews about the Γ -convergence can be found in [6, 8].

Definition 4.1 (Γ -convergence). Let X be a metric space and Fn : X → R ∪
{−∞,∞} be a sequence of functionals on X. We say that Fn Γ -converges to F :X →

R∪ {−∞,∞}, which is also denoted by Fn
Γ
→ F (n→∞), if

(1) (liminf inequality) for any sequence {xn}n∈N ⊂ X converging to x ∈ X, we
have lim infn→∞Fn(xn)≥ F (x).

(2) (limsup inequality) for any x ∈ X, there exists a sequence {xn}n∈N ⊂ X

converging to x such that limsupn→∞Fn(xn)≤ F (x).

The following lemma reveals the connection between Γ -convergence and the con-
vergence of minimizers, which is also applied in [20, 37, 31, 19]. We include it here
for completeness and easy reference.

Lemma 4.2 (convergence of minimizers). Let X be a metric space and Fn :X →
[0,∞] Γ -converges to F : X → [0,∞] which is not identically ∞. If there exists a
relatively compact sequence {xn}n∈N ⊂X such that

lim
n→∞

(Fn(xn)− inf
x∈X

Fn(x)) = 0

then we have

lim
n→∞

inf
x∈X

Fn(x) = min
x∈X

F (x)

and any cluster point of {xn}n∈N is a minimizer of F .

Proof. For any y ∈X, we know that there exists a sequence {yn}n∈N ⊂X satis-
fying the limsup inequality. So we have

F (y)≥ limsup
n→∞

Fn(yn)≥ limsup
n→∞

inf
x∈X

Fn(x),

which yields

min
x∈X

F (x)≥ limsup
n→∞

inf
x∈X

Fn(x).

On the other hand, consider the sequence {xn}n∈N ⊂X mentioned in the assumption.
Let x̃ be one of the cluster points of {xn}n∈N. Using the liminf inequality, we get

lim inf
n→∞

inf
x∈X

Fn(x) = lim inf
n→∞

Fn(xn)≥ F (x̃)≥min
x∈X

F (x).
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Therefore,

limsup
n→∞

inf
x∈X

Fn(x)≤min
x∈X

F (x)≤ F (x̃)≤ lim inf
n→∞

inf
x∈X

Fn(x),

and we can get the conclusion.

4.2. Relation between kernels of different scales. The following technical
lemma clarifies that when the kernel is rescaled by a constant factor, the nonlocal
energy remains uniformly controlled by the original one. This conclusion is also
indispensable in [34, 19, 13].

Lemma 4.3. Let R be a kernel satisfying (K1)–(K3). p > 1, m > 0 are finite
constants and Ω is a Lipschitz bounded domain in R

d. Then there exists a constant
C depending on m, such that for all δ > 0 and u∈Lp(Ω),

∫

Ω

∫

Ω

Rδ(|x− y|)|u(x)− u(y)|pdxdy

≤C

∫

Ω

∫

Ω

Rmδ(|x− y|)|u(x)− u(y)|pdxdy.

Proof. When m≥ 1, by the monotone decreasing property of R, we have

R

(

|x− y|2

(m−1δ)2

)

≤R

(

|x− y|2

δ2

)

≤R

(

|x− y|2

(mδ)2

)

.

Thus,

m−dRm−1δ(|x− y|)≤Rδ(|x− y|)≤mdRmδ(|x− y|).

The conclusion for m≥ 1 then follows easily and the case for m< 1 can be obtained
from a telescoping argument, similar to those presented in [34, 13, 32].

5. Γ -convergence of nonlocal functionals.

5.1. Nonlocal model for Dirichlet problem. To prepare for the proof of
Theorem 2.1, we first present some lemmas. The first one is about the property of
the convolution between a kernel and a sequence of Lp functions which has a limit.
It is well known that for a sequence of positive constants δn → 0, a L1 kernel function
R and an Lp function u, the equality

lim
n→∞

‖Rδn ∗ u−CRu‖Lp = 0(5.1)

holds for any 1≤ p <∞, where Rδn is the scaled kernel of R and CR :=
∫

Rd R(|y|2)dy
is a constant only dependent on R. Replacing u in the above by a sequence {un} that
converges to u, we have a similar conclusion.

Lemma 5.1. Suppose that Ω is a domain in R
d. R is a kernel function satisfying

(K1)–(K3). 1 < p < ∞. For a positive constant δ, Rδ(x) :=
1
δd
R(x

2

δ2 ). δn → 0 and
un → u in Lp(Ω) as n→∞. Then,

∥

∥

∥

∥

∫

Ω

Rδn(|x− y|)(un(x)− un(y))dy

∥

∥

∥

∥

Lp(Ω)

−→ 0, as n→∞.
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Proof. Let CR,n(x) :=
∫

Ω
Rδn(|x− y|)dy for x∈Ω. Note that

‖Rδn ∗ un −CR,nun‖Lp(Ω) ≤ ‖Rδn ∗ (un − u)‖Lp(Ω) + ‖CR,n(u− un)‖Lp(Ω)

+ ‖(CR,n −CR)u‖Lp(Ω) + ‖Rδn ∗ u−CRu‖Lp(Ω).

The first two terms go to 0 by the convergence of un to u and boundedness of
convolution with Rδn and the uniform bound of the function ‖CR,n‖L∞(Ω) ≤ CR,
while the third term goes to zero since CR,n(x) = CR except for x in the layer {x ∈
Ω,dist(x,Ωc)< rRδn} whose measure goes to 0. The last term follows from (5.1).

In the functionals (2.3) under consideration, the Γ -convergence of the first term
has been studied [37, Lemma 4.6]. We will directly use the liminf part, which is listed
as follows.

Lemma 5.2. Let Ω,R,σR satisfy the same conditions as Theorem 2.1. 1< p<∞.
un → u in Lp(Ω), δn → 0, then

lim inf
n→∞

1

δ
p
n

∫

Ω

∫

Ω

Rδn(|x− y|)|un(x)− un(y)|
pdxdy≥ σRE(u),

where

E(u) =







∫

Ω

|∇u(x)|pdx if u∈W 1,p,

∞ otherwise.

The main difference between Theorem 2.1 and the Lemma 4.6 in [37] is the addi-
tional term about the boundary ∂Ω. To resolve it, the trace theorem that the Lp(∂Ω)
norm of the trace of a W 1,p(Ω) function can be controlled by the W 1,p norm is useful.
While the strong W 1,p convergence from un to u does not follow directly from the
derivation of the liminf inequality, it turns out that, with the following lemma, the
weak W 1,p convergence is enough.

Lemma 5.3. Suppose that Ω is a Lipschitz bounded domain and 1 < p <∞. Let
{un} ⊂ W 1,p(Ω) satisfy that supn‖un‖W 1,p(Ω) < ∞, and un → u in Lp(Ω) for some
u ∈W 1,p(Ω) with ‖Tun‖Lp(∂Ω) → 0 as n→∞. Then we have Tu = 0 on ∂Ω, in the
sense of trace space.

Proof. By the reflexivity of W 1,p(Ω), the trace theorem (see, for example, [16])
and compact embeddings of Sobolev spaces, we can see that u is the weak limit of un

in W 1,p(Ω), and Tu is both the weak limit of Tun in W 1−1/p,p(∂Ω) and the strong
limit in Lp(∂Ω). Thus Tu= 0.

When processing the boundary term, as stated in section 2, we actually transform
un into a more regular form {ũn} defined as in (2.13). For the gradient of ũn, we have
the following Lp-estimate; see similar results presented in [32].

Lemma 5.4. Let Ω,R satisfy the same conditions as Theorem 2.1. 1< p<∞. ũn

is defined as in (2.13). We have the following estimate about ∇ũn:

‖∇ũn‖Lp(Ω) ≤
C

δn

(∫

Ω

∫

Ω

Rδn(|x− y|)|un(x)− un(y)|
pdxdy

)
1

p

,

where C is a constant depending only on K̂,R, and Ω.
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Proof. By the definitions,

∇ũn(x) =
1

ωδn(x)
2

(∫

Ω

∫

Ω

K̂δn(|x− y|)∇xK̂δn(|x− z|)un(z)

−∇xK̂δn(|x− y|)K̂δn(|x− z|)un(z)dydz

)

=
1

ωδn(x)
2

(∫

Ω

∫

Ω

∇xK̂δn(|x− y|)K̂δn(|x− z|)(un(y)− un(z))dydz

)

.

Therefore, using the Hölder inequality, we have

‖∇ũn‖Lp ≤C1

∥

∥

∥

∥

∫

Ω

∫

Ω

∇xK̂δn(|x− y|)K̂δn(|x− z|)(un(y)− un(z))dydz

∥

∥

∥

∥

Lp

≤
C2

δ
1

p∗

n

{∫

Ω

∫

Ω

(∫

Ω

|∇xK̂δn(|x− y|)|K̂δn(|x− z|)dx

)

|un(y)− un(z)|
pdydz

}
1

p

,

where 1
p∗

= 1− 1
p . Denote

K̃δn(y, z) :=

∫

Ω

∇xK̂δn(|x− y|)K̂δn(|x− z|)dx.

Recalling the condition supp(K̂) ⊂ [0, rK̂ ], it is obvious that K̃δn(y, z) = 0 when

|y− z|> 2δnrK̂ . According to the regularity of kernel K̂ and R, we may assume that
there exist some constants k1, k2, r1 > 0 such that

K̂(x)≤ k1, |K̂
′(x)| ≤ k2 ∀x≥ 0, and R(x)≥ r1 ∀x∈

[

0,
rR

2

]

.

For any y, z with |y− z| ≤ 2δnrK̂ ,

K̃δn(y, z)≤
k2

δd+1
n

∫

Ω

K̂δn(|x− z|)dx≤
k2

δd+1
n

∫

Rd

K̂δn(|x− z|)dx

≤
CK̂

δd+1
n

≤
CK̂,R

δn
R 4r

K̂
rR

δn
(|y− z|).

Hence,

‖∇ũn‖Lp ≤
C2

δ
1

p∗

n

{∫

Ω

∫

Ω

K̃δn(y, z)|un(y)− un(z)|
pdydz

}
1

p

≤
C3

δn

{∫

Ω

∫

Ω

R 4r
K̂

rR
δn
(|y− z|)|un(y)− un(z)|

pdydz

}
1

p

≤
C

δn

{∫

Ω

∫

Ω

Rδn(|y− z|)|un(y)− un(z)|
pdydz

}
1

p

.

The last inequality holds owing to Lemma 4.3.

With the preparation above, we can start to prove Theorem 2.1. First, we simplify
the problem into the situation of a ≡ 0. To do this, we consider a W 1,p function v

whose trace is a. Then we can transform the functionals by translation:

F v(u) := F (v+ u), F v
n := Fn(v+ u).
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Specifically,

F v
n (u) =

1

δ
p
n

∫

Ω

∫

Ω

Rδn(|x− y|)|u(x) + v(x)− u(y)− v(y)|pdxdy

+

∫

∂Ω

∣

∣

∣

∣

1

δn

∫

Ω

Kδn(|x− y|)(a(x)− u(y)− v(y))dy

∣

∣

∣

∣

p

dx

(5.2)

and

F v(u) =







∫

Ω

|∇u(x) +∇v(x)|pdx if u∈W 1,p, Tu≡ 0 on ∂Ω,

∞ otherwise.
(5.3)

It is obvious that the Γ -convergence from Fn to F is equivalent to the one from F v
n to

F v. And we have the following lemma to show that the latter is similar to Theorem
2.1 when a≡ 0.

Lemma 5.5. Let F v, F v
n be defined as in (5.2), (5.3). Then it is sufficient for

Theorem 2.1 to prove the Γ -convergence from F̃ v
n to σRF

v, where

F̃ v
n (u) =

1

δ
p
n

∫

Ω

∫

Ω

Rδn(|x− y|)|u(x) + v(x)− u(y)− v(y)|pdxdy

+

∫

∂Ω

∣

∣

∣

∣

1

δn

∫

Ω

Kδn(|x− y|)u(y)dy

∣

∣

∣

∣

p

dx.

(5.4)

Proof. According to the definitions, we only need to demonstrate that
∥

∥

∥

∥

1

δn

∫

Ω

Kδn(|x− y|)(v(y)− a(x))dy

∥

∥

∥

∥

Lp(∂Ω)

→ 0 as n→∞.

Consider the extension v̄ of v on the convex hull Ω̄ of Ω and a sequence of C1 approx-

imations {vn} of v̄, such that ‖vn − v̄‖W 1,p(Ω̄) = o(δ
1+ d

p
n ). By the trace theorem, this

gives ‖vn − a‖Lp(∂Ω) = o(δ
1+ d

p
n ) = o(δn). Note that

∥

∥

∥

∥

1

δn

∫

Ω

Kδn(|x− y|)(v(y)− a(x))dy

∥

∥

∥

∥

Lp(∂Ω)

≤

∥

∥

∥

∥

1

δn

∫

Ω

Kδn(|x− y|)(vn(x)− a(x))dy

∥

∥

∥

∥

Lp(∂Ω)

+

∥

∥

∥

∥

1

δn

∫

Ω

Kδn(|x− y|)(vn(y)− v(y))dy

∥

∥

∥

∥

Lp(∂Ω)

+

∥

∥

∥

∥

1

δn

∫

Ω

Kδn(|x− y|)(vn(y)− vn(x))dy

∥

∥

∥

∥

Lp(∂Ω)

=: I1 + I2 + I3.

For the first and second terms, they tend to zero since {vn} converges to v at a
sufficiently rapid rate.

I1 =

∥

∥

∥

∥

1

δn

∫

Ω

Kδn(|x− y|)dy(vn(x)− a(x))

∥

∥

∥

∥

Lp(∂Ω)

=O

(

1

δn
‖vn(x)− a(x)‖Lp(∂Ω)

)

= o(1),
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and

I
p
2 =

∫

∂Ω

∣

∣

∣

∣

1

δn

∫

Ω

Kδn(|x− y|)(vn(y)− v(y))dy

∣

∣

∣

∣

p

dx

=O

(∫

∂Ω

∫

Ω

1

δ
p
n
Kδn(|x− y|)|vn(y)− v(y)|pdydx

)

=O

(

1

δ
p+d
n

‖vn − v‖pLp(Ω)

)

= o(1).

For the last term, using the Taylor expansion, we have

I
p
3 =O

(∫

∂Ω

∫

Ω

Kδn(|x− y|)
1

δ
p
n
|vn(x)− vn(y)|

pdydx

)

=O

(∫

∂Ω

∫

Ω̄

Kδn(|x− y|)
1

δ
p
n
|vn(x)− vn(y)|

pdydx

)

=O

(∫

∂Ω

∫

Ω̄

∫ 1

0

Kδn(|x− y|)
1

δ
p
n
|(y− x) · ∇vn(x+ t(y− x))|pdtdydx

)

=O

(

∫

∂Ω

∫

|z|≤rK ,x+δnz∈Ω̄

∫ 1

0

K(|z|2)|z · ∇vn(x+ tδnz)|
pdtdzdx

)

=O

(

∫

∂Ω

∫ 1

0

∫

|z|≤rK ,x+δnz∈Ω̄

|∇vn(x+ tδnz)|
pdzdtdx

)

=O(‖∇vn‖Lp(Ω̃δn )),

where Ω̃δn := {x∈ Ω̄
∣

∣dist(x,∂Ω)≤ δnrK} and the last equation holds since

∫

|z|≤rK ,x+δnz∈Ω̄

|∇vn(x+ tδnz)|
pdz ≤ ‖∇vn‖Lp(Ω̃δn )

for all fixed x∈ ∂Ω, t∈ (0,1]. Note that the measure of Ω̃δn tends to zero. Hence,

‖∇vn‖Lp(Ω̃δn ) ≤ ‖∇v̄‖Lp(Ω̃δn ) + ‖v̄− vn‖W 1,p(Ω̄) = o(1).

To complete the proof of Theorem 2.1, we show the Γ -convergence of F̃ v
n to F v.

The proof is divided into two parts according to Definition 4.1.

Lemma 5.6 (the liminf inequality). Suppose that Ω is a Lipschitz bounded domain
in R

d. K,R are two kernel functions satisfying (K1)–(K3). 1 < p < ∞. δn → 0 as
n→∞. Then for any un → u in Lp(Ω),

lim inf
n→∞

F̃ v
n (un)≥ σRF

v(u),

where F̃ v
n , F

v are defined as in (5.4), (5.3).

Proof. Without loss of generality, we can suppose that lim infn→∞ F̃ v
n (un) <∞.

From Lemma 5.2, we have

lim inf
n→∞

1

δ
p
n

∫

Ω

∫

Ω

Rδn(|x− y|)|un(x) + v(x)− un(y)− v(y)|pdxdy≥ σRE(u+ v),
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which also yields that u ∈W 1,p. We then claim that Tu≡ 0 on ∂Ω. Once the claim
is verified, we get

lim inf
n→∞

F̃ v
n (un)

≥ lim inf
n→∞

1

δ
p
n

∫

Ω

∫

Ω

Rδn(|x− y|)|un(x) + v(x)− un(y)− v(y)|pdxdy

≥ σRE(u+ v)

= σRF
v(u)

and the proof is complete. To show the claim, note that we also have

lim inf
n→∞

∫

∂Ω

∣

∣

∣

∣

1

δn

∫

Ω

Kδn(|x− y|)un(y)dy

∣

∣

∣

∣

p

dx<∞.

Define

ũn(x) :=
1

ωδn(x)

∫

Ω

Kδn(|x− y|)un(y)dy, and ωδn(x) :=

∫

Ω

Kδn(|x− y|)dy.

The above property implies the fact that there exists a subsequence (still denoted by
{ũn} for simplification of notation) of {ũn} satisfying

lim
n→∞

‖T ũn‖Lp(∂Ω) = 0

owing to the positive lower bound of ωδn(x). For the W 1,p estimation, first,

‖ũn‖Lp(Ω) ≤C1

(∫

Ω

∫

Ω

Kδn(|x− y|)up
n(y)dydx

)
1

p

≤C2‖un‖Lp(Ω),

which yields that the Lp(Ω) norm of {ũn} is uniformly bounded. Moreover,

limsup
n→∞

∥

∥

∥

∥

1

δn
R

1

p

δn
(|x− y|)(v(x)− v(y))

∥

∥

∥

∥

Lp(Ω×Ω)

= limsup
n→∞

∥

∥

∥

∥

1

δn
R

1

p

δn
(|x− y|)∇v(x) · (x− y)

∥

∥

∥

∥

Lp(Ω×Ω)

= limsup
n→∞

(∫

Ω

∫

Ω

Rδn(|x− y|)|∇v(x) ·
x− y

δn
|pdxdy

)
1

p

<∞.

So the assumption lim infn→∞ F̃ v
n (un)<∞ also yields that

lim inf
n→∞

1

δn

(∫

Ω

∫

Ω

Rδn(|x− y|)|un(x)− un(y)|
pdxdy

)
1

p

≤

∥

∥

∥

∥

1

δn
R

1

p

δn
(|x− y|)(u(x)− u(y) + v(x)− v(y))

∥

∥

∥

∥

Lp(Ω×Ω)

+

∥

∥

∥

∥

1

δn
R

1

p

δn
(|x− y|)(v(x)− v(y))

∥

∥

∥

∥

Lp(Ω×Ω)

<∞.

Therefore, with Lemma 5.4, we get the conclusion that the W 1,p norm of {ũn} is
uniformly bounded:

sup
n
‖ũn‖W 1,p(Ω) <∞.
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Finally, the transform from un to ũn preserves the Lp convergence due to Lemma 5.1:

‖ũn − u‖Lp(Ω) =

∥

∥

∥

∥

1

ωδn(x)

∫

Ω

Kδn(|x− y|)(un(y)− u(x))dy

∥

∥

∥

∥

Lp(Ω)

≤C3

∥

∥

∥

∥

∫

Ω

Kδn(|x− y|)(un(y)− u(x))dy

∥

∥

∥

∥

Lp(Ω)

≤C3

(∥

∥

∥

∥

∫

Ω

Kδn(|x− y|)(un(y)− un(x))dy

∥

∥

∥

∥

Lp(Ω)

+

∥

∥

∥

∥

∫

Ω

Kδn(|x− y|)(un(x)− u(x))dy

∥

∥

∥

∥

Lp(Ω)

)

≤C3

∥

∥

∥

∥

∫

Ω

Kδn(|x− y|)(un(y)− un(x))dy

∥

∥

∥

∥

Lp(Ω)

+C4‖un − u‖Lp(Ω) −→ 0, (as n→∞).

Hence, with Lemma 5.3, ‖Tu‖Lp(∂Ω) = 0.

For the limsup inequality, the following lemma is useful. It provides the connection
between the nonlocal Dirichlet energy and the local version defined on W 1,p(Ω). The
proof can be done using the Taylor expansion; see proofs in, for example, [5].

Lemma 5.7. Suppose that Ω is a Lipschitz bounded domain in R
d. R is a kernel

satisfying (K1)–(K3). Then, for all u∈W 1,p(Ω), δ > 0,

1

δp

∫

Ω

∫

Ω

Rδ(|x− y|)|u(x)− u(y)|pdxdy≤ σR‖∇u‖pLp(Ω).

Lemma 5.8 (the limsup inequality). Suppose that Ω is a Lipschitz bounded do-
main in R

d. K,R are two kernel functions satisfying (K1)–(K3). δn → 0 as n→∞.
Then for any u in Lp(Ω), there exists a sequence {un} converging to u in Lp(Ω) and

limsup
n→∞

F̃ v
n (un)≤ σRF

v(u),

where F̃ v
n , F

v are defined as in (5.4), (5.3).

Proof. We can suppose that F v(u)<∞, which yields u∈W 1,p and Tu≡ 0. With
the density of C∞ functions in W 1,p space, we can choose {un} to be a sequence
of smooth functions that converges to u with respect to the W 1,p(Ω) norm. We
additionally require un ≡ 0 in Ωc

δn
, where Ωδn := {x ∈ Ω

∣

∣dist(x,Ωc) ≥ rKδn}. This
condition can be attained by multiplying a smooth approximation of the indicator
function 1Ωδn

.
For such {un}, it is obvious that

(∫

∂Ω

∣

∣

∣

∣

1

δn

∫

Ω

Kδn(|x− y|)un(y)dy

∣

∣

∣

∣

p

dx

)
1

p

= 0.

To simplify the notation, we denote un + v,u+ v by uv
n, u

v. With Lemma 5.7,

1

δ
p
n

∫

Ω

∫

Ω

Rδn(|x− y|)|uv
n(x)− uv

n(y)|
pdxdy≤ σR‖∇uv

n(z)‖
p
Lp(Ω) ∀n> o.

As a result, with uv
n → uv in W 1,p(Ω),

limsup
n→∞

F̃ v
n (un) = limsup

n→∞

1

δ
p
n

∫

Ω

∫

Ω

Rδn(|x− y|)(uv
n(x)− uv

n(y)|
pdxdy

≤ σR limsup
n→∞

‖∇uv
n‖

p
Lp(Ω) = σR‖∇uv‖pLp(Ω) = σRF

v(u).
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Finally, with Lemmas 5.5, 5.6, and 5.8, the proof of Theorem 2.1 is complete.

5.2. Nonlocal model for eigenvalue problem. Recall that F k
e,n, F̃

k
e,n, and

F k
e defined as in (2.7), (2.9), and (2.5) actually equal to Fn or F if u satisfies the

constraints. With the Γ -convergence of Fn to F proved in Theorem 2.1, we only need
to complete the remaining proof.

Proof of Theorem 2.2. We apply the induction with respect to k.

Unnormalized case, liminf inequality: Without loss of generality, we can assume
that lim infn→∞F k

e,n(un) < ∞. Then there exists a subsequence {nl} such that
‖unl

‖L2(Ω) = 1 and unl
⊥ V n

k−1 ∀l. Note that unl
→ u in L2(Ω), so we have

‖u‖L2(Ω) = 1. For k = 1, u ⊥ V0 is trivial since V0 = ∅. For k > 1, suppose that
F l
e,n Γ -converges to F l

e for all l < k. Then with the compactness result in section 6
and the property of Γ -convergence (Lemma 4.2), we have µn

l → µl in L2 norm for all
l < k. Hence,

〈u,µl〉= lim
n→∞

〈un, µ
n
l 〉= 0

for all l < k, which means that u⊥ Vk−1 and

lim inf
n→∞

F k
e,n(un) = lim inf

n→∞
Fn(un)≤ σRF (u) = σRF

k
e (u).

Unnormalized case, limsup inequality: Supposing that F (u) < ∞, from Lemma
5.8 with v ≡ 0, we get a sequence {un} converging to u in L2 norm. Meanwhile, un

is smooth and supported in Ωδn . For k = 1, replacing un with un

‖un‖L2
and using the

same process in Lemma 5.8, we can prove the limsup inequality in the unnormalized
case. For k > 1, we consider a smooth approximation νnm for a basis µn

m of V n
k−1. ν

n
m

is also supported in Ωδn and ‖µn
m − νnm‖L2 → 0. Let

ũn = un −
k−1
∑

m=1

αn
mνnm, where αn :=







αn
1
...

αn
k−1






=G−1

n bn,

Gn =







〈µn
1 , ν

n
1 〉 . . . 〈µn

1 , ν
n
k−1〉

...
. . .

...

〈µn
k−1, ν

n
1 〉 . . . 〈µn

k−1, ν
n
k−1〉






, bn =







〈µn
1 , un〉
...

〈µn
k−1, un〉







and 〈u, v〉=
∫

Ω
uvdx is the inner product of L2(Ω). Gn is invertible for large enough

n because Gn → I as n→∞. It can be verified that with such modification, ũn is still
smooth, is supported in Ωδn , and becomes perpendicular to V n

k−1. Furthermore, with
the induction assumption, bn → 0 as n → ∞ so the L2 convergence is also retained.
Finally, by replacing ũn with ũn

‖ũn‖L2
the conclusion can be proved in the same way

as in Lemma 5.8.
Normalized case: The proof in the normalized case is similar to the one in the

unnormalized case with the fact that

lim
n→∞

|〈u, vn〉n − 〈u, v〉|= 0

for all u ∈ L2(Ω) and vn → v in the L2 norm. Actually, by extending the domain of
v, vn, and u to R

d with zero-value outside Ω, with Lemma 5.1,
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|〈u, vn〉n − 〈u, v〉|

=

∣

∣

∣

∣

∫

Ω

∫

Ω

Wδn(|x− y|)u(x)vn(y)dxdy−

∫

Ω

u(x)v(x)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rd

∫

Rd

Wδn(|x− y|)u(x)vn(y)dxdy−

∫

Rd

u(x)v(x)dx

∣

∣

∣

∣

≤

∫

Rd

∫

Rd

Wδn(|x− y|)|v(x)− vn(y)|dy|u(x)|dx

≤

∥

∥

∥

∥

∫

Ω

Wδn(|x− y|)|v(x)− vn(y)|dy

∥

∥

∥

∥

L2(Rd)

‖u‖L2(Rd) → 0, as n→∞.

The proof is complete.

5.3. Nonlocal model with general boudary term. The proof of Theorem
2.1 allows us to extract the requirements for the boundary terms in the nonlocal model.
To fulfill the liminf inequality, we need {ũn} to satisfy the conditions of Lemma 5.3.
Among them, the part involved in the boundary term is that ‖ũn‖L2(∂Ω) should tend
to 0 as n→∞. This is the reason why we require the coercivity presented in Theorem
2.3. Regarding the limsup inequality, the construction in Lemma 5.8 can be employed
to maintain the boundary term at 0 as long as the kernel has a gradually shrinking
compact support.

Proof of Theorem 2.3. The liminf inequality. From Lemma 5.2, we only need to
demonstrate that Tu≡ 0 on ∂Ω with un → u in L2 norm and

lim inf
n→∞

Fn(un)<∞.

The coercivity of boundary term E(u,0) derives that there exists a kernel K satisfying
(K1)–(K3) such that

lim
n→∞

‖ũn‖L2(∂Ω) = 0

up to a subsequence. ũn → u in L2 norm with Lemma 5.1. And Lemma 5.4 gives
the uniform boundedness of ‖ũn‖H1(Ω). Therefore, using Lemma 5.3, the proof of the
liminf inequality is completed.

The limsup inequality. With a method similar to that in Lemma 5.8, we can
suppose F (u) < ∞ and select {un} as a sequence of C∞ approximations converging
to u with respect to H1 norm. Moreover, we require un ≡ 0 in Ωc

cn , where Ωcn :=
{x∈Ω

∣

∣dist(x,Ωc)≥ cn}. Such a property of {un} leads to the vanishing of boundary
term En(u,0) because the intersection of the support sets of the kernel ρδn,x and un

is empty. As for the first term, using Lemma 5.7, we have

1

δ2n

∫

Ω

∫

Ω

Rδn(|x− y|)|un(x)− un(y)|
2dxdy≤ σR‖∇un(z)‖

2
L2(Ω)

for all n. Hence,

limsup
n→∞

Fn(un)

= limsup
n→∞

1

δ2n

∫

Ω

∫

Ω

Rδn(|x− y|)|un(x)− un(y)|
2dxdy

≤ limsup
n→∞

σR‖∇un‖
2
L2(Ω) = σR‖∇u‖2L2(Ω) = F (u).
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The construction in Theorem 2.1 is not the only one that fulfills our sufficient
conditions. Another example is, as we have mentioned in Remark 2.5, selecting
ρδn,x(y, z) = 1

δ2n
Kδn(|x − y|)δ(|x − y|). In this case, our nonlocal functional is for-

mulated as

Fn(u) =
1

δ2n

∫

Ω

∫

Ω

Rδn(|x− y|)|u(x)− u(y)|2dxdy

+
1

δ2n

∫

∂Ω

∫

Ω

Kδn(|x− y|)u(y)2dydx,
(5.5)

and we have the following corollary due to Theorem 2.3.

Corollary 5.9. Suppose that Ω is a Lipschitz bounded domain in R
d. R is a

kernel satisfying (K1)–(K3). K is a nonnegative compactly supported kernel with a
uniform positive lower bound in a neighborhood of the origin. Then, we have

Fn
Γ

−→ σRF in L2(Ω),

where Fn, F are defined as in (5.5), (2.6).

Proof. ρδn,x has a shrinking compact support since

ρδn,x(y, z) =
1

δ2n
Kδn(|x− y|)δ(|y− z|)

and the kernel K is compactly supported.
Note that K is nonnegative and there exist constants c1, c2 > 0 such that K(s)<

c1 for all s∈ [0, c2]. Define a new kernel K̂ : [0,∞)→ [0,∞),

K̂(s) :=

{ c1

c22
(s− c2)

2 if s≤ c2,

0 if s > c2.

It can be easily verified that K̂ satisfies (K1)–(K3) and K(s) ≥ K̂(s) for all s ≥ 0.
Hence, with K̂δ being the rescaled kernel defined by K̂, we have

En(u,0) =
1

δ2n

∫

∂Ω

∫

Ω

Kδn(|x− y|)u(y)2dydx

≥
1

δ2n

∫

∂Ω

∫

Ω

K̂δn(|x− y|)u(y)2dydx

≥
C

δ2n

∫

∂Ω

∫

Ω

K̂δn(|x− y|)dy

∫

Ω

K̂δn(|x− y|)u(y)2dydx

≥
C

δ2n

∫

∂Ω

(∫

Ω

K̂δn(|x− y|)u(y)dy

)2

dx,

which means that the functional En associated with ρδn,x is coercive as defined in

Theorem 2.3 for Cn =
δ2n
C and

ũn =
1

wδn(x)

∫

Ω

K̂δn(|x− y|)u(y)dy.

Therefore, with Theorem 2.3, {Fn} Γ -converges to F .
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6. Compactness. In this section, we demonstrate that any minimizing sequence
of the nonlocal functionals {Fn} defined as in (2.3) or (2.10), where {F k

e,n} is defined as

in (2.7) and {F̃ k
e,n} is defined as in (2.9), is relatively compact in Lp(Ω). In the litera-

ture, such kinds of compactness results have been studied for nonlocal functions using
the techniques developed in [5, 30]. For smooth kernels, one can also directly work the
compactness of the mollified sequences; see, for example, [32]. In our case, this corre-
sponds to the use of mollification given by (2.13). Note that if {un} is a minimizing
sequence of {Fn}, then supn{Fn(un)}<∞. Hence it is sufficient to show that {un} is
relatively compact if one of the following three conditions holds: supn{Fn(un)}<∞,
supn{F

k
e,n(un)} < ∞, and supn{F̃

k
e,n(un)} < ∞. Recall that F k

e,n and F̃ k
e,n are Fn

with additional constraints added, which means that F k
e,n(u), F̃

k
e,n(u)≥ Fn(u) for all

u∈L2(Ω). As for Fn, the relative compactness can be derived mainly by the interior
term of the nonlocal functional defined as follows:

F i
n =

1

δn

(∫

Ω

∫

Ω

Rδn(|x− y|)|u(x)− u(y)|pdxdy

)
1

p

.(6.1)

Lemma 6.1. Suppose that Ω is a Lipschitz bounded domain in R
d. 1< p<∞. R

is a kernel satisfying (K1)–(K3). {δn} is a sequence of positive constants tending to
0 as n→∞. {un} is a bounded sequence in Lp(Ω) and satisfies

sup
n

F i
n(un)<∞,

where F i
n is defined as in (6.1). Then {un} is a relatively compact sequence in Lp(Ω).

Proof. Recalling ũn defined as in (2.13), we have shown that ‖ũn −un‖Lp(Ω) → 0
as n→∞ in Lemma 5.1. Hence, {ũn} is also bounded in Lp(Ω). With the condition
supnF

i
n(un) < ∞ and Lemma 5.4, {ũn} is actually bounded in W 1,p(Ω). Hence,

{ũn} is relatively compact in Lp(Ω) due to the Rellich–Kondrachov theorem (see, for
example, Theorem 6.3 in [1]). So is {un}, because {ũn} and {un} are asymptotically
approximated in Lp(Ω).

Note that {un} is required to be bounded in Lemma 6.1. We claim that this
requirement can be deduced by the boundedness of {Fn(un)} and no additional as-
sumptions are needed. Recall the Poincaré inequality (see, for example, section 5.8.1
of [17]). Let Ω be a Lipschitz bounded domain in R

d, 1≤ p≤∞. Then there exists a
constant C, depending only on d, p, and Ω, such that

‖u− (u)Ω‖Lp(Ω) ≤C‖∇u‖Lp(Ω)(6.2)

for each function u∈W 1,p(Ω) and (u)Ω := 1
|Ω|

∫

Ω
udx is the average of u over Ω. In the

nonlocal model Fn defined as in (2.3), the interior term and the boundary term can
be considered as the approximation of ‖∇u‖Lp(Ω) and ‖u‖pLp(∂Ω), respectively. Hence,
with the aid of the Poincaré inequality, we can establish its nonlocal counterpart as
the following lemma.

Lemma 6.2. Suppose that Ω is a Lipschitz bounded domain in R
d. 1 < p < ∞.

K,R are two kernel functions satisfying (K1)–(K3). {δn} is a sequence of posi-
tive constants tending to 0 as n → ∞. {un} ⊂ Lp(Ω) is a sequence satisfying
supnFn(un)<∞, where Fn is defined as in (2.3). Then

sup
n
‖un‖Lp(Ω) <∞.
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Proof. Define

ũn(x) :=
1

ωδn(x)

∫

Ω

K̂δn(|x− y|)un(y)dy, and ωδn(x) :=

∫

Ω

K̂δn(|x− y|)dy.

With Lemma 5.4 and the condition that supnFn(un)<∞, we have supn‖∇ũn‖Lp(Ω)

<∞ and supn‖ũn‖Lp(∂Ω) <∞. By the classical Poincaré inequality, there is a constant
C1(p, d,Ω)> 0 such that

‖u‖Lp(Ω) ≤C1(p, d,Ω)(‖∇u‖Lp(Ω) + ‖u‖Lp(∂Ω)), ∀u∈W 1,p(Ω).

So supn‖ũn‖Lp(Ω) < ∞. Meanwhile, as n → ∞, we have ‖ũn − un‖Lp(Ω) → 0 by the
proof of Lemma 5.1. Hence, we have the desired uniform bound of {‖un‖Lp(Ω)}.

For Fn defined as in (2.10), we can obtain the boundedness of {un} with the same
method in Lemma 6.2 under the coercivity assumption. With the compactness result
above, Theorems 2.6 to 2.8 can be demonstrated with the Γ -convergence Theorems
2.1 to 2.3 and its property Lemma 4.2.

7. Conclusion. In this paper, we propose a penalty formulation for some vari-
ational nonlocal Dirichlet problems. Sufficient conditions for the boundary terms of
these models to ensure Γ -convergence are presented. Based on this work, there are
several aspects for future research. First, the coercivity proposed in Theorem 2.3 may
be difficult to verify in certain situations. Alternative conditions that are more intu-
itive, albeit stronger, may be explored. The conditions studied in this work are only
sufficient, and it would be valuable to investigate necessary conditions as well. Fur-
thermore, it is also worthy of consideration to extend the study here to models such
as biharmonic equations, Stokes systems, and other linear and nonlinear equations of
broad interest.
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