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Abstract—Major solar flares are abrupt surges in the Sun’s
magnetic flux, presenting significant risks to technological infras-
tructure. In view of this, effectively predicting major flares from
solar active region magnetic field data through machine learning
methods becomes highly important in space weather research.
Magnetic field data can be represented in multivariate time series
modality where the data displays an extreme class imbalance due
to the rarity of major flare events. In time series classification-
based flare prediction, the use of contrastive representation
learning methods has been relatively limited. In this paper, we
introduce CONTREX, a novel contrastive representation learning
approach for multivariate time series data, addressing challenges
of temporal dependencies and extreme class imbalance. Our
method involves extracting dynamic features from the multivari-
ate time series instances, deriving two extremes from positive and
negative class feature vectors that provide maximum separation
capability, and training a sequence representation embedding
module with the original multivariate time series data guided by
our novel contrastive reconstruction loss to generate embeddings
aligned with the extreme points. These embeddings capture
essential time series characteristics and enhance discriminative
power. Our approach shows promising solar flare prediction
results on the Space Weather Analytics for Solar Flares (SWAN-
SF) multivariate time series benchmark dataset against baseline
methods.

Index Terms—time series representation learning, contrastive
representation learning, multivariate time series analysis, solar
flare prediction, deep learning

I. INTRODUCTION

In the domain of solar activity, a solar flare appears as a

sudden surge in magnetic flux, originating from the Sun’s

surface and extending into the solar corona and heliosphere.

Classified logarithmically based on the peak soft X-ray flux in

the 1–8 Å wavelength range, flares are denoted by categories

A, B, C, M, and X where M and X classes suggest intense flare

activity [1]. Such solar phenomena may emit gamma-ray, x-

ray, and extreme ultraviolet radiation, posing radiation-induced

risks to astronauts, technological infrastructure, electronic de-

vices, navigation, and communication systems [2]. The 1859

Carrington Event demonstrates the potential magnitude of

a solar superstorm’s impact, with a recurrence potentially

causing prolonged blackouts and massive economic losses in

our technology-dependent society [3]. Consequently, the helio-

physics community underscores the importance of meticulous

data analysis and the exploration of diverse methods for robust

predictions of major flares from solar active region magnetic

fields and flare data.

In 2020, the Space Weather Analytics for Solar Flares

(SWAN-SF) dataset [3] was introduced as a pivotal resource in

solar flare research. Derived from Space-weather HMI Active

Region Patch (SHARP) solar photospheric vector magne-

tograms, SWAN-SF includes multivariate time series (MVTS)

data from May 2010 to December 2018. It features 24 flare-

predictive magnetic field parameters and over 10,000 flare

reports, reformulating solar flare prediction as an MVTS clas-

sification task. Recent models built upon SWAN-SF MVTS

data have shown enhanced efficacy in classifying flaring activ-

ities compared to earlier single timestamp models [3]. Due to

major flares occurring rarely, the extreme class imbalance is a

remarkable challenge in SWAN-SF. Accordingly, an effective

learning methodology is representation learning, the process

of learning meaningful fixed-dimension embeddings as data

representations from the raw input data domain that keep their

inherent features and have better transferability in downstream

tasks. However, in the time series domain and particularly in

solar flare tasks, the use of contrastive representation learning

methods has been relatively limited. In contrastive methods,

positive samples are contrasted with negative samples such that

similar examples are mapped closer in the new feature space

while the distance between dissimilar examples is maximized.

Contrastive learning methods have been widely adopted in

various domains for their soaring performance in representa-

tion learning, including vision, language, and graph-structured

data [4]. Consequently, it becomes imperative to explore the

impact of using contrastive approaches with the ultimate goal

of enhancing flare prediction performance.

In this paper, we introduce CONTREX, a novel contrastive

representation learning approach designed specifically for ex-

tremely imbalanced time series characteristics of data points.

Our method consists of four main parts: first, we extract

features from MVTS instances that capture their essential

dynamical properties. Next, we derive two contrastive repre-

sentations from the feature vectors of positive and negative

instances that provide maximum separation capability. Then,

we train a sequence representation embedding module with

the original MVTS instances to generate embeddings that

encapsulate time series characteristics, guided by our cus-
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tom contrastive reconstruction loss. Finally, based on these

embeddings, we employ a downstream classifier for binary

classification. This comprehensive method enables effective

representation learning and classification in time series analy-

sis tasks. The contributions made by this paper are listed as:

• Introducing a novel contrastive learning framework tailored

specifically for time series data that can be applied to

both univariate and multivariate settings to address the

challenges posed by temporal dependencies and extreme

class imbalance.

• Defining a custom contrastive reconstruction loss during

training of the sequence representation embedding module

to guide the embeddings towards the positive and negative

extremes, enhancing the discriminative power of the learned

representations.

• Experimentally demonstrating the effectiveness of the pro-

posed method regarding a performance metric evaluation

reflecting the nature of the benchmark dataset.

II. RELATED WORKS

A. Solar Flare Prediction

One of the earliest endeavors in solar flare prediction history

was THEO, an expert system that relied on human entries,

officially used by The Space Environment Center (SEC) of the

National Oceanic and Atmospheric Administration (NOAA)

in 1987 [5]. Subsequently, as space-based and ground-based

observatories amassed a wealth of magnetic field data, flare

prediction transitioned into a data science task with models

emerging based on line-of-sight and vector magnetograms,

delineating solar active region photospheric magnetic field

parameters. Since 2010, NASA’s Solar Dynamics Observatory

(SDO) has been continuously mapping the full-disk vector

magnetic field every 12 minutes through the Helioseismic and

Magnetic Imager (HMI) instrument, leading to reliance on

this continuous vector magnetogram data in current literature

[6]. Nonlinear statistical models, particularly machine learning

classifiers have gained prominence in solar flare prediction

such as logistic regression [7], C4.5 decision tree [8], fully

connected neural network [9], support vector machine [10],

and relevance vector machine [11]. The introduction of tem-

poral window-based flare prediction [3] led to the creation of

the SWAN-SF dataset [12], which records magnetic field data

over time. Following SWAN-SF, various MVTS classification

methods emerged, including kNN training with statistical

summarization [13], MVTS decision trees with clustering [14],

LSTM-based sequence modeling [15], and functional network

embedding [16]. These advancements signify a shift from

traditional linear models to sophisticated machine learning

techniques in predicting solar flare activities.

B. Time Series Contrastive Representation Learning

In contrastive representation learning, unlike learning a

mapping to labels as in discriminative models or reconstructing

input samples as in generative models, data representations are

learned through comparison between data points in the input

space by mapping similar data points close while increasing

the distance between dissimilar data points in the embedding

space [4]. Although contrastive learning methods are less

explored in the time series domain than vision, language,

and graph domains, there is growing interest. Accordingly,

sampling positive and negative instances and time pieces from

the anchor to learn inter-sample and intra-temporal relations

[17], temporal and contextual contrasting by creating two

views for each sample with strong and weak augmentations

[18], introducing fidelity and variety criteria, and creating a

meta-learner for selecting feasible data augmentations [19],

improving representation quality by instance-wise and tempo-

ral contrastive loss with soft assignments [20], employing a

siamese structure and convolutional encoder to learn repre-

sentations without negative pairs [21] were such works that

highlight the potential of contrastive learning in enhancing

time series representation learning.

III. METHODOLOGY

A. Extracting Dynamical Time Series Features

To capture the dynamical properties of time series, catch22

feature extraction method [22] is selected. The 22 features

obtained by catch22 method give a low dimensional summary

to represent the diverse and interpretable characteristics of

time series including linear and non-linear autocorrelation,

successive differences, value distributions and outliers, and

fluctuation scaling properties. The catch22 method has shown

highly discriminative and low redundancy feature representa-

tion power for various benchmark time series datasets [23]. In

our approach, we extract catch22 features for each univariate

time series in MVTS instances. Accordingly, for each MVTS

data instance M (k) ∈ R
τ×N having N parameters as univariate

time series with a length of τ , we extract a fixed-dimensional

multi-catch22 vector V (k) ∈ R
D where D, the length of fixed-

dimensional multi-catch22 vector, is equal to 22N .

B. Obtaining Contrastive Extremes

After obtaining K fixed-dimensional multi-catch22 vectors

V (k) ∈ R
D, K being total number of MVTS instances, the

second step in our proposed method is to obtain two extreme

points as overarching representations for positive and negative

classes to enhance the contrastive power, effectively drawing

positive data points closer to the positive extreme and negative

data points closer to the negative extreme. Positive and nega-

tive extremes EP ∈ R
D and EN ∈ R

D are selected as multi-

catch22 vectors that yield the complete linkage, representing

the data points that yield the greatest distance between clusters:

D(P,N) = max
VP∈P,VN∈N

d(VP , VN ) (1)

In (1), D(P,N) is the distance between clusters of positive

and negative classes, and d(VP , VN ) is the Euclidian distance

between positive multi-catch22 vector VP ∈ R
D and negative

multi-catch22 vector VN ∈ R
D.
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C. Framework

CONTREX is composed of two modules integrated in

an end-to-end manner. The initial module derives fixed-

dimensional embeddings from MVTS data points, while the

subsequent module leverages these embeddings to execute the

binary classification task. Fig. 1 provides an overview of our

architecture.

1) Obtaining Representation Embeddings: In the sequence

representation embedding module, the sequence modeling of

MVTS data points is done via a long short-term memory

(LSTM) layer where each MVTS instance M (k) ∈ R
τ×N

is regarded as total τ timestamp vectors x<t> ∈ R
N ,

which are sequentially processed by the LSTM cells. The

input size corresponds to N parameters, and the final hid-

den state representation h<τ> outputs an internal embedding

vector. Subsequently, this vector undergoes projection to a

D-dimensional vector, mirroring the size of multi-catch22

vectors, facilitated by a multilayer perceptron (MLP) layer.

Our network incorporates a single dropout layer to enhance

robustness. After the training is complete, for the kth MVTS

instance, the embedding vector X
(k)
label ∈ R

D can be extracted

from the last layer.

2) Loss Function: Here, we propose a novel loss function,

the contrastive reconstruction loss to guide the training of our

sequence representation embedding module such that it will

learn similar representations to the extremes in a supervised

setting. Accordingly, for a positive class MVTS instance

X
(k)
P ∈ R

D, the mean squared error (MSE) loss is calculated

against the positive extreme EP ∈ R
D whereas for a negative

class MVTS instance X
(k)
N ∈ R

D, the MSE loss is calculated

against the negative extreme EN ∈ R
D. This approach is

designed to facilitate the contrastive learning of MVTS data

points such that similar points that belong to the same class

will be projected closer around their corresponding extreme

points in the new representation space while data points that

belong to different classes will be projected further apart.

This personalized approach ensures that our embeddings are

finely tuned to capture the distinctions between different class

instances, facilitating accurate classification. In the end, |P |
and |N | being the number of positive and negative class

instances respectively, the final objective is to minimize this

combined loss of:

LExtreme =
1

|P |

|P |∑

k=1

D∑

i=1

(X
(k)
P [i]− EP [i])

2

+
1

|N |

|N |∑

k=1

D∑

i=1

(X
(k)
N [i]− EN [i])2

(2)

3) Binary Classification of Representation Embeddings: In

the second component of our framework, we use extracted

representation embedding vectors X
(k)
label ∈ R

D as input

instances to train a downstream classifier to provide a final

binary class prediction.

IV. EXPERIMENTAL EVALUATION

We present our experimental findings here. The source code

for our model and experiments is on our GitHub repository. 1

A. Benchmark Dataset

SWAN-SF was introduced as an MVTS dataset to facilitate

unbiased flare forecasting, and drive advancements in solar

flare prediction [3], [24], [25]. The data points in SWAN-SF

are categorized into five distinct classes representing varying

flare intensities. In binary solar flare prediction, we consider

positive (P) examples as major flares responsible for health

risks and infrastructural damages (i.e., M and X classes)

and negative (N) examples as minor flares (i.e., B and C

classes) and flare quiet events (i.e., FQ class) [13]. In SWAN-

SF, a significant class imbalance exists due to the rarity of

major flare events, with N examples greatly outnumbering P

examples. This imbalance often results in a bias towards the

majority class, yielding high true negative and low true positive

rates, complicating the objective of accurately detecting solar

flares [1]. Each data instance in the SWAN-SF dataset is

an MVTS slice M (k) ∈ R
τ×N representing a collection of

univariate time series of 1-hour length τ , each having 24

magnetic field parameters [10] as N , extracted using a sliding

window approach. Each time slice is labeled according to the

most intense flare that occurs within the prediction window.

The data is divided into five partitions (i.e., p1, p2, ..., p5), each

covering a different observation period [3]. The distribution

of classes is illustrated in detail in Fig. 2, underscoring

the challenge posed to the primary objective of accurately

detecting solar flares in flare-forecasting research.

B. Performance Evaluation Metrics

Due to the substantial P and N class imbalance in SWAN-

SF, accuracy alone, which reports the number of correct

predictions without going into class specifics, is inadequate.

Therefore, we use several additional metrics that are com-

monly used in previous works of solar flare research for

assessing binary solar flare classification: F1 score, receiver

operating characteristic area under the curve (ROC AUC) that

measures the classifier’s ability to distinguish between classes,

Heidke Skill Score 2 (HSS2) that evaluates improvement over

random predictions, Gilbert Skill Score (GS) that assesses

the likelihood of obtaining true positives by chance, and

True Skill Statistic (TSS) [6], [10], [13], [26]. Among these,

TSS is particularly robust against class imbalance, expressing

the difference between true positive and false positive rates

ranging from -1 (all incorrect predictions) to 1 (all correct

predictions), with 0 indicating random predictions. TSS is

recommended as the primary measure for evaluating solar

flare prediction models [10]. The evaluation of classification

results, involving true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN), can be expressed as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

1https://github.com/OnurVural/contrex
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Fig. 1: CONTREX is composed of (1) a sequence representation embedding module to derive fixed-dimensional embeddings from MVTS
data points, and (2) a downstream classifier that utilizes the representation embeddings for binary prediction.

Fig. 2: Flare class distribution of each division in stacked bar plot
format. For each partition, the count of five flare classes is shown in
the plot.

F1 =
TP

TP + 1
2 (FP + FN)

(4)

HSS2 = 2×[(TP×TN)−(FN×FP )]
[(TP+FN)×(FN+TN)]+[(TN+FP )×(TP+FP )] (5)

GS =
TP − C

TP + FP + FN − C
(6)

where C =
(TP + FP )× (TP + FN)

P +N
(7)

TSS =
TP

TP + FN
−

FP

TN + FP
(8)

C. Preprocessing and Training Settings

For preprocessing the MVTS instances of SWAN-SF, we

performed KNN imputation [27] to fill the missing values fol-

lowed by instancewise normalization of data points across in-

dividual time series features. For training and testing purposes,

consequent SWAN-SF partitions are used respectively (e.g.,

p1 for obtaining the extremes and training our framework,

p2 for testing). Our framework is trained with the following

hyperparameter settings: LSTM with input dimension 24 (N

as # time series in MVTS) and hidden state dimension 128,

dropout probability: 0.5, MLP with input size 128 and output

size 528 (D-dimension), # training epochs: 20, Adam learning

rate: 10−2 from the search space of [10−1, 10−2, 10−3, 10−4].

D. Study of Components in CONTREX

We conducted several experiments to evaluate the effects

of different components within the CONTREX framework.

First, LSTM-based sequence modeling of MVTS data points

was compared with other deep learning sequence models,

namely recurrent neural network (RNN) and gated recurrent

unit (GRU). This experiment also varied the hidden space

dimensions to assess their impact on model underfitting or

overfitting. Fig. 3 shows that the preferred model LSTM

exhibits the best average performance in three consecutive

partitions as train-test pairs (i.e., p1-p2, p2-p3, and p3-p4)

under varying dimensionality in hidden space. Following that,

the downstream classifier is selected as logistic regression

showing the best average performance in the same three

consecutive partitions as train-test pairs as reflected in Table

I after experimenting with support vector machine (SVM),

k-neighbors classifier (KNC), decision tree (DT), multilayer

perception (MLP), and fully-connected network (FC).

E. Representation Embedding Analysis

To assess the extent of the contrastive abilities of our

embeddings in separating classes, t-SNE visualization [28] is

performed to map the extracted embeddings X
(k)
label ∈ R

D into

two-dimensional space. Fig. 4 gives insight into benchmark

dataset’s data distribution and suggests that our contrastive

learning model effectively separates P and N classes.

F. Baselines

To evaluate the performance of our proposed framework, we

use the following baselines from current solar flare research

where each method obtains a different data representation

out of MVTS instances. When a downstream classifier is

needed, we use logistic regression to be consistent with our

experiments.
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TABLE I: Binary Solar Flare Prediction Performance Results of CONTREX with Various Downstream Classifiers

Classifier Accuracy TSS HSS2 F1 GS ROC AUC

LR 0.7306 ±0.09662 0.7098 ±0.09779 0.1189 ±0.04965 0.1579 ±0.04766 0.02303 ±0.007004 0.8549 ±0.04889
SVM 0.6819 ±0.1344 0.6645 ±0.1362 0.1026 ±0.055 0.1428 ±0.051 0.02318 ±0.007065 0.8322 ±0.06812
KNC 0.7163 ±0.125 0.693 ±0.1248 0.1182 ±0.06089 0.1574 ±0.0564 0.02297 ±0.007 0.8465 ±0.06242
DT 0.7216 ±0.1354 0.6318 ±0.1176 0.1113 ±0.05374 0.1507 ±0.04774 0.02068 ±0.006054 0.8159 ±0.05879
MLP 0.6805 ± 0.08599 0.6671 ± 0.09098 0.09438 ±0.03769 0.1348 ±0.03946 0.02322 ±0.006865 0.8336 ±0.04549
FC 0.6824 ±0.09883 0.6662 ±0.1018 0.09238 ±0.02994 0.1331 ±0.02902 0.0232 ±0.007036 0.8331 ±0.0509

32 64 96 128
Hidden State Dimension

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

TS
S

RNN
GRU
LSTM

Fig. 3: Averaged TSS results of RNN, GRU, and LSTM within the
CONTREX framework for binary solar flare prediction with varying
hidden dimensions.

Fig. 4: t-SNE visualization of partition 3 and partition 4 train-test
pair embeddings.

• Vector MVTS (VMVTS): Flattens each MVTS instance to

train a downstream classifier [13].

• Vector of last timestamp (LTV): Extracts magnetic field

parameters from only the last timestamp of the MVTS being

temporally nearest to the flaring event to train a downstream

classifier [10].

• Long-short term memory (LSTM): MVTS instances are

fed into LSTM as a timestamp vector at each time step, and

the last hidden representation is extracted as the represen-

tation [15]. We maintain the same hyperparameter settings:

a hidden state dimension of 128, and a stochastic learning

rate of 10−2.

• Random convolutional kernel transform (ROCKET):

Leverages the strengths of convolutional neural networks

for time series classification by using randomly generated

convolutional kernels, achieving state-of-the-art accuracy on

26 MVTS datasets of the UEA archive [23], [29].
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Fig. 5: Binary solar flare classification performance of baselines.

G. Binary Classification Performance

Following our experiments with three consecutive partitions

as train-test pairs (i.e., p1-p2, p2-p3, and p3-p4), the aver-

aged performance results are displayed in Table II and Fig.

5, demonstrating that the contrastive ability of CONTREX

manages to show promising performance. CONTREX emerges

as the top performer with 0.7306 accuracy, 0.7098 TSS and

0.8549 ROC AUC, outperforming LTV by 5.1%, 7.2% and

3.6%, respectively. However, with 0.1189 HSS2 and 0.1579

F1 score, CONTREX has the second position, lagging behind

the leading performer, LSTM, by 4.6% and 4.3%, respectively.

With 0.02303 GS, CONTREX shares the top position with

LTV, with only a marginal 0.011% difference between the two.

Overall, our experimental findings underscore CONTREX’s

competitiveness against state-of-the-art methods.

V. CONCLUSION

In this paper, a novel contrastive approach for time series

is introduced and evaluated by the task of binary solar flare

prediction of the SWAN-SF data instances. Our methodology

comprised extracting dynamic attributes from each MVTS

instance, computing contrastive extreme points from feature

vectors, obtaining sequence representation embeddings for

MVTS data instances guided by our custom reconstruction

loss that leveraged the idea of generating embeddings that

encapsulate the distinctive class characteristics, and training a

downstream classifier with embeddings to binary classify solar
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TABLE II: Binary Solar Flare Prediction Performance Results of Data Representation Methods

Model Accuracy TSS HSS2 F1 GS ROC AUC

VMTS 0.6243 ±0.4204 0.2358 ±0.3335 0.04592 ±0.06494 0.07575 ±0.06675 0.01507 ±0.01333 0.6179 ±0.1667
LTV 0.6589 ±0.1728 0.6378 ±0.1748 0.09523 ±0.05173 0.1361 ±0.04493 0.02314 ±0.007139 0.8189 ±0.08738
LSTM 0.6314 ±0.2914 0.5027 ±0.1967 0.1646 ±0.1766 0.2009 ±0.1626 0.02068 ±0.008318 0.7514 ±0.09834
ROCKET 0.6174 ±0.2688 0.2652 ±0.162 0.08639 ±0.07387 0.1174 ±0.06113 0.01416 ±0.01185 0.6326 ±0.08102
CONTREX 0.7306 ±0.09662 0.7098 ±0.09779 0.1189 ±0.04965 0.1579 ±0.04766 0.02303 ±0.007004 0.8549 ±0.04889

flares. In future studies, we aim to enhance the performance

of our framework. For this reason, bringing other elements

of triplet loss to our loss function as commonly utilized in

modern contrastive learning methods, experimenting with dif-

ferent sampling and extreme point calculation methodologies,

and applying feature reduction to the extreme points will be

possible study directions. Furthermore, a study is planned to

test the abilities of our framework in its current state with

different MVTS benchmark datasets having binary and multi-

class conditions. This experimentation will help to understand

whether utilizing the contrastive extremes can yield better

separation results for other time series settings.
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