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Abstract—Accurate solar flare prediction is crucial due to
the significant risks that intense solar flares pose to astronauts,
space equipment, and satellite communication systems. Our
research enhances solar flare prediction by utilizing advanced
data preprocessing and classification methods on a multivariate
time series-based dataset of photospheric magnetic field param-
eters. First, our study employs a novel preprocessing pipeline
that includes missing value imputation, normalization, balanced
sampling, near decision boundary sample removal, and feature
selection to significantly boost prediction accuracy. Second, we
integrate contrastive learning with a GRU regression model to
develop a novel classifier, termed ContReg, which employs dual
learning methodologies, thereby further enhancing prediction
performance. To validate the effectiveness of our preprocessing
pipeline, we compare and demonstrate the performance gain
of each step, and to demonstrate the efficacy of the ContReg
classifier, we compare its performance to that of sequence-
based deep learning architectures, machine learning models, and
findings from previous studies. Our results illustrate exceptional
True Skill Statistic (TSS) scores, surpassing previous methods and
highlighting the critical role of precise data preprocessing and
classifier development in time series-based solar flare prediction.

Index Terms—Time Series Analysis, Contrastive Learning,
Preprocessing, Data Augmentation, Solar Flare Prediction

I. INTRODUCTION

Solar flares pose a significant threat to humans and equip-

ment in space due to the intense radiation they emit [1]. These

flares can lead to rapid and significant surges in radiation

levels, encompassing extreme-ultraviolet, X-rays, and gamma-

rays across the electromagnetic spectrum. They are classified

logarithmically based on their peak soft X-ray flux, with

categories A, B, C, M, and X increasing in intensity, starting

from a flux of 10−8 W/m2. Consequently, the peak soft X-ray

flux of an X-class flare is typically ten times more intense than

that of an M-class flare and one hundred times more intense

than that of a C-class flare.

Recent studies on flare prediction have emphasized the use

of data science techniques, specifically utilizing spatiotemporal

magnetic field data from the Helioseismic Magnetic Imager

(HMI) [2]–[4] on the Solar Dynamics Observatory (SDO)

[5], [6]. This data is transformed into multivariate time series

(MVTS) instances to predict flares within specific temporal

windows [7]. Each instance includes 24 photospheric magnetic

field parameters represented as time series. These MVTS

instances are categorized into five classes: flare-quiet (FQ)

instances (including both flare-quiet and A-class) and flare

classes of increasing intensity (B, C, M, X). An essential

dataset for this research is the Space Weather Analytics for

Solar Flares (SWAN-SF) [7], which is created from solar

photospheric vector magnetograms by the Spaceweather HMI

Active Region Patch (SHARP) series [8].

Data collected to address real-world problems is seldom

clean or immediately usable, even with thorough screening

processes. Such datasets often come with challenges related to

the subject matter or the data collection method. These chal-

lenges, which include missing values, multi-scaled attributes,

class overlap, class imbalance, and irrelevant features [9], are

common in many nonlinear dynamical systems such as stream-

flow prediction [10], neuro-developmental disorder prediction

[11], and auditory attention detection [12]. These significant

challenges underscore the necessity of developing advanced

data preprocessing and machine learning-based approaches for

solar flare prediction.

Our research focuses on developing an innovative data

preprocessing pipeline and a novel classification method to

substantially improve the performance of solar flare classifi-

cation. Our contributions are as follows:

1) We introduce a multifaceted preprocessing pipeline to

address the challenges associated with the SWAN-SF

dataset. This pipeline includes several key stages: a

missing value imputation technique that combines next-

value and previous-value imputation, global z-score

normalization, and balanced sampling through SMOTE

[13] and random under sampling (RUS) to address

class imbalance. Additionally, a ‘near decision boundary

sample removal’ (NDBSR) [14] technique is employed

to eliminate border samples, thereby enhancing the clas-

sifier’s performance. Furthermore, using a GRU model,

we evaluate the impact of each photospheric magnetic

field parameter to underscore the importance of feature

selection. This multifaceted preprocessing substantially

improves the classification accuracy of solar flares.
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2) Moreover, we present a novel classification tech-

nique called ContReg (Contrastive and Regression-based

learning) to further enhance flare prediction. This tech-

nique integrates two types of learning: a GRU-based

contrastive learning network [15] with triplet loss and

a GRU-based regression network. Additionally, we in-

troduce a new integrated loss function, providing an

innovative approach to classifying solar flares. This

method utilizes both the flare category (binary) and

the peak soft X-ray flux for classification, resulting in

superior performance.

The paper further discusses related work in Section II,

followed by an explanation of the methodologies in Section

III. It then presents the experiments and results in Section IV,

and finally concludes the paper in Section V.

II. RELATED WORK

Previous studies on solar flare prediction have focused

on the development and optimization of machine learning

algorithms to enhance prediction accuracy [16], [17]. Among

methods based on photospheric vector magnetograms, the

study by Bobra and Couvidat (2015) [18] utilized preflare

instantaneous values of active region magnetic field parameters

to predict solar flares using a support vector machine (SVM)

classifier. The paper by Hamdi et al. (2017) [19] proposed a

flare prediction technique by extracting time series samples

of active region parameters and applying k-Nearest Neighbors

(k-NN) classification on the univariate time series. The study

by Ahmadzadeh et al. (2021) [6] tackled specific challenges in

solar flare forecasting, such as class imbalance and temporal

coherence, discussing strategies such as under-sampling and

over-sampling to manage class imbalance in the SWAN-SF

dataset and highlighting the importance of proper data splitting

and validation techniques to ensure model robustness against

temporal coherence. The study by Muzaheed et al. (2021) [20]

employed Long Short-Term Memory (LSTM) networks for

effective end-to-end classification of MVTS in solar flare pre-

diction, outperforming traditional models and demonstrating

the potential of deep learning. Similarly, the study by Hamdi

et al. (2022) [21] developed a novel approach combining

Graph Convolutional Networks (GCNs) with LSTM networks,

effectively capturing both spatial and temporal relationships in

solar flare prediction and surpassing other baseline methods.

The paper by Alshammari et al. (2022) [22] addressed the fore-

casting of magnetic field parameters related to flaring events

using a deep sequence-to-sequence learning model with batch

normalization and LSTM networks. In our recent study [23],

we presented a novel preprocessing pipeline that leverages

advanced techniques such as FPCKNN imputation, LSBZM

normalization [24], and a multi-stage sampling approach. This

effort resulted in a fully preprocessed version of the SWAN-SF

dataset, which is now publicly available [25]. By providing this

preprocessed version, we aimed to streamline future research

on solar flare prediction, enabling researchers to bypass the

time-consuming preprocessing stage and focus directly on

model development and analysis.
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Fig. 1. The figure presents a stacked bar chart illustrating the distribution
of different solar flare classes within each partition of the SWAN-SF dataset.
This visualization is based on the current methodology of time series slicing
used in SWAN-SF, which involves steps of 1 hour, an observation period
of 12 hours, and a prediction span of 24 hours. Each slice of the MVTS is
categorized according to the most intense flare reported within its prediction
window.

While previous studies have each focused on specific as-

pects of preprocessing, in this paper, we present a simplistic

yet comprehensive and novel data preprocessing pipeline with

multiple stages designed to address all preprocessing chal-

lenges of the SWAN-SF dataset. Additionally, we introduce

an advanced method for classifying solar flares by utilizing

both the binary labels of flares and their peak soft X-ray flux.

III. METHODOLOGY

Fig. 1 illustrates the class distribution within partitions of the

SWAN-SF dataset. Each MVTS record in SWAN-SF includes

24 time series of magnetic field parameters from an active

region (AR), captured at 12-minute intervals over 12 hours,

resulting in 60 time steps. Our research concentrates on a

binary classification task using this MVTS data to distinguish

between major-flaring (X and M classes) and minor-flaring (C,

B, and FQ classes) ARs. Initially, we discuss the preprocessing

stages that we have implemented and subsequently provide a

detailed explanation of the ContReg classifier.

A. Preprocessing Pipeline

Despite the SWAN-SF dataset presenting numerous data

quality challenges [6], we thoroughly investigate these is-

sues to preprocess the dataset effectively and achieve high

classification performance, as indicated by TSS (True Skill

Statistic) score. The TSS is a metric used to evaluate imbal-

anced binary classification models, defined as the difference

between recall and the false positive rate. Our preprocessing

methodology comprises several steps designed to address these

issues sequentially, enhancing the TSS score with each step.

The following sections outline these steps in detail.

1) Imputation: In the case of SWAN-SF, there are two

types of missing values. In some instances, only certain

timestamps are missing, while in others, entire timestamps for

a feature are missing. Specifically, the occurrence of missing

entire timestamps primarily affects FQ class samples. Given

the substantial number of FQ class samples in each partition,

we exclude them from the dataset. However, when only

some timestamps are missing, imputation becomes essential,
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Fig. 2. The figure demonstrates the different stages of our preprocessing
pipeline for training and testing sets. Panel A showcases the training sets,
while Panel B showcases the testing sets. No sampling methodologies are
applied to the testing sets to avoid biased results.

particularly for important classes such as X-class samples,

where the number of samples is limited, necessitating their

retention. To impute these samples, we employ a combination

of next-value and previous-value imputation. Initially, we

aim to impute a missing timestamp with the next available

one. If no subsequent timestamp is available, we use the

previous available timestamp. Next-value and previous-value

imputation maintain the temporal consistency of the data,

preserving inherent patterns and trends [26]. These methods

are particularly suitable for time series data, where the missing

values are likely similar to their neighboring values.

2) Normalization: Normalization ensures that each at-

tribute of a dataset equally influences the prediction, thereby

enhancing the accuracy and efficiency of the models [6]. The

SWAN-SF dataset exhibits unique and heterogeneous ranges

for each attribute, necessitating the use of normalization. Z-

score normalization standardizes the values of a dataset so

that they have a mean of 0 and a standard deviation of 1.

We employ global Z-score normalization, which utilizes the

dataset’s overall statistics, adjusting based on the mean and

standard deviation values of each feature rather than each

sample individually. Therefore, for each feature, the time series

data from all samples are first concatenated. Subsequently, z-

score normalization is performed on the concatenated series.

The normalized values are then used in place of the original

values in the dataset.

3) Balanced Sampling: An imbalanced dataset, as shown

in Fig. 1, can substantially diminish the accuracy of a classi-

fication model by causing a bias towards the majority class,

thereby leading to frequent misclassification of the minority

class [27]. Consequently, the model’s ability to make accu-

rate predictions for minority class instances is significantly

hindered. To address this issue, it is essential to generate

additional synthetic samples for the underrepresented minority

class using over-sampling techniques. However, if the number

of majority class samples is disproportionately large, it is also

necessary to decrease their quantity through under-sampling

techniques. Failing to do so would require generating an

excessive amount of synthetic data for the minority class to

achieve balance, which could result in overfitting.

Majority class (C, B, and FQ)
50000 FQ samples
6000 B samples
5000 C samples

Balanced Over-sampling by SMOTEMinority class (X and M)
100 X samples
1000 M samples

Balanced RUS and NDBSR

Majority class (C, B, and FQ)
4000 FQ samples
0 B samples
0 C samples
4000 samples total

Minority class (X and M)
600 X samples
2500 M samples
3100 samples total

Balanced Sampling and NDBSR

Fig. 3. The figure illustrates the concept of Balanced Sampling, which
includes both Balanced Over-Sampling and Balanced Random Under Sam-
pling (RUS), along with the NDBSR strategy, a more sophisticated approach
to addressing class imbalance. In the provided example, representing an
approximation of the first partition from the SWAN-SF dataset, synthetic
samples are generated for subclasses X and M in a controlled manner. The
aim is to avoid generating an excessive number of synthetic samples, thereby
preventing them from dominating the original samples. At the same time, a
higher proportion of synthetic samples is generated for subclass X (500%)
compared to subclass M (150%) to ensure a balanced representation between
subclasses. Furthermore, in alignment with the NDBSR strategy, samples from
subclasses B and C are completely removed from the minor-flaring class
(comprising classes FQ, B, and C), while only a small portion of samples from
class FQ is retained and utilized. This approach ensures that the distribution of
the minor-flaring class (FQ) is aligned with that of the major-flaring samples
(X and M classes), thereby promoting a balanced representation across the
classes.

In the case of the SWAN-SF dataset, each class, including

major-flaring, contains subclasses, such as X and M flares,

which also exhibit imbalance. Therefore, we developed a

balanced sampling approach that employs over-sampling (via

SMOTE) and under-sampling (via RUS) techniques to ensure

balance not only between the major-flaring and minor-flaring

classes but also among the subclasses within each class.

Furthermore, it is important to note that even with advanced

deep learning-based data augmentation techniques, the quality

of the generated samples does not match that of real samples

[28]. Thus, we should avoid generating an excessive number

of synthetic samples compared to real ones, as this could

distort the model towards the synthetic data. Our balanced

sampling technique, therefore, ensures that a reasonable num-

ber of synthetic samples is generated, preventing them from

dominating the real samples. An example of our balanced

sampling technique can be seen in Fig. 3.

4) NDBSR: Methods such as NDBSR [14] can be em-

ployed to improve the model’s ability to distinguish between

overlapping classes. NDBSR involves identifying and remov-

ing data points situated too close to the decision bound-

ary. The SWAN-SF dataset presents significant challenges

for classification due to extensive overlap between classes.

This complexity arises from the dataset’s nature: flares are

categorized into five classes based on the intensity of peak

soft X-ray flux, resulting in samples near the class boundaries

being very similar to each other.

In the realm of solar flare prediction, accurately predicting

all major-flaring events (class X and M) is crucial due to

the severe consequences of missing an X-class flare [29].

Therefore, it is recommended to achieve a high recall even if it
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results in a low rate of false positives, rather than aiming for a

low recall with no false positives. To address the issue of class

overlap, we retain all samples from the major-flaring classes

(X and M) while removing all samples from the B and C

classes. Consequently, the minor-flaring class includes only FQ

class samples. This approach significantly reduces the overlap

between the major-flaring and minor-flaring classes, ensuring

a higher recall score for the major-flaring events. As a result,

this improvement in recall directly contributes to an enhanced

TSS score, reflecting better overall model performance and

more accurate flare classification.

5) Feature Selection: The SWAN-SF dataset consists of

24 photospheric magnetic field features, which have been

used collectively in most previous studies to classify solar

flares. However, according to the study by Alshammari et

al. (2024) [30], many of these 24 features not only fail to

contribute to the prediction and classification of flares but also

introduce noise and degrade the performance of the classifier.

Therefore, as shown in Table I, we select our own set of

features, consisting of only six out of the original 24 features.

To select these six features, we employ a GRU classifier,

providing each feature separately as input data to obtain its

TSS score in the binary classification of flares. We then

select the top features that achieve the highest TSS scores.

The features listed in Table I attain the highest individual

TSS scores, while the remaining features perform significantly

worse in comparison. This decision significantly improves the

TSS score of the preprocessing pipeline and also reduces the

training time considerably, as we use only 25 percent of the

original features.

B. ContReg Classifier

Previous research on predicting solar flares has largely

depended on using binary labels to classify flares into major-

flaring and minor-flaring categories [18]. However, this ap-

proach can be significantly enhanced by incorporating the peak

soft X-ray flux of each sample, as these provide a quantitative

measure of flare intensity. Accordingly, the ContReg classifier

incorporates both flares labels and X-ray flux intensity to im-

prove its predictive performance. This is conceptually similar

to how the AAD-GCQL model [12] combines GRU and CNN

architectures to leverage both spatial and temporal features in

EEG signals, improving the detection of auditory attention.

However, traditional sequence-to-sequence deep learning

models such as LSTM, GRU, and RNN often struggle to

distinguish between similar patterns in major- and minor-

flaring events, frequently failing to recognize subtle distinc-

tions, which leads to inadequate classification performance

[15]. Therefore, the ContReg utilizes contrastive learning to

map the input into a lower-dimensional space, where it learns

to differentiate between the two categories of flares (major-

and minor-flaring) by focusing on the subtle differences in

their features through the use of triplet loss.

1) Architecture: As shown in Fig. 4, ContReg consists of

three networks, with the first being a GRU-based contrastive

learning network. This network is designed to output data
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Fig. 4. The figure illustrates the architecture of ContReg, which employs
three individual networks and utilizes a combined loss function to train the
network and classify solar flare events. The three dots in the figure illustrate
the concept of a fully connected layer. The technique combines contrastive
learning with regression to create concise information that is fed into the final
fully connected neural network, along with the actual input, to achieve higher
classification performance.

in a lower-dimensional space, ensuring that the representa-

tions for the two categories of flares are sufficiently distinct.

This distinction facilitates the subsequent classifier’s ability to

accurately distinguish between these categories. Contrastive

learning is a technique that aims to minimize the distance

between similar data points while maximizing the distance

between dissimilar ones [15]. It uses a triplet loss function

to ensure that an anchor sample is closer to a positive sample

(same category) than to a negative sample (different category).

Second, ContReg includes a GRU-based regression network to

output the peak soft X-ray flux of the flare, providing the final

classifier with additional information. Third, it incorporates a

fully connected neural network as the final classifier where

the inputs are the outputs of the contrastive learning network,

the regression model, and the original input data. The output

of this network is the binary label of the flare. This approach

ensures that the final classifier benefits from both the distinct

feature representations learned through contrastive learning

and the quantitative flare intensity provided by the regression

model, resulting in a more robust flare classification.

2) Triplet and Total Loss: The triplet loss of our con-

trastive learning network (LTriplet) employs cosine similarity

to measure the differences between the anchor and positive

samples, as well as between the anchor and negative samples.

Cosine similarity measures the cosine of the angle between

two vectors, with values ranging from -1 to 1, where 1

indicates identical vectors and -1 indicates opposite vectors.

Specifically, the triplet loss function ensures that an anchor

sample is closer to a positive sample (same class) than to a
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TABLE I
SELECTED ACTIVE REGION MAGNETIC FIELD PARAMETERS IN SWAN-SF DATASET

Abbreviation Description Formula

ABSNJZH [31] Absolute value of the net current helicity Hcabs
∝ |

∑
Bz · Jz|

SAVNCPP [31] Sum of the modulus of the net current per polarity Jzsum
∝ |

∑
B

+
z JzdA|+ |

∑
B

−

z JzdA|

TOTBSQ [32] Total magnitude of Lorentz force F ∝
∑

B2

TOTPOT [31] Total photospheric magnetic free energy density ρtot ∝
∑

(BObs −B
Pot)2dA

TOTUSJH [31] Total unsigned current helicity Hctotal
∝

∑
Bz · Jz

TOTUSJZ [31] Total unsigned vertical current Jztotal
=

∑
|Jz| dA

negative sample (different class) by a margin α. The cosine

similarity and the triplet loss are defined as follows:

cos(a, b) =
a · b

∥a∥∥b∥
(1)

LTriplet = max(0, cos(a, n)− cos(a, p) + α) (2)

where a is the anchor sample, p is the positive sample, n is

the negative sample, and α is a margin to ensure a significant

difference between positive and negative pairs.

Consequently, this loss function facilitates the network in

learning a representation where samples from the same class

are grouped together, and samples from different classes are

well-separated. To further enhance the robustness of the net-

work, for each anchor, we select four negative and four positive

samples from the batch. We then calculate the differences

between the anchor and the four positive samples, as well

as the anchor and the four negative samples, and use the

average of these differences to compute the loss. This approach

enhances the overall training of the model by providing a more

reliable learning signal.

Meanwhile, the loss function of the regression network is

the mean square error (MSE), which is calculated as follows,

where yi is the true value and ŷi is the predicted value:

LMSE =
1

n

n∑

i=1

(yi − ŷi)
2 (3)

Additionally, the loss function of the fully connected net-

work is the binary cross entropy (BCE). This loss function

evaluates the performance of a classification model whose

output is a probability value between 0 and 1. The BCE is

defined as follows, where yi is the true binary label and ŷi is

the predicted probability:

LBCE = −
1

n

n∑

i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (4)

Finally, the ContReg model is trained as a single network,

where its loss function, referred to as the total loss, is a

combination of these three losses. The total loss (LTotal) is

defined as follows, where λ1, λ2, and λ3 are weighting factors

that balance the contributions of the triplet loss, MSE loss, and

BCE loss, respectively:

Train: Partition 1
Test: Partition 2

Train and Test Sets

Train: Partition 2
Test: Partition 3

Train: Partition 3
Test: Partition 4

Train: Partition 4
Test: Partition 5

Fig. 5. This figure showcases four distinct train-test sets employed in each
classification experiment. This approach ensures a more comprehensive and
accurate assessment of algorithms across all dataset partitions. In real-world
time series forecasting, it is recommended that the training set precedes the test
set chronologically, as the goal is always to predict the future. This approach
leads to a more accurate and meaningful evaluation.

LTotal = λ1LTriplet + λ2LMSE + λ3LBCE (5)

IV. EXPERIMENTS

The Python repository for our preprocessing pipeline and

ContReg classifier, along with detailed documentation of the

implementation and hyperparameters used, is publicly avail-

able for extensive review and application 1.

For our experiments, we utilize four unique train-test combi-

nations of the SWAN-SF dataset, as illustrated in Fig. 5. Given

the temporal ordering of the partitions, it is optimal to select

combinations that are consecutive. This approach ensures that

the training set precedes the test set in terms of the temporal

sequence, which is a crucial factor in our analysis.

A. Evaluation Metrics

We employ the TSS as the evaluation metric [33] since ac-

curacy is inadequate for imbalanced datasets and can produce

misleadingly high scores. The TSS is a valuable metric for

evaluating imbalanced datasets, particularly in solar flare pre-

diction. It effectively balances the model’s recall and its ability

to limit the false positive rate, thus providing a comprehensive

measure of model performance. The optimal value of the TSS

is +1, indicating perfect performance with a recall of 1 and a

false positive rate of 0. The TSS is calculated as:

TSS = Recall − False Positive Rate =
TP

TP + FN
−

FP

FP + TN
(6)

Additionally, recall is utilized as the secondary evaluation

metric due to the critical importance of the model’s capability

1The codebase for this paper is accessible here:
https://github.com/samresume/PreprocessingPipeline-ContRegClassifier-
SWANSF
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TABLE II
PERFORMANCE GAIN ACHIEVED BY EACH STEP OF THE PREPROCESSING PIPELINE

Experiment Mean TSS ± STD Mean Recall ± STD Mean HSS ± STD

Only I (LSTM) 0.173 ± 0.06 0.452 ± 0.29 0.051 ± 0.02

I-N (LSTM) 0.655 ± 0.06 0.856 ± 0.05 0.190 ± 0.07

I-N-Smote (LSTM) 0.611 ± 0.06 0.798 ± 0.08 0.183 ± 0.04

I-N-BS (LSTM) 0.639 ± 0.07 0.858 ± 0.13 0.182 ± 0.09

I-N-BS-NDBSR (LSTM) 0.690 ± 0.05 0.894 ± 0.03 0.192 ± 0.05

I-N-BS-NDBSR-FS (LSTM) 0.801 ± 0.03 0.945 ± 0.01 0.185 ± 0.04

Ahmadzadeh 2021 (SVM) 0.613 ± 0.04 NA NA

Alshammari 2024 (Transformer) 0.693 ± 0.04 NA NA

TABLE III
COMPARISON OF OUR CLASSIFIER WITH BASELINE METHODS AND PREVIOUS STUDIES

Experiment Mean TSS ± STD Mean Recall ± STD Mean HSS ± STD

k-NN 0.699 ± 0.05 0.816 ± 0.04 0.193 ± 0.05

RandomForest 0.700 ± 0.07 0.781 ± 0.07 0.247 ± 0.05

SVM 0.782 ± 0.04 0.908 ± 0.05 0.203 ± 0.06

1D-CNN 0.762 ± 0.05 0.893 ± 0.06 0.197 ± 0.07

RNN 0.807 ± 0.02 0.943 ± 0.03 0.195 ± 0.05

LSTM 0.801 ± 0.03 0.945 ± 0.01 0.185 ± 0.04

GRU 0.805 ± 0.03 0.925 ± 0.03 0.215 ± 0.05

ContReg (Ours) 0.846 ± 0.01 0.975 ± 0.02 0.213 ± 0.03

Ahmadzadeh 2021 (SVM) 0.613 ± 0.04 NA NA

Alshammari 2024 (Transformer) 0.693 ± 0.04 NA NA

to predict all major-flaring events, even at the expense of

incurring some False Positives as errors. Furthur, another

metric employed in previous studies is the Heidke Skill Score

(HSS) [34], as provided by the Space Weather Prediction

Center. The optimal value of the HSS is +1, indicating perfect

performance. The HSS is calculated as:

HSS =
2× [(TP × TN)− (FN × FP)]

(TP + FN)× (FN + TN) + (TP + FP)× (FP + TN)
(7)

B. Baseline Techniques

We compare our multifaceted preprocessing and ContReg

classifier with both baseline techniques and previous studies

to demonstrate their superior performance in predicting solar

flares. In particular, we reference Ahmadzadeh et al. (2021)

[6] and Alshammari et al. (2024) [30], which have reported

the highest TSS for binary classification of solar flares using

the SWAN-SF dataset.

1) Preprocessing Baselines: To illustrate the impact of each

stage in our preprocessing pipeline, we analyze the perfor-

mance improvements achieved at each step by incrementally

adding the components. We begin with Imputation (I), then

introduce global Z-score Normalization (I-N), followed by

Balanced Sampling (I-N-BS). Next, we apply the NDBSR

technique (I-N-BS-NDBSR), and finally, we incorporate Fea-

ture Selection to complete the pipeline (I-N-BS-NDBSR-FS).

Additionally, we compare the Balanced Sampling stage (I-N-

BS) with the use of SMOTE for over-sampling (I-N-Smote)

to demonstrate the effectiveness of our approach.

2) Classification Baselines: We compare the ContReg clas-

sifier with various sequence-to-sequence deep learning clas-

sifiers, including LSTM, RNN, GRU, and 1D-CNN. Addi-

tionally, we evaluate our technique against classical machine

learning methods, including SVM, Random Forest, and k-NN,

to achieve a comprehensive evaluation.

C. Results and Discussion

According to Table II, our complete preprocessing pipeline

achieves a mean TSS of 0.801 and a mean recall of 0.945,

outperforming the results of Ahmadzadeh et al. (2021) and

Alshammari et al. (2024), who reported mean TSS scores

of 0.613 and 0.693, respectively. This performance is based

on the four train-test combinations discussed earlier. As each

stage was added to the pipeline, we observed incremental

improvements in TSS. Initially, with only imputation (I), the

mean TSS was 0.173. By incorporating global z-score normal-

ization (I-N), this improved to 0.655. The addition of balanced

sampling and NDBSR techniques (I-N-BS-NDBSR) further

raised the mean TSS to 0.690. Finally, after applying feature

selection (I-N-BS-NDBSR-FS), the mean TSS reached 0.801,

demonstrating the effectiveness of the full pipeline. The recall

score also consistently improved with each successive step in

the preprocessing pipeline. Additionally, as shown in Table III,

the integration of our ContReg classifier with the preprocessing
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Fig. 6. Comparison of performance gain at each stage of our preprocessing
pipeline, along with comparison to previous studies. A simple LSTM classifier
was employed to demonstrate the performance gain at each stage of our
preprocessing pipeline and to minimize the classifier’s impact on the results.

pipeline results in a mean TSS of 0.846 and a mean recall of

0.975, demonstrating superior performance compared to the

previous studies. Deep learning-based techniques, including

GRU, LSTM, and RNN, achieved better results than traditional

machine learning models such as SVM, k-NN, and Random

Forest. The “NA” values in the table indicate that these values

were not provided by the previous studies.

However, evaluating the impact of the preprocessing

pipeline and the ContReg classifier on each train-test combi-

nation is essential to assess the consistency of the technique in

improving performance. As illustrated in Fig. 6, our compre-

hensive preprocessing, when combined with an LSTM clas-

sifier, consistently outperforms the methodologies presented

in the studies by Ahmadzadeh et al. (2021) and Alshammari

et al. (2024) across all train-test combinations. Referring to

both Figs. 6 and 8, the application of our balanced sampling

technique significantly improves the TSS score compared

to the sole use of SMOTE for over-sampling, which often

leads to overfitting. Additionally, normalization substantially

enhances the TSS score compared to using only imputation.

Moreover, the NDBSR technique further boosts the TSS score,

highlighting the importance of addressing class overlap issues.

Fig. 7 demonstrates that the ContReg classifier, combined with

our preprocessing pipeline, not only significantly outperforms

previous studies but also surpasses commonly used deep

learning and machine learning techniques, consistently across

all train-test combinations.

V. CONCLUSION AND FUTURE WORK

Through extensive experiments incorporating our multi-

faceted preprocessing approach and the ContReg classifier,

we have demonstrated a significant improvement in both TSS

and recall scores across all training and testing combinations

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
TSS Score

Train: 1 - Test: 2

Train: 2 - Test: 3

Train: 3 - Test: 4

Train: 4 - Test: 5

P
ar

tit
io

n

0.68

0.64

0.70

0.77

0.67

0.65

0.66

0.82

0.80

0.72

0.78

0.83

0.72

0.70

0.82

0.80

0.80

0.78

0.83

0.82

0.79

0.76

0.82

0.83

0.80

0.76

0.83

0.84

0.85

0.83

0.86

0.85

0.62

0.61

0.56

0.66

0.63

0.68

0.72

0.74

Comparison of Our Classifiers with Baseline Techniques and Previous Studies
Experiment
k-NN
RandomForest
SVM
1D-CNN
RNN
LSTM
GRU
ContReg (Ours)
Ahmadzadeh 2021
Alshammari 2024

Fig. 7. Comparison of our classifier (ContReg) with baseline techniques and
previous studies. In these experiments, our complete preprocessing pipeline
is applied to both our classifier (ContReg) and the baseline techniques.
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Fig. 8. Comparison of Balanced Sampling and Over-Sampling (SMOTE only)
on various training and testing combinations of the SWAN-SF dataset using
different classifiers.

of the SWAN-SF dataset’s partitions. A mean TSS of 0.801

was achieved by incorporating our multifaceted preprocessing

and using only a simple LSTM, highlighting the critical role

of a precise preprocessing pipeline in solar flare prediction.

This is particularly relevant when dealing with challenging

datasets such as SWAN-SF, which pose distinct preprocessing

challenges. Furthermore, by incorporating our preprocessing

pipeline with our ContReg classifier, we have further improved

the TSS score to a mean of 0.846, which significantly outper-

forms all previous studies and makes solar flare prediction a

more robust task. For future research, we plan to develop a

robust time series generation technique utilizing Adversarial

Autoencoders. This approach aims to create a more accurate

over-sampling method specifically designed for MVTS data.
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