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Abstract—Generating time series data using Generative Ad-
versarial Networks (GANs) presents several prevalent challenges,
such as slow convergence, information loss in embedding spaces,
instability, and performance variability depending on the se-
ries length. To tackle these obstacles, we introduce a robust
framework aimed at addressing and mitigating these issues
effectively. This advanced framework integrates the benefits of
an Autoencoder-generated embedding space with the adversarial
training dynamics of GANs. This framework benefits from a time
series-based loss function and oversight from a supervisory net-
work, both of which capture the stepwise conditional distributions
of the data effectively. The generator functions within the latent
space, while the discriminator offers essential feedback based on
the feature space. Moreover, we introduce an early generation
algorithm and an improved neural network architecture to
enhance stability and ensure effective generalization across both
short and long time series. Through joint training, our framework
consistently outperforms existing benchmarks, generating high-
quality time series data across a range of real and synthetic
datasets with diverse characteristics.

Index Terms—Time Series Generation, Generative Adversarial
Networks, Autoencoders, Data Augmentation

I. INTRODUCTION

Fields such as biomedical signal processing [1] and solar

flare prediction [2], [3] often face data shortages due to

complex and noisy data environments, scarcity of events, and

privacy concerns [4], all of which complicate accurate model

training and evaluation. Developing methods that leverage

Generative Adversarial Networks (GANs) [5] to produce real-

istic synthetic data can foster scientific progress. By creating

balanced datasets and mitigating data shortages, GANs can

improve the performance of machine learning tasks [6].

Generative modeling of time series data poses unique chal-

lenges due to the temporal nature of the data. These models

must not only capture the distribution of features at individual

time points but also unravel the complex dynamics between

these points over time. For instance, when managing multi-

variate sequential data represented as x1:T = (x1, . . . , xT ),
an effective model should accurately determine the condi-

tional distribution p(xt | x1:t−1), which dictates the temporal

transitions. Without this capability, the generated data fails to

capture the characteristics of the real dataset [7]. This leads

to misleading and inaccurate evaluations when used alongside

real data for downstream machine learning tasks [8].

In the field of time series generation, a substantial body

of research has focused on enhancing the temporal dynamics

of autoregressive models for sequence forecasting. The pri-

mary aim is to reduce the propagation of sampling errors

through various training-time adjustments, leading to more

precise conditional distribution modeling [9]–[11]. Autoregres-

sive models decompose the sequence distribution into a chain

of conditionals,
∏

t p(xt | x1:t−1), which proves useful for

forecasting due to their deterministic nature. However, they

lack true generative capabilities, as generating new sequences

from them does not require external input. In contrast, research

applying GANs to sequential data often employs sequence-

to-sequence neural network layers for both the generator

and discriminator. This approach pursues a direct adversarial

objective [12]–[14] to learn the probability distribution of the

data and generate new samples by feeding random noise into

the model. While straightforward, this adversarial goal focuses

on modeling the joint distribution p(x1:T ) [15] without con-

sidering the autoregressive structure. This may be inadequate,

as aggregating standard GAN losses across vectors does not

necessarily ensure the capture of stepwise dependencies in

time series samples.

In this paper, we introduce a novel framework that signif-

icantly enhances stability, accuracy, and generalizability. Our

approach, termed ChronoGAN, effectively integrates the two

research streams into a robust and precise generative model

specifically designed to preserve temporal dynamics through

supervised GAN training. Additionally, it leverages latent

space during training, ensuring more reliable convergence.

Therefore, ChronoGAN offers a comprehensive method for

generating realistic time-series data applicable across various

fields. The key contributions of our study are:

1) Generating data within the latent space using a genera-

tor, while utilizing a discriminator that operates in the

feature space, offers significant advantages. This method

not only provides more precise adversarial feedback

to the generator but also delivers crucial adversarial

feedback to the autoencoder, enhancing the overall per-

formance of the model.

2) The development of a novel time series-based loss

function for the generator network, combined with a

supervised loss, enhances the quality of the generated
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data by more effectively learning the temporal dynamics.

Additionally, a new loss function is designed for the

autoencoder to improve its reconstruction capabilities.

3) The implementation of an early generation algorithm to

stabilize the framework and ensure optimal results after

each training session.

4) The implementation of a novel GRU-LSTM architecture

across the framework’s five neural networks to enhance

the generation of high-quality data for sequences of

varying lengths, both short and long.

We demonstrate the advantages of ChronoGAN by con-

ducting a series of experiments on a variety of real-world

and synthetic datasets. Our findings indicate that Chrono-

GAN consistently outperforms existing benchmarks, including

TimeGAN [16], in generating realistic time-series data.

II. RELATED WORK

Autoregressive recurrent networks trained using maximum

likelihood methods are susceptible to significant prediction

errors during multi-step sampling [17]. This issue arises from

the difference between closed-loop training (conditioned on

actual data) and open-loop inference (based on prior pre-

dictions). Further, inspired by adversarial domain adaptation

[18], Professor Forcing trains an additional discriminator to

differentiate between autonomous and teacher-driven hidden

states [19], helping to align training and sampling dynamics.

However, although these methods share our aim of modeling

stepwise transitions, they are deterministic and do not explic-

itly involve sampling from a learned distribution, which is

crucial for our objective of synthetic data generation.

The foundational paper on GANs [5] introduced a novel

framework for generating synthetic data. The model consists of

two neural networks (the generator and the discriminator) that

are trained simultaneously in a zero-sum game setup. However,

despite being capable of generating data by sampling from

a learned distribution, they struggle to capture the stepwise

dependencies inherent in time series data. The adversarial

feedback from the discriminator alone is insufficient for the

generator to effectively learn the patterns of sequences.

Several studies have adopted the GAN framework for use in

time series analysis. The earliest, C-RNN-GAN [12], applied

the GAN directly to sequential data with LSTM networks

serving as both generator and discriminator. It generates data

recurrently, starting with a noise vector and the data from the

previous time step. RCGAN [13] modified this by removing

the reliance on previous outputs and incorporating additional

inputs for conditioning [20]. However, these models depend

solely on binary adversarial feedback for learning, which may

not capture the temporal dynamics of time series data.

TimeGAN [16] presented a sophisticated method for gen-

erating time-series data, combining the versatility of unsuper-

vised learning with the accuracy of supervised training. By

optimizing an embedding space through both supervised and

adversarial objectives, it aimed to closely mirror the dynamics

of time series data. Despite its novel approach, TimeGAN

encounters challenges with the quality of the generated data,
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Fig. 1: The figure illustrates the architecture of ChronoGAN for time series
generation. ChronoGAN consists of five neural networks, each utilizing
sequence-to-sequence GRU-LSTM layers. These networks are trained jointly
to learn the probability distribution of real data and to capture the temporal
dynamics inherent in the real samples.

primarily due to its reliance on adversarial training within the

embedding space rather than the feature space. Furthermore,

TimeGAN suffers from stability issues, yielding inconsistent

outcomes across identical iteration counts and hyperparameter

settings. It also faces difficulties in generating both short and

long time series sequences.

The ChronoGAN framework is developed to enhance the ef-

ficacy and robustness of time series generation by accomplish-

ing several critical objectives. First, it optimizes performance

across both short and long sequences. Second, it enhances data

reconstruction by the decoder and data generation by the gen-

erator through providing more accurate adversarial feedback

to both the autoencoder and generator. Third, it facilitates the

convergence of both the generator and autoencoder networks

through the implementation of novel loss functions. Finally,

it incorporates an early generation algorithm to achieve con-

sistent optimal results under the same hyperparameters. Fig. 1

illustrates the implementation of ChronoGAN.

III. PROPOSED MODEL: CHRONOGAN

Based on Fig. 1, the framework includes five networks: an

autoencoder (encoder and decoder), a generator, a supervisor,

and a discriminator. The autoencoder’s role is to facilitate

training by generating compressed representations in the latent

space, thereby reducing the likelihood of non-convergence

within the GAN framework. The generator produces data in

this lower-dimensional latent space, as opposed to the feature

space. The supervisor network, integrated with a supervised

loss function, is specifically designed to learn the temporal

dynamics of the time series data. This is crucial, as sole

reliance on the discriminator’s adversarial feedback may not

sufficiently prompt the generator to capture the data’s stepwise

conditional distributions. The discriminator network differenti-

ates between fake and real data in the feature space, providing

more accurate feedback to both the generator and autoencoder.

In Fig. 1, HAE = e(X) represents the encoding of the input

data X into a latent space HAE using the encoder function

e. The reconstructed data XAE = r(HAE) is obtained by

decoding HAE using the recovery function r, aiming to

replicate the original input data as closely as possible. The
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generator function g transforms a random noise vector Z into

synthetic latent data HG = g(Z), which is then reconstructed

into synthetic data XG = r(HG). The supervisor network

s processes HG to produce a supervised latent representation

HS = s(HG), from which the final synthetic data X̃ = r(HS)
is reconstructed. The discriminator d evaluates the authenticity

of the synthetic and real data by outputting ỹ for synthetic data

and y for real data.

A. Adversarial Training

In a joint training scheme involving a GAN network and

an autoencoder, relying solely on reconstruction loss for the

autoencoder results in noisy outputs, where the autoencoder’s

output fails to fully retain the input’s characteristics [21].

Additionally, adversarial training within an embedding space

leads to the generation of noisy data after decoding the

generator’s output. The issue arises when the encoder’s output

(HAE) is regarded as real data and the generator’s output

(HG) as synthetic during the adversarial training process.

This practice reduces the discriminator’s ability to accurately

differentiate between the attributes of real and synthetic data.

A significant limitation is that the discriminator does not

account for the error rate and data loss inherent in the

autoencoder’s performance. This oversight may compromise

the efficacy of the discriminator, resulting in suboptimal per-

formance in distinguishing between real and generated data

attributes. Consequently, this leads to less precise feedback

being provided to the generator network, potentially affecting

the overall quality of the synthetic data. To address this, as

shown in Fig. 1, discriminating in the feature space allows

for defining real data as the dataset (X) and fake data as the

decoding of the generator’s output (XG). This facilitates more

accurate training for the discriminator, thus yielding improved

feedback for the generator. Additionally, discrimination in the

feature space provides valuable adversarial feedback to the

autoencoder, enhancing its reconstruction capabilities in con-

junction with conventional reconstruction loss. In the context

of time series data, the feature space denotes the original

dimensions, such as individual time points and their observed

values. The latent or embedding space, achieved through an

encoding process, represents the data in a lower-dimensional

form, capturing its essential patterns and structures in a more

compact and informative manner [22].

Through a joint learning scheme, the autoencoder is initially

trained using a combination of reconstruction loss and binary

feedback from the discriminator, where real data is the dataset

(X) and fake data is its reconstruction (XAE). This approach

enhances the autoencoder’s precision in reconstructing outputs.

In the subsequent phase, only the supervisor network is

trained. The supervisor utilizes real data embeddings from the

previous two time steps h1:t−2 generated by the embedding

network to create the subsequent latent vector ht. Finally, all

five networks are trained jointly. During this final phase, the

same discriminator distinguishes between real data, denoted

as the dataset (X), and the dataset reconstructions (XAE),

where the fake data comprises the generator’s decoded outputs

(XG) and the supervisor’s decoded outputs (X̃). The generator

undergoes training through this adversarial feedback LU , in

addition to other feedback mechanisms including LS , LV , and

LTS . This phase involves a shift in the characterization of fake

and real data compared to the initial phase.

B. Novel Loss Functions

Based on the feedback from the discriminator, we intro-

duce a new loss function for the autoencoder (LAE), which

comprises both reconstruction loss (LR) and adversarial loss

(LU ). The proportion of reconstruction loss to adversarial loss

decreases in the third phase of training compared to the first

phase, where the primary purpose of the discriminator is to

provide feedback for the generator rather than the autoencoder.

LAE = LR+LU ; LR = Ex1:T∼p

[

∑

t

∥xt − x
AE

t∥2

]

(1)

Where t denotes an individual time step, and T represents

the total number of time steps within the series. In addition,

xt represents the real data at timestamp t, and x
AE
t denotes

the output of the autoencoder corresponding to the real data

xt at the same timestamp.

LU = Ex1:T∼p

[

∑

t

log yt

]

+Ex1:T∼p̃

[

∑

t

log(1− ỹt)

]

(2)

ỹ = d(XAE); y = d(X) (3)

Here, p indicates the probability distribution of real data,

and p̃ represents the probability distribution of synthetic data.

Moreover, the discriminator d generates the output ỹ when

evaluating the autoencoder’s output XAE and produces the

output y when assessing the real samples X

The sole reliance on the discriminator’s binary adversarial

feedback might not sufficiently drive the generator to capture

the data’s stepwise conditional distributions. To address this,

ChronoGAN introduces an additional component, the super-

visor, along with a novel loss mechanism denoted by LS .

ChronoGAN employs a closed-loop training mode, where the

supervisor utilizes actual data embeddings from the previous

two time steps h1:t−2 produced by the embedding network

to generate the subsequent latent vector ht. This looped

training involves the generator’s loss LG, which encompasses

the adversarial loss LU , the stepwise transition loss LS , the

distribution loss LV , and our innovative time series loss LTS .

This structure ensures the generation of realistic sequences

with accurate temporal transitions. The distribution loss LV

leverages the mean absolute error (MAE) of the mean and

variance between the real data X and the generated data

X̃ . This approach effectively assists the generator in learning

the real data distribution, enabling it to produce data across

the entire distribution, which also serves as a key metric for

evaluating GAN techniques.

LG = LU+LS+LV +LTS; LV = LMean+LV ariance (4)
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Where LMean is the MAE of the mean between a batch of

real and generated samples, and LV ariance is the MAE of the

variance between the same batch of real and generated data.

LMean = Ex1:T∼p

[

∑

t

∣

∣

∣

∣

∣

1

N

N
∑

n=1

xtn −
1

N

N
∑

n=1

x̃tn

∣

∣

∣

∣

∣

]

(5)

Where each sample is labeled by n ∈ {1, . . . , N} and the

batch is represented as B = {xn,1:Tn
}Nn=1.

LVariance =Ex1:T∼p

[

∑

t

∣

∣

∣

∣

∣

1

N

N
∑

n=1

(xtn − xt)
2

−
1

N

N
∑

n=1

(x̃tn − x̃t)
2

∣

∣

∣

∣

∣

]

(6)

Where x indicates the mean of x, and x̃ represents the mean

of x̃ for a batch of data.

LS = Ex1:T∼p

[

∑

t

∥

∥hG
t − s(hG

t−2)
∥

∥

2

]

(7)

Where s is the supervisor network, hG
t is the output of

the generator at timestamp t, and hG
t−2 is the output of the

generator at timestamp t− 2. This technique is more efficient

than predicting timestamp t using timestamp t− 1.

In the third phase of training, referred to as joint training,

ỹ represents the output of the discriminator d for synthetic

samples XG and X̃ , while y denotes the output of d for real

samples X and XAE .

ỹ = d(XG, X̃); y = d(X,XAE) (8)

Furthermore, we introduce a novel loss function for the

generator called the time series loss, LTS , which not only

facilitates convergence but also enhances the quality of the

generated data. This loss function is defined as the mean

squared error (MSE) of the mean and standard deviation

(std) of four key time series characteristics, including slope,

skewness, weighted average, and median, between real and

synthetic data. The aim is to boost the generator’s convergence

and its ability to learn the real data characteristics and distri-

bution, as relying solely on the adversarial loss is insufficient

for learning the characteristics of real time series data. The

time series loss LTS is a novel contribution, comprising the

slope loss (LSlope), weighted average loss (LWeightedAvg),

skewness loss (LSkewness), and median loss (LMedian).

LTS = LSlope +LWeightedAvg +LSkewness +LMedian (9)

The slope loss LSlope includes the MSE of the mean

(LSmean
) and the MSE of the std (LSstd

) between the slopes

of real and generated samples.

LSlope = LSmean
+ LSstd

(10)

The slope is calculated using the provided formula,

slope =
T
∑T

t=1
txt −

∑T

t=1
t
∑T

t=1
xt

T
∑T

t=1
t2 − (

∑T

t=1
t)2

(11)

In these equations, S is the slope of real samples, and S̃ is

the slope of generated samples.

LSmean
= Ex1:T∼p

[

∑

t

∥

∥

∥

∥

∥

1

N

N
∑

n=1

Stn
−

1

N

N
∑

n=1

S̃tn

∥

∥

∥

∥

∥

2

]

(12)

LSstd
=Ex1:T∼p

[

∑

t

∥

∥

∥

∥

∥

√

√

√

√

1

N

N
∑

n=1

(Stn
− St)2

−

√

√

√

√

1

N

N
∑

n=1

(S̃tn
− S̃t)2

∥

∥

∥

∥

∥

2

]

(13)

Other components of LTS , such as skewness, weighted

average, and median, are calculated similarly to (10), (12), and

(13). The only difference is that instead of using the formula

for slope, the formulas for skewness (skew), weighted average

(wAvg), and median are applied.

skew =
1

T

T
∑

t=1

(

xt − x̄

σx

)3

(14)

wAvg =

∑T

t=1
wtxt

∑T

t=1
wt

(15)

Where σx represents the std of x, and wt denotes the weight

assigned to the value xt at timestamp t.

C. GRU-LSTM Network Architecture

Leveraging the strengths of different neural network archi-

tectures by combining them has long been a powerful and

effective approach. In auditory attention detection (AAD),

combining GRU and CNN architectures has been particularly

effective. CNNs, while good at extracting spatial features from

EEG data, struggle to capture long-term dependencies. To

address this, the AAD-GCQL model [1] integrates GRU with

CNN to capture both spatial and temporal dynamics in EEG

signals, enhancing the detection of auditory attention.

The GRU used in this combination belongs to a broader

family of recurrent neural networks (RNNs), which are tailored

for sequence modeling tasks. Among these, LSTM and GRU

are the two most prominent architectures, frequently applied

in domains such as natural language processing [23] and

time series forecasting. LSTMs are equipped with memory

cells and three distinct gates (input, output, and forget),

which help manage the flow of information and address the

vanishing gradient problem seen in traditional RNNs [24]. This

architecture makes LSTMs particularly well-suited for longer

sequence data, where maintaining information over extended

intervals is critical. On the other hand, GRUs simplify the

structure by merging the input and forget gates into a single
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update gate, complemented by a reset gate that determines

the extent of past information retention [25]. GRUs tend to

be more efficient and quicker to train, making them ideal for

tasks with shorter sequences or when computational resources

are limited. The decision between using LSTM and GRU often

hinges on the specific sequence length and complexity of the

task, with LSTMs generally preferred for longer sequences

and GRUs for shorter ones [26].

A time series generation framework should be capable of

handling both short and long sequences and, more importantly,

be accurate on both. The exclusive use of either LSTM or

GRU as the network architecture can lead to weaknesses in

handling either long or short sequences. As shown in Fig.

2, by implementing both network architectures and merging

the results via a multilayer perceptron, the network becomes

more generalized, making it more powerful in learning both

long and short sequences. We employ multiple layers of GRU

and LSTM separately to produce output, and then merge

them using a multilayer perceptron network to obtain the final

output. We utilize the same architecture and number of layers

for all five networks within the ChronoGAN framework.

D. Early Generation

Another prevalent issue with GANs is stability. To enhance

the stability of the network, we employ an early generation

algorithm since the optimal results may be achieved after a ran-

dom, rather than a specific, number of iterations. Accordingly,

as per Algorithm 1, after half the number of epochs, we gen-

erate synthetic data and calculate the discriminative score and

predictive score between real and synthetic data at intervals of

every 500 epochs. Additionally, we compute the MSE of the

mean and MSE of the std of real and synthetic data to verify

whether the synthetic data matches the distribution of the real

data. By integrating the results of the discriminative score,

predictive score, and MSE of the mean and std, we determine

whether to save the current model and generated data. Upon

the completion of training, we ensure that the framework has

produced the optimal results, consistently delivering reliable

and precise outcomes after each training session. It is crucial

to determine the appropriate weights for these metrics in

order to integrate them and compare them with the previously

saved model. The proportion of the discriminative score,

predictive score, and MSE of the mean and std can vary

depending on the characteristics of the dataset. Therefore, it

is inappropriate to establish fixed hyperparameters to combine

these three metrics. To address this issue, we initially calculate

the hyperparameters p1 and p2 during the first assessment

of these metrics. Once established, these hyperparameters are

consistently applied in all subsequent epochs.

IV. EXPERIMNETS

The codebase for the ChronoGAN framework, along with

a detailed tutorial on its usage, implementation, and hy-

perparameter settings, is publicly available for review and

LSTM 
Unit

GRU 
Unit

Perceptron
Unit

OutputInput

Fig. 2: GRU-LSTM Network Architecture: The figure illustrates the architec-
ture of a GRU-LSTM model for univariate time series data, featuring multiple
layers of LSTM and GRU cells (in this case, two layers) trained separately.
These layers are then combined through perceptron or fully connected neural
network layers. For multivariate time series data, multiple instances of these
components are trained in parallel.

Algorithm 1 Early Generation Algorithm

Initialize real and synthetic samples
Set N as the total number of epochs
Initialize totalError, p1, and p2 to None
Set checkEpoch← 500 and startEpoch← +N

2
,

for epoch = 1 to N do
if epoch g startEpoch and epoch mod checkEpoch == 0
then

disScore← calcDis(real, synthetic)
preScore← calcPre(real, synthetic)
meanReal← calcMean(real)
meanSynth← calcMean(synthetic)
mseMean← calcMSE(meanReal,meanSynth)
varReal← calcVar(real)
varSynth← calcVar(synthetic)
mseV ar ← calcMSE(varReal, varSynth)
mseSTD ←

√
mseV ar

if p1 == None and p2 == None then
p1← disScore

preScore

p2← disScore

mseMean+mseSTD

end if
score ← disScore + p1 ∗ preScore + p2 ∗ (mseMean +
mseSTD)
if score f totalError or totalError == None then

totalError ← score
saveSynthetic(synthetic)

end if
end if

end for

application 1. The framework is designed to be straightforward,

allowing users to simply call a Python function and provide

the necessary data and hyperparameters.

A. Datasets

We evaluate ChronoGAN’s effectiveness on time-series

datasets with varying attributes such as periodicity, discrete-

ness, noise levels, length, and feature correlation over time.

1The codebase of ChronoGAN is available here:
https://github.com/samresume/ChronoGAN
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We choose the datasets based on different combinations of

these characteristics:

1) Stocks: Stock price sequences are continuous but aperi-

odic and features are correlated. We use daily historical

data from Google stocks spanning 2004 to 2019, which

includes features such as volume, high, low, opening,

closing, and adjusted closing prices.

2) Sines: We generate multivariate sinusoidal sequences

with varying frequencies η and phases θ, providing

continuous, periodic, and multivariate data with each

feature being independent.

3) ECG: The ECG5000 dataset from Physionet, which

covers a 20-hour long ECG recording with 140 times-

tamps, is a univariate time series that is continuous and

periodic. The data is classified as a long time series.

4) SWAN-SF: The Space Weather Analytics for Solar

Flares (SWAN-SF) [27] dataset consists of multivariate

time series of photospheric magnetic field parameters for

solar flare prediction tasks [28]. The SWAN-SF dataset

is recognized as challenging due to its complex temporal

dynamics and the numerous data preprocessing issues it

presents. In [29], the authors thoroughly addressed these

challenges by implementing an innovative preprocessing

pipeline [30]. This effort resulted in the creation of an

enhanced version of the SWAN-SF dataset [31], which

was subsequently utilized in our evaluation in place of

the original, unprocessed dataset.

B. Baseline Techniques and Evaluation Metrics

We conduct a comparison between ChronoGAN, TimeGAN

[16], Teacher Forcing (T-Forcing) [19], Professor Forcing

(P-Forcing) [18] and Standard GAN [13], which represent

the five best-performing techniques in various fields of time

series generation, including GAN-based and Autoregressive

approaches. To ensure unbiased results, we maintain identical

hyperparameters across all five models. To evaluate the quality

of the generated data, we focus on three key criteria:

1) Visualization: We utilize t-SNE [32] and PCA [33]

analyses on both the original and synthetic datasets. This

approach aids in qualitatively assessing how closely the

distribution of the generated samples matches that of the

original in a two-dimensional space.

2) Discriminative Score: For a quantitative measure of

similarity, each sequence from the original dataset is

labeled as ‘real‘, while each from the generated set

is labeled as ‘synthetic‘. An LSTM classifier is then

trained to differentiate these two categories in a standard

supervised learning task. The classification error on a

reserved test set provides a quantitative measure of this

score. We then subtract the result from 0.5, making the

optimal result 0 instead of 0.5 for easier comparison.

3) Predictive Score: To evaluate the quality of the gen-

erated data in capturing step-wise conditional distribu-

tions, we utilize the synthetic dataset to train an LSTM

for sequence prediction. This involves forecasting the

next-step temporal vectors for each input sequence. The

TABLE I

COMPARATIVE ANALYSIS OF DISCRIMINATIVE SCORE FOR LEADING TIME

SERIES GENERATION TECHNIQUES (LOWER SCORES ARE BETTER)

Stocks Sines ECG SWAN-SF

ChronoGAN 0.204
−
+ 0.03 0.190

−
+ 0.08 0.213

−
+ 0.04 0.304

−
+ 0.06

TimeGAN 0.326
−
+ 0.03 0.283

−
+ 0.13 0.271

−
+ 0.08 0.374

−
+ 0.10

GAN 0.499
−
+ 0.01 0.320

−
+ 0.22 0.486

−
+ 0.01 0.5

−
+ 0.00

T-Forcing 0.476
−
+ 0.01 0.348

−
+ 0.13 0.351

−
+ 0.10 0.5

−
+ 0.00

P-Forcing 0.5
−
+ 0.00 0.5

−
+ 0.00 0.329

−
+ 0.10 0.5

−
+ 0.00

TABLE II

COMPARATIVE ANALYSIS OF PREDICTIVE SCORE FOR LEADING TIME

SERIES GENERATION TECHNIQUES (LOWER SCORES ARE BETTER)

Stocks Sines ECG SWAN-SF

ChronoGAN 0.045
−
+ 0.00 0.225

−
+ 0.01 0.129

−
+ 0.00 0.055

−
+ 0.00

TimeGAN 0.046
−
+ 0.00 0.245

−
+ 0.01 0.129

−
+ 0.01 0.082

−
+ 0.00

GAN 0.186
−
+ 0.01 0.233

−
+ 0.01 0.191

−
+ 0.00 0.219

−
+ 0.01

T-Forcing 0.050
−
+ 0.01 0.275

−
+ 0.01 0.130

−
+ 0.01 0.066

−
+ 0.01

P-Forcing 0.147
−
+ 0.02 0.224

−
+ 0.01 0.194

−
+ 0.01 0.241

−
+ 0.01

model’s accuracy is subsequently tested on the original

dataset, with performance assessed using the MAE.

For each discriminative or predictive score experiment, we

replicated the experiments eight times to avoid incidental

results. We present the mean and std of each experiment in

Tables I and II.

C. Results and Discussion

Based on the results presented in Tables I and II, the

ChronoGAN framework consistently outperforms state-of-the-

art models, including TimeGAN, Teacher Forcing, Professor

Forcing, and Standard GAN. In terms of the discrimina-

tive score, ChronoGAN achieves an average reduction of

approximately 27.60% across the four datasets compared

to TimeGAN. This substantial improvement indicates that

ChronoGAN generates more realistic temporal data than other

techniques. Furthermore, this improvement in the discrimina-

tive score can be attributed to the early generation algorithm,

which enhances stability and ensures the best data is preserved

during training. The improvement is also evident across all

four datasets, each with different lengths, demonstrating the
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Fig. 3: This figure illustrates the original Sines dataset samples (top) and their
corresponding synthetic counterparts generated by the ChronoGAN algorithm
(bottom). Each subplot shows one of four randomly selected samples.
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Fig. 5: PCA visualizations illustrate the distributional alignment between
original and synthetic data samples generated by ChronoGAN and other
baselines across our four datasets.
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Fig. 6: t-SNE visualizations demonstrate the alignment in distribution between
the original and synthetic data samples produced by ChronoGAN and other
benchmark models across four datasets.
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Fig. 4: Displayed here are original ECG dataset samples (top) and the
synthetic data generated by ChronoGAN (bottom).

effectiveness of the GRU-LSTM layers within our framework.

Additionally, according to discriminative score evaluations,

ChronoGAN and TimeGAN emerge as superior compared to

Teacher Forcing and Standard GAN. This underscores the

importance of developing GAN-based techniques specifically

tailored for time series data.

In terms of predictive score, ChronoGAN reduces the error

by approximately 10.82% across the four datasets compared

to TimeGAN. This underscores the effectiveness of our novel

time series-based (LTS) and supervised (LS) loss functions,

which significantly improve the generator’s ability to cap-

ture the temporal dynamics of the data more accurately. As

demonstrated in Figs. 3 and 4, we present several examples of

synthetic samples generated by ChronoGAN for both the Sines

and ECG datasets. These examples highlight ChronoGAN’s

ability to effectively learn the temporal distributions of the real

data and generate high-quality synthetic data that accurately

reflect those patterns.

Based on Figs. 5 and 6, ChronoGAN demonstrates a

superior ability to learn the probability distribution of real

datasets more efficiently than all other baseline techniques.

This is crucial, as a GAN-based model must generate data

that accurately covers the entire distribution of the real dataset.

The PCA and t-SNE results for the Stocks dataset show highly

accurate outcomes. This achievement is primarily due to the

LV loss, which enables the network to effectively capture the

mean and variance of each batch of real data.

V. CONCLUSION AND FUTURE WORK

In this study, we present ChronoGAN, an innovative model

designed for generating time series data. ChronoGAN consists

of five networks: an autoencoder (comprising an encoder and

decoder), a generator, a supervisor, and a discriminator. These

networks are trained together to learn the probability distri-

bution and stepwise temporal dynamics of time series data.

The model employs adversarial training in the feature space

while generating data in the latent space, which significantly

enhances the performance of both the autoencoder and gen-

erator networks. Additionally, ChronoGAN introduces novel

loss functions for the autoencoder, generator, and supervisor

networks, along with a new neural network architecture and

an early generation mechanism. This framework consistently
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outperforms leading methods in generating realistic time series

data, both qualitatively and quantitatively. In future research,

we aim to integrate these concepts into adversarial autoen-

coders to develop an advanced framework for producing high-

quality time series data.

VI. ACKNOWLEDGMENT

Support for this work has been provided by the Division of

Atmospheric and Geospace Sciences within the Directorate for

Geosciences through NSF awards #2301397, #2204363, and

#2240022, as well as by the Office of Advanced Cyberinfras-

tructure within the Directorate for Computer and Information

Science and Engineering under NSF award #2305781.

REFERENCES

[1] M. EskandariNasab, Z. Raeisi, R. A. Lashaki, and H. Najafi, “A
GRU–CNN model for auditory attention detection using microstate and
recurrence quantification analysis,” Scientific Reports, vol. 14, no. 1, p.
8861, Apr. 2024, doi: 10.1038/s41598-024-58886-y.

[2] S. M. Hamdi, D. Kempton, R. Ma, S. F. Boubrahimi, and R. A. Angryk,
“A time series classification-based approach for solar flare prediction,”
in 2017 IEEE International Conference on Big Data (Big Data), Boston,
MA, USA, 2017, pp. 2543-2551, doi: 10.1109/BigData.2017.8258213.

[3] Y. Velanki, P. Hosseinzadeh, S. F. Boubrahimi, and S. M. Hamdi, “Time-
series feature selection for solar flare forecasting,” Universe, vol. 10, no.
9, Art. no. 373, 2024, doi: 10.3390/universe10090373.

[4] A. Behfar, H. Atashpanjeh, and M. N. Al-Ameen, “Can password meter
be more effective towards user attention, engagement, and attachment?
A study of metaphor-based designs,” in Companion Publication of the
2023 Conference on Computer Supported Cooperative Work and Social
Computing (CSCW ’23 Companion), Minneapolis, MN, USA, 2023, pp.
164-171, doi: 10.1145/3584931.3606983.

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
arXiv preprint arXiv:1406.2661, 2014.

[6] A. Ahmadzadeh, B. Aydin, M. K. Georgoulis, D. J. Kempton, S. S.
Mahajan, and R. A. Angryk, “How to train your flare prediction model:
Revisiting robust sampling of rare events,” The Astrophysical Journal
Supplement Series, vol. 254, no. 2, p. 23, 2021, doi: 10.3847/1538-
4365/abec88.

[7] O. Bahri, P. Li, S. F. Boubrahimi, and S. M. Hamdi, “Multiloss-
based optimization for time series data augmentation,” in 2023 IEEE
International Conference on Big Data (BigData), 2023, pp. 325–330,
doi: 10.1109/BigData59044.2023.10386614.

[8] K. Saini, K. Alshammari, S. M. Hamdi, and S. Filali Boubrahimi, “Clas-
sification of major solar flares from extremely imbalanced multivariate
time series data using minimally random convolutional kernel trans-
form,” Universe, vol. 10, p. 234, 2024, doi: 10.3390/universe10060234.

[9] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in Advances in
Neural Information Processing Systems, vol. 28, C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, Eds., Curran Associates, Inc.,
2015.

[10] A. Lamb, A. Goyal, Y. Zhang, S. Zhang, A. Courville, and Y. Bengio,
“Professor forcing: A new algorithm for training recurrent networks,”
arXiv preprint arXiv:1610.09038, 2016.

[11] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A.
Courville, and Y. Bengio, “An actor-critic algorithm for sequence
prediction,” arXiv preprint arXiv:1607.07086, 2017.

[12] O. Mogren, “C-RNN-GAN: Continuous recurrent neural networks with
adversarial training,” arXiv preprint arXiv:1611.09904, 2016.

[13] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical) time
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