
2024 IEEE International Conference on Big Data (Big Data)

979-8-3503-6248-0/24/$31.00 ©2024 IEEE

860

SeriesGAN: Time Series Generation via Adversarial

and Autoregressive Learning

MohammadReza EskandariNasab, Shah Muhammad Hamdi, Soukaina Filali Boubrahimi

Department of Computer Science, Utah State University, Logan, UT 84322, USA

Emails: {reza.eskandarinasab, s.hamdi, soukaina.boubrahimi}@usu.edu

ORCID: 0009-0004-0697-3716, 0000-0002-9303-7835, 0000-0001-5693-6383

Abstract—Current Generative Adversarial Network (GAN)-
based approaches for time series generation face challenges such
as suboptimal convergence, information loss in embedding spaces,
and instability. To overcome these challenges, we introduce
an advanced framework that integrates the advantages of an
autoencoder-generated embedding space with the adversarial
training dynamics of GANs. This method employs two discrim-
inators: one to specifically guide the generator and another
to refine both the autoencoder’s and generator’s output. Addi-
tionally, our framework incorporates a novel autoencoder-based
loss function and supervision from a teacher-forcing supervisor
network, which captures the stepwise conditional distributions
of the data. The generator operates within the latent space,
while the two discriminators work on latent and feature spaces
separately, providing crucial feedback to both the generator and
the autoencoder. By leveraging this dual-discriminator approach,
we minimize information loss in the embedding space. Through
joint training, our framework excels at generating high-fidelity
time series data, consistently outperforming existing state-of-the-
art benchmarks both qualitatively and quantitatively across a
range of real and synthetic multivariate time series datasets.

Index Terms—Time Series Generation, Generative Adversarial
Networks, Autoregressive Models, Autoencoders, Data Augmen-
tation

I. INTRODUCTION

Generating realistic synthetic data can help balance datasets

and mitigate data shortages [1], thus enhancing scientific

research and boosting the effectiveness of various machine

learning applications. However, generating time series data

presents unique challenges due to its temporal characteristics

[2]. Models need to capture not only the distribution of features

at each time point but also the complex interactions between

these points over time. For example, in multivariate sequential

data x1:T = (x1, . . . ,xT), a good model should accurately

determine the conditional distribution p(xt | x1:t−1) to reflect

temporal transitions. This capability is crucial across numerous

fields, especially when working with imbalanced time series

datasets [3]. Areas such as healthcare [2] and solar physics

[4], [5] often encounter data limitations due to factors such

as privacy issues, the complexity and noise in data, or the

rarity of events, which make model training and evaluation

challenging. By developing approaches that utilize generative

adversarial networks (GANs) [6] to generate realistic synthetic

data, scientific advancement can be supported, and machine

learning performance can be enhanced by balancing datasets

and addressing data scarcity [1].

A significant amount of research has focused on improving

the temporal dynamics of autoregressive models for sequence

forecasting, aiming to minimize the impact of sampling errors

by making various adjustments during training to better model

conditional distributions [7], [8]. Autoregressive models break

down the sequence distribution into a series of conditionals
∏

t p(xt | x1:t−1), making them effective for forecasting due

to their deterministic properties. However, these models are not

genuinely generative, as they do not require external input to

generate new sequences. On the other hand, research involving

GANs for sequential data typically employs recurrent networks

as generators and discriminators, aiming directly at an adver-

sarial objective [9]–[11]. While this method is straightforward,

the adversarial objective targets modeling the joint distribution

p(x1:T) without accounting for the autoregressive nature,

which might be insufficient since merely aggregating standard

GAN losses over vectors may not adequately capture the

stepwise dependencies present in the training data.

In this paper, we propose a new framework that substantially

improves the stability, quality of generated data, and generaliz-

ability. Our approach, named SeriesGAN, seamlessly integrates

two research domains, GANs and autoregressive models, into

a powerful and accurate generative model uniquely tailored

to preserve temporal dynamics. SeriesGAN offers a holistic

solution for generating realistic time-series data, with broad

applicability across multiple fields. The primary contributions

of our work include:

1) Utilizing two discriminators (dual-discriminator train-

ing) that operate separately on feature and latent spaces,

providing dual feedback for the generator. The feedback

from the feature space also assists the autoencoder in

enhancing its reconstruction capability and accuracy.

2) Developing a novel autoencoder-based loss function for

the generator network, which enhances the quality of

the generated data and facilitates optimal convergence.

Additionally, a new loss function is designed for the

autoencoder network.

3) Employing a teacher-forcing-based supervisor network

with a novel loss function, which significantly helps the

generator network to better learn the temporal dynamics

of time-series data.

4) Implementing an early stopping algorithm and applying

Least Squares GANs (LSGANs) [12] to stabilize the

Authorized licensed use limited to: Utah State University. Downloaded on May 08,2025 at 08:51:22 UTC from IEEE Xplore. Restrictions apply.

861

framework and ensure optimal results at the end of each

training session.

We demonstrate the advantages of SeriesGAN by con-

ducting a series of experiments on a variety of real-world

and synthetic multivariate and univariate time series datasets.

Our findings indicate that SeriesGAN consistently outperforms

existing benchmarks, including TimeGAN [13], in generating

realistic time-series data.

II. RELATED WORK

Autoregressive recurrent networks trained using maximum

likelihood methods tend to experience substantial prediction

errors during multi-step sampling [14]. This problem arises

due to the discrepancy between closed-loop training (con-

ditioned on real data) and open-loop inference (based on

previous predictions). Drawing inspiration from adversarial

domain adaptation [15], Professor Forcing employs an addi-

tional discriminator to distinguish between autonomous and

teacher-driven hidden states [16], thereby aligning training

and sampling dynamics. Teacher forcing reduces errors during

training by using ground truth data for conditioning at each

step, while Professor Forcing bridges the gap between training

and inference by aligning the hidden state dynamics between

both processes. These methods aim to reduce exposure bias,

which occurs when a model’s predictions degrade over time

during inference. However, despite these methods aiming to

model stepwise transitions, they are deterministic and do not

explicitly involve sampling from a learned distribution, which

is essential for our goal of synthetic data generation.

The seminal work on GANs [6] presented a groundbreaking

framework for generating synthetic data. This model com-

prises two neural networks (a generator and a discriminator)

trained concurrently within a zero-sum game structure. The

generator learns to produce data by attempting to fool the

discriminator, while the discriminator simultaneously learns

to distinguish between real and generated data. Both networks

improve iteratively through this adversarial process, with the

generator striving to minimize the discriminator’s accuracy.

In many GAN implementations, CNNs [17] are employed to

enhance the generator and discriminator’s ability to capture

spatial patterns. While GANs can generate data by sampling

from a learned distribution, they face challenges in capturing

the sequential dependencies characteristic of time series data.

The adversarial feedback from the discriminator alone does

not provide enough information for the generator to adequately

learn the intricate patterns within sequences.

Several studies have employed the GAN framework for

time series analysis. The earliest of these, C-RNN-GAN [9],

applied the GAN architecture directly to sequential data, using

LSTM networks as both the generator and discriminator. This

model generates data recurrently, starting with a noise vector

and the data from the previous time step. RCGAN [10]

improved upon this by eliminating the dependence on previous

outputs and incorporating additional inputs for conditioning

[18]. However, unlike TimeGAN, these models depend solely

on binary adversarial feedback for learning, which may not

sufficiently capture the temporal dynamics of the training data.

TimeGAN [13] offers an advanced method for generating

realistic time series data by merging the flexibility of unsu-

pervised learning with the accuracy of supervised training. It

leverages an autoencoder, enabling the GAN to both generate

and discriminate within the latent space. This approach helps

the GAN mitigate non-convergence issues [19] by training in

a lower-dimensional representation. TimeGAN is designed to

accurately replicate the temporal dynamics inherent in training

data, making it particularly useful for addressing imbalanced

time series classification problems such as solar flare predic-

tion, where X-class flares are rare occurrences. Employing data

augmentation techniques such as TimeGAN can help boost

the predictive performance of solar flare prediction models

[20]. However, despite its advantages, it struggles with stability

during training and often produces inconsistent data quality.

As a result, it frequently fails to deliver optimal results after

each training cycle.

The SeriesGAN framework is developed to improve the

performance and robustness of time series generation methods,

specifically TimeGAN, by achieving several key goals. First, it

enhances data reconstruction by the decoder and data genera-

tion by the generator through the training of two discriminators

in both the latent and feature spaces. Second, it facilitates the

convergence of the generator network by implementing a novel

autoencoder-based loss function that guides the generator by

providing characteristics of real time series data. Third, it

incorporates a teacher forcing supervisor along with a novel

loss function, trained jointly with the generator as a combined

network. This strengthens the generator’s ability to learn

and capture the temporal dynamics of time series data more

effectively. Fourth, it integrates LSGANs instead of standard

GANs and includes an early stopping algorithm to enhance

stability and achieve consistently optimal results under the

same hyperparameters. Fig. 1 showcases the architecture of the

described time series generation baselines, and Fig. 2 shows

the architecture of SeriesGAN.

III. PROBLEM FORMULATION

In this setting, we work with data that contains temporal

features (i.e., features that evolve over time, such as sensor

measurements). Let X represent the space of these temporal

features, and let X ∈ X be random vectors, each of which can

take on specific values denoted by x. We consider sequences of

temporal data, denoted X1:T , drawn from a joint distribution

p. The length T of each sequence is itself a random variable,

which is absorbed into the distribution p. In our training data,

each sample is indexed by n ∈ {1, . . . , N}, and the dataset

can be represented as D = {xn,1:Tn
}Nn=1

. From this point

forward, we omit the subscript n unless needed for clarity.

Our primary goal is to use the training data D to estimate a

probability density function p̂(X1:T) that closely approximates

the true distribution p(X1:T). This is a challenging objective,

particularly given the variability in sequence lengths, the

dimensionality of the data, and the complexity of the distri-

bution. To address this, we decompose the joint distribution

Authorized licensed use limited to: Utah State University. Downloaded on May 08,2025 at 08:51:22 UTC from IEEE Xplore. Restrictions apply.

862

Generator Supervisor

Encoder Decoder

xt

zt

x~
t

xAE
t

Autoencoder

GAN with Supervisor

Discriminator

+

TimeGAN

RCGAN

GAN

Teacher Forcing

Generator

xt

zt

GAN with RNN Architecture

Discriminator

+

s

Generator

xt

zt

GAN with CNN Architecture

Discriminator

+

RNN Cellxt-2 xt-1

Professor Forcing

RNNxt-2 : t-1
xt-1 : t

RNNxt-2 xt-1 : t

Discriminator+

conditioning

RNN Cellxt-1 xt

Fig. 1: The figure illustrates the architecture of five distinct time series
generation techniques: TimeGAN, RCGAN, GAN, Teacher Forcing, and
Professor Forcing. Each method presents a unique approach to generating
time series data, offering various strengths and applications depending on the
specific requirements of the task.

p(X1:T) autoregressively as p(X1:T) =
∏

t p(Xt|X1:t−1).
This allows us to focus on a simpler objective: learning a

conditional density function p̂(Xt|X1:t−1) that approximates

the true p(Xt|X1:t−1) at any given time step t.

The two objectives are as follows:

1. Global objective: The first objective aims to match the

entire sequence-level joint distribution between the true and

estimated data. This can be formalized as:

min
p̂

D (p(X1:T)∥p̂(X1:T)) , (1)

where D is a suitable distance measure between the two

distributions.

2. Local objective: The second objective focuses on match-

ing the conditional distributions at each time step for all t,

which can be expressed as:

min
p̂

D (p(Xt|X1:t−1)∥p̂(Xt|X1:t−1)) , (2)

In the ideal case for a GAN framework, the global ob-

jective corresponds to minimizing the Jensen-Shannon diver-

gence between the real and estimated distributions. On the

other hand, the local objective, under supervised learning,

corresponds to minimizing the Kullback-Leibler divergence.

Minimizing the global objective assumes the presence of a

perfect discriminator (which may not always be accessible),

while minimizing the local objective requires access to ground-

truth sequences (which are available in this case). Thus, our

approach combines the GAN objective (related to the global

distribution) with a supervised learning objective (focused on

the conditionals). Ultimately, this results in a training process

that integrates adversarial learning with teacher forcing-based

autoregressive learning, guiding the model toward more pre-

cise approximations.

IV. PROPOSED MODEL

As illustrated in Fig. 2, the framework consists of six

networks: two autoencoders, referred to as the loss function

autoencoder and the latent autoencoder, a generator, a super-

visor, and two discriminators, named the latent discriminator

and the feature discriminator. The loss function autoencoder

is employed to implement our novel time series loss, which

facilitates the generator network in more effectively capturing

the intrinsic characteristics of real time series data. The latent

autoencoder’s role is to facilitate training by generating com-

pressed representations in the latent space, thereby reducing

the likelihood of non-convergence within the GAN framework

[21]. The generator produces data in this lower-dimensional

latent space rather than in the feature space. The supervisor

network, integrated with a novel supervised loss function, is

specifically designed to learn the temporal dynamics of the

time series data through teacher-forcing training [16]. This is

crucial, as relying solely on the discriminators’ binary adver-

sarial feedback may not sufficiently prompt the generator to

capture the data’s stepwise conditional distributions. The latent

discriminator provides efficient feedback to the generator by

distinguishing between real and fake data in the latent space,

while the feature discriminator differentiates between fake and

real data in the feature space, providing secondary and more

accurate feedback to both the generator and the autoencoders.

As illustrated in Fig. 2, the input data x is encoded into

the latent space h
AE using the encoder function e, where

h
AE = eX (x). This encoding captures the essential features

of x through the latent autoencoder. The data reconstruction,

x
AE = rX (hAE), is then achieved by decoding h

AE with the

recovery function r, aiming to closely replicate the original

input. The generator function g transforms a random noise

vector z into synthetic latent data h
G = gX (z), which is

subsequently reconstructed into synthetic data x
G = rX (hG).

To further refine the synthetic data, the supervisor network

s processes h
G to generate a latent representation h

S =
sX (hG), from which the final synthetic data x̃ = rX (hS)
is reconstructed. Additionally, the encoding of the input data

x can be represented as h
L = êX (x), where ê is the encoder

function of the loss function autoencoder, designed to capture

Authorized licensed use limited to: Utah State University. Downloaded on May 08,2025 at 08:51:22 UTC from IEEE Xplore. Restrictions apply.

863

Generator Supervisor

Encoder Decoder

Feature
Discriminator

+

xt

xt

x~t

xAEt
Latent Autoencoder

LSGAN with Dual Discriminator and Supervisor

xGt

Latent
Discriminator

+

Encoder Decoder

Loss Function Autoencoder

x~t

xt

hLt h~t

hAE

hG hS

Fig. 2: The figure showcases the architecture of SeriesGAN for time series
generation. It includes two autoencoders, which play a crucial role in loss
function calculation and facilitate lower-dimensionality training of the GAN
network. Additionally, it incorporates two discriminators that enhance the data
reconstruction capabilities of the autoencoder and improve the data generation
quality of the generator network.

the key characteristics of x. Similarly, the encoding of the

synthetic data x̃ is obtained as h̃ = êX (x̃).

A. Autoregressive Learning

Combining the GAN framework with autoregressive learn-

ing enables us not only to approximate the true distribu-

tion p(X1:T) through a learned probability density function

p̂(X1:T), but also to model the conditional density function

p̂(Xt|X1:t−1) that approximates the true p(Xt|X1:t−1) at any

given time step t. To achieve this, SeriesGAN utilizes a GRU-

based supervisor network trained alongside the generator to

meet both objectives.

The SeriesGAN framework consists of four distinct training

phases. In the first two phases, the two autoencoders are

trained independently of the other networks to effectively learn

the encoding and decoding representations of the real data.

This isolated training ensures that each autoencoder captures

the underlying structure of the data before integrating with the

rest of the model. In the third phase of training, the supervisor

network is separately trained to predict the second next times-

tamp t by leveraging timestamps 1 to t − 2, which leads to

improved performance compared to the conventional approach

of predicting the next timestamp t based on 1 to t− 1. In the

fourth phase, the generator and supervisor are trained together

as a single integrated network using a combined loss function

LG, which updates the weights of both components. During

this phase, the latent and feature autoencoders undergo joint

training with the generator-supervisor model in an adversarial

framework. The loss LG in (3) is composed of multiple sub-

losses, including the supervised loss LS , which captures the

temporal dynamics during teacher-forcing training, and adver-

sarial feedback losses LUlatent
and LUfeature

from the latent

and feature discriminators, respectively. Moreover, SeriesGAN

incorporates the Mean Absolute Error (MAE) between the real

data x and the generated data x̃, represented by LV , ensuring

the generated data closely matches the statistical properties of

the real data. The network also introduces a novel autoencoder-

based time series loss LTS , which further enhances the quality

of the generated data by embedding the characteristics of the

training data into the generator, leading to more accurate and

reliable outputs.

LG = LUlatent
+ LUfeature

+ LS + LV + LTS (3)

LV = LMean + LV ariance (4)

The sub-loss function LV is designed to assist the generator

in learning the distribution of the real data by providing the

differences between the mean and variance of a batch of real

and synthetic data.

LMean = Ex1:T∼p

[

∑

t

∣

∣

∣

∣

∣

1

N

N
∑

n=1

xtn −
1

N

N
∑

n=1

x̃tn

∣

∣

∣

∣

∣

]

(5)

Where LMean computes the MAE between the mean of

a batch of real data x and synthetic data x̃. We consider

sequences of temporal data, denoted X1:T , drawn from a

joint distribution p, where each sample is indexed by n ∈
{1, . . . , N} and the batch is represented as B = {xn,1:Tn

}Nn=1
.

LVariance =Ex1:T∼p

[

∑

t

∣

∣

∣

∣

∣

1

N

N
∑

n=1

(xtn − xt)
2

−
1

N

N
∑

n=1

(x̃tn − x̃t)
2

∣

∣

∣

∣

∣

]

(6)

Where LVariance measures the MAE between the variance of

a batch of real data x and synthetic data x̃. Here, x represents

the mean of x, and x̃ represents the mean of x̃ for a batch of

data.

Our novel contribution, LS , enhances the learning process

by introducing additional structure. In closed-loop mode, the

generator receives sequences of real data embeddings h1:t−2

(produced by the latent autoencoder) to predict the latent vec-

tor at the second next time step ht . Gradients are calculated

from a loss that measures the divergence between the dis-

tributions p(Ht|H1:t−2) and p̂(Ht|H1:t−2). Using maximum

likelihood estimation, this leads to the well-known supervised

loss,

LS = Ex1:T∼p

[

∑

t

∥

∥h
G
t − sX (hG

t−2
)
∥

∥

2

]

(7)

Where s represent the supervisor network function, while

h
G
t denotes the output of the generator at timestamp t.

B. Dual-Discriminator Training

Training a GAN framework alongside an autoencoder en-

ables the generator to produce data within the latent space,

which has lower dimensionality compared to the feature space.

This reduces the likelihood of non-convergence, a common

Authorized licensed use limited to: Utah State University. Downloaded on May 08,2025 at 08:51:22 UTC from IEEE Xplore. Restrictions apply.

864

issue in GAN networks, particularly when handling high-

dimensional multivariate time series data. However, adversar-

ial training within the latent space can lead to the generation

of noisy data for two key reasons. First, the generator relies

on adversarial feedback in the latent space, which, while more

efficient, is often insufficient since some data characteristics

are inevitably lost during encoding. Second, the autoencoder

struggles to fully preserve the generated data’s attributes when

only reconstruction loss is considered [22]. On the other

hand, discrimination within the feature space provides more

accurate, though less efficient, feedback for the generator. This

type of feedback can also be beneficial to the autoencoder,

aiding it in improving its decoding performance through adver-

sarial feedback mechanisms. To leverage the benefits of both

latent and feature space feedback, the SeriesGAN framework

incorporates two discriminators, ensuring the advantages of

both spaces are utilized.

Through a joint learning scheme, the loss function autoen-

coder is initially trained using only the reconstruction loss.

This trained network is then leveraged in the fourth phase,

where the LTS loss is applied to the generator network to

further refine the quality of the generated data. In the second

phase, the latent autoencoder is trained using a combination of

reconstruction loss LR and binary feedback from the feature

discriminator LUjoint
, where real data is the dataset (x) and

fake data is its reconstruction (xAE), as shown in (8) and

(9). This approach enhances the latent autoencoder’s precision

in reconstructing outputs. In the third phase, the supervisor

network is trained using supervised loss as discussed earlier.

In the fourth phase, all five networks (except for the loss

function autoencoder) are trained jointly. During this phase,

the feature discriminator distinguishes between real data (the

dataset, x) and the dataset reconstructions (xAE), with the

fake data comprising the generator’s decoded outputs (xG) and

the supervisor’s decoded outputs (x̃). The latent discriminator

differentiates between the encoder’s output (hAE) as real data

and the outputs of the generator (hG) and the supervisor (hS)

as fake data. The generator and supervisor networks undergo

integrated training through these two adversarial feedback

mechanisms, along with other feedback mechanisms including

LS , LV , and LTS . This fourth phase involves a shift in

the characterization of fake and real data for the feature

discriminator compared to the second phase.

LAE = LR + LUjoint
; LR = Ex1:T∼p

[

∑

t

∥xt − x
AE

t∥2

]

(8)

LR refers to the conventional reconstruction loss, which is

used for training autoencoders.

LUjoint
= Ex1:T∼p

[

∑

t

log yt

]

+ Ex1:T∼p̂

[

∑

t

log(1− ỹt)

]

(9)

Let ỹ = dX (xAE) and y = dX (x), where d represents

the feature discriminator function. The probability distribution

of the real data is denoted by p, while p̂ corresponds to the

probability distribution of the synthetic data.

C. Autoencoder-based Loss Function

We introduce a novel loss function to better guide the

generator network in learning the characteristics of the dataset.

Providing only adversarial feedback to the generator is insuf-

ficient for teaching the generator the nuances of time series

characteristics, resulting in synthetic data that does not closely

resemble real data. To address this issue, it is essential to

supply the generator with the intrinsic properties of the dataset.

However, this task is challenging due to the numerous features

present in time series data, including trend, seasonality, and

cyclicity [23]. By employing a GRU autoencoder, named the

loss function autoencoder, and training it with reconstruction

loss on the dataset, we can extract compressed features of the

time series samples via the encoder [24]. We then calculate

the loss function as the mean squared error (MSE) of the

mean and standard deviation (std) between the compressed

versions of a batch of real (hL) and synthetic (h̃) data. This

loss is termed LTS . Equations (10), (11), and (12) provide the

mathematical formulation of this loss function. The mapping

function ê serves as the encoder for this autoencoder. We

train the loss function autoencoder prior to training the overall

framework (first phase). Unlike the latent autoencoder, which

compresses the attribute dimension of a multivariate time

series (MVTS), this particular autoencoder compresses the

timestamp dimension of an MVTS.

LTS = LTSmean
+ LTSstd

; h
L = êX (x); h̃ = êX (x̃)

(10)

where ê is the encoder of the loss function autoencoder, x

represents the real data, and x̃ denotes the synthetic data.

LTSmean
= Ex1:T∼p

[

∑

t

∥

∥

∥

∥

∥

1

N

N
∑

n=1

h
L
tn

−
1

N

N
∑

n=1

h̃tn

∥

∥

∥

∥

∥

2

]

(11)

LTSmean
calculates the MSE between the mean values of a

batch of hL and h̃.

LTSstd
=Ex1:T∼p

[

∑

t

∥

∥

∥

∥

∥

√

√

√

√

1

N

N
∑

n=1

(hL
tn

− hL
t)

2

−

√

√

√

√

1

N

N
∑

n=1

(h̃tn − h̃t)2

∥

∥

∥

∥

∥

2

]

(12)

where LTSstd
calculates the MSE between the std values of

a batch of hL and h̃.

D. Early Stopping and LSGANs

Another significant issue with GANs is stability, and

TimeGAN is not exempt from this challenge. To improve

the framework’s stability, we implement an early stopping

algorithm, acknowledging that the best results may occur after

Authorized licensed use limited to: Utah State University. Downloaded on May 08,2025 at 08:51:22 UTC from IEEE Xplore. Restrictions apply.

865

a random rather than a fixed number of iterations. As outlined

in Algorithm 1, after completing half of the total epochs,

synthetic data generation begins, and the discriminative score

between real and synthetic data is calculated every 500 epochs.

Additionally, we calculate the MSE of both the mean and

std between the embeddings of the real and synthetic data,

which are obtained via the loss function autoencoder. This

is the same process as calculating LTS , to evaluate how

closely the synthetic data matches the real data in terms of

its characteristics. By combining the discriminative score with

LTS , we decide whether to save the current model and the

generated data. At the end of the training process, we ensure

the framework delivers optimal saved results, consistently

producing reliable and quality outcomes. Determining the

correct weighting of the two metrics is essential to effectively

compare the current model with previously saved versions.

The balance between the discriminative score and LTS can

vary depending on the dataset, making fixed hyperparameters

impractical. To handle this, the hyperparameter p1 is calculated

during the first evaluation of these metrics and is then used

consistently in subsequent epochs.

Furthermore, we employ LSGANs [12] instead of standard

GANs as they provide more stable training. More specifically,

standard GANs utilize a binary cross-entropy loss, which can

lead to issues with vanishing gradients. LSGANs, on the

other hand, use a least squares loss function, also known as

MSE loss, that mitigates this problem by providing smoother

gradients. This difference results in more stable and effective

training dynamics for LSGANs compared to standard GANs.

Algorithm 1 Early Stopping Algorithm

Initialize real and synthetic samples

Initialize h
L and h̃

Set N as the total number of epochs
Initialize totalError and p1 to None
Set checkEpoch← 500 and startEpoch← +N

2
,

for epoch = 1 to N do
if epoch g startEpoch and epoch mod checkEpoch == 0
then

disScore← calcDiscriminate(real, synthetic)
meanReal← calcMean(hL)
meanSynth← calcMean(h̃)
mseMean← calcMSE(meanReal,meanSynth)
varReal← calcVar(hL)
varSynth← calcVar(h̃)
mseV ar ← calcMSE(varReal, varSynth)
mseSTD ←

√
mseV ar

if p1 == None then
p1← disScore

mseMean+mseSTD

end if
score← disScore+ p1 ∗ (mseMean+mseSTD)
if score f totalError or totalError == None then

totalError ← score
saveSynthetic(synthetic)

end if
end if

end for

V. EXPERIMENTS

A. Code Repository and Hyperparameters

The SeriesGAN’s codebase, along with an extensive tutorial

on its usage, implementation specifics, and hyperparameters,

is accessible to the public for review and application 1.

We have designed SeriesGAN in such a way that by simply

calling a Python function and passing the time series data

along with the desired hyperparameters, the network initiates

training and, once complete, generates as many synthetic

samples as needed.

B. Datasets

We assess SeriesGAN’s performance on time series datasets

that exhibit diverse characteristics, including periodicity, noise

levels, length, and feature correlation. The datasets are chosen

based on various combinations of these characteristics.

1) Medical (ECG): The ECG5000 dataset from Physionet,

consisting of a 20-hour ECG recording with 140 time

points per sample, represents a univariate time series

that is both continuous and periodic. This dataset is

valuable due to the similarity in temporal dynamics

across different samples.

2) Space Weather (SWAN-SF): The Space Weather Ana-

lytics for Solar Flares (SWAN-SF) [3] dataset classifies

solar flares into five categories: GOES X, M, C, B, and

FQ, with the FQ class encompassing both flare-quiet

and GOES A-class events. For our study, we exclusively

focus on the major flare categories, GOES X and M.

We utilize only the first partition out of five, which

maintains an approximately equal distribution of these

major flares associated with a specific active region

(AR). This partition contains a multivariate time series

dataset with 24 unique attributes and a sequence length

of 60. This dataset is selected for its high dimensional

feature space and its distinctive temporal dynamics,

which include noise and variability.

3) Finance (Stocks): Stock price sequences are continuous

but aperiodic and features are correlated. We use daily

historical data from Google stocks spanning 2004 to

2019, which includes features such as volume, high,

low, opening, closing, and adjusted closing prices. This

dataset exhibits characteristics such as noise, underlying

trends, and randomness.

4) Sines: We construct multivariate sinusoidal time series

with distinct frequencies η and phases θ, resulting in

continuous, periodic, and multivariate signals where

each feature operates independently. For each dimension

i ranging from 1 to 5, the corresponding function is

given by xi(t) = sin(2πηt + θ), where η is sampled

from a uniform distribution U [0, 1] and θ is drawn from

U [−π, π]. This dataset is valuable for analysis because

its cyclic nature presents a significant challenge for any

learning technique.

1The codebase of SeriesGAN is available here:
https://github.com/samresume/SeriesGAN

Authorized licensed use limited to: Utah State University. Downloaded on May 08,2025 at 08:51:22 UTC from IEEE Xplore. Restrictions apply.

866

C. Evaluation Metrics and Baselines

We perform a comparative analysis of five leading time

series generation techniques: SeriesGAN, TimeGAN [13],

Teacher Forcing (T-Forcing) [16], Professor Forcing (P-

Forcing) [15], and Standard GAN [6]. These methods encom-

pass both GAN-based and autoregressive approaches, which

also form the foundation of SeriesGAN. The details of these

baselines were discussed earlier in Section II. To ensure a

fair comparison, identical hyperparameters, such as the type

of sequence-to-sequence model and the number of layers, are

consistently applied across all models.

Assessing the performance of GANs presents inherent chal-

lenges. Likelihood-based methods, such as Parzen window

estimates [25], can produce misleading results, while the

generator and discriminator losses do not directly correlate

with ‘visual quality’ [25], [26]. Although human evaluation

is often considered the most reliable approach to assessing

quality, it is both impractical and costly. Furthermore, in the

case of real-valued sequential data, visual inspection may not

always be feasible or effective. For example, the ECG signals

studied in this paper may appear random to individuals without

medical expertise. Therefore, in this work, the evaluation is

conducted based on three primary criteria, encompassing both

qualitative and quantitative measures of the generated data.

1) Visualization: We utilize t-SNE [27] and PCA [28]

analyses on both the original and synthetic datasets,

by flattening the temporal dimension for visualization

purposes. This means that we turn the multivariate time

series data into a vector by flattening the data. This

approach aids in qualitatively assessing how closely the

distribution of the generated samples matches that of the

original in a two-dimensional space. This metric reflects

one of the key characteristics of a GAN network, which

aims to estimate a probability density function, p̂(X1:T),
that closely approximates the true distribution p(X1:T).
It serves as a qualitative evaluation tool for assessing the

performance of a generative model.

2) Discriminative Score: For a quantitative measure of

similarity, we train a post-hoc time series classification

model using an LSTM to distinguish between sequences

from the original and generated datasets. Each sequence

from the original dataset is labeled as ‘real‘, while each

from the generated set is labeled as ‘synthetic‘. An

LSTM classifier is then trained to differentiate these

two categories in a standard supervised learning task.

The classification error on a reserved test set provides

a quantitative measure of this score. We then subtract

the result from 0.5, making the optimal result 0 instead

of 0.5. This metric highlights the performance of the

generated data in a downstream classification task, pro-

viding insight into how well the generated data supports

real-world classification applications.

3) Predictive Score: To assess the utility of the sampled

data, it is essential that it preserves the predictive qual-

ities of the original data. Specifically, we expect Series-

GAN to effectively capture conditional distributions over

time. To evaluate this, we train an LSTM model on the

synthetic dataset for sequence prediction, focusing on

forecasting the next-step temporal vectors for each input

sequence. The model’s accuracy is then tested on the

original dataset, with performance measured using the

MAE. This metric reflects the quality of the synthetic

data in downstream prediction tasks, one of the most

common objectives of time series analysis.

D. Evaluation Metrics Results

For each discriminative and predictive score experiment, we

conducted eight independent replications to mitigate the risk

of incidental results. We utilized the GRU architecture for

SeriesGAN as well as for all the baseline models. We also

applied the exact same hyperparameters across all techniques,

including the number of epochs, GRU layers, and batch size,

ensuring a fair and consistent comparison. The mean and

std for each experiment are presented in Tables I and II.

Based on these results, the SeriesGAN framework outperforms

state-of-the-art models, including TimeGAN, Teacher Forcing,

Professor Forcing, and Standard GAN, in both discriminative

and predictive scores. While TimeGAN may produce vari-

able outcomes across different training sessions, SeriesGAN

consistently achieves optimal performance. In terms of the

discriminative score, SeriesGAN reduces the metric by 34%

compared to TimeGAN, the current state-of-the-art. Further-

more, for the predictive score, SeriesGAN reduces the error

by 12% compared to TimeGAN. This highlights the effective-

ness of the additional components integrated into SeriesGAN,

which enhance both stability and overall performance. Both

SeriesGAN and TimeGAN demonstrate significantly enhanced

performance over the standard GAN, as shown in Tables I

and II. SeriesGAN achieves an average discriminative score

that is 54.1% lower and an average predictive score that is

46.2% lower than that of the standard GAN, while TimeGAN

shows a 30.4% improvement in the discriminative score and

a 39.3% improvement in the predictive score compared to

the standard GAN. This underscores the critical importance

of designing GAN models specifically tailored for time series

data and integrating specialized modules within standard GAN

architecture to optimize it for time series generation.

However, the analysis of t-SNE and PCA is also necessary

to make a final decision, as a model may only learn part of a

dataset’s probability distribution and generate high-quality data

for just a portion of that distribution. As a result, high discrimi-

native and predictive scores may be obtained, but the technique

may not be as effective in learning the entire distribution.

Based on Figs. 3 and 4, SeriesGAN is capable of learning

the full data distribution and generating data across the entire

distribution. Specifically, the PCA visualization results for the

Stocks and Sines datasets are impressive compared to the

baseline techniques, and the t-SNE visualization results for

Stocks and Sines are also promising.

Therefore, based on the three evaluation metrics and the

comparison of results, SeriesGAN achieved the desired ob-

Authorized licensed use limited to: Utah State University. Downloaded on May 08,2025 at 08:51:22 UTC from IEEE Xplore. Restrictions apply.

867

TABLE I

COMPARATIVE ANALYSIS OF DISCRIMINATIVE SCORE (WITH LOWER SCORES INDICATING BETTER PERFORMANCE)

Stocks Sines ECG SWAN-SF

SeriesGAN 0.1873 ± 0.0823 0.2083 ± 0.0869 0.1691 ± 0.0234 0.2644 ± 0.0501

TimeGAN 0.3262 ± 0.0389 0.2836 ± 0.1343 0.2716 ± 0.0874 0.3745 ± 0.1014

GAN 0.4998 ± 0.003 0.3209 ± 0.2274 0.4863 ± 0.0174 0.4979 ± 0.0001

T-Forcing 0.4764 ± 0.0142 0.3482 ± 0.1358 0.3511 ± 0.1011 0.4682 ± 0.0031

P-Forcing 0.4832 ± 0.0021 0.4918 ± 0.0013 0.3296 ± 0.106 0.4964 ± 0.0017

TABLE II

COMPARATIVE EVALUATION OF PREDICTIVE SCORES (WITH LOWER SCORES BEING BETTER)

Stocks Sines ECG SWAN-SF

SeriesGAN 0.041 ± 0.0002 0.2232 ± 0.0018 0.1268 ± 0.0007 0.0564 ± 0.0121

TimeGAN 0.0468 ± 0.0012 0.2452 ± 0.001 0.1297 ± 0.004 0.0824 ± 0.0117

GAN 0.186 ± 0.016 0.2334 ± 0.0109 0.1916 ± 0.000 0.2197 ± 0.0076

T-Forcing 0.0501 ± 0.0011 0.2755 ± 0.0052 0.1303 ± 0.0009 0.066 ± 0.0107

P-Forcing 0.1476 ± 0.0253 0.2247 ± 0.0072 0.1942 ± 0.002 0.2419 ± 0.0171

jectives discussed in Section III. It also outperformed the

best state-of-the-art techniques by a significant margin in

both quantitative and qualitative terms. However, as shown

in Figs. 3 and 4, the primary weakness of existing time

series generation techniques, including SeriesGAN, is their

suboptimal performance on long series, in this case the ECG

and SWAN-SF datasets. We define “long series” as those with

a number of timestamps equal to or exceeding 60. These GAN-

based techniques encounter difficulties in learning temporal

dynamics over extended durations.

E. Contribution of Each Novelty

In this section, we analyze the contribution and impact

of each novel component integrated into the SeriesGAN

framework. First, we compare SeriesGAN with a variant that

excludes the novel supervised loss used for autoregressive

learning, allowing us to assess the significance of this feature.

Next, we investigate the effect of removing the dual discrim-

inator mechanism, retaining only the latent discriminator to

evaluate its influence on network performance. Additionally,

we eliminate the autoencoder-based loss function to observe its

specific impact on the network’s behavior. Finally, we disable

the early stopping algorithm to examine the resulting changes

in overall performance. Each modification helps isolate and

understand the role of these components in enhancing the

SeriesGAN framework.

As shown in Table III, the novel supervised loss and early

stopping significantly enhance both discriminative and predic-

tive scores. Specifically, incorporating the novel supervised

loss led to a 33.1% reduction in discriminative score and a

44.57% reduction in predictive score. Similarly, implementing

early stopping yielded substantial improvements, reducing the

discriminative and predictive scores by 43.29% and 66.19%,

respectively. In contrast, dual discriminator training had a rel-

atively modest impact on metric improvement. Meanwhile, the

autoencoder-based time series loss demonstrated a promising

effect on enhancing evaluation metrics, contributing to the

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x-pca

0.2

0.1

0.0

0.1

0.2

0.3

0.4

y_
pc

a

PCA-SeriesGAN-Stocks
Original
Synthetic

2 1 0 1 2 3
x-pca

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

y_
pc

a

PCA-SeriesGAN-Sines
Original
Synthetic

2 1 0 1 2 3 4
x-pca

1

0

1

2

3

y_
pc

a

PCA-SeriesGAN-ECG
Original
Synthetic

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
x-pca

0.15

0.10

0.05

0.00

0.05

0.10

y_
pc

a

PCA-SeriesGAN-SWANSF
Original
Synthetic

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x-pca

0.5

0.0

0.5

1.0

1.5

y_
pc

a

TimeGAN-Stocks
Original
Synthetic

2 1 0 1 2
x-pca

1

0

1

2

3

y_
pc

a

TimeGAN-Sines
Original
Synthetic

3 2 1 0 1 2 3 4
x-pca

1

0

1

2

3

y_
pc

a

TimeGAN-ECG
Original
Synthetic

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
x-pca

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

y_
pc

a

TimeGAN-SWANSF
Original
Synthetic

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x-pca

0.6

0.4

0.2

0.0

0.2

y_
pc

a

GAN-Stocks

Original
Synthetic

2 1 0 1 2
x-pca

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y_
pc

a

GAN-Sines
Original
Synthetic

2 1 0 1 2 3
x-pca

1

0

1

2

3

4

y_
pc

a

GAN-ECG
Original
Synthetic

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
x-pca

0.6

0.4

0.2

0.0

0.2

0.4

0.6

y_
pc

a

GAN-SWANSF
Original
Synthetic

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x-pca

0.1

0.0

0.1

0.2

0.3

0.4

y_
pc

a

TForcing-Stocks
Original
Synthetic

2 1 0 1 2
x-pca

1.0

0.5

0.0

0.5

1.0

y_
pc

a

TForcing-Sines
Original
Synthetic

3 2 1 0 1 2 3
x-pca

1

0

1

2

3

y_
pc

a

TForcing-ECG
Original
Synthetic

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
x-pca

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

y_
pc

a

TForcing-SWANSF
Original
Synthetic

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x-pca

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

y_
pc

a

PForcing-Stocks
Original
Synthetic

2 1 0 1 2
x-pca

1.0

0.5

0.0

0.5

1.0

y_
pc

a

PForcing-Sines
Original
Synthetic

3 2 1 0 1 2 3 4
x-pca

1

0

1

2

3

y_
pc

a

PForcing-ECG
Original
Synthetic

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
x-pca

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
y_
pc

a

PForcing-SWANSF
Original
Synthetic

Fig. 3: PCA visualizations illustrate how the distributions of original and
synthetic data align. The top row shows SeriesGAN results, with TimeGAN,
Standard GAN, Teacher Forcing, and Professor Forcing visualizations dis-
played sequentially underneath. From left to right, the plots correspond to the
Stocks, Sines, ECG, and SWAN-SF datasets.

quality of the generated data. Ultimately, the combination of

these innovations creates a robust and stable network capable

of generating high-quality time series data while effectively

capturing the underlying distribution of the real data.

F. Examples of Generated Data

In this section, we present four randomly selected real and

synthetic data samples generated by SeriesGAN from the Sines

and ECG datasets, both of which exhibit consistent temporal

Authorized licensed use limited to: Utah State University. Downloaded on May 08,2025 at 08:51:22 UTC from IEEE Xplore. Restrictions apply.

868

TABLE III

THE CONTRIBUTION OF EACH INNOVATION IN SERIESGAN IS EVALUATED IN TERMS OF BOTH DISCRIMINATIVE AND PREDICTIVE SCORES

Discriminative Score

Stocks Sines ECG

SeriesGAN 0.1873 ± 0.0823 0.2083 ± 0.0869 0.1691 ± 0.0234

w/o Novel Supervised Loss 0.2334 ± 0.0441 0.2732 ± 0.0949 0.2427 ± 0.0581

w/o Dual Discriminators 0.2119 ± 0.0043 0.2340 ± 0.0886 0.2284 ± 0.0201

w/o Autoencoder-based Time Series Loss 0.2265 ± 0.0383 0.2497 ± 0.0991 0.1921 ± 0.0487

w/o Early Stopping 0.2782 ± 0.0443 0.2563 ± 0.1042 0.2677 ± 0.1003

Predictive Score

Stocks Sines ECG

SeriesGAN 0.041 ± 0.0002 0.2232 ± 0.0018 0.1268 ± 0.0007

w/o Novel Supervised Loss 0.0844 ± 0.0069 0.2792 ± 0.027 0.1303 ± 0.0022

w/o Dual Discriminators 0.0419 ± 0.0088 0.2306 ± 0.0199 0.1533 ± 0.008

w/o Autoencoder-based Time Series Loss 0.0594 ± 0.0081 0.261 ± 0.0072 0.1391 ± 0.0037

w/o Early Stopping 0.0955 ± 0.0203 0.259 ± 0.0122 0.1897 ± 0.0361

10 5 0 5 10 15
x-tsne

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y_
ts
ne

t-SNE-SeriesGAN-Stocks
Original
Synthetic

10 5 0 5 10
x-tsne

8

6

4

2

0

2

4

6

8

y_
ts
ne

t-SNE-SeriesGAN-Sines
Original
Synthetic

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
x-tsne

3

2

1

0

1

2

3

y_
ts
ne

t-SNE-SeriesGAN-ECG
Original
Synthetic

10 5 0 5 10
x-tsne

10

5

0

5

10

y_
ts
ne

t-SNE-SeriesGAN-SWANSF
Original
Synthetic

10 5 0 5 10
x-tsne

10

5

0

5

10

y_
ts
ne

TimeGAN-Stocks
Original
Synthetic

10 5 0 5 10
x-tsne

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

y_
ts
ne

TimeGAN-Sines

Original
Synthetic

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x-tsne

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

y_
ts
ne

TimeGAN-ECG

Original
Synthetic

10 5 0 5 10
x-tsne

10

5

0

5

10

y_
ts
ne

TimeGAN-SWANSF
Original
Synthetic

10 5 0 5 10
x-tsne

10

5

0

5

10

y_
ts
ne

GAN-Stocks
Original
Synthetic

10 5 0 5 10
x-tsne

10

5

0

5

10

y_
ts
ne

GAN-Sines
Original
Synthetic

15 10 5 0 5 10
x-tsne

10

5

0

5

10

15

y_
ts
ne

GAN-ECG
Original
Synthetic

10 5 0 5 10
x-tsne

10

5

0

5

10

y_
ts
ne

GAN-SWANSF

Original
Synthetic

10 5 0 5 10
x-tsne

10

5

0

5

10

y_
ts
ne

TForcing-Stocks
Original
Synthetic

10 5 0 5 10
x-tsne

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y_
ts
ne

TForcing-Sines
Original
Synthetic

10 5 0 5 10
x-tsne

7.5

5.0

2.5

0.0

2.5

5.0

7.5

y_
ts
ne

TForcing-ECG
Original
Synthetic

10 5 0 5 10
x-tsne

10

5

0

5

10

y_
ts
ne

TForcing-SWANSF
Original
Synthetic

10 5 0 5 10
x-tsne

10

5

0

5

10

y_
ts
ne

PForcing-Stocks
Original
Synthetic

15 10 5 0 5 10
x-tsne

10

5

0

5

10

y_
ts
ne

PForcing-Sines
Original
Synthetic

10 5 0 5 10
x-tsne

10

5

0

5

10

y_
ts
ne

PForcing-ECG
Original
Synthetic

10 5 0 5 10
x-tsne

15

10

5

0

5

10

15

y_
ts
ne

PForcing-SWANSF
Original
Synthetic

Fig. 4: t-SNE visualizations show distribution alignment between original
and synthetic data. The top row presents SeriesGAN results, followed by
TimeGAN, Standard GAN, Teacher Forcing, and Professor Forcing from top
to bottom. Left to right, plots represent Stocks, Sines, ECG, and SWAN-SF
datasets.

dynamics throughout their samples. This makes it meaningful

and easy to compare them without requiring specific knowl-

edge of the dataset. These examples are shown in Fig. 5.

The results demonstrate SeriesGAN’s effectiveness in learning

the temporal dynamics of time series data. For the Sines

dataset, which is a multivariate time series, only one feature is

displayed. The results of the generated Sines samples display

smooth data without any noise, demonstrating the effectiveness

of combining a GAN network with autoregressive learning.

0 10 20 30 40 50 60
Time

0.6

0.7

0.8

0.9

1.0

Am
pl

itu
de

Original Sine 1

0 10 20 30 40 50 60
Time

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Am
pl

itu
de

Original Sine 2

0 10 20 30 40 50 60
Time

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Original Sine 3

0 10 20 30 40 50 60
Time

0.6

0.7

0.8

0.9

1.0

Am
pl

itu
de

Original Sine 4

0 10 20 30 40 50 60
Time

0.6

0.7

0.8

0.9
Am

pl
itu

de

Synthetic Sine 1

0 10 20 30 40 50 60
Time

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Am
pl

itu
de

Synthetic Sine 2

0 10 20 30 40 50 60
Time

0.6

0.7

0.8

0.9

Am
pl

itu
de

Synthetic Sine 3

0 10 20 30 40 50 60
Time

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Synthetic Sine 4

0 20 40 60 80 100 120 140
Time

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Original ECG 1

0 20 40 60 80 100 120 140
Time

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Original ECG 2

0 20 40 60 80 100 120 140
Time

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Original ECG 3

0 20 40 60 80 100 120 140
Time

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Original ECG 4

0 20 40 60 80 100 120 140
Time

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Am
pl

itu
de

Synthetic ECG 1

0 20 40 60 80 100 120 140
Time

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Am
pl

itu
de

Synthetic ECG 2

0 20 40 60 80 100 120 140
Time

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Am
pl

itu
de

Synthetic ECG 3

0 20 40 60 80 100 120 140
Time

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Am
pl

itu
de

Synthetic ECG 4

Fig. 5: This illustration compares the original dataset samples (red) with their
synthetic counterparts generated by the SeriesGAN algorithm (green) for both
Sines and ECG samples.

This integration enables the framework to effectively capture

the temporal dynamics of the data. Furthermore, this success

is attributed to the novel loss function introduced for teacher

forcing training, which enhances the model’s ability to learn

temporal dependencies. By focusing on the second subsequent

time step instead of just the next, the model gains a more

comprehensive understanding of the temporal structure in the

time series data.

VI. CONCLUSION

In this study, we introduce SeriesGAN, an innovative model

designed for generating high-quality time series data. Se-

riesGAN surpasses TimeGAN and other advanced methods

by incorporating novel autoregressive training and a dual-

discriminator approach. These enhancements significantly im-

prove the model’s ability to capture temporal dynamics, reduce

information loss in the embedding space, and strengthen the

overall effectiveness of adversarial training. This improvement

Authorized licensed use limited to: Utah State University. Downloaded on May 08,2025 at 08:51:22 UTC from IEEE Xplore. Restrictions apply.

869

significantly boosts the performance of the autoencoder and

generator networks. Additionally, SeriesGAN introduces a

novel autoencoder-based loss function, employs Least Squares

GANs, and includes an early stopping mechanism. This

framework consistently surpasses current leading methods in

generating realistic time series data. Future work will ex-

plore integrating these concepts into adversarial autoencoders

to further develop a framework for producing high-quality

time series data. Another valuable research direction is the

incorporation of window-based (or kernel-based) learning into

these GAN models. This approach could pave the way for new

techniques that are better suited for generating long sequences.

VII. ACKNOWLEDGMENT

This work has been supported by the Division of Atmo-

spheric and Geospace Sciences within the Directorate for

Geosciences through NSF awards #2301397, #2204363, and

#2240022, as well as by the Office of Advanced Cyberinfras-

tructure within the Directorate for Computer and Information

Science and Engineering under NSF award #2305781.

REFERENCES

[1] M. EskandariNasab, S. M. Hamdi, and S. F. Boubrahimi, “Impacts of
data preprocessing and sampling techniques on solar flare prediction
from multivariate time series data of photospheric magnetic field param-
eters,” The Astrophysical Journal Supplement Series, vol. 275, no. 1, p.
6, Oct. 2024. [Online]. Available: https://dx.doi.org/10.3847/1538-4365/
ad7c4a.

[2] M. EskandariNasab, Z. Raeisi, R. A. Lashaki, and H. Najafi, “A
GRU–CNN model for auditory attention detection using microstate
and recurrence quantification analysis,” Scientific Reports, vol. 14, no.
1, p. 8861, Apr. 2024. [Online]. Available: https://doi.org/10.1038/
s41598-024-58886-y.

[3] R. A. Angryk et al., “Multivariate time series dataset for space weather
data analytics,” Scientific Data, vol. 7, no. 1, p. 227, 2020. [Online].
Available: https://doi.org/10.1038/s41597-020-0548-x.

[4] S. M. Hamdi, D. Kempton, R. Ma, S. F. Boubrahimi, and R. A. Angryk,
“A time series classification-based approach for solar flare prediction,”
2017 IEEE International Conference on Big Data (Big Data), Boston,
MA, USA, 2017, pp. 2543-2551. [Online]. Available: https://doi.org/10.
1109/BigData.2017.8258213.

[5] O. Vural, S. M. Hamdi, and S. F. Boubrahimi, “Contrastive represen-
tation learning for predicting solar flares from extremely imbalanced
multivariate time series data,” arXiv preprint arXiv:2410.00312, 2024.
[Online]. Available: https://arxiv.org/abs/2410.00312.

[6] I. J. Goodfellow et al., “Generative adversarial networks,” arXiv preprint

arXiv:1406.2661, 2014. [Online]. Available: https://arxiv.org/abs/1406.
2661

[7] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in Proceedings

of the 28th International Conference on Neural Information Processing

Systems (NIPS’15), Montreal, Canada, 2015, pp. 1171–1179. [Online].
Available: https://dl.acm.org/doi/10.5555/2969239.2969370.

[8] A. Goyal, A. Lamb, Y. Zhang, S. Zhang, A. Courville, and Y. Bengio,
“Professor forcing: a new algorithm for training recurrent networks,” in
Proceedings of the 30th International Conference on Neural Information

Processing Systems (NIPS’16), Barcelona, Spain, 2016, pp. 4608–4616.
[Online]. Available: https://dl.acm.org/doi/10.5555/3157382.3157612.

[9] O. Mogren, “C-RNN-GAN: Continuous recurrent neural networks with
adversarial training,” arXiv preprint arXiv:1611.09904, 2016. [Online].
Available: https://arxiv.org/abs/1611.09904.

[10] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical) time
series generation with recurrent conditional GANs,” arXiv preprint

arXiv:1706.02633, 2017. [Online]. Available: https://arxiv.org/abs/1706.
02633.

[11] G. Ramponi, P. Protopapas, M. Brambilla, and R. Janssen, “T-
CGAN: Conditional generative adversarial network for data augmen-
tation in noisy time series with irregular sampling,” arXiv preprint

arXiv:1811.08295, 2019. [Online]. Available: https://arxiv.org/abs/1811.
08295.

[12] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley, “Least
squares generative adversarial networks,” in 2017 IEEE International

Conference on Computer Vision (ICCV), 2017, pp. 2813–2821. [Online].
Available: https://doi.org/10.1109/ICCV.2017.304.

[13] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series generative
adversarial networks,” in Advances in Neural Information Processing

Systems, 2019. [Online]. Available: https://doi.org/10.1145/3559540.
[14] R. J. Williams and D. Zipser, “A learning algorithm for continually

running fully recurrent neural networks,” Neural Computation, vol. 1,
no. 2, pp. 270–280, 1989. [Online]. Available: https://doi.org/10.1162/
neco.1989.1.2.270.

[15] Y. Ganin et al., “Domain-adversarial training of neural networks,”
Journal of Machine Learning Research, vol. 17, no. 1, pp. 2096–2030,
Jan. 2016. [Online]. Available: https://dl.acm.org/doi/10.5555/2946645.
2946704.

[16] A. Goyal, A. Lamb, Y. Zhang, S. Zhang, A. Courville, and Y. Bengio,
“Professor forcing: a new algorithm for training recurrent networks,” in
Proceedings of the 30th International Conference on Neural Information

Processing Systems (NIPS’16), Barcelona, Spain, 2016, pp. 4608–4616.
[Online]. Available: https://dl.acm.org/doi/10.5555/3157382.3157612.

[17] K. O’Shea and R. Nash, “An introduction to convolutional neural
networks,” arXiv preprint arXiv:1511.08458, 2015. [Online]. Available:
https://arxiv.org/abs/1511.08458.

[18] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014. [Online]. Available: https://api.
semanticscholar.org/CorpusID:12803511.

[19] D. Saxena and J. Cao, “Generative adversarial networks (GANs):
Challenges, solutions, and future directions,” ACM Computing Surveys,
vol. 54, no. 3, Article 63, pp. 1–42, May 2022. [Online]. Available:
https://doi.org/10.1145/3446374.

[20] M. EskandariNasab, S. M. Hamdi, and S. F. Boubrahimi, “En-
hancing multivariate time series-based solar flare prediction with
multifaceted preprocessing and contrastive learning,” arXiv preprint

arXiv:2409.14016, 2024. [Online]. Available: https://arxiv.org/abs/2409.
14016.

[21] A. Aggarwal, M. Mittal, and G. Battineni, “Generative adversarial
network: An overview of theory and applications,” International Journal

of Information Management Data Insights, vol. 1, no. 1, p. 100004,
2021. [Online]. Available: https://doi.org/10.1016/j.jjimei.2020.100004.

[22] J. Wang, W. Zhou, J. Tang, Z. Fu, Q. Tian, and H. Li, “Unregularized
auto-encoder with generative adversarial networks for image genera-
tion,” in Proceedings of the 26th ACM International Conference on Mul-

timedia (MM ’18), Seoul, Republic of Korea, 2018, pp. 709–717. [On-
line]. Available: https://dl.acm.org/doi/abs/10.1145/3240508.3240569.

[23] C. H. Lubba, S. S. Sethi, P. Knaute, S. R. Schultz, B. D. Fulcher,
and N. S. Jones, “catch22: Canonical time-series characteristics,” Data

Mining and Knowledge Discovery, vol. 33, no. 6, pp. 1821–1852, Nov.
2019. [Online]. Available: https://doi.org/10.1007/s10618-019-00647-x.

[24] Q. Meng, D. Catchpoole, D. Skillicom, and P. J. Kennedy, “Relational
autoencoder for feature extraction,” in 2017 International Joint Con-

ference on Neural Networks (IJCNN), 2017, pp. 364–371. [Online].
Available: https://doi.org/10.1109/IJCNN.2017.7965877.

[25] L. Theis, A. van den Oord, and M. Bethge, “A note on the evaluation
of generative models,” CoRR, vol. abs/1511.01844, 2015. [Online].
Available: https://api.semanticscholar.org/CorpusID:2187805.

[26] Y. Wu, Y. Burda, R. Salakhutdinov, and R. Grosse, “On the quan-
titative analysis of decoder-based generative models,” arXiv preprint

arXiv:1611.04273, 2017. [Online]. Available: https://arxiv.org/abs/1611.
04273.

[27] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Jour-

nal of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008.
[Online]. Available: http://jmlr.org/papers/v9/vandermaaten08a.html.

[28] F. B. Bryant and P. R. Yarnold, “Principal-components analysis and
exploratory and confirmatory factor analysis,” in Reading and Under-

standing Multivariate Statistics, American Psychological Association,
1995, pp. 99–136. ISBN: 1-55798-273-2. [Online]. Available: https:
//psycnet.apa.org/record/1995-97110-004.

Authorized licensed use limited to: Utah State University. Downloaded on May 08,2025 at 08:51:22 UTC from IEEE Xplore. Restrictions apply.

