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Tensor time series, which is a time series consisting of tensorial observa-
tions, has become ubiquitous. It typically exhibits high dimensionality. One
approach for dimension reduction is to use a factor model structure, in a form
similar to Tucker tensor decomposition, except that the time dimension is
treated as a dynamic process with a time dependent structure. In this paper,
we introduce two approaches to estimate such a tensor factor model by us-
ing iterative orthogonal projections of the original tensor time series. These
approaches extend the existing estimation procedures and improve the esti-
mation accuracy and convergence rate significantly as proven in our theoret-
ical investigation. Our algorithms are similar to the higher-order orthogonal
projection method for tensor decomposition, but with significant differences
due to the need to unfold tensors in the iterations and the use of autocorre-
lation. Consequently, our analysis is significantly different from the existing
ones. Computational and statistical lower bounds are derived to prove the
optimality of the sample size requirement and convergence rate for the pro-
posed methods. Simulation study is conducted to further illustrate the statis-
tical properties of these estimators.

1. Introduction. Motivated by a diverse range of modern scientific applications, anal-
ysis of tensors or multidimensional arrays, has emerged as one of the most important and
active research areas in statistics, computer science and machine learning. Large tensors are
encountered in genomics (Alter and Golub (2005), Omberg, Golub and Alter (2007)), neu-
roimaging analysis (Zhou, Li and Zhu (2013), Sun and Li (2017)), recommender systems (Bi,
Qu and Shen (2018)), computer vision (Liu et al. (2012)), community detection (Anandku-
mar et al. (2014)), among others. High-order tensors often bring about high dimensionality
and impose significant computational challenges. For example, functional MRI produces a
time series of 3-dimensional brain images, typically consisting of hundreds of thousands of
voxels observed over time. Previous work has developed various tensor-based methods for
independent and identically distributed (i.i.d.) tensor data or tensor data with i.i.d. noise.
However, the statistical framework for general tensor time-series data is much less studied in
the literature.

Factor analysis is one of the most useful tools for understanding common dependence
among multidimensional outputs. Over the past decades, vector factor models have been ex-
tensively studied in the statistics and economics communities. For instance, Chamberlain and
Rothschild (1983), Bai and Ng (2002), Stock and Watson (2002) and Bai (2003) developed
the static factor model using principal component analysis (PCA). They assumed that the
common factors must have impact on most of the time series, and weak serial dependence
is allowed for the idiosyncratic noise process. Fan, Liao and Mincheva (2011, 2013), Fan,
Liu and Wang (2018) established large covariance matrix estimation based on the static fac-
tor model. The static factor model has been further extended to the dynamic factor model
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in Forni et al. (2000). In the dynamic factor model, the latent factors are assumed to fol-
low a time-series process, which is commonly taken to be a vector autoregressive process.
Fan, Liao and Wang (2016) studied semiparametric factor models through projected princi-
pal component analysis. Peña and Box (1987), Pan and Yao (2008), Lam, Yao and Bathia
(2011) and Lam and Yao (2012) adopted another type of factor model. They assumed that
the latent factors capture all dynamics of the observed process, and thus the idiosyncratic
noise process has no serial dependence. We will adopt this approach. We note that the factor
process may have complex dynamic behavior, resulting in complex dynamics of the observed
tensor, even with white additive noise process. Of course, when all the dynamics of the ob-
served tensor process are “forced” to be included in the signal process induced by the factor
process, situations may arise in which some factors are “weak” (or have impact on a small
portion of the observed series in the tensor). This leads us to consider the “signal strength” in
our investigation.

Although there have been significant efforts in developing methodologies and theories
for vector factor models, there is a paucity of literature on matrix- or tensor-valued time
series. Wang, Liu and Chen (2019) proposed a matrix factor model for matrix-valued time
series, which explores the matrix structure. Chen, Tsay and Chen (2020) established a general
framework for incorporating domain and prior knowledge in the matrix factor model through
linear constraints. Chen and Chen (2022) applied the matrix factor model to the dynamic
transport network. Chen and Fan (2023) developed an inferential theory of the matrix factor
model under a different setting from that in Wang, Liu and Chen (2019). Chang et al. (2023),
Han and Zhang (2023), Han, Zhang and Chen (2021) studied factor models with CP type low
rank structures.

Recently, Chen, Yang and Zhang (2022a) introduced a factor approach for analyzing high-
dimensional dynamic tensor time series in the form

(1.1) Xt = Mt + Et ,

where X1, . . . ,XT ∈ R
d1×···×dK are the observed tensor time series, Mt and Et are the cor-

responding signal and noise components of Xt , respectively. The goal is to estimate the un-
known signal tensor Mt from the tensor time series data. Following Lam and Yao (2012), it is
assumed that the signal tensor accommodates all dynamics, making the idiosyncratic noise Et

uncorrelated (white) across time. It is further assumed that Mt lives in a lower-dimensional
space and has certain multilinear decomposition. Specifically, we assume that Mt satisfies a
Tucker-type decomposition and model (1.1) can be written as

(1.2) Xt =Ft ×1 A1 ×2 . . . ×K AK + Et ,

where Ak is the deterministic loading matrix of size dk × rk and rk � dk , and the core tensor
Ft itself is a latent tensor factor process of dimension r1 ×· · ·× rK . Here, the k-mode product
of X ∈ R

d1×d2×···×dK with a matrix U ∈ R
d ′
k×dk , denoted as X ×k U , is an order K-tensor of

size d1 × · · · × dk−1 × d ′
k × dk+1 × · · · × dK such that

(X ×k U)i1,...,ik−1,j,ik+1,...,iK =
dk∑

ik=1

Xi1,i2,...,iK Uj,ik .

The core tensor Ft is usually much smaller than Xt in dimension. This structure provides
an effective dimension reduction, as all the comovements of individual time series in Xt are
driven by Ft . Without loss of generality, assume that Ak is of rank rk � dk . It should be
noted that vector and matrix factor models can be viewed as special cases of our model since
a vector time series is a tensor time series composed of a single fiber (K = 1), and a matrix
times series is one composed of a single slice (K = 2).
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Chen, Yang and Zhang (2022a) proposed two estimation procedures, namely TOPUP and
TIPUP, for estimating the column space spanned by the loading matrix Ak , for k = 1, . . . ,K .
The two procedures are based on different autocross-product operations of the observed ten-
sors Xt to accumulate information, but they both utilize the assumption that the noise Et and
Et−h, h > 0 are uncorrelated. The convergence rates of their estimators critically depend on
d = d1d2 . . . dK , a potentially very large number as dk, k = 1, . . . ,K , are large. Often a large
T , the length of the time series, is required for accurate estimation of the loading spaces.

In this paper, we propose extensions of the TOPUP and TIPUP procedures, motivated
by the following observation. Suppose that the loading matrices Ak are orthonormal with
A�

k Ak = I , and we are given A2, . . . ,AK . Let

Zt = Xt ×2 A�
2 ×3 . . . ×K A�

K; and E∗
t = Et ×2 A�

2 ×3 . . . ×K A�
K.

Then (1.2) leads to

(1.3) Zt = Ft ×1 A1 + E∗
t ,

where Zt is a d1 × r2 × · · · × rK tensor. Since rk � dk , Zt is a much smaller tensor than
Xt . Under proper conditions on the combined noise tensor E∗

t , the estimation of the loading
space of A1 based on Zt can be made significantly more accurate, as the convergence rate
now depends on d1r2 . . . rK rather than d1d2 . . . dK .

Of course, in practice we do not know A2, . . . ,AK . Similar to backfitting algorithms, we
propose an iterative algorithm. With a proper initial value, we iteratively estimate the loading
space of Ak at iteration j based on

Z(j)
t,k = Xt ×1 Â

(j)�
1 ×2 . . . ×k−1 Â

(j)�
k−1 ×k+1 Â

(j−1)�
k+1 ×k+2 . . . ×K Â

(j−1)�
K ,

using the estimate Â
(j−1)

k′ , k < k′ ≤ K obtained in the previous iteration and the estimate

Â
(j)

k′ ,1 ≤ k′ < k, obtained in the current iteration. Our theoretical investigation shows that the
iterative procedures for estimating A1 can achieve the convergence rate as if all A2, . . . ,AK

are known and we indeed observe Zt that follows model (1.3). We call the procedure iTOPUP
and iTIPUP, based on the matrix unfolding mechanism used, corresponding to TOPUP and
TIPUP procedures. To be more specific, our algorithms have two steps: (i) We first use the
estimated column space of factor loading matrices of TOPUP (resp., TIPUP) to construct the
initial estimate of factor loading spaces; (ii) We then iteratively perform matrix unfolding of
the autocross-moments of much smaller tensors Z(j)

t,k to obtain the final estimator.
We note that the iterative procedure is related to higher order orthogonal iteration (HOOI)

that has been widely studied in the literature; see, for example, De Lathauwer, De Moor
and Vandewalle (2000), Sheehan and Saad (2007), Liu et al. (2014), Zhang and Xia (2018),
among others. However, most of the existing works are not designed for tensor time series.
They do not consider the special role of the time mode nor the covariance structure in the time
direction. Typically, HOOI treats the signal part as fixed or deterministic. In this paper, we
treat the signal as dynamic in the sense that the core tensor Ft in (1.2) is dynamic and the rela-
tionship between Ft and the lagged Ft−h is of interest. Our setting requires special treatment
although each iteration of our iterative procedures also consists of power up and orthogonal
projection operations. While HOOI applies the SVD directly to the matrix unfolding of the
iteratively projected data, in our approach the SVD is applied to the matrix unfolding of the
outer and inner autocross-product of the iteratively projected data, respectively in iTOPUP
and iTIPUP. Although the iTOPUP algorithm proposed here can be reformulated as a twist
of HOOI on the autocross-moment tensor, the iTIPUP algorithm is different and cannot be
recast equivalently as HOOI. More importantly, the theoretical analysis and theoretical prop-
erties of the estimators are fundamentally different from those of HOOI, due to the dynamic
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structure of tensor time series and the need to use the autocross-product operation between
the SVD and data projection in each iteration. Different concentration inequalities are derived
to study the performance bounds.

In this paper, we establish upper bounds on the estimation errors for both the iTOPUP and
the iTIPUP, which are much sharper than the respective theoretical guarantees for TOPUP
and TIPUP, demonstrating the benefits of using iterative projection. It is also shown that the
number of iterations needed for convergence is of order no greater than log(d). We mainly
focus on the cases where the tensor dimensions are large and of similar order. We also cover
the cases where the ranks of the tensor factor process increase with the dimensions of the
tensor time series.

Chen, Yang and Zhang (2022a) showed that the TIPUP has a faster convergence rate in
estimation error than the TOPUP, under a mild condition on the level of signal cancellation.
In contrast, the theoretically guaranteed rate of convergence for the iTOPUP in this paper is
of the same order or even faster than that for the iTIPUP under certain regularity conditions.
Our results also suggest an interesting phenomenon. Using the iterative procedures, we find
that the increase in either dimension or sample size can improve the estimation of the fac-
tor loading space of the tensor factor model with the tensor order K ≥ 2. We believe that
such a super convergence rate is new in the literature. Specifically, under proper regularity
conditions, the convergence rate of the iterative procedures for estimating the space of Ak is
OP(T

−1/2d
−1/2
−k ), where d−k = ∏

j 	=k dj , while the existing rate for noniterative procedures
is OP(T

−1/2) for the vector factor model (Lam, Yao and Bathia (2011)) and the matrix/ten-
sor factor models (Wang, Liu and Chen (2019), Chen, Yang and Zhang (2022a)). While the
increase in the dimensions dk (k = 1, . . . ,K) does not improve the performance of the nonit-
erative estimators, it significantly improves that of the proposed iterative estimators.

In addition, we establish the computational lower bound for the estimation of the load-
ing spaces of tensor factor models under the hardness assumption of certain instances of
hypergraphic planted clique detection problem. It shows that the sample size requirement
(or signal to noise ratio condition) needed for using the TIPUP estimate as the initial values
for the iterative procedures is unavoidable for any computationally manageable estimation
procedure to achieve consistency, although the iterative procedures have faster convergence
rates. Furthermore, we provide a statistical lower bound that matches the convergence rates
of our iterative procedures under certain conditions, revealing a different effect of the ranks
rk (k = 1, . . . ,K) compared to tensor Tucker decomposition (Zhang and Xia (2018)).

Related work. We close this section by highlighting several recent papers on related topics.
First, we draw attention to the work of Foster (1996), Fan, Liao and Wang (2016) and Chen
et al. (2024). Chen et al. (2024) adopts an estimation precedure composed of a spectral ini-
tialization followed by an iterative refinement step, so that our methods are related to theirs.
However, due to the differences in problem setting and model assumptions, their estimation
procedures, performance bounds and analytic techniques are all significantly different from
ours. Foster (1996), Fan, Liao and Wang (2016) use the projection to the space spanned by
the sieve bases without iteration. Rogers, Li and Russell (2013) assumes the tensor factor
model in (1.2), with an additional specific AR structure on the dynamic of the factor pro-
cess. The additional model structure in their paper led to an EM type of estimation approach,
quite different from the approach we develop here. Wang, Zheng and Li (2024) concerns low
rank tensor AR model and uses a nuclear norm penalty to enforce the low rank structure and
optimization algorithms for estimation, again quite different from our approach.

The paper is organized as follows. Section 2.1 introduces basic notation and preliminaries
of tensor analysis. We present the tensor factor model and the iTOPUP and iTIPUP proce-
dures in Sections 2.2 and 2.3. Theoretical properties of the iTOPUP and iTIPUP are investi-
gated in Section 3. Section 5 provides a brief summary. Numerical comparison of our iterative
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procedures and other methods, and all technical details are relegated to the Supplementary
Material (Han et al. (2024)).

2. Tensor factor model by orthogonal iteration.

2.1. Notation and preliminaries for tensor analysis. Throughout this paper, for a vector
x = (x1, . . . , xp)�, define ‖x‖q = (x

q
1 + · · ·+ x

q
p)1/q , q ≥ 1. For a matrix A = (aij ) ∈ R

m×n,
write the SVD as A = U�V �, where � = diag(σ1(A), σ2(A), . . . , σmin{m,n}(A)), with sin-
gular values σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin{m,n}(A) ≥ 0 in descending order. The
matrix spectral norm is denoted as ‖A‖S = σ1(A). Write σmin(A) the smallest nontrivial
singular value of A. For two sequences of real numbers {an} and {bn}, write an = O(bn)

(resp., an � bn) if there exists a constant C such that |an| ≤ C|bn| (resp., 1/C ≤ an/bn ≤ C)
for all sufficiently large n, and write an = o(bn) if limn→∞ an/bn = 0. Write an � bn

(resp., an � bn) if there exist a constant C such that an ≤ Cbn (resp., an ≥ Cbn). Write
a ∧ b = min{a, b} and a ∨ b = max{a, b}. We use C,C1, c, c1, . . . to denote generic con-
stants, whose actual values may vary from line to line.

For any two m × r matrices with orthonormal columns, say, U and Û , suppose the singu-
lar values of U�Û are σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. A natural measure of distance between the
column spaces of U and Û is then

(2.1)
∥∥Û Û� − UU�∥∥

S =
√

1 − σ 2
r ,

which equals to the sine of the largest principle angle between the column spaces of U and Û .
For any two matrices A ∈ R

m1×r1 , B ∈ R
m2×r2 , denote the Kronecker product � as A � B ∈

R
m1m2×r1r2 . For any two tensors A ∈ R

m1×m2×···×mK , B ∈ R
r1×r2×···×rN , denote the tensor

product ⊗ as A⊗B ∈ R
m1×···×mK×r1×···×rN , such that

(A⊗B)i1,...,iK ,j1,...,jN
= (A)i1,...,iK (B)j1,...,jN

.

Let vec(·) be the vectorization of matrices and tensors. The mode-k unfolding (or matriciza-
tion) is defined as matk(A), which maps a tensor A to a matrix matk(A) ∈ R

mk×m−k where
m−k = ∏K

j 	=k mj . For example, if A ∈ R
m1×m2×m3 , then(

mat1(A)
)
i,(j+m2(k−1)) = (

mat2(A)
)
j,(k+m3(i−1)) = (

mat3(A)
)
k,(i+m1(j−1)) =Aijk.

For tensor A ∈ R
m1×m2×···×mK , the Hilbert–Schmidt norm is defined as

‖A‖HS =
√√√√ m1∑

i1=1

· · ·
mK∑

iK=1

(A)2
i1,...,iK

.

For a matrix, the Hilbert–Schmidt norm is just the Frobenius norm. Define the tensor operator
norm for an order-4 tensor A ∈ R

m1×m2×m3×m4 ,

‖A‖op = max
{ ∑

i1,i2,i3,i4

ui1,i2 · ui3,i4 · (A)i1,i2,i3,i4 : ‖U1‖HS = ‖U2‖HS = 1
}
,

where U1 = (ui1,i2) ∈ R
m1×m2 and U2 = (ui3,i4) ∈ R

m3×m4 .

2.2. Tensor factor model. Again, we consider as in (1.2),

Xt =Ft ×1 A1 ×2 . . . ×K AK + Et .

Without loss of generality, assume that Ak is of rank rk . Ak is not necessarily orthonormal,
which is different from the classical Tucker decomposition (Tucker (1966)). Model (1.2) is
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unchanged if we replace (A1, . . . ,AK,Ft ) by (A1H1, . . . ,AKHK,Ft ×K
k=1 H−1

k ) for any
invertible rk × rk matrix Hk . Although (A1, . . . ,AK,Ft ) are not uniquely determined, the
factor loading space, that is, the linear space spanned by the columns of Ak , is uniquely
defined. Denote the orthogonal projection to the column space of Ak as

(2.2) Pk = PAk
= Ak

(
A�

k Ak

)−1
A�

k = UkU
�
k ,

where Uk is the left singular matrix in the SVD Ak = Uk�kV
�
k . We use Pk to represent the

factor loading space of Ak . Thus, our objective is to estimate Pk .
The canonical representation of the tensor times series (1.2) is written as

Xt = F (cano)
t ×K

k=1 Uk + Et ,

where the diagonal and right singular matrices of Ak are absorbed into the canonical core
tensor F (cano)

t = Ft ×K
k=1 (�kV

�
k ). In this canonical form, the loading matrices Uk are iden-

tifiable up to a rotation in general and up to a permutation and sign changes of the columns
of Uk when the singular values are all distinct in the population version of the TOPUP or
TIPUP methods, as we describe in Section 2.3 below. In what follows, we may identify the
tensor time series in its canonical form, that is, Ak = Uk , without explicit declaration.

We do not impose any specific structure for the dynamics of the core tensor factor process
Ft ∈ R

r1×···×rK beyond the independence between the core process and the noise process,
and we do not require any additional structure on the correlation among different time-series
fibers of the noise process Et . Because of this generality, our estimator is based on the tensor
version of the lagged sample cross-product �̂h, h = 1, . . . , h0, where

(2.3) �̂h = �̂h(X1:T ) =
T∑

t=h+1

Xt−h ⊗Xt

T − h
∈ R

d1×···×dK×d1×···×dK

is an order-2K tensor. The population version of this tensor autocovariance is

�h = E

(
T∑

t=h+1

Xt−h ⊗Xt

T − h

)
= E

(
T∑

t=h+1

Mt−h ⊗Mt

T − h

)
.

Because Mt = Mt ×K
k=1 Pk for all t ,

�h = �h ×2K
k=1 Pk = E

(
T∑

t=h+1

Ft−h ⊗Ft

T − h

)
×2K

k=1 PkAk,

with the notation Ak = Ak−K and Pk = Pk−K for all k > K .

2.3. Estimating procedures. In this paper, we consider iterative estimation procedures to
achieve sharper convergence rates than the TOPUP and TIPUP procedures proposed in Chen,
Yang and Zhang (2022a). We start with a quick description of their procedures as they serve
as the starting point of our proposed iTOPUP and iTIPUP procedures. Note that the procedure
in Chen and Chen (2022) and Wang, Liu and Chen (2019) is the noniterative TOPUP.

(i) Time-series Outer Product Unfolding Procedure (TOPUP)

Let �̂h be the sample autocovariance of the data X1:T = (X1, . . . ,XT ) as in (2.3). Define

(2.4) TOPUPk = (
matk(�̂h), h = 1, . . . , h0

)
,

as a dk × (dd−kh0) matrix, where d = ∏K
k=1 dk , d−k = d/dk and h0 is a predetermined pos-

itive integer. Here, we note that TOPUPk is a function mapping a tensor time series to a
matrix. In TOPUPk , the information from different time lags is accumulated, which is useful
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especially when the sample size T is small. A relatively small h0 is typically used, since the
autocorrelation is often at its strongest with small time lags; see Remark 3.10.

The TOPUP method performs SVD of (2.4) to obtain the truncated left singular matrices

(2.5) Ûk-TOPUP(X1:T ,m) = LSVDm

(
matk

(
�̂h(X1:T )

)
, h = 1, . . . , h0

)
,

where LSVDm stands for the left singular matrix composed of the first m left singular vectors
corresponding to the largest m singular values. Here, Ûk-TOPUP is treated as an operator
that maps a noisy tensor time series to a matrix of m columns as an estimate of the mode-k
singular space of the low-rank signal tensor time series.

By (1.2) and (2.3), the expectation of (2.4) satisfies

E[TOPUPk]

= Ak matk

(
T∑

t=h+1

E

(Ft−h ⊗Ft

T − h

)
×k−1

l=1 Al ×2K
l=k+1 Al,h = 1, . . . , h0

)
,

(2.6)

so that the TOPUP is expected to be consistent in estimating the column space of Ak .

(ii) Time-series Inner Product Unfolding Procedure (TIPUP)

Similar to (2.4), define a dk × (dkh0) matrix as

(2.7) TIPUPk =
(

T∑
t=h+1

matk(Xt−h)mat�k (Xt )

T − h
,h = 1, . . . , h0

)
,

which replaces the tensor product by the inner product through (2.3) in (2.4). The TIPUP
method performs SVD:

(2.8) Ûk-TIPUP(X1:T ,m) = LSVDm

(
T∑

t=h+1

matk(Xt−h)mat�k (Xt )

T − h
,h = 1, . . . , h0

)
,

for k = 1, . . . ,K . Again, Ûk-TIPUP is treated as an operator. We note that the TOPUP method
in (2.5) utilizes the entire autocross-product tensor by applying the SVD to its mode k un-
folding, whereas the TIPUP only utilizes a matrix-valued linear mapping of the autocross-
product tensor by first taking the model-k′ trace operation for all k′ 	= k. The trace operation
cancels the noise but also possibly some signal.

(iii) iTOPUP and iTIPUP

Next, we describe a generic iterative procedure under the motivation described in Sec-
tion 1. Its pseudocode is provided in Algorithm 1. It incorporates two estimators/operators
Ûk-INIT and Ûk-ITER that map a tensor time series to an estimate of the loading matrix
Uk . Respectively, they stand for the procedures used for initialization and iteration. The
Ûk-TOPUP and Ûk-TIPUP operators in (2.5) and (2.8) are examples of such operators.

When we use the Ûk-TOPUP operator (2.5) for both Ûk-INIT and Ûk-ITER in Algo-
rithm 1, it will be called iTOPUP procedure. Similarly, iTIPUP uses Ûk-TIPUP operator (2.8)
for both Ûk-INIT and Ûk-ITER. Besides these two versions, we may also use Ûk-TIPUP
for Ûk-INIT and Ûk-TOPUP for Ûk-ITER, named as TIPUP-iTOPUP. Similarly, TOPUP-
iTIPUP uses Ûk-TOPUP as Ûk-INIT and Ûk-TIPUP as Ûk-ITER. These variants are some-
times useful, because TOPUP and TIPUP have different theoretical properties as the initial-
izer or for iteration, as we will discuss in Section 3. Other estimators of the loading spaces
based on the tensor time series can also be used in place of Ûk-INIT and Ûk-ITER, such as the
conventional high order SVD for tensor decomposition, which we refer to as the Unfolding
Procedure (UP), that simply performs SVD of the matricization along the appropriate mode
of the K + 1 order tensor (X1, . . . ,XT ) with time dimension as the additional (K + 1)th
mode.
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Algorithm 1 A generic iterative algorithm

1: Input: Xt ∈ R
d1×···×dK for t = 1, . . . , T , rk for all k = 1, ..,K , the tolerance parameter

ε > 0, the maximum number of iterations J , and the Ûk-INIT and Ûk-ITER operators.
2: Let j = 0, initiate via applying Ûk-INIT on {X1:T }, for k = 1, . . . ,K , to obtain

Û
(0)
k = Ûk-INITk(X1:T , rk).

3: repeat
4: Let j = j + 1. At the j th iteration, for k = 1, . . . ,K , given previous estimates

(Û
(j−1)
k+1 , . . . , Û

(j−1)
K ) and (Û

(j)
1 , . . . , Û

(j)
k−1), sequentially calculate

Z(j)
t,k = Xt ×1

(
Û

(j)
1

)� ×2 · · · ×k−1
(
Û

(j)
k−1

)� ×k+1
(
Û

(j−1)
k+1

)� ×k+2 · · · ×K

(
Û

(j−1)
K

)�
,

for t = 1, . . . , T . Perform Ûk-ITER on the new tensor time series Z(j)
1:T ,k =

(Z(j)
1,k , . . . ,Z

(j)
T ,k).

Û
(j)
k = Ûk-ITERk

(
Z(j)

1:T ,k, rk
)
.

5: until j = J or

max
1≤k≤K

∥∥Û (j)
k

(
Û

(j)
k

)� − Û
(j−1)
k

(
Û

(j−1)
k

)�∥∥
S ≤ ε,

6: Estimate and output:

Û iFinal
k = Û

(j)
k , k = 1, . . . ,K,

P̂k
iFinal = Û iFinal

k

(
Û iFinal

k

)�
, k = 1, . . . ,K,

F̂ iFinal
t = Xt ×K

k=1
(
Û iFinal

k

)�
, t = 1, . . . , T ,

Ê iFinal
t = Xt −Xt ×1 P̂ iFinal

1 ×2 · · · ×K P̂ iFinal
K , t = 1, . . . , T .

REMARK 2.1. While Algorithm 1 resembles an HOOI-type iteration of the orthogonal
projection and singular matrix estimation methods, the proposed iTOPUP and iTIPUP are
significantly different from HOOI, which iterates the operations of

orthogonal projection → matrix unfolding → SVD.

In both iTOPUP and iTIPUP, each iteration carries out the operations

orthogonal projection → autocovariance → matrix unfolding → SVD.(2.9)

As the outer product is taken with TOPUPk in (2.4), its orthogonal projection and autocovari-
ance operations are exchangeable, so that we can write

iTOPUP = HOOI(�̂h, h = 1, . . . , h0)

as long as the HOOI is modified by applying U
(j)
ℓ to both mode ℓ and mode K + ℓ, ℓ 	= k in

the projection operation and leaving alone the (2K + 1)th mode in the lags 1 : h0 throughout.
However, for iTIPUP, the orthogonal projection and autocovariance operations in (2.9) are not
exchangeable as the projections are sandwiched inside the autocovariance. Needless to say,
the analysis of iTOPUP and iTIPUP is much more difficult than the conventional HOOI with
i.i.d. assumption due to the involvement of the autocovarinace operations in the time-axis in
the iterations.
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REMARK 2.2 (Rank determination). Here, the estimators are constructed with given
ranks r1, . . . , rK , though in theoretical analysis they are allowed to diverge. In practice, exist-
ing procedures for rank determination in the vector factor model, including the information
criteria approach (Bai and Ng (2002, 2007), Hallin and Liška (2007)) and ratio of eigenvalues
approach (Lam and Yao (2012), Ahn and Horenstein (2013)) can be extended to the tensor
factor model by treating d1 × · · · × dk tensors as d-dimensional vectors, d = ∏K

k=1 dk .

3. Theoretical properties. In this section, we present some theoretical properties of the
iterative procedures. We first present the additional notation needed for the discussion, and
then the error bounds for the iterative estimators under a minimum condition on the error
process Et in the model. These error bounds are quite general and cover many different mod-
els. To help decipher the general results, we present two concrete signal process models (or
general sets of assumptions) with simpler and more explicit convergence rates.

3.1. Notation. Let E[·] = E[·|{F1, . . . ,FT }]. Define d = ∏K
k=1 dk , d−k = d/dk , r =∏K

k=1 rk and r−k = r/rk . Define order-4 tensors

�k,h =
T∑

t=h+1

matk(Mt−h) ⊗ matk(Mt )

T − h
∈ R

dk×d−k×dk×d−k ,

�k,h =
T∑

t=h+1

matk(Ft−h) ⊗ matk(Ft )

T − h
∈ R

rk×r−k×rk×r−k ,(3.1)

�
(cano)
k,h =

T∑
t=h+1

matk(Mt−h ×K
k=1 U�

k ) ⊗ matk(Mt ×K
k=1 U�

k )

T − h
∈ R

rk×r−k×rk×r−k ,

with Uk from the SVD Ak = Uk�kV
�
k . We view �

(cano)
k,h as the canonical version of the

autocovariance of the factor process. The noiseless version of the matrix TOPUPk in (2.4) is

(3.2) mat1(�k,1:h0) = E[TOPUPk] ∈ R
dk×(dd−kh0),

with �k,1:h0 = (�k,h, h = 1, . . . , h0). The canonical factor version of (3.2) is mat1(�
(cano)
k,1:h0

) ∈
R

rk×(rr−kh0) with �
(cano)
k,1:h0

= (�
(cano)
k,h , h = 1, . . . , h0) ∈R

rk×r−k×rk×r−k×h0 . Similarly, define

�∗
k,h =

T∑
t=h+1

matk(Mt−h)mat�k (Mt )

T − h
∈ R

dk×dk ,

�∗
k,h =

T∑
t=h+1

matk(Ft−h)mat�k (Ft )

T − h
∈ R

rk×rk ,

�
∗(cano)
k,h = U�

k �∗
k,hUk

=
T∑

t=h+1

matk(Mt−h ×K
k=1 U�

k )mat�k (Mt ×K
k=1 U�

k )

T − h
∈R

rk×rk .

(3.3)

The noiseless version of (2.7) is

(3.4) �∗
k,1:h0

= (
�∗

k,h, h = 1, . . . , h0
) = E[TIPUPk] ∈ R

dk×(dkh0),

and its canonical factor version is �
∗(cano)
k,1:h0

= (�
∗(cano)
k,h , h = 1, . . . , h0) ∈ R

rk×(rkh0). Let τk,m

be the mth singular value of the noiseless version of the TOPUPk matrix,

τk,m = σm

(
E[TOPUPk]) = σm

(
mat1(�k,1:h0)

) = σm

(
mat1

(
�

(cano)
k,1:h0

))
.
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The signal strength for iTOPUP can be characterized as

(3.5) λk =
√

h
−1/2
0 τk,rk .

Similarly, let

τ ∗
k,m = σm

(
E(TIPUPk)

) = σm

(
�∗

k,1:h0

) = σm

(
�

∗(cano)
k,1:h0

)
.

The signal strength for iTIPUP can be characterized as

(3.6) λ∗
k =

√
h

−1/2
0 τ ∗

k,rk
.

We note that by (3.3) and the Cauchy–Schwarz inequality,

λ∗2
k ≤ h

−1/2
0

∥∥�∗
k,1:h0

∥∥
S ≤ max

h≤h0

∥∥�∗
k,h

∥∥
S ≤ ∥∥�∗

k,0
∥∥

S/(1 − h0/T ).

3.2. General error bounds. Our general error bounds for the proposed iTOPUP and
iTIPUP are established under the following assumption for the error process.

ASSUMPTION 1. The error process Et are independent Gaussian tensors conditionally on
the factor process {Ft , t ∈ Z}. In addition, there exists some constant σ > 0, such that

E
(
u� vec(Et )

)2 ≤ σ 2‖u‖2
2, u ∈ R

d .

Assumption 1 is used in Chen, Yang and Zhang (2022a) for the theoretical investigation of
the noniterative TIPUP and TOPUP, and is similar to those on the noise imposed in Lam, Yao
and Bathia (2011), Lam and Yao (2012). The normality assumption, which ensures fast con-
vergence rates in our analysis, is imposed for technical convenience. It accommodates general
patterns of dependence among individual time-series fibers, but also allows a presentation of
the main results with manageable analytical complexity. In fact, direct extension is visible in
our analysis under the sub-Gaussian and even more general tail probability conditions. Under
Assumption 1, the magnitude of the noise can be measured by the dimension dk before the
projection and by the rank rk after the projection. The main theorems (Theorems 3.1, 3.2 and
3.3) in this section are based on this assumption on the noise alone, and cover all thereafter
discussed settings of the signal Mt .

Let us first study the behavior of iTOPUP procedure. By Chen, Yang and Zhang (2022a),
the risk E[‖Û (0)

k Û
(0)�
k − UkU

�
k ‖S] of the TOPUP estimator for Uk , the initialization of

iTOPUP, is no larger than a constant times

R
(0)
k = λ−2

k σT −1/2{√dkd−kr−k

∥∥�∗
k,0

∥∥1/2
S + (

√
dk +

√
d−kr)‖�k,0‖1/2

op

+ σ
√

dkd−k + σdk

√
d−kT

−1/2},(3.7)

where d−k = ∏
j 	=k dj and r−k = ∏

j 	=k rj . A variation of the Wedin (1972) perturbation the-
ory, stated in Lemma 4.1, provides a sharper bound for the TOPUP estimator as follows.

PROPOSITION 3.1. Suppose Assumption 1 holds. Let h0 ≤ T/4. Define

Rk2 = λ−2
k σT −1/2{√rkr−k

∥∥�∗
k,0

∥∥1/2
S + (

√
dk + √

rr−k)‖�k,0‖1/2
op

+ σ(
√

dk + √
rr−k) + σ

√
dkrT

−1/2},(3.8)

R
(TOPUP)
k = Rk2 + (

R
(0)
k

)2
.(3.9)

If max1≤k≤K R
(0)
k = o(1), it holds simultaneously for all 1 ≤ k ≤ K that

E
∥∥P̂ (0)

k − Pk

∥∥
S �R

(TOPUP)
k .
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REMARK 3.1. In the rank one case (rk = 1, 1 ≤ k ≤ K), Proposition 1 in Ouyang and
Yuan (2022) provides the sharpness of the above bound. Additionally, for fixed rank, the
error bound for TIPUP in Chen, Yang and Zhang (2022b) was confirmed to be sharp by
Proposition 1 in Ouyang and Yuan (2022).

The aim of iTOPUP is to achieve dimension reduction by projecting the data in other
modes of the tensor time series from R

dj to R
rj , j 	= k. Ideally (e.g., when the true projection

matrices Uj are used), this would reduce the rate given in (3.7) and (3.9) to

R
(ideal)
k =Rk2 + R2

k1,(3.10)

by replacing all dj in R
(0)
k with rj , j 	= k, where

Rk1 = λ−2
k σT −1/2{√dkr−k

∥∥�∗
k,0

∥∥1/2
S + (

√
dk + √

r−kr)‖�k,0‖1/2
op

+ σ
√

dkr−k + σdk
√

r−kT
−1/2}.

However, because the iteration uses the estimated Uj , j 	= k, of total dimension d∗−k =∑
j 	=k dj rj , our analysis also involves the following additional error term:

(3.11) R
(add)
k = λ−2

k σ 2T −1
(
d∗−k +

√
d∗−kdkr−k

)
.

The following theorem provides conditions under which the ideal rate is indeed achieved.

THEOREM 3.1. Suppose Assumption 1 holds. Let h0 ≤ T/4 and Pk , �k,0, �∗
k,0 and

λk be as in (2.2), (3.1), (3.3) and (3.5), respectively. Let R(0) = max1≤k≤K R
(0)
k with

the R
(0)
k in (3.7), R(TOPUP) = max1≤k≤K R

(TOPUP)
k with the R

(TOPUP)
k in (3.9), R(ideal) =

max1≤k≤K R
(ideal)
k with the R

(ideal)
k in (3.10) and R(add) = max1≤k≤K R

(add)
k with the R

(add)
k

in (3.11). Let P̂
(m)
k = Û

(m)
k Û

(m)�
k with the m-step estimator Û

(m)
k in the iTOPUP algorithm.

Then the following statements hold for a certain numerical constant C(TOPUP)
1 and a constant

C
(iter)
1,K depending on K only: When

(3.12) C
(TOPUP)
1 R(0) ≤ (1 − ρ)/4 and C

(iter)
1,K

(
R(ideal) + R(add)) ≤ ρ

with a constant 0 < ρ < 1, it holds simultaneously for all 1 ≤ k ≤ K and m ≥ 0 that

(3.13)
∥∥P̂ (m)

k − Pk

∥∥
S ≤ 2C

(TOPUP)
1

((
1 − ρm)

(1 − ρ)−1R(ideal) + (
ρm/2

)
R(TOPUP))

in an event with probability at least 1 − ∑K
k=1 e−dk . In particular, after at most J =

�log(maxk d−k/r−k)/ log(1/ρ)� iterations,

E

[
max

1≤k≤K

∥∥P̂ (J )
k − Pk

∥∥
S

]
≤ 3C

(TOPUP)
1

1 − ρ
R(ideal) +

K∑
k=1

e−dk .(3.14)

REMARK 3.2. The essence of our analysis of iTOPUP is that under (3.12), each iteration
is a contraction of the error in the estimation of ×j 	=kUj in a small neighborhood of it.
The upper bound (3.13) for the error of the m-step estimator is comprised of two terms
respectively corresponding to the cumulative iteration error and the contracted error of the
initial estimator. Of course, after sufficiently large number of iterations, the first term would
dominate the second as in (3.14).
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REMARK 3.3. The constant C
(TOPUP)
1 is taken in (3.12) to guarantee sufficient accuracy

of the initialization of iTOPUP in the following sense:

(3.15) max
k≤K

E
∥∥Û (0)

k

(
Û

(0)
k

)� − Pk

∥∥
S ≤ C

(TOPUP)
1 R(0)

with at least probability 1 − 8−1 ∑K
k=1 e−dk . The consistency of the noniterative TOPUP esti-

mator requires R(0) → 0 (Chen, Yang and Zhang (2022a)). However, here we do not require
the TOPUP estimator as the initial value to be consistent. For (3.13) to hold, the TOPUP
estimator is only required to be sufficiently close to the ground truth as in (3.15).

REMARK 3.4. It is relatively easy to verify that the first part of (3.12) implies the second
part under many circumstances, including when dk are of the same order, rk are of the same
order and rk � d

1−1/K
k (K ≥ 2). In Zhang and Xia (2018), condition maxk rk � mink d

1/2
k is

imposed to control the complexity of the estimated Uj in HOOI although their error bound
is sharp and their model is very different. In Corollaries 3.1 and 3.3 below, we prove that the
second part of (3.12) follows from the first part respectively in a general fixed rank model
and a general diverging rank model. In fact, R

(ideal)
k + R

(add)
k � R(0) typically so that the

second part of (3.12) provides a nonasymptotic lower bound for the ρ in (3.13), allowing
ρ = ρT,dk,d

∗−k,rk,r−k,λk
→ 0. In Corollary 3.1 below, ρ = C

(iter)
1,K (R(ideal) + R(add)) is taken in

(3.12) to give (3.14) in one iteration when R
(ideal)
k dominates R

(add)
k .

REMARK 3.5. When the loading matrices Ak and the TOPUP version of the matrix un-
folding of the autocovariance of Ft all have bounded condition numbers and average squared
entries of magnitude 1, λ2

k , ‖�∗
k,0‖S and ‖�k,0‖op are all of the order d × poly(r1, . . . , rK).

In this case, Theorem 3.1 just requires T ≥ poly(r1, . . . , rK) for the initialization to achieve
through iteration the fast convergence rate T −1/2d

−1/2
−k poly(r1, . . . , rK); see Corollary 3.3 for

details. This is in sharp contrast to the results of traditional factor analysis, which requires
T → ∞ to consistently estimate the loading spaces. The main reason is that the other ten-
sor modes provide additional information and in certain sense serve as additional samples.
Roughly speaking, we have totally dT = dkd−kT observations in the tensor time series to
estimate the dkrk parameters in the projection to the column space of the loading matrix Ak ,
where rk � d−kT in the above “regular” case.

Now, let us consider the statistical performance of iTIPUP procedure. Again, by Chen,
Yang and Zhang (2022a) the TIPUP risk in the estimation of Pk is bounded by

E
[∥∥P̂ (TIPUP)

k − Pk

∥∥
S

]
� R

∗(0)
k = (

λ∗
k

)−2
σT −1/2

√
dk

(∥∥�∗
k,0

∥∥1/2
S + σ

√
d−k

)
(3.16)

with d−k = ∏
j 	=k dj , and the aim of iTIPUP is to achieve the ideal rate

(3.17) R
∗(ideal)
k = (

λ∗
k

)−2
σT −1/2

√
dk

(∥∥�∗
k,0

∥∥1/2
S + σ

√
r−k

)
through dimension reduction, where r−k = ∏

j 	=k rj . As in the case of iTOPUP, our error
bound for iTIPUP involves the additional error term

(3.18) R
∗(add)
k =

√
d∗−k/dkR

∗(ideal)
k .

The following theorem, which allows the ranks rk to grow to infinity as well as dk when
T → ∞, provides sufficient conditions to guarantee the ideal convergence rate for iTIPUP.
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THEOREM 3.2. Suppose Assumption 1 holds. Let Pk , �∗
k,0 and λ∗

k be as in (2.2), (3.3)
and (3.6), respectively. Let h0 ≤ T/4, and

R∗(0) = max
1≤k≤K

R
∗(0)
k ; R∗(ideal) = max

1≤k≤K
R

∗(ideal)
k , R∗(add) = max

1≤k≤K
R

∗(add)
k

with R
∗(0)
k in (3.16), R

∗(ideal)
k in (3.17) and R

∗(add)
k in (3.18). Let P̂ (m)

k = Û
(m)
k Û

(m)�
k with the

m-step estimator Û
(m)
k in the iTIPUP algorithm. Then the following statements hold for a

certain numerical constant C(TIPUP)
1 and a constant C(iter)

1,K depending on K only: When

(3.19) C
(TIPUP)
1 R∗(0) ≤ min

1≤k≤K

(1 − ρ)λ∗2
k

8‖�∗
k,0‖S

and C
(iter)
1,K

(
R∗(ideal) + R∗(add)) ≤ ρ

with a constant 0 < ρ < 1, it holds simultaneously for all 1 ≤ k ≤ K and m ≥ 0 that

(3.20)
∥∥P̂ (m)

k − Pk

∥∥
S ≤ 2C

(TIPUP)
1

((
1 − ρm)

(1 − ρ)−1R∗(ideal) + (
ρm/2

)
R∗(0))

in an event with probability at least 1 − ∑K
k=1 e−dk . In particular, after at most J =

�log(maxk d−k/r−k)/ log(1/ρ)� iterations,

E

[
max

1≤k≤K

∥∥P̂ (J )
k − Pk

∥∥
S

]
≤ 3C

(TIPUP)
1

1 − ρ
R∗(ideal) +

K∑
k=1

e−dk .(3.21)

We briefly discuss the conditions and conclusions of Theorem 3.2 as the details are par-
allel to the remarks below Theorem 3.1. By (3.3), (3.6) and the Cauchy–Schwarz inequality,
(1 − h0/T )λ∗2

k ≤ ‖�∗
k,0‖S, so that the first condition in (3.19) guarantees a sufficiently small

R∗(0), which implies a sufficiently small error in the initialization of iTIPUP by (3.16). The
second condition in (3.19) again has two terms respectively reflecting the ideal rate after di-
mension reduction by the true U−k = �j 	=kUj in the estimation of Uk and the extra cost of
estimating U−k . The upper bound (3.20) for the error of the m-step estimator is also com-
prised of two terms representing the cumulative iteration error and contracted initialization
error. In Corollary 3.2 below with fixed rk , the smallest ρ = C

(iter)
1,K (R∗(ideal) + R∗(add)) is

taken in (3.19) to achieve (3.21) in one iteration when R
∗(ideal)
k dominates R

∗(add)
k . Moreover,

Theorem 3.2 allows diverging ranks rk and convergence rate T −1/2d
−1/2
−k poly(r1, . . . , rK)

under proper conditions as discussed in Remark 3.5.
As discussed in Section 2.3, we can mix the TOPUP and TIPUP operations for the initia-

tion and iterative operations in Algorithm 1. For example, the proof of Theorems 3.1 yields
the following error bound for the mixed TIPUP-iTOPUP algorithm.

THEOREM 3.3. Assumption 1 holds. Let R(0), R(ideal) and R(add) be as in Theorem 3.1
and R∗(0) be as in Theorem 3.2. Let P̂ (m)

k = Û
(m)
k Û

(m)�
k with Û

(m)
k being the m-step estimator

in the TIPUP-iTOPUP algorithm. Then the following statement holds for a certain numerical
constant C(TOPUP)

1 and a constant C(iter)
1,K depending on K only: When

(3.22) C
(TOPUP)
1 R∗(0) ≤ (1 − ρ)/4 and C

(iter)
1,K

(
R(ideal) + R(add)) ≤ ρ

with a constant 0 < ρ < 1, it holds in an event with probability at least 1 − ∑K
k=1 e−dk that

simultaneously for all 1 ≤ k ≤ K and m ≥ 0∥∥P̂ (m)
k − Pk

∥∥
S ≤ 2C

(TOPUP)
1

((
1 − ρm)

(1 − ρ)−1R(ideal) + (
ρm/2

)
R∗(0)).

We omit the statement of an analogous error bound for the TOPUP-iTIPUP algorithm.
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3.3. Fixed rank factor process. In this section, we provide the convergence rate when the
dimensions of the factors Ft , or equivalently the ranks of the signal process Mt , r1, . . . , rK ,
are fixed, and the autocross-outer product of the factor process is ergodic. Formally, we im-
pose the following additional assumption.

ASSUMPTION 2. The ranks r1, . . . , rK are fixed. The factor process Ft is weakly station-
ary and its autocross-outer-product process is ergodic in the sense of

1

T − h

T∑
t=h+1

Ft−h ⊗Ft −→ E(Ft−h ⊗Ft ) in probability,

where the elements of E(Ft−h ⊗ Ft ) are all finite. In addition, the condition numbers of
A�

k Ak (k = 1, . . . ,K) are bounded. Furthermore, assume that h0 is fixed, and:

(i) (TOPUP related): E[mat1(�k,1:h0)] is of rank rk for 1 ≤ k ≤ K .
(ii) (TIPUP related): E[�∗(cano)

k,1:h0
] is of rank rk for 1 ≤ k ≤ K .

Under Assumption 2, the factor process has a fixed expected autocross-moment tensor with
fixed dimensions. The assumption that the condition numbers of A�

k Ak (k = 1, . . . ,K) are
bounded corresponds to the pervasive condition (e.g., Stock and Watson (2002), Bai (2003)).
It ensures that all the singular values of Ak are of the same order. Such conditions are com-
monly imposed in factor analysis.

As our methods are based on autocross-moment at nonzero lags, we do not need to assume
any specific model for the latent process Ft , except some rank conditions in Assumption 2(i)
and (ii). Since the columns of �

∗(cano)
k,1:h0

are linear combinations of those of mat1(�
(cano)
k,1:h0

)

and E[mat1(�k,1:h0)] and E[mat1(�
(cano)
k,1:h0

)] have the same rank, Assumption 2(ii) implies
Assumption 2(i).

In order to provide a more concrete understanding of Assumption 2(i) and (ii), con-
sider the case of k = 1 and K = 2. We write the factor process Ft = (fi,j,t )r1×r2 , and the
stationary autocross-moments φi1,j1,i2,j2,h = E(fi1,j1,t−hfi2,j2,t ). Hence, E[mat1(�k,1:h0)]
is a rk × (r−krkr−kh0) matrix, with columns being φ·,j1,i2,j2,h. Since E[mat1(�k,1:h0)] ×
E[mat1(�k,1:h0)]� is a sum of many semipositive definite rk × rk matrices, if any one of
these matrices is full rank, then E[mat1(�k,1:h0)] is of rank rk . Hence, Assumption 2(i)
is relatively easy to fulfill. On the other hand, Assumption 2(ii) is quite different. First,
the condition is imposed on the canonical form of the model as the inner product in
TIPUP related procedures behaves differently. Let F (cano)

t = U�
1 MtU2 = (f

(cano)
i,j,t )r1×r2 , and

φ
(cano)
i1,j1,i2,j2,h

= E(f
(cano)
i1,j1,t−hf

(cano)
i2,j2,t

). Then ‖�∗(cano)
1,1:h0

‖2
HS = ∑h0

h=1
∑

i1,i2
(
∑r2

j=1 φ
(cano)
i1,j,i2,j,h

)2. As

φ
(cano)
i1,j,i2,j,h

may be positive or negative for different i1, i2, j , h, the summation
∑r2

j=1 φ
(cano)
i1,j,i2,j,h

is subject to potential signal cancellation for h > 0. Assumption 2(ii) ensures that there is no
complete signal cancellation that makes the rank of E[�∗(cano)

k,1:h0
] less than rk . While the signal

cancellation rarely causes the rank deficiency, the resulting loss of efficiency may still have
an impact on the finite sample performance as our simulation results demonstrate. Of course,
complete signal cancellation is less likely with larger h0.

The following corollary is a simplified version of Theorem 3.1 under Assumption 2(i).

COROLLARY 3.1. Suppose Assumptions 1 and 2(i) hold. Let λ = ∏K
k=1 ‖Ak‖S and

r−k = r/rk . Let h0 ≤ T/4 and σ fixed. Then there exist numerical constants C0,K and C1,K

depending on K only such that when

λ2 ≥ C0,Kσ 2 max
1≤k≤K

(
dr−k

T
+ d√

T dkr−k

)
,(3.23)
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the 1-step iTOPUP estimator satisfies

E
∥∥P̂ (1)

k − Pk

∥∥
S ≤ C1,K

(
σ

λ
√

T

( √
dk√
r−k

+ √
rr−k

)
+ σ 2

λ2
√

T

( √
dk√
r−k

+ √
r

))

+ C1,K

(
σ
√

dkr−k

λ
√

T
+ σ 2√dkr−k

λ2
√

T

)2
+

K∑
k=1

e−dk .

(3.24)

REMARK 3.6. Under Assumption 2 that rk is fixed, (3.23), (3.24) and (3.25), (3.26) in
Corollary 3.2 can absorb rk’s into the numerical constants. The corollaries are expressed in
this form to allow divergent rk for the purpose of facilitating comparison with the minimax
lower bound in Theorem 3.5. They also represent a specific case of Corollaries 3.3–3.5.

Corollary 3.1 asserts that, in order to recover the factor loading space for Ak , the signal-
to-noise ratio needs to satisfy λ/σ ≥ C0,K,r maxk≤K(d1/2T −1/2 + d1/2d

−1/4
k T −1/4) as in

(3.23), and the ideal rate (3.24) can be achieved in one iteration. Under Assumptions 1, 2(i),
the error bound in Proposition 3.1 yields the convergence rate

E
∥∥P̂ (0)

k − Pk

∥∥
S �

(
σ
√

dk

λ
√

T
+ σ 2√dk

λ2
√

T

)
+

(
σ
√

d

λ
√

T
+ σ 2√dkd−k

λ2
√

T

)2
.

In comparison, the ideal rate is much sharper than the convergence rate of the noniterative
TOPUP in Proposition 3.1 when λ2/σ 2 � mink≤K{d4/3/(T 1/3dk), d

2/(T 1/2d
3/2
k )}.

The following corollary is a simplified version of Theorem 3.2 under Assumption 2(ii),
which excludes severe signal cancellation in iTIPUP.

COROLLARY 3.2. Suppose Assumptions 1 and 2(ii) hold. Let λ = ∏K
k=1 ‖Ak‖S and r−k =

r/rk . Let h0 ≤ T/4 and σ fixed. Then there exist constants C0,K and C1,K depending on K

only such that when

λ2 ≥ C0,Kσ 2 max
1≤k≤K

(
dk

T r−k

+
√

d√
T r−k

)
,(3.25)

the 1-step iTIPUP estimator satisfies

E
∥∥P̂ (1)

k − Pk

∥∥
S ≤ C1,K

(
σ
√

dk

λ
√

T r−k

+ σ 2√dk

λ2
√

T r−k

)
+

K∑
k=1

e−dk ,(3.26)

and the 1-step TIPUP-iTOPUP estimator satisfies (3.24).

Compared with the results in Corollary 3.1 for iTOPUP, the achieved ideal rate (3.26)
is the same. However, the signal-to-noise ratio requirement (3.25) is weaker but Assump-
tion 2(ii) is stronger in Corollary 3.2 for iTIPUP. Again, the ideal rate is much sharper than
the convergence rate of the noniterative TIPUP in Chen, Yang and Zhang (2022a).

3.4. Diverging ranks. The main theorems in Section 3.2 allow for the case where the
dimensions of the core factor, r1, . . . , rK , diverge as the dimensions of the observed tensor
d1, . . . , dK grow to infinity. The following assumption provides a concrete set of conditions
that can be used to provide some insights of the properties of iTOPUP and iTIPUP in such
scenarios.

ASSUMPTION 3. For a certain δ0 ∈ [0,1], ‖�k,0‖op � σ 2d1−δ0/r and ‖�∗
k,0‖S �

σ 2d1−δ0/rk with probability approaching one. For the singular values, two scenarios are con-
sidered.
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(i) (TOPUP related): There exist some constants δ1 ∈ [δ0,1] and c1 > 0 such that with
probability approaching one (as T → ∞) λ2

k ≥ c1σ
2d1−δ1/

√
rrk , for all k = 1, . . . ,K .

(ii) (TIPUP related): There exist some constants δ1 ∈ [δ0,1], c2 > 0 and δ2 ≥ 0 such
that with probability approaching one (as T → ∞), λ∗2

k ≥ c2σ
2d1−δ1r−1

k r
−δ2−k for all k =

1, . . . ,K .

Assumption 3 is similar to the signal strength condition of Lam and Yao (2012), and the
pervasive condition on the factor loadings (e.g., Stock and Watson (2002) and Bai (2003)). It
is more general than Assumption 2 in the sense that it allows r1, . . . , rK to diverge and the
latent process Ft does not have to be weakly stationary.

We take δ0, δ1 as measures of the strength of the signal process Mt . They roughly indicate
how much information is contained in the signals compared with the amount of noise, with
respect to the dimensions and ranks, d , r and rk . In this sense, they reflect the signal-to-noise
ratio. When δ0 = δ1 = 0, the factors are called strong factors; otherwise, the factors are called
weak factors.

REMARK 3.7 (Signal strength and the index δ0). We note that trace(�k,0) =
trace(�∗

k,0) = ∑T
t=1 ‖vec(Mt )‖2

2/T , and that rank(�k,0) = r and rank(�∗
k,0) = rk when the

data is in general position, where �k,0 is treated as a d × d matrix. Thus, if∑T
t=1 ‖vec(Mt )‖2

2/(σ
2dT ) � d−δ0 is the signal-to-noise ratio, then the condition

‖�k,0‖op � σ 2d1−δ0/r holds when r is the order of the effective rank of �k,0 and the condi-
tion ‖�∗

k,0‖S � σ 2d1−δ0/rk holds when rk is the order of the effective rank of �∗
k,0. Because

the signal Mt has d elements at each t , the assumption
∑T

t=1 ‖vec(Mt )‖2
2/(σ

2dT ) � d−δ0

says that the squared ratio of the elements and the noise level is d−δ0 averaged over time
and space. Thus, the factor is called strong when δ0 = 0. In view of (1.1) and (1.2),
Mt =Ft ×K

k=1 Ak , so that we may have weaker factor with δ0 > 0 when the loading matrices
Ak are sparse or have some relatively small singular components. We note that by Cauchy–
Schwarz, the signal-to-noise ratio conditions also imply (1 −h/T )2‖�k,h‖2

HS ≤ ‖�k,0‖2
HS �

r(σ 2d1−δ0/r)2 and (1 − h/T )2‖�∗
k,h‖2

HS ≤ ‖�∗
k,0‖2

HS � rk(σ
2d1−δ0/rk)

2, respectively.

REMARK 3.8 (Assumption 3(i) and the role of δ1). In fact, for TOPUP, Assump-
tion 3(i) holds when (a) ‖E[TOPUPk]‖2

HS = ∑h0
h=1 ‖�k,h‖2

HS � h0σ
4d2(1−δ1)/r and (b) all

the nonzero singular values of E[TOPUPk] are of the same order. Because ‖�k,h‖2
HS �

σ 4d2(1−δ0)/r by the condition on the signal-to-noise ratio, we must have δ1 ≥ δ0, and dδ0−δ1

can be viewed as the order of average autocorrelation over lags h = 1, . . . , h0. For k = 1 and
K = 2, the factor process in the canonical form is F (cano)

t = U�
1 MtU2 = (f

(cano)
i,j,t )r1×r2 , and

φ
(cano)
i1,j1,i2,j2,h

= ∑T
t=h+1 f

(cano)
i1,j1,t−hf

(cano)
i2,j2,t

/(T − h) is the time average cross-product between

the factor fibers f
(cano)
i1,j1,1:T and f

(cano)
i2,j2,1:T . Thus, the first condition (a) means

∑h0
h=1 ‖�1,h‖2

HS =∑h0
h=1 ‖�(cano)

1,h ‖2
HS = ∑

i1,j1,i2,j2,h
(φ

(cano)
i1,j1,i2,j2,h

)2 � h0σ
4d2(1−δ1)/r .

REMARK 3.9 (Assumption 3(ii), the role of δ2 and signal cancellation). The points par-
allel to those in Remark 3.8 are applicable to TIPUP, but with one caveat: Beyond the av-
erage autocorrelation, an additional discount r

−δ2−k ≤ 1 is needed to take into account the
impact of possible signal cancellation with TIPUP and its iteration. For k = 1 and K = 2,
‖�∗

1,h‖2
HS = ‖�∗(cano)

1,h ‖2
HS = ∑

i1,i2
(
∑r2

j=1 φ
(cano)
i1,j,i2,j,h

)2 and the summation inside the square

is subject to signal cancellation for h > 0 since the autocross-moment φ
(cano)
i1,j,i2,j,h

can have
different signs. The additional parameter δ2 measures the severity of signal cancellation in
the TIPUP related procedures. For example, when the majority of φ

(cano)
i1,j,i2,j,h

are of the same
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sign for most of (i1, i2, h), it would be reasonable to assume δ2 = 0. When φ
(cano)
i1,j,i2,j,h

behave
like independent mean zero variables, δ2 would be close to 0.5. And δ2 = ∞ when all the sig-
nals cancel out by the summation φ

(cano)
i1,j,i2,j,h

over j . In the case of fixed rk , the convergence
rate depends on whether δ2 = ∞ (severe signal cancellation) or not.

REMARK 3.10 (The role of h0). The selection of h0 is a relative minor problem in prac-
tice though very complex to analyze. Theoretically, it suffices to use an h0 with λk of the
right order, so that choosing a somewhat large h0 would not harm the convergence rate for
the proposed methods. In practice, a small h0 (less than 3) is often sufficient. The impact of
the choice of h0 on the signal and noise depends on the autocorrelation of the factor process,
as well as the loading matrices. For example, if the factor process is of very short memory
(e.g., an MA(1) process), including any lag h > 1 only introduces noise to TOPUPk in (2.4)
and TIPUPk in (2.7) without enhancing the signal. On the other hand, including an extra lag
is the most simple and effective way to prevent signal cancellation with iTIPUP, as discussed
in the previous remark. Increasing h0 includes more nonnegative terms in the signal strength∑

i1,i2,h
(
∑r2

j=1 φ
(cano)
i1,j,i2,j,h

)2, hence potentially reducing the chance of severe signal cancella-
tion. The simulation results presented in the Supplementary Material provide some empirical
behavior of choosing different h0. While the choice of h0 will affect the assumptions, in prac-
tice we may compare the patterns of estimated singular values under different lag values h0
in iTOPUP and iTIPUP to evaluate the benefit of taking a larger h0; see also the simulation
study.

We describe below the convergence rate of iTOPUP in terms of dk , rk and T under As-
sumption 3(i) when the dimensions of the core factor r1, . . . , rK are allowed to diverge.

COROLLARY 3.3. Suppose Assumptions 1 and 3(i) hold. Let h0 ≤ T/4, d∗−k = ∑
j 	=k dj rj

and r = �K
k=1rk . Suppose that for a sufficiently large C0 not depending on {σ, dk, rk, k ≤ K},

T ≥ C0 max
1≤k≤K

(
d2δ1−δ0rkr

2−k + d2δ1r2
k r−k/dk

)
.(3.27)

Then, after J = O(logd) iterations, we have the following upper bounds for iTOPUP:

max
1≤k≤K

∥∥P̂ (J )
k − Pk

∥∥
S

= OP(1) max
1≤k≤K

(
d

1/2
k r

1/2
k (1 + r1/2/d(1−δ0)/2) + r3/2r

−1/2
k (1 + r

1/2
k /d(1−δ0)/2)

T 1/2d1/2+δ0/2−δ1
(3.28)

+
(

d
1/2
k r3/2(1 + r

1/2
k /d(1−δ0)/2)

T 1/2d1/2+δ0/2−δ1rk

)2)
.

Moreover, (3.28) holds after at most J = O(log r) iterations, if any one of the following three
conditions holds in addition to (3.27): (i) dk (k = 1, . . . ,K) are of the same order, (ii) λk

(k = 1, . . . ,K) are of the same order, (iii) (λk)
−2√dk (k = 1, . . . ,K) are of the same order.

Note that the second part of Corollary 3.3 says that when the condition is right, iTOPUP
algorithm only needs a small number of iterations to converge, as O(log r) is typically very
small. The noise level σ does not appear directly in the rate since it is incorporated in the
signal-to-noise ratio in the tensor form in Assumption 3. In Corollary 3.3, we show that
as long as the sample size T satisfies (3.27), the iTOPUP achieves consistent estimation
under proper regularity conditions. To digest the condition, we notice that (3.27) becomes
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T ≥ C0 maxk(rkr
2−k) when the growth rate of rk is much slower than dk and the factors are

strong with δ0 = δ1 = 0.
The advantage of using index δ0, δ1 is to link the convergence rates of the estimated factor

loading space explicitly to the strength of factors. It is clear that the stronger the factors are,
the faster the convergence rate is. Equivalently, the stronger the factors are, the smaller the
sample size is required.

When the ranks rk (k = 1, . . . ,K) also diverge and there is no severe signal cancellation
in iTIPUP, we have the following convergence rate for iTIPUP under Assumption 3(ii).

COROLLARY 3.4. Suppose Assumptions 1 and 3(ii) hold. Let h0 ≤ T/4 and d∗−k =∑
j 	=k dj rj . Suppose that for a sufficiently large C0 not depending on {σ, dk, rk, k ≤ K},

T ≥ C0 max
1≤k≤K

(
(dkrk + dδ0r2

k )r
2δ2−k r2δ2

d1+3δ0−4δ1 min1≤k≤K r
2δ2
k

+ d∗−krkr
2δ2−k

d1+δ0−2δ1

(
1 + r

d1−δ0

))
.(3.29)

Then, after at most J = O(logd) iterations, the iTIPUP estimator satisfies

max
1≤k≤K

∥∥P̂ (J )
k − Pk

∥∥
S = OP(1) max

1≤k≤K

(
d

1/2
k r

1/2
k r

δ2−k(1 + r1/2/d(1−δ0)/2)

T 1/2d1/2+δ0/2−δ1

)
.(3.30)

Moreover, (3.30) holds after at most J = O(log r) iterations, if any one of the following three
conditions holds in addition to condition (3.29): (i) dk (k = 1, . . . ,K) are of the same order,
(ii) λ∗

k (k = 1, . . . ,K) are of the same order and (iii) (λ∗
k)

−2√dk (k = 1, . . . ,K) are of the
same order.

When the average autocorrelation is of unit order and the signal cancellation for TIPUP has
no impact on the order of the signal (δ0 = δ1 and δ2 = 0, respectively), Corollary 3.4 requires
the sampling rate T � h0 + (dkrk + dδ0r2

k + d∗−krk(1 + r/d1−δ0))/d1−δ0 and provides the
convergence rate (rkdk)

1/2(1 + r/d1−δ0)1/2/(T d1−δ0)1/2. For examples, T ≥ 4h0 +C1 gives
the rate (rkdk)

1/2/(T d1−δ0)1/2 when δ0 ≤ (K − 2)/(2K) and r2
k � dk � d1/K ∀k, and the

sample size requirement can be written as T � h0 + dδ0r2
k /d1−δ0 when r2

k � r2/K � dk �
d1/K ∀k regardless of δ0 ∈ [1/K,1]. Thus, the side condition involving R∗(add) in the second
part of (3.19) is absorbed into the other components of (3.19).

Corollary 3.3 and Corollary 3.4 offer comparison of the iTOPUP and iTIPUP when the
ranks diverge from two perspectives: sample size requirements and convergence rates. The
lower bounds on T in (3.27) in Corollary 3.3 and (3.29) in Corollary 3.4 provide the sample
complexity of the iTOPUP and iTIPUP, respectively. In the case that the growth rate of rk
is much slower than dk and the factors are strong with δ0 = δ1 = 0, the required sample
size of the iTIPUP reduces to T ≥ 4h0 + C0 maxj,k(rkr

2δ2−k r
2δ2−j /d−k + rkr

2δ2−k rj /d−j ), where
r−k = r/rk and d−k = d/dk . By comparing with the comment after Corollary 3.3, where
the sample size requirement for the iTOPUP is T ≥ C0 maxk(rkr

2−k) when δ0 = δ1 = 0, it
can be seen that the sample complexity for the iTIPUP is smaller, if δ2 is a small constant.
From the perspective of convergence rate, let us compare (3.28) in Corollary 3.3 and (3.30)
in Corollary 3.4. When ranks diverge, iTIPUP is slower than iTOPUP if δ2 > 3/2, or {0 ≤
δ ≤ 3/2, dk � rr

2−2δ2−k , d−k � rr
3−2δ2−k }, and faster if dk � rkr

2−2δ2−k , no matter how strong the
factor is or what values δ0, δ1 take. As expected, the convergence rate is slower in the presence
of weak factors; see the simulation for more empirical evidence.

Similar to Corollaries 3.3 and 3.4, we have the following rate for TIPUP-iTOPUP.



TENSOR FACTOR MODELS BY ITERATIVE PROJECTION 2659

COROLLARY 3.5. Suppose Assumptions 1 and 3 hold. Let h0 ≤ T/4 and d∗−k =∑
j 	=k dj rj . Suppose that for a sufficiently large C0 not depending on {σ, dk, rk, k ≤ K},

T ≥ C0 max
1≤k≤K

(
d2δ1−δ0rk

(
r

2δ2−k

d−k

+ r3−k

d−k

)
+ d2δ1r2

k

dk

(
r

2δ2−k

d−k

+ r3−k

d2−k

)
+ d∗−k

√
rrk

d1−δ1

)
.

(3.31)

Then, after at most J = O(logd) iterations, the TIPUP-iTOPUP estimator satisfies (3.28).
Moreover, the above error bound holds after at most J = O(log r) iterations, if any one of
the following three conditions holds in addition to condition (3.31): (i) dk (k = 1, . . . ,K)
are of the same order, (ii) λk (k = 1, . . . ,K) are of the same order and (iii) (λk)

−2√dk

(k = 1, . . . ,K) are of the same order.

Compared with Corollary 3.3, Corollary 3.5 provides the same error bound for smaller T

(possibly with bounded T � h0) when r
2δ2−k � r−kd−k . The side condition involving R(add)

in the second part of (3.22), corresponding to the last component of (3.31) involving d∗−k , is

absorbed into the other components of (3.22) when r
1/2
k ≤ dδ1−δ0(r

2δ2−1
−k + r2−k) ∀k ≤ K .

3.5. Comparisons.

3.5.1. Comparison between the noniterative procedures and iterative procedures. Theo-
rems 3.1 and 3.2 show that the convergence rates of the noniterative estimators TOPUP and
TIPUP can be improved by their iterative counterparts. Particularly, when the dimensions
rk for the factor process are fixed and the respective signal strength conditions are fulfilled,
the proposed iTOPUP and iTIPUP just need one iteration to achieve the much sharper ideal
rate R(ideal) in (3.10) and R∗(ideal) in (3.17), compared with the rate (3.9) of TOPUP and
(3.16) of TIPUP derived in Chen, Yang and Zhang (2022a), respectively. The improvement
is achieved through replacing the much larger d−k by r−k , via orthogonal projection. When
the factors are strong with δ0 = δ1 = 0 and the factor dimensions are fixed, the noniterative
TOPUP-based estimators of Lam, Yao and Bathia (2011) for the vector factor model, Wang,
Liu and Chen (2019) for the matrix factor and Chen, Yang and Zhang (2022a) for tensor fac-
tor models all have the same OP(T

−1/2) convergence rate for estimating the loading space.
In comparison, the convergence rate OP(T

−1/2d
−1/2
−k ) of both iterative estimators, iTOPUP

and iTIPUP (when there is no severe signal cancellation, with bounded δ2), is much sharper.
Intuitively, when the signal is strong, the orthogonal projection operation helps to consolidate
signals while potentially averaging out the noises, when the projection reduces the dimension
of the mode-k unfolded matrix from dk × d−k for the tensor Xt to dk × r−k for the projected
tensor Zt , resulting in the improvement by a factor of d

−1/2
−k in the convergence rate.

When rk are allowed to diverge, the iTOTUP and iTIPUP algorithms converge after at
most O(log(d)) iterations to achieve the ideal rate according to Theorems 3.1 and 3.2. The
number of iterations needed can be as few as O(log(r)) when the condition is right.

3.5.2. Comparison between iTIPUP and iTOPUP. The inner product operation in (2.7)
for TIPUP-related procedures enjoys significant amount of noise cancellation compared to
the outer product operation in (2.4) for TOPUP-related procedures. Compared with iTOPUP,
the benefit of noise cancellation of the iTIPUP procedure is still visible through the reduction
of r−k in (3.10) to

√
r−k in (3.17) in the ideal rates. However, this post-iteration benefit is

much less pronounced compared with the reduction of d−k in (3.7) for TOPUP to
√

d−k in
(3.16) for TIPUP in the noniterative rates. Meanwhile, the potential for signal cancellation in
the TIPUP related schemes persists as λ∗

k and λk are unchanged between the initial and ideal
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rates. We note that the signal strength can be viewed as λk and λ∗
k in Theorems 3.1 and 3.2,

respectively, for TOPUP/iTOPUP and TIPUP/iTIPUP, and that severe signal cancellation
can be expressed as λ∗

k � λk . When r−k are allowed to diverge to infinity, the impact of
signal cancellation is expressed in terms of δ2 in Assumption 3: The iTOPUP has a faster
rate than the iTIPUP when δ2 > 3/2, or {0 ≤ δ ≤ 3/2, dk � rr

2−2δ2−k , d−k � rr
3−2δ2−k }, and

slower rate when dk � rkr
2−2δ2−k , in view of Corollary 3.3 and 3.4. In Corollaries 3.1 and 3.2,

iTOPUP and iTIPUP have the same convergence rate because Corollary 3.2 assumes that
signal cancellation does not change convergence rate.

Our results seem to suggest that the mixed TIPUP-iTOPUP procedure would strike a good
balance between the benefit of noise cancellation (e.g., smaller T for consistency) and the
potential danger of signal cancellation (e.g., λ∗

k � λk) for the following four reasons: (1) The
benefit of noise cancellation is much larger in the initialization, in terms of d−k , in view of
the rates R

(0)
k in (3.7) and R∗(0) in (3.16). (2) The first part of condition (3.22) for TIPUP-

iTOPUP is weaker than the first part of condition (3.19) for TIPUP-iTIPUP. (3) The signal
strength λk of the stronger TOPUP form is retained in the rate R(ideal) after iTOPUP iteration.
(4) As we will prove in Section 3.6, the sample size requirement for the TIPUP initialization
is optimal in the sense that it matches a computational lower bound under suitable conditions.
Our simulation results support this recommendation, especially for relatively small r−k . Of
course, if the sample size qualitatively justifies the condition C

(TOPUP)
1 R(0) ≤ (1 − ρ)/4 in

(3.12) and/or if a possible signal cancellation is a significant concern, the TOPUP initiation
should be used.

3.5.3. Comparison with HOOI. The signal-to-noise ratio (SNR) condition, or equiva-
lently the sample size requirement is mainly used to ensure that the initial estimator has
sufficiently small estimation error. Thus, the performance of iterative procedures is mea-
sured by both the SNR requirement and the error rate achieved. Consider fixed h0 in the
fixed rank case with K = 3 and dmax � d1/K . In the fixed signal model where Mt = M
is fixed and deterministic in (1.1), applying HOOI to the average of Xt would require SNR
λ(T 1/2/σ) ≥ C0d

1/4 to achieve the loss of the order (σ/T 1/2)d
1/2
k /λ according to Zhang

and Xia (2018), where σ/T 1/2 is viewed as the noise level for HOOI as it is the standard
deviation of each element of the average tensor. In terms of the autocross-products, taking
the average over Xt roughly amounts to taking the average of all T (T −1)/2 lagged products
between Xt−h and Xt , 1 ≤ t − h < t ≤ T . However, in the tensor factor model (1.1) where
the signal part is random and serial correlated, the average is taken only over T − h lagged
products for each h. Thus, while the rate of the average of the signal-by-noise cross-products
in the factor model is heuristically expected to match that of HOOI at noise level σ/T 1/2,
the rate of the average of the noise-by-noise cross-products in the factor model is expected to
only match that of HOOI with noise level σ/T 1/4. In Corollary 3.2, the contribution of the
noise-by-noise cross-products dominates the initial estimation error as the SNR requirement
λ(T 1/4/σ) ≥ C0d

1/4 in (3.25) matches that of HOOI with noise level σ/T 1/4; at the same
time, the contribution of the signal-by-noise cross-products dominates the estimation error
after iteration as the rate (σ/T 1/2)d

1/2
k /λ in (3.26) matches that of HOOI with noise level

σ/T 1/2. Thus, if there is no severe signal cancellation, the signal-to-noise ratio requirement
and convergence rate for iTIPUP and TIPIP-iTOPUP in the factor model are both compara-
ble with those of HOOI in the simpler fixed signal setting, but the rate match is achieved in
very different and subtle ways. We prove that this insight is intrinsic as the rates in (3.25)
and (3.26) are both optimal according to the computational and statistical lower bounds in
the following subsection.
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3.6. Computational and statistical lower bounds. In this subsection, we focus on the typ-
ical factor model setting that the condition numbers of A�

k Ak are bounded. We shall prove
that under the computational hardness assumption, the signal-to-noise ratio condition (3.25)
imposed on iTIPUP (also TIPUP-iTOPUP) in Corollary 3.2 is unavoidable for computation-
ally feasible estimators to be consistent. To be specific, we show that, if the signal-to-noise
ratio condition is violated, then any computationally efficient and consistent estimator of the
loading spaces leads to a computationally efficient and statistically consistent test for the
hypergraphic planted clique detection problem in a regime where it is believed to be compu-
tationally intractable. In addition, we establish a statistical lower bound on the minimax risk
of the estimators.

Hypergraphic planted clique. An m-hypergraph G = (V (G),E(G)) is a natural exten-
sion of regular graph, where V (G) = [N ] and each hyperedge is represented by an unordered
group of m different vertices ij ∈ V (G) (j = 1, . . . ,m), denoted as e = (i1, . . . , im) ∈ E(G).
Given a m-hypergraph its adjacency tensor A ∈ {0,1}N×N×···×N is defined as

Ai1,...,im =
{

1 if e = (i1, . . . , im) ∈ E(G);
0 otherwise.

We denote by Gm(N,1/2) the Erdős–Rényi m-hypergraph on N vertices where each hyper-
edge e is drawn independently with probability 1/2, by C = C(N,κ) a random clique of
size κ where the κ members are uniformly sampled from [N ] and E(C) is composed of
all e = (i1, . . . , im) with ij ∈ C, and by Gm(N,1/2, κ) the random graph generated by first
sampling independently Gm(N,1/2) and C = C(N,κ) and then adding all the edges in E(C)

to the set of edges in Gm(N,1/2). The Hypergraphic Planted Clique (HPC) detection problem
of parameter (N,κ,m) refers to testing the following hypotheses:

(3.32) HG
0 : A ∼ Gm(N,1/2) vs. HG

1 : A∼ Gm(N,1/2, κ).

If m = 2, the above HPC detection becomes the traditional planted clique (PC) detection
problem. When κ ≥ c

√
N , many computationally efficient algorithms have been developed

for PC detection; see, Alon, Krivelevich and Sudakov (1998), Feige and Krauthgamer (2000),
Feige and Ron (2010), Ames and Vavasis (2011), Dekel, Gurel-Gurevich and Peres (2014),
Deshpande and Montanari (2015), Feldman et al. (2017), among others. However, it has been
widely conjectured that when κ = o(

√
N), the PC detection problem cannot be solved in

randomized polynomial time, which is referred to as the hardness conjecture. Computational
lower bounds in several statistical problems have been established by assuming the hardness
conjecture of PC detection, including sparse PCA (Berthet and Rigollet (2013a,b), Wang,
Berthet and Samworth (2016)), sparse CCA (Gao, Ma and Zhou (2017)), submatrix detection
(Ma and Wu (2015), Cai, Liang and Rakhlin (2017)), community detection (Hajek, Wu and
Xu (2015)), etc.

Recently, motivated by tensor data analysis, hardness conjecture for HPC detection prob-
lem has been proposed; see, for example, Zhang and Xia (2018), Brennan and Bresler (2020),
Luo and Zhang (2022, 2020), Pananjady and Samworth (2022). Similar to the PC detection,
they hypothesized that when κ = O(N1/2−δ) with δ > 0, the HPC detection problem (3.32)
cannot be solved by any randomized polynomial-time algorithm. Formally, the conjectured
hardness of the HPC detection problem can be stated as follows.

HYPOTHESIS I (HPC detection). Consider the HPC detection problem (3.32) and sup-
pose m ≥ 2 is a fixed integer. If

lim sup
N→∞

logκ

logN
≤ 1

2
− δ, for any δ > 0,(3.33)
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for any sequence of polynomial-time tests {ψ}N : A → {0,1},
lim sup
N→∞

(
PHG

0

(
ψ(A) = 1

)+ PHG
1

(
ψ(A) = 0

))
> 1/2.

Evidence supporting this hypothesis has been provided in Zhang and Xia (2018), Luo and
Zhang (2022). This version of the hypothesis is similar to the one in Berthet and Rigollet
(2013a), Ma and Wu (2015), Gao, Ma and Zhou (2017) for the PC detection problem.

For simplicity, we especially consider the factor model (1.2) with each individual series of
Ft being mean 0 and independent,

Xt = λFt ×1 U1 ×2 ... ×K UK + Et ,(3.34)

where Uk ∈ R
dk×rk , U�

k Uk = I for 1 ≤ k ≤ K and 0 < c1 ≤ σmin(E�1(Ft )�1�(Ft )) ≤
σmax(E�1(Ft )�1�(Ft )) ≤ c2 < ∞. The probability space we consider in this section is

P(T , d1, . . . , dK,λ)

=
{
X1, . . . ,XT : Xt has form (3.34) with independent series Ft,i1,...,iK ,

1

T − 1

T∑
t=2

EFt,i1,...,iKFt−1,i1,...,iK = c0 > 0,

and {Ft }Tt=1 independent of {Et }Tt=1,

Et,j1,...,jK

i.i.d.∼ N
(
0, σ 2),

for all 1 ≤ t ≤ T ,1 ≤ ik ≤ rk,1 ≤ jk ≤ dk,1 ≤ k ≤ K

}
.

(3.35)

The computational lower bound over P(T , d1, . . . , dK,λ) is then presented as below. In the
case of K = 1, the problem reduces to PCA of the spike covariance matrix. For general K ,
the autocovariance tensor is of order 2K .

THEOREM 3.4. Suppose that Hypothesis I holds for some 0 < δ < 1/2 and d1/K � dk ≥
T and rk is fixed for all 1 ≤ k ≤ K . If, for some ϑ > 0,

lim inf
T →∞

σ 2d1/2−ϑ

T 1/2λ2 > 0,(3.36)

then for any randomized polynomial-time estimators Ûk = Ûk(X1, . . . ,XT ), 1 ≤ k ≤ K ,

lim inf
T →∞ sup

X1,...,XT ∈P(T ,d1,...,dK,λ)

P

(
min

1≤k≤K
‖P̂k − Pk‖2

S >
1

3

)
>

1

4
,(3.37)

where P̂k = ÛkÛ
�
k and Pk = UkU

�
k .

Comparing (3.36) with (3.25), we see that the signal-to-noise ratio condition (3.25) cannot
be improved upon by a factor of dϑ with polynomial time complexity for any ϑ > 0. The
condition dk ≥ T is a technical requirement to use the theoretical tools in Ma and Wu (2015)
and Brennan and Bresler (2020) for the reduction from HPC.

REMARK 3.11. Theorem 3.4 illustrates the computational hardness for factor loading
spaces estimation under the typical factor model setting that the condition numbers of A�

k Ak

are bounded and ranks rk are fixed, and suggests the use of TIPUP initialization with proper
fixed h0 as it attains the computational lower bound under the typical factor model setting.
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REMARK 3.12. In the general rk case, the optimal signal-to-noise ratio require-
ment falls between λ2/σ 2 � max1≤k≤K

√
d/(

√
T r−k) (by Theorem 3.4) and λ2/σ 2 �

max1≤k≤K dk/(T r−k) (by Theorem 3.5 below). It seems possible to unfold tensor into matrix
and use the results of Ma and Wu (2015) to narrow the gap; however, a complete solution to
this challenging problem is beyond the scope of our paper.

Next, we establish the statistical lower bound for the tensor factor model problem. Again,
we consider the probability space (3.35).

THEOREM 3.5. Suppose λ > 0 and dk → ∞ as T → ∞ for all 1 ≤ k ≤ K . Then there
exists a universal constant c > 0 such that for T sufficiently large,

(3.38) inf
Ûk

sup
X1,...,XT ∈P(T ,d1,...,dK,λ)

E‖P̂k − Pk‖S ≥ c min
(
1,

(
σ 2 + σλ

)√
dk/

(
λ2

√
T r−k

))
for all 1 ≤ k ≤ K , where P̂k = ÛkÛ

�
k and Pk = UkU

�
k .

REMARK 3.13. The statistical lower bound for high-dimensional tensor factor models
is provided in Theorem 3.5. This bound directly matches the upper bounds in Corollary 3.2
and also matches the bounds in Corollary 3.1 when dk � rr2−k and λ2/σ 2 � dkr

5−k/T +
d

1/2
k r

3/2
−k /T 1/2. These results demonstrate that the rates obtained by our proposed iterative

procedures are minimax-optimal. Moreover, Theorem 3.5 reveals a different effect of the
ranks rk (k = 1, . . . ,K) compared to tensor Tucker decomposition (Zhang and Xia (2018)),
further confirming the distinct nature of tensor factor models from low-rank matrix/tensor
problems.

4. A matrix perturbation bound. In Lemma 4.1 below, we provide an improvement of
the matrix perturbation bound of Wedin (1972). The lemma, proved in Appendix G in the
Supplementary Material and used to prove Proposition 3.1, is of independent interest due to
wide applications of the Wedin (1972) bound.

LEMMA 4.1. Let r ≤ d1 ∧ d2, M be a d1 × d2 matrix, U and V be respectively the left
and right singular matrices associated with the r largest singular values of M , U⊥ and V⊥ be
the orthonormal complements of U and V , and λr be the r th largest singular value of M . Let
M̂ = M + � be a noisy version of M , {Û , V̂ , Û⊥, V̂⊥} be the counterpart of {U,V,V⊥,V⊥}
and λ̂r+1 be the (r + 1)th largest singular value of M̂ . Let ‖ · ‖ be a matrix norm satisfying
‖ABC‖ ≤ ‖A‖S‖C‖S‖B‖, ε1 = ‖U��V̂⊥‖ and ε2 = ‖Û�⊥ �V ‖. Then

∥∥U�⊥ Û
∥∥ ≤ λ̂r+1ε1 + λrε2

λ2
r − λ̂2

r+1

≤ ε1 ∨ ε2

λr − λ̂r+1
.(4.1)

In particular, for the spectral norm ‖ · ‖ = ‖ · ‖S, error1 = ‖�‖S/λr and error2 = ε2/λr ,

∥∥Û Û� − UU�∥∥
S ≤ error2

1 + error2

1 − error2
1

.(4.2)

The sharper perturbation bound in the middle of (4.1) improves the commonly used version
of the Wedin (1972) bound on the right-hand side, compared with Theorem 1 of Cai and
Zhang (2018) and Lemma 1 of Chen, Yang and Zhang (2022b). As Cai and Zhang (2018)
pointed out, such variations of the Wedin (1972) bound provide sharper convergence rate
when error2 ≤ error1 in (4.2), typically in the case of d1 � d2, as in Proposition 3.1.
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5. Summary. In this paper, we propose new estimation procedures for the tensor factor
model via iterative projection, and focus on two procedures: iTOPUP and iTIPUP. Theoreti-
cal analysis shows the asymptotic properties of the estimators. Simulation study presented in
the Supplementary Material illustrates the finite sample properties of the estimators. While
theoretical results are obtained under very general conditions, concrete specific cases are con-
sidered. In particular, under the typical factor model setting where the condition numbers of
A�

k Ak are bounded and the ranks rk are fixed, the proposed iterative procedures, iTOPUP
method and iTIPUP method (with no severe signal cancellation) lead to a convergence rate
OP((T d−k)

−1/2) under strong factors settings due to information pooling of the orthogo-
nal projection of the other d−k dimensions. This rate is much sharper than the existing rate
OP(T

−1/2) in the recent literature for noniterative estimators for vector, matrix and tensor
factor models. It implies that the accuracy can be improved by increasing the dimensions,
and consistent estimation of the loading spaces can be achieved even with a fixed finite sam-
ple size T . This is in sharp contrast to the folklore based on the existing literature that only
the sample size T helps the estimation of the loading matrices in factor models. The proposed
iterative estimation methods not only preserve the tensor structure, but also result in sharper
convergence rate in the estimation of factor loading space.

The iterative procedure requires two operators, one for initialization and one for iteration.
Under certain conditions of the signal-to-noise ratio (or the sample size requirement), we only
need the initial estimator to have sufficiently small estimation errors but not the consistency
of the initial estimator. Often, one iteration is sufficient. In more complicated general cases,
at most O(log(d)) iterations are needed to achieve the ideal rate of convergence. Based on
the theoretical results and empirical evidence, we suggest to use iTOPUP for iteration when
the ranks rk are small. In terms of initiation, the computational lower bound shows that the
signal-to-noise ratio condition derived from TIPUP initialization is unavoidable for any com-
putationally feasible estimation procedure to achieve consistency, while that from TOPUP
initialization is not optimal. Based on this result, we suggest the use of TIPUP initialization.
Of course, this should be done with precaution against potential signal cancellation, for exam-
ple, by using a slightly large h0 as our empirical results show. By examination of the patterns
of estimated singular values under different lag values h0, using iTOPUP and iTIPUP, it is
possible to detect signal cancellation, which has significant impact on iTIPUP estimators.

The proposed iterative procedure is similar to HOOI algorithms in spirit, but the detailed
operations and the theoretical challenges are significantly different.
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SUPPLEMENTARY MATERIAL

Supplementary Material to “Tensor factor model estimation by iterative projection”
(DOI: 10.1214/24-AOS2412SUPP; .pdf). In the supplementary material, we provide simula-
tion studies, the proofs of main results in the paper and some lemmas that are useful in proofs
of the paper.
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