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Abstract

Multi-modal transportation leverages the advantages of various
transportation modes, leading to more efficient urban traveling ser-
vices. Accurately predicting transfer times between different modes
provides guidance for tasks such as trip planning and transporta-
tion management. Most existing transfer time prediction works rely
on strong assumptions, e.g., predetermined routes, assumed speeds,
and predefined downstream transportation timetables. However,
these assumptions are hard to hold in practice due to internal factors
like individual preferences and external factors like dynamic traffic
conditions. These factors are dynamic and vary with location and
time, presenting a significant challenge. To address this, we intro-
duce an adaptive transfer time prediction framework, AdaTrans, to
forecast personalized transfer times between upstream and down-
stream transportation modes. Firstly, an attribute learning module
is designed to model the trends of internal factors. Then a spatial-
temporal adaptive learning component is designed to learn dynamic
external factors. Finally, an aggregation component with a capsule
network is employed to fuse the influences of these factors. The
extensive evaluation results in two real-world datasets demonstrate
that AdaTrans effectively harnesses insights from internal and ex-
ternal factors, outperforming state-of-the-art methods by ~ 20%.
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1 Introduction

Multi-modal transportation, e.g., cycling, driving, and public transit,
facilitates urban mobility [28, 31, 31, 40, 44, 45]. For example, as
shown in Figure 1, a citizen might take the subway from the origin
to the nearest station for rapid transit, then switch to a bus to reach
the final destination if the subway does not directly serve it. The
time taken to transfer from the subway to the bus, referred to as
Transfer Time, is a key component of the total travel time. Accord-
ing to the Transit Cooperative Research Program [8], transfer time
accounts for over 25% of the total travel time on average. There-
fore, accurately predicting transfer time is crucial for enhancing
passenger experience and improving the management of urban
transportation systems [21].

Current studies [24, 25, 27] on multi-modal transportation trans-
fer time prediction generally assume that passengers follow rec-
ommended routes and walk at an average speed to board the next
available mode of transportation. Consequently, transfer times are
derived from upstream and downstream transportation timetables,
resulting in identical predicted transfer times for passengers with
the same origin and destination station pairs. As illustrated in Fig-
ure 2 (a), this approach underestimates transfer times, with over
80% of the estimated times being less than 20 minutes, while in re-
ality, over 50% of the actual times exceed 25 minutes. Furthermore,
as shown in Figure 2 (b), we analyze transfer times for two station
pairs, one in an urban area and the other in a suburban area. The
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Figure 1: Transferring in multi-modal transportation.

analysis compares transfer times during rush hours and non-rush
hours, revealing significant variation among different passengers.
There are distinct differences in transfer times not only between
the two areas but also across different time periods.

The variation in transfer time is primarily due to two factors:
i) internal factors, stemming from the intrinsic unpredictability of
passengers. For example, passengers may arrive at the same bus
station via different walkways [5], which may not align with the rec-
ommended route shown on the navigation software. Additionally,
passengers may have different walking speeds based on personal
preferences and behaviors [29]. ii) external factors, arising from the
specific characteristics of downstream transportation and conges-
tion conditions. For example, when a bus is overcrowded, some
passengers may have to wait for subsequent buses, resulting in an
extended transfer time [16, 41].

These spatial-temporal variabilities pose a significant challenge.
Therefore, we propose AdaTrans, an Adaptive Transfer time predic-
tion framework for personalized transfer times between upstream
and downstream transportation modes. AdaTrans consists of three
components: i) an attribute learning component to capture the
trends of internal factors, ii) a spatial-temporal adaptive learning
component to model the external factors, and iii) an adaptive aggre-
gation module to combine these factors for more accurate person-
alized transfer time prediction. In summary, this paper makes the
following three contributions:

e To the best of our knowledge, we are the first to design an
adaptive transfer time prediction framework, named AdaTrans,
for personalized transfer time prediction in multi-modal
transportation scenarios. Unlike previous works that primar-
ily consider real-time traffic, AdaTrans effectively models
dynamic influences from internal factors (e.g., passengers’
preferences) and external factors (e.g., the latest demand and
supply).

e We have two major technical designs: i) a spatial-temporal
adaptive learning component that models the multi-modal
transportation stations as a heterogeneous graph and adap-
tively learns the spatial-temporal correlations between sta-
tions, and ii) an attribute learning component that leverages
personalized preferences by considering the similarity of
travelers’ patterns.

e We conduct comprehensive experiments using two real-
world datasets from Shenzhen, China. The results show that
AdaTrans outperforms state-of-the-art methods by approx-
imately 20% on average. Moreover, we conducted detailed
ablation studies and sensitivity analyses.

The rest of the paper is organized as follows. In Section 5, we
discuss the related work. In Section 2, we provide the formal defini-
tion of the transfer time prediction problem. We show the detailed
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Figure 2: Motivations for transfer time prediction. (a) Trans-
fer time estimated by timetables compared to ground truth;
(b) Transfer time varied by location pairs and periods.

design in Section 3, including the framework overview and tech-
nical explanation. In Section 4, we evaluate the performance of
AdaTrans to show the improvement compared with SOTA and con-
duct detailed ablation studies and parameter sensitivity analyses.
Finally, we conclude the paper in Section 6.

2 Preliminaries

Given a query g, including passenger id p;, time t,, arriving at
upstream station u;, and a downstream transportation mode d;, we
aim at predicting the transfer time t(u;.d;)- It represents the interval
between the departure from the upstream station and the arrival at
the downstream transportation mode. Formally, it is expressed as:

tudy) = Fo(q) = Fo(pis tu;, ui.dj) (1)

where ¢ denotes all learnable parameters. In practical usage, d;
is either estimated by prediction methods or manual inputs from
passengers, which is beyond the scope of this paper.

Further, to model the time-varying spatial relationships between
upstream stations and downstream transportation, we formulate it
on dynamic heterogeneous graph using Eq. 2.

Hudy) = Fo(q: Gr) = Fo(pis ui,dj, tu;; Gr) (2)

Here, G; = (V,A;) is a station-transportation mode graph at t,
where V = V,, U V; is the set of heterogeneous nodes, V;, and
V; indicate the upstream stations and downstream transportation,
respectively. A; represents the connection features (e.g., reach-
ability) from upstream stations to downstream transportation at ¢.
It is worth mentioning that our definition also works for transfer
time between the same transportation mode (e.g., from one subway
line to another) depending on whether the V is heterogeneous or
homogeneous. Without loss of generality, we discuss the problem
based on the setting of heterogeneous nodes.

3 Methodology

Figure 3 illustrates the architecture of AdaTrans, a framework de-
signed to predict personalized transfer times for trip records based
on historical transfer-flow data and trip query attributes. It is di-
vided into three main components:
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Figure 3: The framework of AdaTrans. It begins with the spatial-temporal adaptive learning component, where the input
includes node features (e.g., time and the number of passengers entering and departing the transportation mode) and edge
features (e.g., time and average transfer time). This component captures the influence of external factors (detailed in Section
3.1) while also recognizing recent, daily-periodic, and weekly-periodic correlations in the data. Next, the attribute learning
component processes inputs related to a query ¢, containing personalized features (e.g., passenger ID, time, and location).
This component models the impact of internal factors (elaborated in Section 3.2). The derived features are then fed into the
aggregation component, which includes primary capsules, property capsules, and aggregation capsules (explained in Section
3.3). The output is then passed through a fully connected layer to produce the predicted transfer time Husd;)-

o Spatial-Temporal Adaptive Learning: This component is tasked
with encoding external factors. Specifically, it captures time-
dependent spatial correlations between different transporta-
tion modes. Within this component, there are three sub-
modules, each having identical structures, to address recent,
daily-periodic, and weekly-periodic patterns in the input
data [15].

Attribute Learning: Focusing on internal factors, it under-
stands the influence of individual passenger habits on trans-
fer times.

Aggregation: This step fuses the extracted factors, creating a
comprehensive representation for predicting transfer times.

3.1 Spatial-temporal Adaptive Learning

Transfer times between upstream and downstream transportation
stations are influenced both by geographical factors (e.g., distance
and location) and by dynamic real-time factors (e.g., demand and
supply). For instance, stations situated in commercial zones typi-
cally see a surge in demand for downstream transportation during
morning peak hours, aligning with the commuter influx. Conversely,
residential areas witness the opposite trend. The imbalance between
demand and supply, especially evident during rush hours in busi-
ness districts, can lead to extended wait times owing to the dispro-
portionate ratio of passengers to available seating. Recognizing the
need to address these time-sensitive external factor influences, we
introduces a spatial-temporal adaptive learning component.

The input is historical transfer-flow features denoted as X =
{X1,...,X;} € RNexNuxNaX|finl N, N, and Ny correspond to
the number of past time slots, upstream stations, and downstream
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transportation modes, respectively. The input comprises features of
dimension | fin|, which encapsulate the embeddings associated with
pi, ui, and d;. Our approach involves a two-pronged process: first,
we construct a heterogeneous adaptive graph, and subsequently, we
engage in learning the correlations. The objective is to determine
the general transfer-flow feature for the subsequent time slot ¢ + 1.

3.1.1 Heterogeneous adaptive graph construction. Current adaptive
graph learning frameworks [3, 14, 42], predominantly target node
features (i.e., region-specific travel time predictions). In contrast,
our emphasis is on edge features, specifically the transfer time
between two nodes. To adapt these existing frameworks to our
context, two potential approaches arise: i) utilizing the features of
the two nodes that constitute an edge to represent that edge, and ii)
considering the edges themselves as nodes. Despite these adapta-
tion strategies, two primary challenges persist. The first challenge
is that these existing frameworks are constructed upon homoge-
neous graphs, which might not adeptly distinguish between the
unique characteristics of upstream stations and their downstream
transportation counterparts. The second limitation is the static na-
ture of the adjacency matrix A, which does not account for the
dynamic, time-sensitive nuances of spatial relationships. As an il-
lustration, bus routes might be varied considering passenger needs,
accommodating different schedules (e.g., holidays, nighttime [1]).
To address the aforementioned challenges, we introduce the
time-specific bi-adjacent matrix, denoted as B € RNuXNa \which
symbolizes the heterogeneous transfer graph. Formally, this can
0

B
BT 0] . Also, we denote the degree matrix

be presented as: A = [
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D, ©
by D = [ 0 Dy
upstream stations and downstream transportation. For effective
flow feature prediction, we conceptualize the transfer flow as nodes
in a graph, linked by stations. This transfer graph undergoes a trans-
formation into its line graph, as indicated by [2]. This conversion
can be mathematically captured by:

] , where Dy, and Dy are the degree matrix of the

Bij - By
0

ifi=korj=1
/ 3)

otherwise

L(B)ijk1 = {

where i, j, k, [ serve as dimensional indices, with i and j character-
izing the first dimension k and [ detailing the second. Conceptually,
L(B) can be viewed as the sum of the adjacency matrix and the
identity matrix of the line graph, given by

L(B)=A =1 + A 4

where A represents the adjacency matrix associated with the line
graph, and I1 is its respective identity matrix.

To reduce computational costs, inspired by [18], he graph con-
volution operation is adeptly approximated as:

Z=D"1AD"IXW +b )

where W and b are learnable weights and biases, A denotes the
adjacency matrix augmented by the identity matrix, and D is the
degree matrix enhanced by the identity matrix. Given the inherent
heterogeneity, we further refine the convolution operation using
L(B):

Z=D"iL(B)D :XW +b )
Building on the renormalization trick from [18], we substitute
D% L(B)bfé with L(D;; ! B) because of the non-symmetric matrix
B. By doing so, we successfully adapt the GCN to accommodate the
bi-adjacency matrix alongside flow inputs, resulting in:

Z =L(D;'B)XW +b (7)

This extended formulation allows for a more robust and nuanced
capture of features while ensuring computational efficiency.

Given the dynamic nature of connections between upstream
and downstream transportation [1], which affects passenger prefer-
ences, we generate B! adaptively from the inputs rather than relying
on a static, predefined bi-adjacency matrix B. Inspired by [3], we
employ decomposition as a strategy to approximate the spatial
correlations between upstream stations and downstream trans-
portation. Specifically, the formulation is given by:

D;'B' = softmax(ReLU (ELE,)) ®)

The Ef, € RN«*f and El e RNa*f are node embeddings for
the upstream station and downstream transportation, respectively,
wheref is the embedding dimension.

3.1.2  Spatio-temporal correlation learning. To further adapt to the
time-specific spatial correlations, we can apply a high-dimension
learnable parameter © € RNt*NaxNuXf by expanding Eq. 8 as:

©)

E; € RNo%f s the time-slot embedding, and ® is the outer product.
The computational cost of Eq. 9 is O(N¢s - Ny - Ny,), which presents
a challenge when dealing with expansive transportation systems,

0= softmax(ReLU(EuEg) ® E;)
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given its high resource demands [3]. To mitigate this challenge, we
propose an efficient partial updating strategy.

For the given input X € RIBIXfin_where |B| symbolizes the batch
size, we partition it to devise three distinct masking matrices using
one-hot vectors. These are: i) Downstream matrix C; represents
downstream transportation; ii) Upstream matrix C,, denotes up-
stream transportation; and iii) Temporal matrix C; marks different
time slots. Within Cy, Cy,, and C;, each individual row stands as a
one-hot encoded vector that signifies the index of the upstream
station, downstream station, and temporal instance, respectively.
Leveraging these matrices, we are able to extract a more compact
feature vector for each training iteration. Specifically, by deploying
the operation C, X Cy X C; X ©, only a subset of parameters related
to the input is selected. This judicious parameter selection results
in a substantial reduction in computational overhead, thus making
the process more scalable and efficient.

For each time slot ¢, the matrix ®; encapsulates the specific spa-
tial features between upstream and downstream transportation. We
employ the STGCN [42] to discern spatial-temporal relationships
across time slots and between stations. Using a sequence of spatial-
temporal features O (;_p.;_1) as input, the relationships between
nodes are predicted by:

H = L(®)XE,E W + E,Egb (10)

where L(-) transforms © into the line graph, W € RNt *NuXNa Xfour
and b € RfXfXfout The outcome, H; represents link features,
which are derived by adjusting H with ©;.

Upon extracting the spatial-temporal graph, we segment it into
three periods: recent, daily, and weekly. Each segment is inputted to
the STGCN [42] to discern geographical correlations, such as traffic
patterns of neighboring stations. The outputs from these segments
are then passed through an attention layer, which aggregates the
features by weighing their significance. This approach prioritizes
the most relevant time-based features for predictions.

3.2 Attribute Learning

Apart from the external features (e.g., traffic conditions), the in-
ternal features (e.g., personalized behaviors) significantly impact
transfer time. This influence stems from two main reasons: 1) Pas-
sengers often exhibit consistent behaviors, like choosing specific
exits, preferring certain routes, and maintaining a relatively con-
sistent speed [29]. 2) They might adhere to particular behavioral
patterns, such as traveling during rush and non-rush hours. Given
these insights, we have devised an attribute learning approach
for understanding time-specific passengers’ preferences, which we
subsequently employ for personalized transfer time predictions.
A straightforward approach involves learning a personal ma-
trix, Q € RNeXNpXf 't characterize the behaviors of each passen-
ger. Here, N; designates the time slots, Nj, signifies the number
of passengers, and f represents the feature dimensions. Initial-
ized through random encoding, Q undergoes updates via back-
propagation. However, this method presents two notable constraints:
1) As the number of passengers increases, the computational bur-
den significantly increases, making the approach less efficient. 2)
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Although the time dimension provides a means to depict varied be-
haviors of passengers over different spans, the resulting embedding
remains static, unable to adapt to changing user preferences.

To address the aforementioned limitations, we introduce an
embedding-sharing layer coupled with a recurrent preference em-
bedding technique to enable user-specific attribute learning. This
system takes as input the embeddings of the passenger ID, current
time, upstream station, and historical trip records, aiming to predict
the specific behaviors of a user at a designated time and location.
The following is a step-by-step breakdown of our methodology:

e We initialize a two-dimensional matrix, Q € RNe xf , to cap-
ture the characteristics of representative users. In this matrix,
each vector symbolizes a distinct type of user, with N being
significantly smaller than Nj.

e The embedding-sharing layer translates a user into a vector.
From this, we ascertain the most similar representative user
preference, p;, from Q based on cosine similarity, denoted
as wp;.

o To predict a passenger’s behavior, we execute an addition
between the embedding of the most recent time and location
with the extracted user preference, @p;-

This approach not only optimizes computational efficiency but
also ensures dynamic adaptation to the evolving preferences of
users. At last, the predicted behavior is integrated into an MLP-
based component, tailored for individualized preference learning.
This behavior is comprehensively trained throughout the system.
Upon completion of the training, the refreshed representation is
manually fed back into Q,, serving as the most recent record of
user preference.

3.3 Adaptive Aggregation

Once the embeddings of external and internal factors are acquired,
we introduce an aggregation component, which organically inte-
grates the aforementioned factors, yielding a time-specific repre-
sentation of a passenger’s transfer time.

Drawing inspiration from the success of the capsule network
in computer vision [30], which effectively channels lower-level
features like eyes and mouth to corresponding upper-level features
such as faces. We integrate it into our aggregation component based
on the following insights: 1) Each capsule comprises a group of
neurons, representing multifaceted traffic properties in our model,
such as traffic volume, supply, and demand, for a more detailed
feature representation. 2) The dynamic routing mechanism discerns
the significance of local properties to a broader objective (e.g., pre-
dicting transfer time). It then increases the coupling coefficient of
the properties that are correlated, while diminishing others.

Informed by these insights, we have developed a three-layered
capsule network adept at extracting and aggregating information
from both external and internal factors. As depicted in Figure 3, the
primary capsule ingests the most recent route features and personal
attributes, subsequently producing the trip status. This relationship
can be mathematically articulated as:

S =H; & wp, (11)
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Subsequent to this, the dynamic routing mechanism comes into
play, isolating pertinent properties as denoted in Eq. 12:

0j = ) Wijsi - cij
i

Here, s; € S represents the trip status, encapsulating both the link
features and user preference. vj, on the other hand, signifies the
properties of the trip when taking into account both the passenger
and the prevailing traffic data. Meanwhile, c;; stands as the cou-
pling coefficient, its value being dictated by the dynamic routing
procedure. More specifically, the property capsules focus on extract-
ing features pertinent to a range of trip properties, encompassing
various travel objectives like commuting, OD pairs, leisure, and
casual trips [34]. The subsequent dynamic routing layer allows us
to abstract a more generalized representation of transfer time by
discerning the contributions of distinct trip patterns.

(12)

3.3.1  Further explanation of choosing capsule network. To better
comprehend the merits of employing capsule networks for aggre-
gation, we examine other prevalent aggregation techniques, such
as concatenation, weighting, and attention mechanisms.

Concatenation-based aggregation: A basic approach involves con-
catenating the internal and external factors for prediction. Formally,
this can be represented as:

Z = f(Hy) +wp, +b (13)

Here, + denotes summation, and f(-) is a fully connected layer
responsible for mapping the edge embedding to the external factor
embedding. However, this method comes with an inherent limita-
tion: it is unable to discern and weigh the significance of the two
factors, often resulting in sub-performance.

Weighting-based aggregation: To address this limitation, we apply a
weighting mechanism that introduces trainable weights for both
factors, which is expressed as:

Z=a1 X f(Hy) +az X wp; +b (14)

where + indicates summation. Both @; and a; are intrinsically tied
to the inputs and are fine-tuned through back-propagation. While
this method mitigates the challenge of uniform weight allocation
seen in the previous approach [19], it struggles to effectively discern
the variances between passengers shaped by the correlation of
external and internal factors.

Attention-based aggregation: To address this issue, we integrate an
attention mechanism that quantifies the correlation between the
factors and the transfer time. It allocates varying levels of attention
to the characteristics of passengers as expressed by:

Z = a(f(Hy)) X f(Hy) + a(wp;) X @p; +b (15)

Here, a denotes the attention mechanism and + represents sum-
mation. It intuitively models the relationships between transfer
time and the two factors by giving prominence to more "correlated"
factors while diminishing the weight of less relevant ones.

Summary: While both the attention mechanism and the capsule
network excel in modeling the contributions of influential factors to
the final output, the capsule network holds an edge in performance.
This superiority stems from the neurons within the capsule, which
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adeptly model diverse traffic properties, enabling a more granular
feature representation [30].

3.4 Training Objective

We utilize the L1 loss as the training objective, and consider the
task of predicting the transfer time. Its loss function is given by:

N

L(Wg) = Z It (urdy) ~ Eundy)|
=1

(16)

Here, Wy stands for the set of learnable parameters. £y, 4;) and

f(ui,dj) denote the actual and predicted transfer time, respectively.

4 Experiments

In this section, we introduce the datasets, evaluation metrics, and
baselines. Then, we represent the implementation details and exper-
iment settings. At last, we evaluate the performance of AdaTrans
compared with different baselines and conduct an ablation study
and sensitivity analysis.

4.1 Experimental Settings

4.1.1 Dataset description. We collected the public transportation
tap-in and tap-out data in June 2018 and September 2019 from Shen-
zhen City. It involved 3.6 million passengers, 112 subway stations,
and 858 bus lines. The dataset differentiates between subway trip
records, which capture both entry and exit details, and bus trip
records which only log boarding information. Notably, in Shen-
zhen’s short-distance bus routes, like in cities such as New York
and Beijing, passengers are charged a flat rate and don’t tap out
upon exiting. However, since both bus and subway rides utilize the
same transportation card, it is feasible to analyze transfer behaviors.
This data, being updated in real-time from ticketing systems, offers
a live view of vehicular and passenger statuses.

4.1.2
using Keras 2.4 and executed on a server powered by an NVIDIA
A4000 GPU and Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz with
256GB RAM. For dataset partitioning, transfer records from the
initial 10 days were designated as the training set, the subsequent 10
days for validation, and the concluding 10 days for testing. Adam op-
timization algorithm was selected for training, with a learning rate
and decay rate of 0.01 and 0.005 respectively. The training spanned
50 epochs, with model optimization via 5-fold cross-validation.
Embedding dimensions for the time slot, day, and demand/supply
factors were 6, 3, and 4 respectively, while personalized charac-
teristics and spatial-temporal features both had a dimension of
8.

Implementation. The experimental models were constructed

4.1.3 Baselines. To evaluate the performance of AdaTrans, we
compare it with the following baselines. We primarily chose the
baselines that target travel time prediction. We also remove the
attribute learning as AdaTrans-, to eliminate the personalized char-
acteristics. For instance, DeepTTE and HetETA consider transfer
time from an individual’s perspective, while STGCN and AGCRN
concentrate on a station-level analysis.
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e Historical Average (HA): We calculate the average trans-
fer time for each upstream and downstream station pair at
different time slots, e.g., 8:00-9:00 AM.

GBDT [11]: Gradient Boosting Decision Tree is a widely
used ensemble method. The input of GBDT is exactly the
same as the input of AdaTrans including all the outputs from
the attribute component and the normalized trip records.
DeepTTE [32]: This is an end-to-end framework that esti-
mates the travel times of individual road segments and then
sums up these times. Our problem can be simplified to pre-
dict the "travel time" given the upstream and downstream
stations. Thus, the input for the spatial-temporal learning
component in DeepTTE is the GPS points for stations, and
the input for the attribute component is userID, time, and
distance. We remove the multi-task component to simplify
it for one road segment prediction.

HetETA [17]: We simplify the multi-relational graph to a
single-relational graph, where the edges denote the reachabil-
ity between two stations. The features of nodes contain static
features (e.g., distance) and dynamic features (e.g., transfer
time, passenger volume) regarding time. The departure query
in HetETA is set as ¢ = (u;, 0;, t;), where passenger u; leaves
the upstream station o; at time t;. Our goal is to estimate the
transfer time y; after boarding at the downstream station d;.
STGCN [42]: The nodes represent both upstream and down-
stream stations. We compute the adjacency matrix based
on the Euclidean distance. To predict the transfer time be-
tween a specific pair of stations, such as stations A and B,
we employ the STGCN model to incorporate the influence of
surrounding station pairs, such as A-C and A-D, for a more
accurate transfer time prediction between A and B.
AGCRN [3]: The input is similar to AdaTrans, allowing it to
learn adaptive relationships. The output represents the trans-
fer time features of station pairs, which are transformed into
predictions. The differences between AGCRN and AdaTrans
are: i) AGCRN is designed for symmetric graphs, and not
suitable for the directional correlations between stations;
ii) the learned adjacent matrix remains static, which can-
not model the varying transfer times, e.g., during rush and
non-rush hours.

We use Mean Absolute Percentage Error (MAPE), Mean Average
Error (MAE), and Root Mean Squared Error (RMSE), to evaluate
the performance of the above models.

4.2 Performance Comparison

In Table 1, we present performance metrics in the format "mean +
standard deviation". Relying solely on the HA, which is the mean
of past transfer times, gives less accurate predictions, as evidenced
by its highest scores across all metrics. GBDT, which uses decision
trees and boosting techniques, outperforms the HA approach. No-
tably, both HA and GBDT consistently yield similar outcomes when
tested on the same dataset. The reason behind this consistency is
twofold: HA simply averages historical data without introducing
any randomness, and our GBDT model operates deterministically.

DeepTTE, by integrating spatial and temporal aspects, demon-
strates superior performance over GBDT, reflecting lower MAPE,
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Table 1: Performance comparison of AdaTrans with baseline methods on two datasets w.r.t RMSE, MAE, and MAPE with standard
deviations. The lower, the better. The best results are bolded and the second-best results are underlined. AdaTrans achieves the

best performances.

Model ‘ Dataset ‘ Shenzhen Dataset (2018/6) ‘ Shenzhen Dataset (2019/9)

| Metrics | RMSE | MAE (min) | MAPE (%) | RMSE | MAE (min) | MAPE (%)

HA | 2069 | 1572 | 628 | 1649 | 1253 | 458

GBDT | 1448 | 990 | 544 | 1067 | 753 | 412
DeepTTE | 3.04£021 | 257017 | 29718 | 3.18+0.25 | 237£0.12 | 30.2+14
HetETA | 5172029 | 4.11x0.16 | 353x22 | 352015 | 3.37+0.15 | 34.8+1.2
STGCN | 12744028 | 6.68+0.11 | 453+1.4 | 11.89£0.16 | 7.95+0.17 | 44.8+18
ARGCN | 858+0.25 | 4.72+0.19 | 383x17 | 8742029 | 5.09+0.18 | 40.6x1.3
AdaTrans- | 2.66£0.25 | 1.90+0.21 | 24.8+1.9 | 2.73£0.15 | 2.01+0.18 | 26.5+ 1.2
AdaTrans | 2.27+0.23 | 148+ 0.23 | 23.6 + 2.4 | 2.49+0.23 | 1.73£0.28 | 25.4 + 1.6

MAE, and RMSE values. This underscores the merit of embedding
spatial-temporal correlations into graph data. Yet, the shared pa-
rameters of DeepT TE do not fully capture traffic dynamics. HetETA,
on the other hand, underperforms compared to DeepTTE, primarily
because it generalizes all relationships in its road map, limiting its
ability to exploit the intricacies of a multi-relational network.

Diving deeper, we assessed the potential of STGCN and AGCRN
models at the station level against our model. The reliance of
STGCN on a fixed graph structure, defined by distance metrics,
restricts its capability to understand the nuanced interplay between
upstream stations and downstream travel. AGCRN overcomes this
constraint by adopting adaptive graph learning, achieving a no-
table RMSE improvement to 8.58 and 8.74 across the two datasets.
This enhancement underlines the pivotal role of adaptive learning
in understanding transportation dynamics. Our proposed model
excels further than AGCRN by recognizing time-specific spatial
correlations and factoring in passengers’ preferences, resulting in
a more refined performance.

4.3 Ablation Study

We conducted ablation studies to assess the individual contribu-
tions of different components in our model, specifically focusing on
internal, external, and spatial-temporal factors. During each test,
we omitted one factor while retaining the rest (detailed in Table 2).

o Internal Factors: By evaluating the impact of internal factors,
we integrated normalized passenger data with the spatial-
temporal component’s output, channeling the combined data
directly to the aggregation stage. This configuration yielded
RMSE and MAE scores of approximately 4.84 and 2.46, re-
spectively. When contrasted with our full model’s perfor-
mance (i.e., 2.27 and 1.48), it is evident that different passen-
gers have unique behaviors. Capturing these behaviors leads
to more precise personalized transfer time predictions.

e External Factors: To understand the influence of external
factors, we excluded real-time data inputs, such as time of
day and day of the week. This exclusion resulted in a slight
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Table 2: Performance comparison of ablation studies by
removing different factors (i.e., external factors, spatial-
temporal (ST) factors, and internal factors).

| RMSE | MAE (min) | MAPE (%)

w/o external | 2.66£0.27 | 1.90£0.23 | 333+24
w/oST | 347£024 | 208021 | 28.6%2.1

w/o internal | 4.84+0.31 | 2.46+0.25 | 33.1£1.9
AdaTrans | 2.27+0.23 | 1.48+0.23 | 23.6+2.4

performance dip, with the RMSE value rising to about 2.66
from the previous 2.28. This suggests that contextual data,
like time and weekday, subtly affect transfer time prediction
accuracy. As expected, peak times like rush hours, charac-
terized by increased demand, tend to have more frequent
vehicle scheduling.

Spatial-Temporal Factors: Upon omitting recent traffic vari-
ables, such as counts of inbound and outbound passengers,
we observed a stark deterioration in model performance,
registering a 27.66% decline. This decline resonates with the
inherently spatial-temporal nature of traffic conditions.

4.4 Effects of Different Aggregation Methods

To assess the effectiveness of our aggregation component, we de-
signed three variants:

e Concatenation: This basic version uses concatenation for
aggregation. It employs a 3-layer MLP to process output
features, ensuring its model depth is comparable to the other
variants.

e Weighting: It employs a weighting method for aggrega-
tion, thereby emphasizing the significance of each factor
differently.
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Table 3: Performance comparison of different aggregation
methods. The capsule-based aggregation applied in AdaTrans
achieves the best performance.

| RMSE | MAE (min) | MAPE (%)
Concatenation | 12.32+1.19 | 6.22+0.47 | 60.34.2
Weighting | 6.56£0.52 | 2.92+031 | 33.8+3.1
Attention | 4.01+0.33 | 2.35£0.35 | 29.6+2.2
Capsule | 2.27+0.23 | 1.48+0.23 | 23.6+2.4

e Attention: It integrates an attention mechanism for ag-
gregation. Here, the context is derived from the output of
various components, while the query is based on the input
trip record.

From our findings presented in Table 3, a few key insights emerged:

e Weightingv.s.Concatenation: The Weighting outperformed

Concatenation. It underscores the value of attributing unique
weights to individual components rather than combining
them.

in performance. It is attributed that Weighting assigns a uni-
form weight across all inputs, thus neglecting to consider
variations in passengers’ responses to internal and external
factors.

The superiority of AdaTrans: The AdaTrans enhanced the
performance of Attention. This is due to two primary rea-
sons: i) its vector representation holistically encapsulates
multiple attributes of each factor, and ii) the dynamic rout-
ing bolsters the categorization of passengers based on their
travel behaviors.

4.5

We conduct experiments to evaluate the influence of the length of
historical time steps in the capsule networks and the embedding
dimension in factors learning (i.e., external and internal).

Sensitivity Analysis

4.5.1 Length of historical time steps. We assessed the sensitivity
of AdaTrans to varying the length of historical time steps, denoted
as h. The results of this evaluation are presented in Figure 4. We
observed an initial improvement in the performance of AdaTrans
as h increased. However, when h exceeded a value of 3, there was
a subsequent decline in performance. A possible explanation for
this trend is the strong correlation of transfer time with recent
traffic conditions. Introducing longer historical time steps can in-
advertently add noise in the form of uncorrelated features, which
then negatively impacts the model’s performance. Furthermore,
using extended historical data also increases the computational bur-
den for each training epoch; specifically, the processing time rose
sharply from 23 seconds to 155 seconds. Taking into account both
computational efficiency and model performance, we concluded
that an optimal setting for h is 3.

4.5.2 Embedding dimensions. We proceeded to analyze the impact
of the embedding dimension on the performance of AdaTrans. The

Attentionv.s.Weighting: The Attention surpassedWeighting
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Figure 6: Visualization for transfer time prediction. The re-
sults predicted by AdaTransare closer to the ground truth.

findings, as depicted in Figure 5, indicate that our model reaches its
peak performance with an embedding dimension of 8. Notably, both
too-small and excessively-large embedding dimensions are detri-
mental to the performance of AdaTrans. While a larger embedding
dimension can capture more information, it simultaneously in-
creases the total number of parameters. This escalation complicates
the model’s optimization process and can predispose the model to
overfit, a phenomenon corroborated by previous research [3].

4.6 Results Visualization

To gain deeper insights into the performance of AdaTrans, we
visualized the distributions of its predictions alongside the ground
truth and straightforward estimation [24, 25, 27], which is observed
in Figure 6. The blue solid line showcases the distribution of transfer
time estimates derived from straightforward estimation [24, 25, 27]
(elaborated in Sec. 4), whereas the red solid line delineates the
distribution of the ground truth. Notably, the yellow dashed line
highlights the distribution of AdaTrans’s predictions, which align
more closely with the ground truth than the blue solid line. This
serves as a testament to the effectiveness of AdaTrans.
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5 Related Work

This section introduces related studies and provides a detailed anal-
ysis, highlighting how our work differs from existing research.

5.1 Uni-modal Travel Time Prediction

There are two categories of existing solutions for the estimation
of travel time for uni-modal transportation [6, 26]. The first one is
the route-free methods [13, 20, 23, 35], which only considers the
origin and destination. MURAT [23] designed an origin-destination
travel time estimation and produced meaningful representation,
and leveraged the underlying road network and the spatiotemporal
prior knowledge. CTTE [13] fused GPS traces, smartphone inertial
data, and road networks within a deep recurrent neural network.
DeepI2T [20] learned the travel time mainly from the built environ-
ment images, i.e., the morphological layout image.

The second category is the route-based methods [9, 10, 12, 17, 25,
32, 33, 36, 43], which split the trip into several road segments and
predict the time in each segment. DeepTTE [32] designed an end-
to-end deep learning framework to estimate the travel time of the
whole path directly. WDR [33] formulated ETA as a spatial-temporal
regression problem and jointly trained wide linear models, deep
neural networks, and recurrent neural networks. However, these
designs are complex and require high computation costs. To solve
the limitation, BusTr [4] and CompactETA [12] designed a simple
and efficient model, respectively. Meanwhile, ConSTGAT [10] in-
troduced a synchronous spatial-temporal module for synchronous
spatial and temporal relationships, and HetETA [17] translated road
maps into a multi-relational heterogeneous network.

However, most existing frameworks [13, 20, 23] that are designed
for uni-modal transportation are not applicable to our scenario
because they primarily model how the real-time traffic conditions
affect the travel speed and then travel time. In contrast, we focus on
multi-modal transportation scenarios that are affected by a wider
range of factors, including both internal and external factors. For
instance, we need to account for the specific characteristics of
downstream transportation modes, such as the stable interval of
arrival times for subways compared to buses, even during rush
hours. Additionally, we must consider the impact of demand and
supply on transfer time, as passengers might experience longer
transfer times if the transport is full. Finally, unlike uni-modal
transportation, our scenario involves multiple downstream stations
for passengers to choose from, with choices potentially varying
between different periods like rush and non-rush hours.

5.2 Multi-modal Route Recommendation

Currently, research in the realm of multi-modal transportation pri-
marily centers on route recommendation [25, 27, 37-39]. This line
of inquiry seeks to furnish travelers with optimal route suggestions
that encompass various modes of transportation. Hydra [27] inte-
grates uni-modal and multi-modal routes and heterogeneous urban
data. HMTRL [25] studies the unified route representation learning
and the semantic coherence of the historical routes.

Different from route recommendation, the problem studied in
this paper is more focused on predicting the transfer time, whereas,
in route recommendation papers, the transfer time is pre-calculated
with assumptions, e.g., the passengers follow the recommended
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route shown on maps and the average walking speed during trans-
ferring. Moreover, the methods above highly depend on the pre-
defined or static self-learned graph for multi-modal connectivity
representation and overlook the time-specific latent connectivity
hidden between some stations.

5.3 Adaptive Learning

Motivated by adaptive learning [3, 7, 22], which avoids the pre-
defined graph. AGCN [22] designed a task-driven adaptive graph
that is learned for each graph data while training. This method is
based on distance metrics. AGCRN [3] leveraged a node-specific
pattern learning for adaptive graph representation. AGE [7] intro-
duced a novel attributed graph embedding framework for attributed
graph embedding.

However, even though the above methods break the limits of
static adjacency matrix, i.e., predefined or self-learned, to learn
spatial correlation, the relationships between nodes are still not
time-variant. In order to solve this limitation, we design a spatial-
temporal adaptive learning component and an attribute learning
component that adapts to explore the uncertain external and in-
herent factors, respectively. Compared with previous models that
adopt a self-learned static adjacent matrix, it collectively learns
high-dimension relationships, i.e., the time-specific spatial correla-
tion between two transportation modes.

6 Conclusions

In this study, we present AdaTrans, an innovative adaptive graph
learning model tailored for personalized transfer time prediction
within multi-modal transportation. Distinctly, AdaTransseamlessly
integrates both external and internal factors, emphasizing the cor-
relations between environmental influences and individual pref-
erences. To model external factors like real-time traffic, demand,
and supply dynamics, we have crafted a spatial-temporal adaptive
learning component. Concurrently, we deploy an attribute learning
module to discern patterns in internal factors, focusing primarily
on passengers’ preferences. At last, we have embedded an aggrega-
tion component, leveraging a capsule network, ensuring a dynamic
fusion of the influences of the aforementioned factors on transfer
time. We tested AdaTrans using two real-world datasets obtained
from Shenzhen City for August 2018 and September 2019. The
empirical evidence strongly suggests that AdaTrans outperforms
the state-of-the-art baselines. Moving forward, we aspire to adapt
AdaTrans to cities of varying magnitudes, seeking to evaluate its
proficiency in forecasting transfer times within diverse multi-modal
transportation frameworks.
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