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Abstract—Software-defined networking (SDN) has notably
improved networks by providing Machine Learning-Powered
programming capabilities at the control plane (CP), making it
easier to dynamically manage the network resources according
to varying traffic conditions. However, the geographically remote
location of the CP from the data plane (DP) leads to significant
round-trip delays in the order of milliseconds, which can ad-
versely impact the performance of delay-sensitive and real-time
traffic. To address this issue, this paper proposes a novel in-
network reinforcement learning (RL) inference framework that
extends programming capability from the CP to the DP for
fine-grained control of network resources to meet the Quality
of Service (QoS) demands of real-time applications. The in-
network RL inference is achieved by adopting a match-action
table mapping strategy in the DP and validating it through
programming protocol-independent packet processors (P4). A P4
meter extern is utilized to allocate bandwidth to individual traffic
flows based on their QoS requirements. Our proposed strategy
achieves in-network RL inference at the line rate with negligible
processing overhead while reducing packet loss rate and jitter
by up to 92% and 57%, respectively, compared to the CP-
based approach. Additionally, we evaluate the performance of our
proposed bandwidth allocation framework using a state-of-the-
art deep-deterministic policy gradient (DDPG)-based RL agent
with a heuristic priority experience replay (hPER) technique. Our
proposed DDPG agent achieves a faster convergence rate, higher
reward, superior training stability, and up to 56% reduction in
operational cost compared to two alternative agents.

Index Terms—Software Defined Networking, Data plane pro-
gramming, In-network RL inference, DDPG, Bandwidth Alloca-
tion, Network Resource Management, P4, B5G/6G

I. INTRODUCTION

The advent of next-generation applications such as aug-

mented reality (AR), virtual reality (VR), and extended reality

(XR) has paved the way for novel use cases including im-

mersive and semantic communication, remote surgeries, and

tactile internet, among others [1]. The successful deployment

of these emerging applications heavily relies on intelligent

and dynamic network infrastructure capable of supporting

various functions with diverse performance requirements. In

particular, healthcare applications demand ultra-reliable low-

latency communication (URLLC) capabilities for risk-free

operations [2]. In this paper, we investigate the design and

implementation of a network architecture that can meet the

stringent performance demands of emerging AR, VR, and

XR applications while providing flexibility, scalability, and

reliability.
According to the 6G wireless network architecture, the

Radio Access Network (RAN) is connected to the edge-

cloud (EC), public data network (PDN), and other centralized

control-plane (CP) services with the help of a wired network

(the core network) and the user-plane function (UPF), also

referred to as the data-plane [3]. To achieve the full potential

of URLLC services, it is imperative to implement efficient

resource management practices to support an unprecedented

number of connected devices and applications in 6G net-

works. Resource management should be applied not only to

the wireless resources but also to the wired devices in the

core network, specifically to data-plane (DP) switches, to

ensure seamless and uninterrupted communication. As such,

the network resource management problem can be addressed

by dynamically allocating bandwidth to the traffic flows. To

be specific, resources are allocated at the flow-level to address

the bandwidth allocation problem. Adopting a flow-based

approach to resource allocation enables fine-grained control

of the traffic coming from various applications, resulting in

enhanced network performance.

Protocol-independent switching architecture (PISA) has

emerged as a promising architecture for introducing data plane

(DP) programmability in network devices [4]. By leveraging

programming protocol-independent packet processors (P4),

which is an open-source domain-specific language, PISA

enables efficient implementation of advanced network func-

tions in the DP. With the advent of 6G networks, the trend

towards achieving greater reusability and flexibility through

programmability is anticipated to gain even more momentum

[5]. However, the implementation of ML-powered programma-

bility in the DP is hindered by some challenges due to the

unavailability of necessary operations in the switch ASIC, such

as floating point computations and loops, which are needed for

the ML-inference [6], [7]. These challenges underscore the

need for novel approaches that can address the limitations of

existing hardware platforms and enable efficient implementa-

tion of ML in the DP.

Many existing works have proposed in-network ML in-

ference to address conventional routing, anomaly detection,

and DDoS attack detection problems using already developed

supervised ML models that rely on labeled training data [7]–

[13]. However, the future 6G networks will be dynamic,

and static training data is not suitable specifically for non-

stationary and large-scale environments. Reinforcement learn-

ing (RL) is a promising approach for solving complex control

problems in dynamic environments where no training data is
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{1, 2, 3, ..., F} per port p. Based on the importance of the

traffic, a network administrator can assign each flow f with

a weight parameter ω, which stipulates the QoS preference as

described in Section II-A. The total bandwidth or capacity of

a switch port p is represented by Bp (e.g., 100Gbps).

We employ meter extern in P4 to allocate bandwidth to

individual flows. The meter is configured with a CIR (com-

mitted information rate) and a PIR (peak information rate),

along with a burst size in the form of discrete units. Based

on the configuration and traffic rate, the meter yields either 0

(GREEN), 1 (YELLOW), or 2 (RED) as an output. P4 targets

(e.g., behavioral model V2 (BMv2)) generally use these two-

rate, three-color meters, which are associated with the flows to

control the packet or data rate, thus called RateLimiter [18].

We set the lower and upper limits; for instance, a minimum of

1 unit (i.e., 1Mbps) and a maximum of 10 units are allowed for

bandwidth allocation. Flows that fall within the same category,

such as AR, VR, XR, etc., can be grouped and associated with

a single meter. The utility of the switch is evaluated on a per-

port basis. At time t, the total usage of the port capacity is the

sum of the occupied resources by all the flows and is given

as:

Up(t) =

∑F

f=1
b
p
f

Bp

, (1)

where b
p
f represents the number of bandwidth units that are

allocated to the flow f on port p.

III. IN-NETWORK RL INFERENCE FRAMEWORK

In this section, we present a framework to address the RL

inference and bandwidth allocation problem in the data plane

(DP). As depicted in Fig. 1, the SDN controller is connected

to the DP and serves as an intermediary between the DDPG

agent and the DP. The controller has three responsibilities:

1) Stores the domain-specific information in the replay buffer

of the agent, which is extracted by the DP from real traffic;

2) Updates the CIR and PIR of meters according to the

bandwidth allocation policy learned by the DDPG agent; and

3) Performs the RL inference mapping into the forwarding

rules and installs them in the MATs. By utilizing this control

loop, the DDPG agent interacts with the network environment

to learn an optimal bandwidth allocation policy. The following

subsections provide further details on the proposed DDPG

agent, the state-action space, and the reward model. Subse-

quently, we explain the RL inference in the DP using a MAT

mapping strategy and outline the high-level workflow of our

framework.

A. DDPG Agent

Traditional DDPG-based frameworks use fully connected

networks (FCNs) that have large trainable weights and capture

only global discriminative features [19], which is not suitable

for traffic flows with varying QoS requirements that have

complex temporal variations. To this extent, we proposed

a state-of-the-art model called the temporal feature learning

attentional network (TFLAN) for superior state representa-

tion and better function approximation of resource allocation

systems [16]. Our TFLAN-based DDPG agent consists of

three parts: 1) A Conv1D residual block structure to learn

the correlations among local features of each input state; 2)

A GRU layer to learn temporal dependencies; and 3) An

attention mechanism to capture meaningful information at

certain moments. Additionally, we proposed a heuristic-based

priority experience replay (hPER) to reduce variance and break

undesired temporal correlations in the training samples. The

hPER stores all experiences ((st, at, rt, st+1)) and ranks them

using an efficient heuristic function. This approach guides the

agent towards useful regions, improving the convergence rate

and stability during training.
1) State Space: The state of the system in the DP is

defined at the flow-level, which is the observation of the

weight, currently assigned date rate, and demand of the

flow. The state of each distinct flow at time t is given as:

st = {ωf (t), Rf (t), Df (t)}, where ωf denotes the weight

of the flow f , which may or may not change over time.

The currently assigned data rate and the demand of the flow

are denoted by Rf and Df , respectively. Initially, the system

allocates a default data rate to all the flows according to their

weights, which can be modified later according to the demand

of the flows. The demand of a flow f at time t is calculated

as the rate during the last τ till the current time t and can be

determined as:

Df (t) =
Rxf (t)−Rxf (t− τ)

t− τ
(2)

where Rxf (t) is the total number of received bytes from

a flow f at time t. Eq. (2) gives us an average demand rate

of the flow f during an interval (t − τ ). In practice, it is

fairly simple to measure the demand rate in the DP using

P4. Upon the arrival of a packet, the number of bytes of the

packet (excluding header size) is incremented in the relevant

counter. The stateful information of counters and timestamps

is maintained using the registers.
In order to avoid unnecessary RL inferences in the DP (to

minimize overhead), we apply pruning based on the difference

between the current rate and demand, which is given as:

δf (t) = |Df (t) − Rf (t)|. If δf (t) becomes greater than a

set threshold (i.e., θf ) of the flow, only then RL inference is

executed in the DP to reallocate bandwidth at the line rate

(more information in Section III-C).
2) Action Space: Based on the above observation se-

quences, the proposed DDPG agent learns an optimal band-

width allocation policy. In each state st, the system decides

how much bandwidth has to be allocated to minimize the

system cost while meeting the QoS demands. The action space

in the DP, at = {bf}, (f ∈ [1, F ]), has a parameter b, which

represents a new allocation (b units of bandwidth (Section

II-B)) at time t.
3) Reward Model: The objective of the DDPG agent is to

reduce the total cost of the system by taking a series of actions

in all states. To learn an optimal resource allocation policy, the

agent executes the action at in state st, advances the system

into state st+1, and obtains a reward rt from the environment,

which is the inverse of the cost incurred by the action at. In

our proposed model, the reward is calculated as the inverse of

the sum of the cost and penalty of resource procurement in

the system.
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