GLOBECOM 2023 - 2023 IEEE Global Communications Conference | 979-8-3503-1090-0/23/$31.00 ©2023 IEEE | DOI: 10.1109/GLOBECOM54140.2023.10437488

2023 IEEE Global Communications Conference: Next-Generation Networking and Internet

P4-based In-Network RL inference for Efficient
Flow-Level Bandwidth Allocation

Arslan Qadeer, (Member, IEEE)
aqadeer000 @citymail.cuny.edu

Department of Electrical Engineering,

New York, NY, USA

Abstract—Software-defined networking (SDN) has notably
improved networks by providing Machine Learning-Powered
programming capabilities at the control plane (CP), making it
easier to dynamically manage the network resources according
to varying traffic conditions. However, the geographically remote
location of the CP from the data plane (DP) leads to significant
round-trip delays in the order of milliseconds, which can ad-
versely impact the performance of delay-sensitive and real-time
traffic. To address this issue, this paper proposes a novel in-
network reinforcement learning (RL) inference framework that
extends programming capability from the CP to the DP for
fine-grained control of network resources to meet the Quality
of Service (QoS) demands of real-time applications. The in-
network RL inference is achieved by adopting a match-action
table mapping strategy in the DP and validating it through
programming protocol-independent packet processors (P4). A P4
meter extern is utilized to allocate bandwidth to individual traffic
flows based on their QoS requirements. Our proposed strategy
achieves in-network RL inference at the line rate with negligible
processing overhead while reducing packet loss rate and jitter
by up to 92% and 57%, respectively, compared to the CP-
based approach. Additionally, we evaluate the performance of our
proposed bandwidth allocation framework using a state-of-the-
art deep-deterministic policy gradient (DDPG)-based RL agent
with a heuristic priority experience replay (hPER) technique. Our
proposed DDPG agent achieves a faster convergence rate, higher
reward, superior training stability, and up to 56% reduction in
operational cost compared to two alternative agents.

Index Terms—Software Defined Networking, Data plane pro-
gramming, In-network RL inference, DDPG, Bandwidth Alloca-
tion, Network Resource Management, P4, B5G/6G

I. INTRODUCTION

The advent of next-generation applications such as aug-
mented reality (AR), virtual reality (VR), and extended reality
(XR) has paved the way for novel use cases including im-
mersive and semantic communication, remote surgeries, and
tactile internet, among others [1]. The successful deployment
of these emerging applications heavily relies on intelligent
and dynamic network infrastructure capable of supporting
various functions with diverse performance requirements. In
particular, healthcare applications demand ultra-reliable low-
latency communication (URLLC) capabilities for risk-free
operations [2]. In this paper, we investigate the design and
implementation of a network architecture that can meet the
stringent performance demands of emerging AR, VR, and
XR applications while providing flexibility, scalability, and
reliability.

According to the 6G wireless network architecture, the
Radio Access Network (RAN) is connected to the edge-

Myung J. Lee, (Life Member, IEEE)
mlee @ccny.cuny.edu
Department of Electrical Engineering,
The City College of New York of CUNY The City College of New York of CUNY

New York, NY, USA

Daiki Nobayashi
nova@ecs.kyutech.ac.jp
Department of Electrical and
Electronics Engineering,
Kyushu Institute of Technology, Japan

cloud (EC), public data network (PDN), and other centralized
control-plane (CP) services with the help of a wired network
(the core network) and the user-plane function (UPF), also
referred to as the data-plane [3]. To achieve the full potential
of URLLC services, it is imperative to implement efficient
resource management practices to support an unprecedented
number of connected devices and applications in 6G net-
works. Resource management should be applied not only to
the wireless resources but also to the wired devices in the
core network, specifically to data-plane (DP) switches, to
ensure seamless and uninterrupted communication. As such,
the network resource management problem can be addressed
by dynamically allocating bandwidth to the traffic flows. To
be specific, resources are allocated at the flow-level to address
the bandwidth allocation problem. Adopting a flow-based
approach to resource allocation enables fine-grained control
of the traffic coming from various applications, resulting in
enhanced network performance.

Protocol-independent switching architecture (PISA) has
emerged as a promising architecture for introducing data plane
(DP) programmability in network devices [4]. By leveraging
programming protocol-independent packet processors (P4),
which is an open-source domain-specific language, PISA
enables efficient implementation of advanced network func-
tions in the DP. With the advent of 6G networks, the trend
towards achieving greater reusability and flexibility through
programmability is anticipated to gain even more momentum
[5]. However, the implementation of ML-powered programma-
bility in the DP is hindered by some challenges due to the
unavailability of necessary operations in the switch ASIC, such
as floating point computations and loops, which are needed for
the ML-inference [6], [7]. These challenges underscore the
need for novel approaches that can address the limitations of
existing hardware platforms and enable efficient implementa-
tion of ML in the DP.

Many existing works have proposed in-network ML in-
ference to address conventional routing, anomaly detection,
and DDoS attack detection problems using already developed
supervised ML models that rely on labeled training data [7]-
[13]. However, the future 6G networks will be dynamic,
and static training data is not suitable specifically for non-
stationary and large-scale environments. Reinforcement learn-
ing (RL) is a promising approach for solving complex control
problems in dynamic environments where no training data is

1247

Authorized licensed use limited to: City College of New York. Downloaded on May 06,2025 at 15:15:34 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE Global Communications Conference: Next-Generation Networking and Internet

available. A recent study proposed an RL-based technique
for quickly learning the requirements of individual traffic
flows and procuring resources dynamically in a programmable
network [14]. However, the training and inference of the RL
agent are currently carried out in a centralized CP, which takes
round-trip times in the order of milliseconds from the DP
to the CP. A novel approach is needed that can implement
RL-inference in the DP to ensure the efficient allocation of
resources at the line rate to meet the QoS demands and real-
time constraints of next-generation mobile and commercial
applications in 6G networks.

Various techniques, including binary neural networks
(BNNs), modified hardware designs, and match-action table
(MAT) mapping-based methods [7], [8], [11], [12] can be
utilized to implement in-network RL inference. BNN-based
implementation requires at least 12 MATSs to represent one
layer in the DP [12], which can grow exponentially to keep the
accuracy level intact. On the other hand, modified hardware
design-based methods can be validated only using FPGAs,
which is a complex and costly approach and requires redesign-
ing the existing hardware. However, MAT mapping is a well-
suited technique for P4, given its ability to be incorporated
into existing hardware. The MAT mapping can support a
variety of different forwarding behaviors, which can be rapidly
modified by the CP to adapt to non-stationary environments.
Additionally, the forwarding process in the PISA architecture
enables the sharing of common instructions on MATs, leading
to more efficient memory utilization [4] in the DP.

In this study, we aim to undertake the development of
an in-network resource allocation framework by utilizing
machine learning (ML). Our emphasis is on the execution
of reinforcement-learning (RL) inference in the data plane
(DP) for efficient flow-level bandwidth allocation at the line
rate, ultimately achieving the ultra-reliable and low-latency
communication (URLLC) goal in the 6G networks. A deep-
deterministic policy gradient (DDPG) based RL agent provides
superior state representation for continuous control problems
[15], which is better suited to large-scale and dynamic 6G
environments. We leverage our state-of-the-art DDPG agent
[16] to facilitate a quicker convergence to optimal policies and
promote robustness to environmental changes. Our proposed
framework successfully implements in-network RL inference
with negligible processing time overhead while reducing
packet loss rate, jitter, and operational costs for bandwidth
allocation. To the best of our knowledge, this is the first work
to propose in-network RL inference for flow-level bandwidth
allocation using P4.

The main contribution of our work is summarized as fol-
lows:

« We present a simple traffic and bandwidth allocation
model that takes into consideration the QoS demands
of the individual flows. Resource allocation based on
individual flows allows for fine-grained control of the
traffic from any application and improves overall network
performance.

o We formulate the bandwidth allocation problem into a
DDPG-based actor-critic framework. The reward maxi-
mization objective for resource allocation considers min-
imizing the bandwidth allocation cost.

Control Plane Load RL inference into Match-Action Tables

.|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-

Programmable Match-Action Pipeline,

|

Progra}n;nable
W

er

|
|
|
|
I
|Controller

| it
|

e
"5

L

-

Data Plane %, Ttteel TTTTteeeel o

— s

i|:>(<"')> 7.
A

R (("’))j
] 6 - — u ® o = A

Fig_._l_: The structure of in-network RL inference framework. The detail is
described in Section III.

e« We present a unique procedure to implement RL infer-
ence in the DP. The unique state-action design of our
bandwidth allocation system is analogous to the match-
action table mapping in the PISA pipeline.

o The effectiveness of our proposed method is evalu-
ated in terms of per-packet processing time (negligible
overhead), packet loss rate, and jitter. Additionally, our
proposed method outperforms two other DDPG-based
agents in convergence rate, reward, training stability, and
operational cost for bandwidth allocation.

The remainder of this paper is organized as follows: The
traffic model and bandwidth allocation model in the DP are
described in Section II. Section III describes our proposed
framework to achieve in-network RL inference. Section IV
presents the experiment scenarios and performance evaluation
details, followed by the conclusion and future directions in
Section V.

II. SYSTEM MODEL
A. Traffic Model

In conventional networking architectures, bandwidth is typi-
cally allocated at the link level, which can result in suboptimal
use of resources. However, with the flow-level bandwidth
allocation in SDN, the CP can assign bandwidth based on the
requirements of individual flows, leading to enhanced network
performance and reduced congestion. In addition, flow-level
bandwidth allocation facilitates better control over network
traffic by allowing an SDN controller to dynamically prioritize
specific types of traffic, such as voice or video, over others.
This ensures that time-sensitive applications receive adequate
bandwidth to function effectively while best-effort traffic is
assigned a lower priority [17]. The SDN controller accom-
plishes this by installing forwarding rules and differentiating
traffic based on the TCP/UDP port numbers, with a weight
w associated with each flow indicating the quality of service
requirement of the traffic belonging to that flow.

B. Bandwidth Model

A generalized model for bandwidth allocation has been
developed with the goal of making it applicable to any SDN-
based system [14]. To this end, we leverage our previously
proposed model as a foundation for the current framework.
As shown in Fig. 1, a 5G/6G wireless network comprises N
number of core network nodes (i.e., programmable network
switches) {1,2,3,..., N}. Each node n contains P number
of ports {1,2,3,..., P}, and carries F' number of flows

1248
Authorized licensed use limited to: City College of New York. Downloaded on May 06,2025 at 15:15:34 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE Global Communications Conference: Next-Generation Networking and Internet

{1,2,3,..., F} per port p. Based on the importance of the
traffic, a network administrator can assign each flow f with
a weight parameter w, which stipulates the QoS preference as
described in Section II-A. The total bandwidth or capacity of
a switch port p is represented by B, (e.g., 100Gbps).

We employ meter extern in P4 to allocate bandwidth to
individual flows. The meter is configured with a CIR (com-
mitted information rate) and a PIR (peak information rate),
along with a burst size in the form of discrete units. Based
on the configuration and traffic rate, the meter yields either O
(GREEN), 1 (YELLOW), or 2 (RED) as an output. P4 targets
(e.g., behavioral model V2 (BMv2)) generally use these two-
rate, three-color meters, which are associated with the flows to
control the packet or data rate, thus called RateLimiter [18].
We set the lower and upper limits; for instance, a minimum of
1 unit (i.e., 1 Mbps) and a maximum of 10 units are allowed for
bandwidth allocation. Flows that fall within the same category,
such as AR, VR, XR, etc., can be grouped and associated with
a single meter. The utility of the switch is evaluated on a per-
port basis. At time ¢, the total usage of the port capacity is the
sum of the occupied resources by all the flows and is given
as:

F
_ X by

Uplt) = =25

; (D
where b’} represents the number of bandwidth units that are
allocated to the flow f on port p.

III. IN-NETWORK RL INFERENCE FRAMEWORK

In this section, we present a framework to address the RL
inference and bandwidth allocation problem in the data plane
(DP). As depicted in Fig. 1, the SDN controller is connected
to the DP and serves as an intermediary between the DDPG
agent and the DP. The controller has three responsibilities:
1) Stores the domain-specific information in the replay buffer
of the agent, which is extracted by the DP from real traffic;
2) Updates the CIR and PIR of meters according to the
bandwidth allocation policy learned by the DDPG agent; and
3) Performs the RL inference mapping into the forwarding
rules and installs them in the MATSs. By utilizing this control
loop, the DDPG agent interacts with the network environment
to learn an optimal bandwidth allocation policy. The following
subsections provide further details on the proposed DDPG
agent, the state-action space, and the reward model. Subse-
quently, we explain the RL inference in the DP using a MAT
mapping strategy and outline the high-level workflow of our
framework.

A. DDPG Agent

Traditional DDPG-based frameworks use fully connected
networks (FCNs) that have large trainable weights and capture
only global discriminative features [19], which is not suitable
for traffic flows with varying QoS requirements that have
complex temporal variations. To this extent, we proposed
a state-of-the-art model called the temporal feature learning
attentional network (TFLAN) for superior state representa-
tion and better function approximation of resource allocation
systems [16]. Our TFLAN-based DDPG agent consists of

three parts: 1) A ConvlD residual block structure to learn
the correlations among local features of each input state; 2)
A GRU layer to learn temporal dependencies; and 3) An
attention mechanism to capture meaningful information at
certain moments. Additionally, we proposed a heuristic-based
priority experience replay (hPER) to reduce variance and break
undesired temporal correlations in the training samples. The
hPER stores all experiences ((s¢, at, r't, St+1)) and ranks them
using an efficient heuristic function. This approach guides the
agent towards useful regions, improving the convergence rate
and stability during training.

1) State Space: The state of the system in the DP is
defined at the flow-level, which is the observation of the
weight, currently assigned date rate, and demand of the
flow. The state of each distinct flow at time ¢ is given as:
s = {wy(t),Rs(t), Ds(t)}, where wy denotes the weight
of the flow f, which may or may not change over time.
The currently assigned data rate and the demand of the flow
are denoted by Ry and Dy, respectively. Initially, the system
allocates a default data rate to all the flows according to their
weights, which can be modified later according to the demand
of the flows. The demand of a flow f at time ¢ is calculated
as the rate during the last 7 till the current time ¢ and can be
determined as:

_ Rzy(t) — Rxy(t —7)

t—T1

Dy(t) 2)

where Rz (t) is the total number of received bytes from
a flow f at time ¢. Eq. (2) gives us an average demand rate
of the flow f during an interval ({ — 7). In practice, it is
fairly simple to measure the demand rate in the DP using
P4. Upon the arrival of a packet, the number of bytes of the
packet (excluding header size) is incremented in the relevant
counter. The stateful information of counters and timestamps
is maintained using the registers.

In order to avoid unnecessary RL inferences in the DP (to
minimize overhead), we apply pruning based on the difference
between the current rate and demand, which is given as:
§7(t) = |Dys(t) — Ry(t)]. If 64(t) becomes greater than a
set threshold (i.e., 0¢) of the flow, only then RL inference is
executed in the DP to reallocate bandwidth at the line rate
(more information in Section III-C).

2) Action Space: Based on the above observation se-
quences, the proposed DDPG agent learns an optimal band-
width allocation policy. In each state s;, the system decides
how much bandwidth has to be allocated to minimize the
system cost while meeting the QoS demands. The action space
in the DP, a;, = {b}, (f € [1, F]), has a parameter b, which
represents a new allocation (b units of bandwidth (Section
II-B)) at time t¢.

3) Reward Model: The objective of the DDPG agent is to
reduce the total cost of the system by taking a series of actions
in all states. To learn an optimal resource allocation policy, the
agent executes the action a; in state s;, advances the system
into state s;41, and obtains a reward r; from the environment,
which is the inverse of the cost incurred by the action a;. In
our proposed model, the reward is calculated as the inverse of
the sum of the cost and penalty of resource procurement in
the system.

1249

Authorized licensed use limited to: City College of New York. Downloaded on May 06,2025 at 15:15:34 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE Global Communications Conference: Next-Generation Networking and Internet

Thl. 99
@y Next

10 101
20 102

Thl. 101 Thl. 102
Ry Next Ry Next

1 121
2 122

1 122
2 123

Thl. 121
Dy Action

Thl. 122
Dy Action

Thl. 123
Dy Action

2 b1l 3 b2 1 b3
3 b2 a4 b3 3 b4

@ ®)
Fig. 2: A high-level structure of in-network RL inference using
match-action tables.

costy = by x C, 3)

where C' is the system cost per unit of bandwidth, which is
adjustable based on the environment. The penalty for a flow
refers to the additional cost caused by inaccurate resource
allocation and is defined as:

D
penaltyy = wy X b—f, “)
!

The penalty equation helps the DDPG agent learn a precise
resource allocation policy by minimizing the penalty ratio.
Therefore, the overall reward is given as follows:

1
cost (s¢, ar) + penalty(se,ar)’

re(se,ar) = (5)

We compute rewards for each flow separately. This method
is beneficial because QoS demands may differ across flows,
and computing rewards for each flow can aid the agent in
deriving an even better resource allocation policy.

The system aims to maximize the long-term reward by
minimizing the system cost when allocating bandwidth, while
taking into account varying QoS requirements and constrained
resources. This optimization problem can be expressed as:

mazximize XT: ri(sg, ap) (6)
subject to: -
Upy(t) <1,vteT,Vpe P,¥neN @)
1<bs <bfy...VfEF 3
0 <05, VfeF, 9)

where constraint (7) limits the ports usage on all the
switches to not exceed the available capacity (B,) at any
given time. The constraint (8) guarantees that the flow f is
allocated with bandwidth units between 1 and the maximum
permissible units. The constraint (9) serves three purposes:
Firstly, it ensures that the difference between the demand rate
and the currently assigned rate remains below the threshold
0y, thereby meeting the QoS requirement. Secondly, it helps
reclaim the resources in situations where the demand is less
than the currently assigned rate. Lastly, it helps minimize per-
packet processing time in the DP by avoiding unnecessary
inferences.

Compute Hash

1010
1010

Index |

Packet Parser Extract Flow information

| {srcIP,dstIP,srcPort, dstPort, proto} -—>
L]

¥ Find info

Send info to controller Controller

+ {srcIP,dstIP, srcPort,dstPort, proto} i—pi|nstall Forwarding Rules!
New Flow " | ! i i

Get Stats Apply Pruning

| T
L {67, 65} 5>
Existing Flow L(ff}; L=k
True

Match-Action Table Mapping

False

| v

Action

L Construct s,
- u; ¢ V))
:{mf, Ry, Dy } ;—{»wf inference;—»-}\R, inferencej—»éDf inferenceﬁ—»i Allocate bfjl

Fig. 3: PISA pipeline workflow for in-network RL inference.

B. RL inference using Match-action tables

The programmable switch ASICs have certain limitations
with respect to their operational capabilities. Specifically, the
switch ASICs are unable to perform floating point compu-
tations and loops, which makes it challenging to implement
inference procedures for ML models in the DP [6], [7]. We
address this problem by designing an RL model in the DP
whose states and actions are tailored to fit well within the
PISA pipeline. The state s; consists of multiple parameters
(i.e., wy, Ry, Dy), which in turn produces an action a;. As an
example in fig. 2(a), the program applies the first table in the
pipeline to match the weight of the flow (wy). This is followed
by matching the appropriate rate table (I2;), followed by the fi-
nal demand table (D) to output a suitable meter (bandwidth).
As illustrated in fig. 2(b), the process of RL inference is
analogous to a graph structure, which can be mapped to match-
action tables (MATs). Essentially, the MAT mapping strategy
facilitates RL inference in the programmable network devices,
obviating the need for computationally intensive calculations.
Note that the rules in the MATSs are installed by the controller
according to the bandwidth allocation policy, which is learned
by the DDPG agent. As mentioned in Section II-B, multiple
related flows can be grouped together and assigned the same
weight based on their importance. This helps save memory
and table entries, thus enhancing efficiency.

C. Workflow

As depicted in fig. 3, we illustrate the overall workflow of
our proposed framework with the help of the PISA pipeline.
Upon the arrival of a packet, the programmable parser extracts
the flow information. A hash is calculated on the 5 tuple
information to get an index value for the registers, where flow
information is saved. In the event of a new flow, the packet
is cloned and sent to the controller to install a forwarding
rule and allocate a bandwidth unit. Conversely, in the case
of an existing flow, the demand of flow is measured using
the methodology elaborated in Section III-Al. After applying
pruning, if 6; surpasses the predefined threshold (6¢), the
state is formulated (i.e., {wys, Ry, Ds}). The framework then
executes RL inference using the match-action pipeline, as
discussed in Section III-B, to reallocate the bandwidth at the
line rate.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed
in-network RL inference framework. We develop the band-
width allocation model (Section (II-B)) and proposed TFLAN-
based DDPG agent (Section (III-A)) in Python 3.8.10. The

1250
Authorized licensed use limited to: City College of New York. Downloaded on May 06,2025 at 15:15:34 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE Global Communications Conference: Next-Generation Networking and Internet

(a)

(b) (c)

B
°

—— UDP In-Network Inference —— UDP In-Network Inference —— UDP In-Network Inference
0.18 _,,;I.
TCP In-Network Inference TCP In-Network Inference - 3.5{ ~—- UDP CP Inference

T --- UDP No In-Network Inference 1 - :?:::I'"f'efe“‘e -

- - T Inference -
30.16 TCP No In-Network Inference 10 - _* 3.0
g I~
=0.14 ‘é 2.5
'- N~
= = 2.0 9
So12 g
2
] = 1.5
g =
g 0.10
oo. 1.0
o

0.5
0.08
1 5 1 5 1 5

3
Arrival Rate

3
Arrival Rate

3
Arrival Rate

Fig. 4: (a) Per-packet processing time in microseconds with and without in-network RL inference, (b) Packet Loss rate comparison between in-network and
CP-based RL inference (Y-axis is in log scale), and (c) Jitter comparison for UDP traffic in milliseconds.

data plane (DP) component of RL inference consists of about
500 lines of P4,4 code, which runs in the behavioral model
V2 (BMv2) simple switch [20], and tested using Mininet
[21]. Note that our proposed implementation of RL inference
required 3X fewer lines of code compared to the pForest
implementation [7]. An SDN controller is also developed in
Python, which controls the RL inference via forwarding rules
and acts as a mediator between the DDPG agent and the DP
with the help of the P4 Runtime API. All the experiments are
conducted on a virtual machine (VM) with 12 2.9 GHz CPU
cores, 90 GB of memory, and the Ubuntu 20.04 OS. Note that
the DDPG agent, controller, and P4 target (BMv2) run in the
same VM.

A. Effectiveness

We analyze the overhead and the effectiveness yielded
due to the proposed in-network RL inference framework. We
created a triangle topology using Mininet which emulates the
BMv2 switches to run the P4 code. Each switch in the triangle
topology is connected to a host, which is used to generate TCP
and UDP traffic with the iperf tool. We measure the per-packet
processing time in the PISA pipeline with and without RL
inference. As depicted in fig. 4(a), the per-packet processing
time increases with the traffic arrival rate. When RL inference
is applied in the DP, a maximum of ~100 nanoseconds (ns) of
overhead is observed in the case of TCP traffic (with maximum
arrival rate), compared to the case when no in-network RL
inference is applied (UDP with minimum arrival rate). This
overhead is negligible compared to the round-trip time from
the DP to the CP, which is in the order of milliseconds and
can further increase if the CP is located in a distant location.

Fig. 4(b) depicts a comparison of the packet loss rates
between our proposed in-network RL inference and CP-based
RL inference. In the conventional approach [14], an inference
request is sent to the CP, which takes a decision and allocates
bandwidth to the flow. In contrast, our proposed method
allocates bandwidth at the line rate and forwards numerous
packets by the time a decision is made by the CP, thereby
significantly reducing the packet loss rate, as evident in fig.
4(b). Additionally, despite the fact that TCP traffic requires
more processing time (fig. 4(a)), it has a lower packet loss rate
than UDP due to its inbuilt flow control mechanism. Overall,
our proposed method, on average, achieves approximately 92%
and 89.7% reductions in packet loss for UDP and TCP traffic,
respectively, when compared to the CP-based approach.

Jitter is typically associated with UDP traffic because UDP
does not provide any flow control or error correction mecha-
nisms; therefore, we measure the jitter for UDP traffic only.
As illustrated in fig. 4(c), our proposed method helps reduce
the jitter by allocating bandwidth at the line rate, eliminating
the delays and variability associated with the round-trip time
from the DP to the CP. This allows for the swift and precise
control of network traffic, minimizing the impact of jitter on
real-time applications. Our proposed in-network RL inference
improves jitter by 57% for UDP traffic compared to the CP-
based approach.

B. Performance Evaluation

We evaluate the performance of the in-network bandwidth
allocation framework with the TFLAN-based DPPG agent in
terms of convergence speed and operational cost. The two
alternative agents used to compare with our TFLAN-based
DDPG agent are described below:

e« TFLAN-Uniform: The actor and critic networks are
equipped with our proposed TFLAN-based architecture.
However, transitions are sampled randomly from the
replay buffer to train the agent.

« DDPG-NN-Uniform: Existing DDPG agent [19], which
uses two fully connected layers for the actor and critic
networks and a uniform sampling replay buffer.

The actor and critic networks in all agents are set with
a learning rate of 0.0001 and 0.001, respectively, and use a
discount factor v = 0.99. The loss function is optimized using
the Adam optimizer during training. Training consists of 1000
episodes with 1000 learning steps each.

We run the simulation for 100 switches, each comprising
48 ports with 25 Gbps capacity per port. For the performance
analysis of our proposed agent, four categories of traffic with
varying data rates and different QoS demands are generated
that can be anticipated in 5G/6G environment. RT-1 traffic
is considered time-sensitive and bandwidth-intensive, usually
originating from AR/VR or similar applications, and its data
rate varies from 6 Mbps to 8 Mbps. RT-2 traffic is also time-
sensitive but not bandwidth-intensive, like that from smart-city
sensors, and its data rate varies from 1 Mbps to 2 Mbps. BE-
1 traffic is delay-tolerant but bandwidth-intensive, typically
generated by users uploading or downloading files, with its
data rate ranging from 6 Mbps to 8 Mbps. Lastly, BE-2 traffic
is also delay-tolerant, which generates less traffic within the
range of 1 Mbps to 2 Mbps and may consist of text, email,

1251
Authorized licensed use limited to: City College of New York. Downloaded on May 06,2025 at 15:15:34 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE Global Communications Conference: Next-Generation Networking and Internet

(a)

(b)

e
°

wss TFLAN-hPER
TFLAN-Uniform
w== DDPG-NN-Uniform

I
I
[
1 RT-2

RT- BE-1 BE-2

o 4 °
IS £y ®

N%rmalized Reward
N

—— TFLAN-hPER
TFLAN-Uniform
—— DDPG-NN-Uniform

e
°

| 1 0.
o 200 800 1000

400 600
Episodes
Fig. 5: Convergence and performance comparisons of three agents. (a) Conver-

gence, and (b) Operational Cost.

web traffic, etc. Real-time traffic has a higher weight (w),
which signifies the QoS requirements and helps the algorithm
prioritize such traffic over best-effort traffic.

Fig. 5(a) illustrates the convergence curves of all three
DDPG-based agents. Overall, the TFLAN-based methods
show less oscillations and achieve better episodic reward com-
pared to the DDPG-NN. The proposed approach outperforms
both agents in terms of convergence speed, higher reward, and
training stability, all due to the virtue of our unique neural
network design (i.e., TFLAN) and efficient replay buffer (i.e.,
hPER). Lastly, the operational cost comparison is depicted
in fig. 5(b), which is calculated using Equations (3) and
(4). Allocating a smaller amount of bandwidth reduces the
cost (Eq. (3)); however, imprecise allocation with respect
to the demand (Eq. (2)) incurs an additional penalty (Eq.
(4)). Consequently, allocating insufficient bandwidth to high-
weighted flows raises the overall cost. Our proposed method
learns precise bandwidth allocation policy by minimizing the
penalty ratio for all flow types. As a result, our proposed agent
(i.e., TFLAN-hPER) achieves up to 23% and 56% reduction in
cost compared to TFLAN-Uniform and DDPG-NN-Uniform,
respectively.

In summary, our proposed framework successfully achieves
in-network RL inference and significantly reduces packet
loss rate and jitter at the cost of negligible time overhead.
Furthermore, our proposed TFLAN-based DDPG agent pri-
oritizes real-time traffic over best-effort while satisfying the
QoS demands of all kinds of traffic. Our agent improves the
convergence rate and reduces operational cost when compared
with two alternative agents.

V. CONCLUSION AND FUTURE WORK

We presented a novel in-network RL inference framework
for efficient bandwidth allocation at the line rate using P4 me-
ter and match-action table mapping techniques. Our proposed
method achieved a fine-grained control of the network for
demand-based bandwidth allocation to individual flows with
negligible processing overhead, while reducing packet loss rate
and jitter by up to 92% and 57%, respectively. Furthermore,
our proposed DDPG agent outperforms two alternative agents
in terms of convergence speed, higher reward, and training
stability, achieving up to 56% reduction in the operational cost.

The framework was validated using a BMv2 simple switch
and Mininet emulator, and future work will extend the imple-
mentation to a hardware Intel Tofino-based switch (Netberg
Aurora 610) and run extensive performance and scalability
tests in a real-world testbed environment. We also plan to
explore multi-agent reinforcement learning to address resource
management problems in multi-domain networks.

ACKNOWLEDGMENT

This work is supported by NSF PAWR (#1827923) and NSF
IRNC (#2029295).

(1]

(2]

(3]

(41

[5]

(6]

(71

(8]

91
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]
(21]

1252
Authorized licensed use limited to: City College of New York. Downloaded on May 06,2025 at 15:15:34 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

P. Kamble et al., ”6G Wireless Networks: Vision, Requirements, Appli-
cations and Challenges,” 2022 5th International Conference on Advances
in Science and Technology (ICAST), Mumbiai, India, 2022, pp. 577-581,
doi: 10.1109/ICAST55766.2022.10039549.

P. N. Srinivasu et al., "6G Driven Fast Computational Networking
Framework for Healthcare Applications,” in IEEE Access, vol. 10, pp.
94235-94248, 2022, doi: 10.1109/ACCESS.2022.3203061.

G. Liu et al., ”The SOLIDS 6G mobile network architecture: Driving
forces features and functional topology”, Engineering, vol. 8, pp. 42-59,
Jan. 2022.

A. Liatifis et al., ”Advancing SDN from OpenFlow to P4: A Survey,”
2023 ACM Comput. Surv. 55, 9, Article 186 (September 2023), 37
pages, doi: 10.1145/3556973.

5G PPP Architecture Working Group, “The 6G Architecture Landscape
European perspective,” Creative Commons Attribution 4.0 International,
DOI:10.5281/zenodo.7313232.

W. Quan et al., ”Al-Driven Packet Forwarding With Programmable
Data Plane: A Survey,” in IEEE Communications Surveys &
Tutorials, vol. 25, no. 1, pp. 762-790, Firstquarter 2023, doi:
10.1109/COMST.2022.3217613.

C. Busse-Grawitz et al., "pForest: In-Network Inference With Random
Forests,” 2019, doi: arxiv.org/abs/1909.05680.

G. Siracusano et al., "Running neural networks on the NIC,”
arXiv:2009.02353, 2020.

C. Zheng et al., "1lsy: Practical In-Network Classification,” 2022, doi:
10.48550/ARX1V.2205.08243.

Francesco Musumeci et al., "Machine-Learning-Enabled DDoS Attacks
Detection in P4 Programmable Networks”, Journal of Network and
Systems Management, vol. 30.1, pp. 1-27, 2021.

J. Luo et al., "Binary Neural Network with P4 on Programmable
Data Plane,” 2022 18th International Conference on Mobility, Sensing
and Networking (MSN), Guangzhou, China, 2022, pp. 960-965, doi:
10.1109/MSN57253.2022.00155.

T. Swamy et al., ”Taurus: a data plane architecture for per-packet ML,”
In Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS °2022). Association for Computing Machinery, New York,
NY, USA, 1099-1114, doi: 10.1145/3503222.3507726.
G. Siracusano et al., 2018. ”In-Network Neural
arXiv:1801.05731 (2018).

A. Qadeer et al., “Flow-Level Dynamic Bandwidth Allocation in
SDN-Enabled Edge Cloud using Heuristic Reinforcement Learning,”
2021 8th International Conference on Future Internet of Things
and Cloud (FiCloud), Rome, Italy, 2021, pp. 1-10, doi: 10.1109/Fi-
Cloud49777.2021.00009.

A. Qadeer et al., "DDPG-Edge-Cloud: A Deep-Deterministic Policy
Gradient based Multi-Resource Allocation in Edge-Cloud System,” 2022
International Conference on Artificial Intelligence in Information and
Communication (ICAIIC), Jeju Island, Korea, Republic of, 2022, pp.
339-344, doi: 10.1109/ICAIIC54071.2022.9722676.

A. Qadeer et al., "Deep-Deterministic Policy Gradient Based Multi-
Resource Allocation in Edge-Cloud System: A Distributed Approach,”
in IEEE Access, vol. 11, pp. 20381-20398, 2023, doi: 10.1109/AC-
CESS.2023.3249153.

Blake, S. et al., ”An Architecture for Differentiated Services”, RFC
2475, DOI 10.17487/RFC2475, December 1998.

”"P416 Language Specification,” version 1.2.3, The P4 Language
Consortium, 11 July. 2022, Available: [Online] https://p4.org/wp-
content/uploads/2022/07/P4-16-spec.html.

Chen, Z. et al., Decentralized computation offloading for multi-user mo-
bile edge computing: a deep reinforcement learning approach. J Wireless
Com Network 2020, 188 (2020). https://doi.org/10.1186/s13638-020-
01801-6

P4 Language Consortium, “"Behavioral Model (BMv2),” 2023, Available
[Online] https://github.com/p4lang/behavioral-model.

Bob Lantz et al., 2010. ”A network in a laptop: rapid prototyping
for software-defined networks,” In Proceedings of the 9th ACM SIG-
COMM Workshop on Hot Topics in Networks (Hotnets-IX). Association
for Computing Machinery, New York, NY, USA, Article 19, 1-6.
DOTI:https://doi.org/10.1145/1868447.1868466

Networks,”

