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Abstract—Event driven applications are often built with mes-
sage queuing systems that provide no temporal upper bound on
message delivery. However, many modern event driven applica-
tions, like a system inferring traffic conditions and generating
recommendations to road users based on sensor data, are
latency sensitive. Traditional message queuing systems use static
load assignment algorithms that guarantee event ordering while
mostly ignoring a temporal upper bound on message delivery.
Another class of message queuing systems use stateless operators
which deliver messages (events) quickly but pass the burden
of stream state management to user applications. Synchronous
communication patterns, on the other hand, provide an upper
bound for message delivery while ensuring message ordering but
unnecessarily bind limited resources reducing efficiency.

In this paper we explore load balancing choices in asyn-
chronous systems and their impact on queuing delay. We then
propose a load balancing framework, SMALOPS, for event
driven applications with dynamically changing load and quick
message delivery requirements. Our experiments confirm that
with smarter load balancing, the 99%ile response times for events
can be improved by as much as 73%, compared to traditional
message queuing systems. SMALOPS introduces the following:

• A load balancing algorithm that can significantly reduce
queuing delay in message delivery systems.

• Mechanisms enabling consumers to recover stream state
when either the message delivery system does not support
stateful operators or the state has been split by moving
streams between operators.

Index Terms—stream load balancing, asynchronous, flow or-
dering, split state reconciliation, stream processing

I. INTRODUCTION

Message queues are a popular tool for building event driven
services. Traditional asynchronous services have a fire and
forget model where messages tend to trigger a change of
state of some downstream application(s). Usually, queuing
delay is ignored since typical asynchronous applications have
a high tolerance for state change latencies. For example,
when operating one’s bank account, it is often acceptable for
transactions to remain in “transit” for days without updating
the state of the account. In other cases, the state change latency
requirements are relaxed as such a state might be hidden from
users, such as in log processing applications. As far as message
delivery times are concerned, message queuing systems make
no guarantees.

Some message queuing systems provide strong message
ordering guarantees leading such systems to disregard skewed

load build-up. Further, most message queuing systems treat
load balancing and stateful stream operations as orthogonal
design choices. Systems like Apache Kafka assign load stat-
ically for the lifetime of the streams. While this prevents
against split stream state, such a system is unable to handle
significantly skewed input at a massive scale [1], [2]. Other
message queuing systems like NSQ [3] offer a better scaling
profile by foregoing stateful stream processing completely.

There is an emerging class of applications that use message
queuing systems to integrate physical systems to data intensive
applications [1]. These applications operate on streams of data
bounded by the notion of “freshness” imbibed in the messages
that constitute the streams. Informally, we define this “fresh-
ness” to be a temporal bound beyond which the information
carried by the message looses its relevance. Mostly, such fresh-
ness of messages can typically be guaranteed by splitting the
streams and balancing them across multiple message queues,
where the queues are stateless operators. If an ordering of the
messages are required then it is up to the consumers of the
messages to rebuild that ordering. Generally speaking, if the
messages originate from a multitude of sources and are split
across a variety of processors, then finding a consistent, strict
order is a very hard challenge. On the other hand, building data
intensive cyber-physical systems using synchronous patterns,
where the source of the data waits for a response to the request
before sending the next request, is wasteful of the limited
computing resources available in physical systems.

In this work, we present SMALOPS, which makes two
primary contributions:

• A load balancing algorithm, focusing on the heavier flows
(in terms of messages per unit time) thus reducing state
tracking overhead, that is able to respond to dynamic
workload changes.

• Such an algorithm affects a split in the streams that it
operates on, thus we also discuss a mechanism to rebuild
message ordering to support stateful stream processing.

SMALOPS optimizes for queuing delay while being cog-
nizant of the desirability of stream state and fully aware
of possible migrations of local application state stored in
the downstream services. Finally, SMALOPS is also biased
towards keeping larger streams pinned and migrates them only
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when absolutely required. As per our knowledge, SMALOPS
is the first framework of its kind.

We implemented SMALOPS as a Go based framework on
top of Apache Kafka v3.3.1 and deployed it in a Kubernetes
cluster. Our evaluations show that SMALOPS can improve
the 99th%ile queuing latency for streams by as much as 73%.
Though SMALOPS is built on top of Apache Kafka, it is not
dependent on any Kafka specific features. We demonstrate the
principles behind SMALOPS in a manner completely agnostic
of the underlying system.

II. SYSTEM DESIGN

We refer the frequency with which messages occur in a
stream as its “size”. Based on this definition, we classify
streams as “heavy” when their size is above some predefined
threshold. The size of a message broker queue (“partitions”
borrowing notation from Kafka), is defined as the sum of the
sizes of the heavy streams assigned to that partition. We refer
to the key associated with a “heavy” (or large) stream as a
“hot key”. We use the lossy counting algorithm [4] to detect
these heavy streams. The primary idea behind SMALOPS is
to detect and manage the load from the heavy streams. The
initial assignment of heavy streams to a broker instance are
done by using the power-of-two random choices algorithm
[5]. The reassignment problem can generally be posed as a
linear integer programming problem and is known to be NP-
complete [6], [7]. In this paper we present a heuristic to use
“best-fit” to solve this problem. Heavier keys, with relatively
smaller size, have more infrequent messages and as such can
tolerate larger relative delays. Thus we biased the heuristics
to migrate these streams first.

Fig. 1. SMALOPS System Design

The overall system design of SMALOPS is shown in Fig.
1. SMALOPS is a gateway service that maps incoming keys
into Kafka partitions. We assume, without loss of generality,
that multiple instances of the same consumer service are
listening to these messages. We introduce another layer of
gateway service in front of the SMALOPS gateways, “Level
1 Gateways”, to map specific set of keys to specific SMALOPS
gateways. This additional gateway layer is mainly introduced
to avoid distributed algorithms to detect heavy flows across
multiple gateway nodes, [8], [9]. Level 1 gateways can use
load balancing algorithms described in [10], [11] or [12],
which we leave for future research. In this paper we focus
on reducing queueing delays in the message broker queues.

SMALOPS balances the need to optimize end-to-end la-
tency against minimizing the need to rebuild state in streams.
Given a set of partitions, P = {p1, p2, ..., pm} and a set of
keys K, let Rpi be the sum of the sizes of the heavy keys that

Fig. 2. Migration Feasibility

have been assigned to the partition pi, the size of the partition.
Then the aim of SMALOPS is to achieve:

Rpi ≈ Rpj∀i, j ∈ {1, ...,m} ∧ i ̸= j (1)

We further define an error function for balancing the parti-
tions,

ELB =
∑
j

|Rpj
−Ravg| (2)

where ELB is the load balancing error, Ravg is the average
load across all partitions and Rpj

is the rate of incoming
messages due to hot keys into the partition pj . Simply speak-
ing, we want assign equal load due to heavy streams to each
partition.

Further we divide the partition in two sets - the “un-
derloaded” and the “overloaded” set based on whether a
partition’s size less or more than Ravg . We then look at
each heavy stream in each partition of the overloaded set and
attempt to migrate the stream to a partition in the underloaded
set. SMALOPS aims to bring both partitions nearer to Ravg

eventually optimizing Equation 2. This is a greedy algorithm
that attempts to migrate, one by one, each of the heavy streams
in the overloaded partitions to an underloaded partition. We
define the difference in size between two partitions as “load
distance”, refer to Fig. 2. If the size of the selected stream
is Rm and the size of a potential target partition is Rptarget

,
then this algorithm will select a partition that minimizes the
following expression:

|(Rm +Rptarget
)−Ravg| (3)

If for every possible target partition, the result of migrating the
stream is an increase in the load distance between the source
and target partitions, then the algorithm will not migrate that
stream.

However, migrating a stream from one partition to another
destroys the ordering of messages within that stream. To
resolve this issue, we define subdivisions within a stream
called message sets. Each stream is now subdivided into sets
which have a unique ID within the stream that increments
every time the stream is reassigned, Fig. 3. This information
is encoded within the stream metadata, Fig 4. Every time a
stream is migrated, a new message set is started. Thus the
problem of reordering the messages reduces to a problem of
reordering the message sets. Towards that goal, the message
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Fig. 3. Message Sets

Fig. 4. Message Set Header

set header includes a unique identifier, within the stream, with
a total ordering.

Rebuilding the state of the stream requires some effort
on the consumer side since the migrated stream is now
sending messages to a different consumer instance. When a
stream S is migrated from consumer instance C1 to consumer
instance C2, the message set headers will contain the following
information:

• The message set header on the last message of stream
S sent to consumer application C1 will inform C1 that
stream S is being migrated to C2.

• The message set header on the first message of stream S
sent to consumer application instance C2 will inform C2
that the stream S is being migrated from C1.

When C2 receives the messages of S, it queues them inter-
nally without processing them. In the meantime, C1 finished
processing the messages of S. It then sends a message to C2
informing that it has finished processing all messages of S that
was sent to it. C1 then starts processing messages belonging
to S. Fig. 5 shows the timeline of the gateway and the two
consumers, C1 and C2, involved in the migration.

SMALOPS needs to maintain some state for the “heavy”
streams. Specifically, SMALOPS needs to track the partition
each migrated stream is mapped to and it needs to track the

Fig. 5. Consumer side protocol

Fig. 6. Message Set Migration

“size” associated with each hot key and partition. In order
to reduce the amount of state that needs to be maintained,
SMALOPS only tracks keys that have currently been detected
as hot. Any key that was previously detected as hot but is not
associated with a heavy flow anymore is dropped. In a long
running experiment where keys sending 100+ messages in any
counting window were defined as “hot” and |K| was defined
to be 28M (million), we found that our custom power-law,
open-loop generator actually used 3.2M keys while sending
a total of 28M messages. Out of these 3.2M keys, 14K
(thousand) were detected as being “hot” over the course of
the experiment. These 14K keys accounted for 20M+ of the
28M total messages sent by the generator. The SMALOPS
gateway tracked no more than 1-1.5K keys in any of their
counting windows. Thus we can reasonably expect SMALOPS
to balance a significant portion,

∑H
j=1 RjT

mcp
≈ 3

4 , of the load
on the messaging system while only maintaining a very small
state, tracking only ∼0.05% of the number of keys seen. Here
H is the number of hot keys in the gateway, m is the number
of partitions, Rj is the size of each of the hot keys, T is the
threshold above which a partition is considered heavy and cp
is the average load generated by the non-hot keys.

SMALOPS also considers the fact that consumers may
maintain local application state, “appstate”, associated with
each stream. Migrating a stream to a different partition prob-
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ably migrates it to a different consumer as well, potentially
triggering an appstate migration. In such cases, SMALOPS
needs to be aware of the state migration costs. Let us consider
an example. Let us assume that processing time for a message
from any stream is tmsg . Let Kp1

be the set of all keys whose
messages are sent to partition p1 and thus to the consumer C1.
Also, let Rkn

be the incoming rate of a stream, identified by
key kn ∈ Kp1 . Then the processing and queueing time for a
message belonging to that stream can be approximated by:

tmsg(1 + (1− Rkn

Rp1

))

where the last term is the amount of time a message belonging
to the stream identified by the key ki has to wait in a message
queue before being read.

Now let us consider if the stream identified by key K1

is migrated to another partition p2 and thus consumer C2.
Let Kp2 be the existing set of hot keys on partition p2 and
RKj

be the corresponding rates of incoming messages. Thus
the processing and queueing time for a message belonging
to the stream identified by key K1 on partition p2 can be
approximated by:

tmsg(1 + (1− I

Rp2

))

Here I denotes a (unit) rate of incoming messages, 1
unit time ,

since we are only interested in how long the first message has
to wait in the message broker.

Finally, let the cost of migrating the appstate corresponding
to key K1 be tSM . Then migrating the stream makes sense
only if,

tmsg(1 + (1− Rkn

Rp1

)) > tSM + tmsg(1 + (1− I

Rp2

)) (4)

In order to handle local consumer state, the gateways need
to track rate of incoming messages and the cost of state
migration. This tracking would significantly bloat the state
stored in the gateways. This state bloat can be completely
avoided if the stream migrations are made at discrete time
intervals greater than some threshold that ensures that all state
migrations have completed before new migrations are started.
In our experiments, we choose this decision time interval to
be 10 seconds which is an order of magnitude higher than the
processing time of the messages.

III. EVALUATION

A. Experimental Setup

We ran our experiments on cloudlab [13] servers. A Kuber-
netes cluster was created with four Intel Xeon servers, each
with 20 cores and 196GB of memory. We then deployed our
control plane that ran a pod on each of the servers. These pods
form the service that is queried to get information about the
backends of the gateway service running in the cluster.

We use an in-house power-law based open loop generator.
We use the tool to send requests to the gateway for a fixed
amount of time (5 minutes) where every request is part of a

flow, identified by a key selected using the Zipf distribution.
We also experimented with messages without any key meta-
data that could be routed on a per message basis to get a
measure of what an optimal performance on a single gateway
might look like.

We used the Zipf distribution to generate load due to its
prevalance in different workload like Twitter hashtags [14]
and web caches [15]. We define the Zipf distribution as per
k ∈ [0, numkeys] : P (k) ∝ (v+k)−s, where s > 1 and v ≥ 1.
Our generator uses s = 1.1 and v = 2.72 [16].

The core motivation for designing the experimental setup
was to track the queuing delay of individual events in Apache
Kafka given a workload that follows a power law distribution.

0.2 0.4 0.6 0.8 1.0
Queuing Delay Percentile

0

10

20

30

40

50

Ti
m

e(
se

co
nd

s)

42 seconds

18 seconds

Kafka
SMALOPS

(a) Queuing Delay Distribution Improvement at 20 µs

0.2 0.4 0.6 0.8 1.0
Queuing Delay Percentile

0

100

200

300

400

500

Ti
m

e(
se

co
nd

s)

473 seconds

124 seconds

Kafka
SMALOPS

(b) Queuing Delay Distribution Improvement at 50 µs

Fig. 7. Performance improvement with SMALOPS is realised earlier

B. SMALOPS Overall Performance

In our first experiment, we set a processing time of 50
microseconds for each message on the consumers and com-
pare the queuing delay distribution achieved through Kafka
and SMALOPS respectively. Here we see that SMALOPS
improves overall native Kafka performance, with the 99%ile
queuing delay improving by 73%, Fig. 7(b).

We repeated this experiment varying consumer processing
times between 10 and 50 microseconds. The comparison be-
tween the 99%ile queuing delay can be seen in Fig. 8. We note
that as the system starts getting overloaded, the 99%ile latency
of Kafka keeps increasing while the improvements achieved by
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Fig. 9. Impact of Threshold Definition on Latency

SMALOPS remain stable. The 99%ile improvement at 50 mi-
croseconds consumer processing time is 73% while the 99%ile
queuing delay improvement at 20 microseconds consumer
processing time is 57%. In our experiment, 50ms processing
time/message was just before the system is overloaded (tail
latencies become really long).

Furthermore, we see that as the system starts getting
overloaded, Kafka’s performance start degrading earlier. For
example, for a 20 microseconds consumer processing time, the
performance of Kafka and SMALOPS are indistinguishable till
90%ile latency. However, for a 50 microseconds consumer
processing time, Kafka starts degrading around the 50%ile
mark while SMALOPS’s performance remains nearly identi-
cal. This comparison between the performances of SMALOPS
and Kafka can be seen in Fig. 7.

In Fig. 9 we experiment with the threshold, as a percentage
of total number of messages, to be used to classify a flow as
“heavy”. We see that when we classify flows that account
for 10% or more of the messages received as “heavy”,
SMALOPS’ tail latency drops sharply. We also see that further
increasing the threshold has no significant impact on our
results. Rather keeping this threshold as low as possible allows
us to keep the number of keys being tracked lower.

Finally, we ran SMALOPS against “dynamic load”, where
the load is generated by shifting the keys through our zipf
based generator every minute. This ensures that:

• A few new streams are introduced to the system regularly.
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Fig. 10. Kafka vs SMALOPS under dynamic load conditions

• A few streams stop altogether.
• Load on remaining streams change.
Fig. 10 shows that SMALOPS can significantly improve

streaming system performance even in the face of these new
challenges. Each message in this experiment takes 20ms to be
processed.

IV. RELATED WORK

Load balancing is a well known problem that has been ex-
tensively studied for a long time. Advent of modern distributed
systems has renewed interest in the area. Load balancing in the
topic based pub-sub systems like Apache Kafka have generally
been in two forms:

• Balance the partitions themselves within the brokers [17].
• Assign topics to partitions as the topics enter the system

[18], [19].
• Build overlay networks [20], [21] to connect relevant

nodes directly.
Gedik et al. [22], have used the lossy algorithm to track

heavier flows and map those to partition explicitly. Other
flows are mapped using the consistent hash function. This
work is probably the most similar to ours. They use three
lossy counters over tumbling windows to emulate a sliding
window whereas we only use a single lossy counter over
strictly demarcated window.

Nasir et al. [23], has proposed PKG that uses power of two
random choices to map each key to the least loaded partition
selected by two different hash functions. This results in every
flow, heavy and otherwise, being in a split state that requires
reconciliation.

Finally, Rivetti et al. [24], proposed DKG that learns the
distribution of the keys before using a global mapping function
to achieve near-optimal load assignment. They map non-heavy
keys to “buckets”, where the number of buckets is user-defined
and larger than the number of partitions, using a random
hash function from two separate hash function families. Their
solution maps the heavier flows, identified by the space saving
algorithm, explicitly to specific partitions.

SMALOPS extends existing research in fundamental ways:
• SMALOPS tracks and load balances only the heavy

hitters since with the zipfian distribution the majority of
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the system load come from a small number of heavier
flows.

• SMALOPS focuses on dynamic workload distributions in
two important ways:

– SMALOPS accounts for the fact that different keys
produce heavy streams at different times.

– SMALOPS realizes that not every heavy hitter is
active at the same time. This allows SMALOPS
to significantly reduce the number of flows it is
tracking.

• SMALOPS balances the gains from migrating streams
against the cost of rebuilding stream state or migrating
applications state.

V. CONCLUSIONS AND FUTURE WORK

To our knowledge, SMALOPS is the first system that
considers dynamic load while proposing a generalized split
state reconciliation. Moreover, SMALOPS achieves stable per-
formance even under higher loads while dealing with dynamic
changes in existing streams. SMALOPS can reduce 99%ile la-
tency in message queuing systems to almost a constant factor.
Migrating stateful streams disrupts their state and SMALOPS
provides a mechanism by which consumers can rebuild the
state. Our future research would investigate SMALOPS as a
comprehensive message broker that would provide both the
load balancing and the required state reconciliation within the
system without any participation from consumers.
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[12] R. Lösch, J. Schmidt, and N. G. Felde, “Weighted Load Balancing
in Distributed Hash Tables,” in Proceedings of the 21st International
Conference on Information Integration and Web-based Applications &
Services, ser. iiWAS2019. Association for Computing Machinery, pp.
473–482. [Online]. Available: https://doi.org/10.1145/3366030.3366069

[13] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The design and operation of cloudlab,” in Proceedings of
the 2019 USENIX Conference on Usenix Annual Technical Conference,
ser. USENIX ATC ’19. USA: USENIX Association, 2019, p. 1–14.
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