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Abstract—This paper presents a novel model-free resource
allocation framework for the downlink of 5G cellular networks to
guarantee stringent QoS requirements in wireless applications. A
Deep deterministic policy gradient (DDPG) agent with a modified
Genetic Algorithm (GA) based resource allocation framework is
proposed to balance the tradeoffs between reliability, latency,
and data rate. Any feasible point in the rate-latency-reliability
domain can be achieved with this approach. Compared to
state-of-the-art approaches DDPG-Dual and DDPG-PSO, the
proposed model achieves higher reliability and scalability in
joint optimization with QoS constraints. Specifically, the proposed
model guarantees the expected reliability with 25% and 42.86%
improvement respectively over the compared models. In terms of
conventional effective bandwidth approach, the proposed model
achieves 30.82% improvement of energy efficiency under the
same QoS constraints. Moreover, the proposed model offers a
practical solution, namely, three times faster convergence and
only 6.7% of the scheduling time compared to the ground truth
Dual decomposition optimization.

Index Terms—5G and beyond, Resource allocation, Deep rein-
forcement learning, Deep deterministic policy gradient (DDPG),
Time-constrained traffic.

I. INTRODUCTION

The emergence of time-constrained applications [1], such as

industrial automation, virtual/augmented reality (VR/AR), and

intelligent transportation systems (ITS) [2]–[6], has brought

about stringent Quality-of-Service (QoS) requirements for 5G

and beyond cellular networks. Time-constrained traffic in 5G

has specific QoS requirements, including delay, reliability, data

rate, etc. However, existing scheduling algorithms were not

developed for time-constrained traffic but instead focused on

maximizing spectrum or energy efficiency [7] by optimizing

radio resources. To address this challenge, it is necessary

to develop new wireless schedulers capable of meeting the

stringent QoS requirements of time-constrained traffic in 5G

and beyond.

Optimization algorithms and machine learning algorithms

are two primary types of approaches that can be used to solve

the wireless scheduling problem. Optimization algorithms face

challenges when dealing with non-convex problems that lack

closed-form expressions, making them suitable only for small-

scale problems and delay-tolerant services. When the problem

scale increases and real-time demands arise, machine learn-

ing algorithms become a very promising solution to finding

optimal resource allocation in real time. This scheduling

problem can be formulated as a Markov Decision Process

(MDP) optimal control problem, solvable using Reinforcement

Learning (RL). However, the curse of dimensionality poses a

challenge for classic RL and dynamic programming when the

observation/action space dimensions are high. To overcome

this challenge, the actor-critic framework [8] of deep rein-

forcement learning has been developed. When the policy of

choosing the next action is deterministic, the actor-critic deep

reinforcement learning (DRL) algorithms become the deep

deterministic policy gradient (DDPG) algorithm [9].

Wireless communication is susceptible to attacks that can

compromise the confidentiality and integrity of transmitted

data [10]. Therefore, security must be a critical consideration

in the design of future wireless network systems. Physical-

layer security is a promising solution to defend against

eavesdropping attacks. Prior work [11] has investigated the

maximum secret communication rate over an eavesdropping

channel subject to reliability and secrecy constraints in the

short blocklength regime. However, research on the interaction

between cryptography security and wireless resource schedul-

ing is non-existent. The 5G New Radio (NR) Packet Data

Convergence Protocol (PDCP) protocol, which is responsible

for security functions such as ciphering and integrity in the

user’s data plane, operates in layer 2 [12]. Cross-layer design

[13] takes into account the delay components and packet losses

in different layers, making it possible to achieve the target E2E

delay and overall packet loss probability in time-constrained

applications.

Achieving high reliability and low-latency communications

while considering data rates in time-constrained applications

poses many challenges [14]. Firstly, the communication envi-

ronment is typically nonstationary, with which the pre-trained

scheduling policy may fail to achieve the desired performance.

Second, low latency, high reliability, and high data rate may

become incompatible design parameters given the limited
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wireless radio resources. Therefore, new designs are needed

to balance rate-latency-reliability for time-constrained appli-

cations [15]. Third, maintaining high reliability, low latency,

and high rate needs timely and efficient resource schedulers.

This poses a new challenge for implementing learning-based

schedulers in real-world 5G and beyond systems. Motivated

by these challenges, our main contributions in this paper are

summarized as follows:

• A novel model-free resource allocation framework is

proposed to balance the incompatible tradeoffs between

reliability, latency, and data rate without prior knowledge

of users’ traffic. This framework addresses the limitation

of DRL when dealing with large action spaces and does

not limit the problem’s action space.

• To address the issue of large action spaces and enhance

the scalability of DDPG, we introduce an innovative

action space reduction approach, i.e., a modified heuristic

Genetic Algorithm (GA) in conjunction with a Fast

Water-filling algorithm (FWF) to efficiently reduce the

action space in the considered wireless network. This

can help accelerate convergence and improve the overall

performance of the DDPG agent.

• To enhance the accuracy of latency in wireless network

communication, our proposed framework incorporates

radio resource optimization in a cross-layer manner for

AES encryption and decryption processing. Specifically,

the time overhead of user data encryption/decryption in

the PDCP layer can be taken into consideration.

• Comprehensive comparisons have been conducted with

state-of-the-art solutions, such as Dual decomposition,

Particle Swarm Optimization (PSO), and effective band-

width algorithms. Our proposed algorithm can stabilize

the data rate given by the DDPG agent, stabilize the

scalability over different users, and converge quickly.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The downlink of an Orthogonal Frequency Division Multi-

ple Access (OFDMA) cellular network is considered, where K

randomly moving users are served by one Base Station (BS)

with N available resource blocks (RBs). The set of users and

RBs are denoted as K = {1, 2, ..,K} and N = {1, 2, ..., N},

respectively. For all types of services, packets in the buffer

are served according to the first-in-first-out (FIFO) order. In

each time slot t, the position of each user is assumed to be

fixed, and BS allocates the resource to each user according

to the DDPG agent. Subsequently, each user randomly moves

to their next position in the next time slot. The duration of

one slot is the transmission time interval (TTI) and is denoted

by ∆t. It is assumed that the BS can obtain the instantaneous

channel gain and the wireless environment remains unchanged

during ∆t.

B. Time-Constrained Traffic

The statistical QoS requirement of time-constrained traffic

is characterized by the E2E delay, data rate, and overall packet

loss probability [15]. The latency experienced by packets

should be less or equal to the E2E delay bound to meet the

delay requirement, denoted as Dmax
k for user k. This delay

comprises transmission delay, queuing delay, and processing

delay. The reliability γk(t) of user k at time slot t is defined

as the probability of the E2E instantaneous packet delay

exceeding a predefined maximum E2E latency threshold Dmax
k

[16]. Since the delay requirement of time-constrained traffic

in this paper is much longer than the channel coherence

time, the decoding errors can be ignored [17]. To circumvent

extended transmission delays, reliability cannot be improved

via retransmission. The achievable rate of the k-th user can be

expressed as:

Rk(t) =

N
∑

n=1

ρk,n(t)W log2

(

1 +
αk(t)gk,n(t)pk,n(t)

σ2

)

,

(1)

where W represents the bandwidth of each RB. αk(t) is the

large-scale channel gain of user k at slot t, and gk,n(t) is the

small-scale channel gain of the transmission from the BS to

user k on RB n at time slot t. We use indicators ρk,n(t) to

represent whether RB n is scheduled to user k at time slot

t. If RB n is allocated to user k at time slot t, ρk,n(t) = 1.

Otherwise, ρk,n(t) = 0. Based on OFDM principles, each RB

can only be occupied by one user at time slot t. pk,n(t) is the

downlink transmission power of the BS to user k on RB n at

time slot t. σ2 is the noise power and it equals WN0, where

N0 is noise spectral density.

Our research includes the processing delay of user data

encryption/decryption of the PDCP layer in the formulation.

Therefore, the time overhead of cryptographic processing can

be reflected in E2E latency. Our proposed optimization frame-

work can optimize radio resources in a cross-layer manner,

allowing us to consider the delay components across different

layers. Hence, it is possible to achieve the E2E target delay in

time-constrained traffic.

C. Problem Formulation

This paper aims to allocate resources that minimize the

transmission power while ensuring users achieve their target

data rate, reliability, and cross-layer latency. The optimization

problem is formulated as below. The objective function in (2a)

is formulated to optimize transmission power through the RB

assignment indicator ρk,n(t) and the allocated power pk,n(t).
In (2b), Dk is the packet delay of user k, and γ∗

k is the

target reliability of user k. Constraint (2b) explicitly accounts

for the latency and reliability of each user, guaranteeing that

the E2E latency is less or equal to Dmax
k with minimum

reliability of γ∗

k . A model-free DRL agent is proposed that

can adaptively learn from practical users’ traffic without prior

knowledge of the traffic model. Specifically, we calculate the

reliability in (2b) using empirical measurements [15], i.e.,

γk(t) = Pr{Dk ≤ Dmax
k } ≈ 1 − ν′

k
(t),

νk(t)
, where ν′k is the

number of packet transmission to user k in time slot t, whose

E2E delay exceeds Dmax
k , while νk(t) is the total number

Authorized licensed use limited to: City College of New York. Downloaded on May 08,2025 at 00:07:36 UTC from IEEE Xplore.  Restrictions apply. 





the optimization problem is classified as Mixed Integer Non-

Linear Programming (MINLP), which is known to be NP-

complete. Moreover, employing this large action space directly

in DRL algorithms is challenging. To solve this problem,

we use the DDPG algorithm to estimate the data rate for

each user, which reduces the original action space to a small

continuous action space R
K . Subsequently, we use a modified

heuristic Genetic Algorithm (GA) that incorporates a Fast

Water-filling Algorithm (FWF) to map the actions taken by the

DDPG algorithm to the original action space. In the absence

of GA-FWF mapping, the DDPG agent is unable to translate

its outputs into viable practical actions. The modified GA is

applied to solve the RB assignment problem, while the FWF

algorithm is used to address the power minimization problem.

The merit of the modified GA and FWF combination can

guarantee high efficiency and performance as shown in the

performance analysis part.

1) Modified Genetic Algorithm for RB Assignment: In-

spired by the natural selection process, the Genetic algorithm

[19] can effectively solve the mixed integer optimization prob-

lem and is suitable for integer RB assignment optimization in

OFDMA. Specifically, the GA generates chromosomes with

N elements and sets the total population P . The value of

each element in the chromosome is confined to the integer

from 0 to K − 1, which represents the users. For example,

the value of n-th element in the chromosome is k, meaning

that the n-th RB is allocated to user k. The element of the

chromosome is randomly generated, and each chromosome

represents a potential solution to the optimization problem.

The water-filling algorithm is employed to calculate the

overall transmit power as the fitness function. The goal is to

minimize the transmission power, and therefore, lower power

consumption leads to higher fitness of the chromosome. Elitist

selection and single-point crossover are applied to determine

the offspring for the subsequent generations. The mutation op-

eration randomly changes the bits in a chromosome following

Gaussian distribution.

More importantly, a modified GA is applied to improve the

performance of RB assignment by introducing an individual

with good genes to the initial population. This approach

considers two aspects: efficiency and fairness. Specifically, the

number of RBs required by each user is determined according

to their rate requirement Rk, and the RBs are allocated to

the user with the largest channel gain at the same RB. The

computational complexity of the GA is O(GP 2), where G

denotes the generation, and P is the total population. This is

a significant reduction in computation compared with O(KN )
complexity.

2) Fast Water-filling Algorithm for Power Minimization:

The modified GA can provide a feasible RB assignment and

then the Fast Water-filling algorithm (FWF) [20] is utilized

to allocate transmission power to each user based on their

assigned RBs. The process continues until the stopping criteria

of the modified GA and the optimal RB and power allocation

vectors will be obtained. It is worth noting that the water-filling

algorithm minimizes transmit power while ensuring a target

rate for a single user, given the RB assignment. It was shown

in [20] that the computational complexity of the conventional

water-filling algorithm is N2 + 2N + 5. However, the Fast

Water-filling algorithm reduces the complexity to 3N + 4.

IV. PERFORMANCE ANALYSIS

Our simulation platform is implemented in the Python

framework using PyTorch and Tianshou [21], designed to

facilitate the implementation of deep reinforcement learning

models. We trained and evaluated our DDPG agent in a

customized environment based on Nokia Bell Lab’s open-

source Wireless Suites simulator [22].

A. Simulation Platform

An OFDMA cellular system with 50 RBs serves 15 users

in our simulation platform. Users move at random speeds

along random rectilinear trajectories within a 1 km x 1 km

square area. At the start of each episode, we randomly position

each user within the area. The channel model includes large-

scale path loss αk and small-scale fading gk,n. The path

loss exponent is set to 3 (urban area), and small-scale fading

follows the Rayleigh fading. Additionally, the packet arrival

process of each user follows Poisson process. The inter-arrival

time between packets follows exponential distributions with

parameters λ. Moreover, the DRL agent can adaptively learn

from practical users’ traffic without prior knowledge of the

traffic model. The simulation setup is summarized in Table I.

B. Latency Analysis of Security Processing

The processing delay for security is measured experimen-

tally for time-constrained services. AES encryption with GCM

mode is implemented based on the pyca/cryptography library

[23]. The result shows that the encryption time for 10 kbits

of data with a 256-bit key is approximately 0.116 ms. In

our downlink scheduler, user data traffic is encrypted at

BS before transmission over the air interface. Typically, BS

has powerful servers that can support sufficient computation

quickly. However, the decryption of user data is performed on

the UE side with mobiles or IoT devices, which have limited

computation resources. Based on this fact, we estimate that

the decryption time on the UE side is 20 times longer than

our simulation results [24], and the latency is about 2.32 ms.

Since the TTI ∆t is set to 1 ms in this paper, the security

latency is approximated to be 3 ms.

C. Experiments for Action Space Reduction

In the DDPG framework (Fig. 1), the modified GA employs

the FWF algorithm as its fitness function for total transmission

power, with lower fitness values indicating preference. The

implementation of the GA is based on the open-source scikit-

opt library [25], a Python module for heuristic algorithms. To

ensure fairness in data rate and efficiency of channel gain, we

include an individual with good genes in the initial population.

Meanwhile, a significant penalty is added to the chromosome

if it fails to meet the fairness criteria for data rate. The

chromosome size is set at 100, and the mutation probability

is set to 0.001.

Authorized licensed use limited to: City College of New York. Downloaded on May 08,2025 at 00:07:36 UTC from IEEE Xplore.  Restrictions apply. 






