
Dynamically Balancing Load with Overload Control
for Microservices

RATNADEEP BHATTACHARYA, YUAN GAO, and TIMOTHY WOOD, George Washington
University, Washington, DC, USA

The microservices architecture simplifies application development by breaking monolithic applications into
manageable microservices. However, this distributed microservice “service mesh” leads to new challenges
due to the more complex application topology. Particularly, each service component scales up and down
independently creating load imbalance problems on shared backend services accessed by multiple components.
Traditional load balancing algorithms do not port over well to a distributed microservice architecture where
load balancers are deployed client-side. In this article, we propose a self-managing load balancing system,
BLOC, which provides consistent response times to users without using a centralized metadata store or explicit
messaging between nodes. BLOC uses overload control approaches to provide feedback to the load balancers.
We show that this performs significantly better in solving the incast problem in microservice architectures.
A critical component of BLOC is the dynamic capacity estimation algorithm. We show that a well-tuned
capacity estimate can outperform even join-the-shortest-queue, a nearly optimal algorithm, while a reasonable
dynamic estimate still outperforms Least Connection, a distributed implementation of join-the-shortest-queue.
Evaluating this framework, we found that BLOC improves the response time distribution range, between the
10th and 90th percentiles, by 2 –4 times and the tail, 99th percentile, latency by 2 times.

CCS Concepts: • General and reference → Performance; • Computing methodologies → Self-
organization;

Additional Key Words and Phrases: load balancing for microservices, closed-loop load balancers, performance
optimization for synchronous services

ACM Reference format:
Ratnadeep Bhattacharya, Yuan Gao, and Timothy Wood. 2024. Dynamically Balancing Load with Overload
Control for Microservices. ACM Trans. Autonom. Adapt. Syst. 19, 4, Article 22 (November 2024), 23 pages.
https://doi.org/10.1145/3676167

1 Introduction
Microservices have become increasingly popular due to a variety of advantages they provide like
ease of deployment, continuous integration, independent development, and others. However, they
also bring the network inside the architecture as the monolith is broken into multiple independently
deployed pieces. In most current scenarios, microservices are deployed as containers in clusters
managed by an orchestrator like Kubernetes [5]. A pattern related to container clusters that have

This work was supported in part by NSF Grant CNS-1837382.
Authors’ Contact Information: Ratnadeep Bhattacharya (corresponding author), George Washington University, Washing-
ton, DC, USA; e-mail: ratnadeepb@gwu.edu; Yuan Gao, George Washington University, Washington, DC, USA; e-mail:
ygao1@gwu.edu; Timothy Wood, George Washington University, Washington, DC, USA; e-mail: timwood@gwu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1556-4703/2024/11-ART22
https://doi.org/10.1145/3676167

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

https://orcid.org/0009-0009-1992-3474
https://orcid.org/0009-0008-6371-4672
https://orcid.org/0000-0002-6728-4197
https://doi.org/10.1145/3676167
mailto:permissions@acm.org
https://doi.org/10.1145/3676167
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3676167&domain=pdf&date_stamp=2024-11-16

22:2 R. Bhattacharya et al.

Fig. 1. A multi-tier application built from monolithic services (top) can be decomposed into microservice
components (bottom), potentially improving development practices, but complicating the application topology.
Sidecar load balancers (green circles) are deployed adjacent to each microservice component to route requests
to downstream nodes.

also become popular is a move away from single-node centralized load balancers. Instead, client-side
load balancers are deployed alongside each upstream service container as a “sidecar,” as illustrated
in Figure 1. An advantage of using this pattern is that the load balancer is removed as a single point
of failure or performance bottleneck.

Many microservice deployments are managed by service meshes like Istio [4]. Istio uses En-
voyproxy [3] for load balancing, which uses a power of two random choices (P2C) [23] version
of the Least Connection (LC) algorithm. LC is based on join-the-shortest-queue (JSQ), which
has been proven to closely approximate the best possible load balancing algorithm by greedily
selecting the backend that currently has the smallest queue of work [20]. However, JSQ’s optimality
depends on it being deployed in a centralized environment where all requests flow through a single
load balancer, giving it a global view of backends’ queues. In LC, a sidecar-based load balancer
lacks this perspective, so it selects the backend to which it currently has the smallest number of
open connections as the target for a request. In this case, the selected backend may not necessarily
have the smallest queue since the policy only accounts for requests coming from the node attached
to the sidecar.

In a microservice deployment, it is common for backend services to be shared by multiple
upstream components, each of which may be replicated. In such a scenario, each upstream node
sends only a small fraction of the total requests that each downstream node receives. This leads to
a divergence between the actual load of the downstream nodes and the estimate of the load the
upstream nodes have. As a result, the performance of the application can deteriorate quickly due to
bad decisions made by such “local” algorithms.

In this work, we present BLOC,1 which makes the downstream nodes a part of the decision-
making without requiring expensive coordination. We compute the capacity of each service in
terms of the number of requests one node of that service can handle while keeping end-to-end
response times within the service level objective (SLO). We then send each upstream node that

1This article extends our prior publication at ACSOS 2022 [12]. Source code available at [6]

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

Dynamically Balancing Load with Overload Control for Microservices 22:3

we are currently interacting with “confidence chips” that will enable them to send requests in
the future. The scheme also maintains some capacity for upstream nodes that the downstream is
not interacting with at the moment but might still send a request. Downstream nodes use active
queue management (AQM) to reject requests that push the number of active requests over their
capacity. In response to such rejections, the upstream nodes back off for a predefined amount
of time. Upstream nodes also use the P2C to reduce the likelihood of immediately selecting a
downstream node that just rejected a request.

We make the following contributions in this article:

—The design of BLOC, a distributed load balancing system that uses admission control, back-
pressure, and piggybacked server information to effectively balance loads, particularly in
overload scenarios.

—BLOC’s architecture is fully distributed, requiring no coordination between replicas or cen-
tralized load balancers that can be a bottleneck or single point of failure.

—BLOC’s implementation uses ingress and egress proxies deployed as container sidecars,
allowing its load balancing and admission control algorithms to be seamlessly integrated with
existing applications without code modifications.

We implement BLOC as a Go-based proxy and deploy it in a Kubernetes cluster. Our evaluations
show that BLOC can improve the response time distribution, from 10th to 90th percentile, by 2–4
times and the 99th percentile tail latency by 2 times.

2 Background and Motivation
Microservices and Sidecars: Microservices are a popular architecture pattern that breaks a monolithic
application into multiple smaller services. It allows for shorter development time, faster deployment
cycles, usage of different technology stacks for different parts of the application, swapping entire
parts of an application, and continuous integration without any impact on the operation of the
overall system.

Microservices are typically deployed in containers with an orchestrator framework like Kuber-
netes. Just as microservices are the smaller parts of a decomposed monolithic service, container
orchestration frameworks take this a step further and allow each microservice to be decomposed
into several containers, e.g., one container might hold the application business logic, while others
run monitoring components and load-balancing proxies. These auxiliary containers are typically
referred to as “sidecars,” due to the way they are deployed adjacent to an application container and
often process their incoming or outgoing requests. A group of application-specific and auxiliary
containers that together form a logical service are grouped into a single namespace known as a
“pod” by Kubernetes.

Since each pod can be replicated multiple times to scale up and down a microservice component,
it is necessary to have load balancers that help route requests to the appropriate downstream node.
The ability to easily glue together functional components has allowed for the move away from
single-node centralized load balancers to distributed sidecar load balancers deployed as part of each
pod. Each proxy sidecar thus handles load balancing all outgoing requests from the microservice
component they are attached to across multiple downstream replicas. This distributes the load
balancing work, giving a more scalable system, but it also means that each load balancer lacks the
global view of a centralized approach.
Istio, Envoy, and LC : As an example of industry deployments of microservices networking we

cite Istio [4] and Envoy proxy [3]. Istio is a popular example of what is known as a service mesh.
A service mesh is a control plane that works with Kubernetes to deploy networking infrastructure
throughout Kubernetes clusters. Typically, this is done through deploying a mesh of sidecar proxies,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

22:4 R. Bhattacharya et al.

Fig. 2. LeastConn only has information about outgoing requests leaving a sidecar, not the actual queue
lengths at the backend nodes.

like Envoy proxy with Istio, that provides the networking data plane and implements components
like load balancing, service discovery, backpressure, and much more.

Envoy acts as both an ingress and egress proxy. The egress proxy implements load balancing
and routing for any requests generated by the attached microservice component to downstream
services. The ingress proxy intercepts all incoming requests from upstream services and is used
for monitoring, security management, and so on. In our work we leverage this architecture so
that downstream ingress proxies can provide feedback to upstream egress proxies, improving
load-balancing decisions. Since our changes are only within the proxy, no modifications need to be
made to the microservice applications themselves.

Sidecar proxies typically use traditional load balancing algorithms like the P2C version of LC.
In this algorithm, the proxy randomly considers two possible downstream nodes and selects the
one that has the least number of outstanding requests from the current node. Unfortunately, the
node being picked might actually be more heavily loaded than others since the proxy is unaware
of requests forwarded by the proxies in other pods.

LC and similar algorithms that rely only on a sidecar load balancer’s local state can perform well
when the number of service replicas is relatively low and workloads are evenly distributed across
the upstream nodes. Yet in a microservice deployment, this may not be the case. For example, the
applications provided by Deathstarbench, an open source collection of microservices, each contain
between 21 and 41 unique microservices, each of which may be replicated multiple times [17].
Netflix, an early adopter of microservice architectures, was reported to have over 700 different
microservices deployed over tens of thousands of virtual machines as of 2015 [8]. These massive
arrays of microservices form complex topologies with shared services being accessed by many
different types of upstream components. Further, there might be geographical constraints in large
clusters leading to different client pods sending requests at different rates to the backends. In such
a dynamic environment, workloads can easily become skewed, leading to an inaccurate local view
of downstream node load levels.
LC Limitations: To see the intuition for why LC can perform poorly, consider the situation in

Figure 2, Upstream Node Up3 has two outstanding requests to Backend B1 and one to Backend B2.
The other two upstream nodes each have one outstanding request to B2. Thus the total number
of outstanding requests at B1 is two while that on B2 is three. If a fourth request arrives at the
load balancer of Up3, then the LC algorithm on Up3’s LB will send the request to B2 instead of B1,
which would have been the optimal solution. If a centralized load balancer was being used, this
issue would not arise.

Generally, with a small number of servers and clients where the clients are all receiving roughly
the same number of requests, this is not an issue since the relative equivalence in the number of
clients and servers means that these discrepancies will be small so each sidecar’s local view is a

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

Dynamically Balancing Load with Overload Control for Microservices 22:5

Fig. 3. Changing from 1 to 40 frontends causes a significant increase in the range of response times and tail
latencies.

similar match to the global one. However, that may no longer be true when there is a large number
of upstream nodes with different request characteristics than the downstream nodes.

To empirically measure this phenomenon, we deploy a frontend (upstream) and a backend
(downstream) microservice and adjust the number of upstream nodes accessing a fixed set of 10
downstream replicas. In order to focus on the impact of load balancing across the downstream
nodes, we configure the upstream service to be very lightweight and make the downstream service
expensive (consuming a 250 ms service time). We deploy a custom sidecar load balancer, similar to
Envoy, running the LC algorithm and using an HTTP load generator to stress test the system.

Figure 3 shows that as the number of upstream nodes increases, the response time distribution
widens significantly. The case with only a single frontend (1:10) is representative of a traditional
monolithic service deployment where a centralized load balancer sits between tiers of the appli-
cation, while the other lines can represent distributed microservices. Interestingly, the median
response time remains similar (about 2.5 seconds), but changing from 1 frontend to 40 fron-
tends causes significant changes at the head and tail of the distribution. This result is somewhat
unintuitive: one would typically expect adding more frontends to improve performance, not hurt it!

The explanation for these results is that the sidecar load balancers aremaking conflicting decisions
due to lack of coordination—some requests are sent to very lightly loaded servers which are able
to respond very quickly, while others queue up at overloaded servers, causing long delays. The
impact can be quite large: the range between the 10th and 90th percentile increases by almost five
times and tail latency degrades by more than 40% when going from 1 to 40 upstream nodes.
Diagnosing LC : We determined that there are two factors that cause the response times of the

system to degrade by such a large amount:

(1) The metadata that each sidecar load balancer holds locally becomes stale much faster as
the number of upstream nodes increases making the load-balancing decisions progressively
worse, and

(2) A larger number of upstream nodes accessing backends with heavy requests can easily
overload them, similar to the transmission control protocol (TCP) incast problem [14].

In orer to prove the first point, we deployed a Redis service in our Kubernetes cluster to provide a
global view of the backend load. The Redis cache stored the active queue length of each downstream
node. Before routing a request, a sidecar load balancer would fetch queue length data for all nodes
from the caching service. The load balancer then updated the cache to increment the queue length

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

22:6 R. Bhattacharya et al.

Fig. 4. Using Redis to provide a global view of the backend state makes the response time distribution nearly
identical to having a single centralized load balancer (green and orange lines overlap) and similarly reduces
the variation in load across backends.

for the selected downstream node. When receiving a response, the sidecar load balancer subtracted
1 for the downstream node that sent the response. This made the Redis service a global source of
true backend queue lengths for all load balancers. With this simple addition of a caching service,
we found that the overall performance of 40 upstream nodes is indistinguishable from that of using
a single upstream node (Figure 4(a)).

To show the level of imbalance between downstream nodes when the number of upstream nodes
increases, we measured the total number of requests sent to each downstream node at 2 second
intervals. With this data, we plotted (Figure 4(b)) to show the standard deviation across the 10
backends during each interval, averaged over the entire experiment. We can see that the mean of
the standard deviation of new requests received every sampling interval for the 40 frontend case is
much higher than the 1 frontend node case.

We conclude that response time degradation is caused by the burstiness in the request profile
which in turn is caused by inaccurate local data. This is exacerbated when backend requests are
expensive (which is often the case) since even if all frontends send just one request to the same
backend, they will cause it to be completely overloaded. Thus we must combine load balancing in
the upstream nodes and overload control solutions in the downstream nodes to solve this problem.

Overload Control Approaches: Two general techniques to implement overload control are:

—Rate limiting, where upstream nodes purposefully slow their requests to prevent backends
from getting overloaded; often this is guided by backpressure algorithms where the server
lets the client know that the server is overloaded.

—Admission control, where downstream nodes preemptively drop requests to avoid excessive
queueing; AQM algorithms try to intelligently drop requests or network packets to do this in
a graceful way.

Unfortunately, naively applying backpressure has been shown to lead to system-wide hotspots
and trick the system into upsizing or penalizing the wrong service [17]. Admission control, on the
other hand, is extremely useful in controlling the number of requests on the server, but it does so
at the expense of “goodput” [17] directly affecting user experience.

To see the impact of an AQM approach that drops requests once they exceed a response time
bound, we repeat our experiment with 40 upstream nodes and 10 backend nodes. In Figure 5 we
show the impact of setting a 3 second timeout vs. the default system with a 20 second timeout.
Setting the timeout to a low value is similar to having an admission control system that will not
allow any request into the queue if it takes longer than the timeout value. The results show that
while the 3 second timeout puts a hard cap on the tail latency, it doesn’t have much effect on the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

Dynamically Balancing Load with Overload Control for Microservices 22:7

Fig. 5. Using AQM to drop requests early helps the tail, but not the head of the distribution, suggesting
backends are still not evenly utilized.

Fig. 6. Simulating JSQ vs. LC shows how waiting time rises with the number of load balancers.

head latency, indicating that the load is still not evenly distributed. Even worse, we find that the
timeout-based system drops nearly 50% of the requests entering the system in order to achieve this
and that the load variation across backends is not significantly improved.

3 LC Analysis
JSQ has been proven to be a nearly optimal load balancing algorithm [20]. In JSQ, the arrival
rate into each queue is dependent on the length of the queue at that point in time, with the
probability of a queue receiving a new request decreasing as the length of the queue increases.
In the ideal case where all requests have the same cost, JSQ can guarantee that the most loaded
server will have at most one more request in its queue than the least loaded server. For more
complex scenarios, [11] provides an upper bound to the load imbalance between any two queues in
the system. These properties ensure that load imbalances will be automatically corrected by JSQ
by preferring backends with lower queue lengths. However, the JSQ algorithm assumes the load
balancer has a perfect view of the backend queue lengths, which is only feasible in a centralized
situation with a single load balancer. LC, on the other hand, operates in distributed client-side
load balancers with incomplete knowledge of the backend queue lengths. In this section, we argue
that LC cannot hold up the same guarantees as provided by JSQ and show why its performance
degrades as the number of load balancers rises.
Simulation Analysis. We use a discrete event simulator to evaluate JSQ and LC performance.

In Figure 6 we show how the 99th percentile of waiting time changes when simulating different

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

22:8 R. Bhattacharya et al.

Fig. 7. LC (blue) sees both higher and more variable queue lengths than JSQ (orange) over time.

numbers of load balancers with 10 backends. For the JSQ case, we assume that all load balancers
have perfect information about the backend server queue lengths, so performance is steady with no
impact as we adjust the number of load balancers. On the other hand, LC sees a continual increase
in tail response time as the number of load balancers rises.

LC performs poorly for two reasons. First, each LC load balancer only has visibility into the
subset of requests that it receives. On average, we expect # load balancers to each receive 1/#
fraction of the total load. If # = 1, then LC is equivalent to JSQ, but as # rises, each load balancer
is only seeing a smaller fraction of the total load. Intuitively, we can expect LC to make worse
decisions as # rises since it has less useful information to base decisions on. Even if each load
balancer were to try to account for this by multiplying the load it is aware of by a factor of # ,
we cannot expect this to be perfectly accurate due to the randomness in how requests reach each
load balancer. Balls and Bins analysis can be used to show that as # rises, the difference between
the most loaded and least loaded load balancer (and thus the imprecision of their estimates) will
increase based on ;>6(#) [25]. Using additional data from our experiment presented in Figure 6,
we measure the difference in queue length between the server selected by our LC load balancer for
each request and the server that would have been selected if we had used JSQ. We find that with 20
load balancers, the median queue length difference is 3, and this rises to 9 when we increase to 100
load balancers.

The second challenge for LC is that each load balancer may only have information about a subset
of the backends. As # rises relative to the number of backends, it becomes more likely that a load
balancer will have some backends for which it currently has no active requests, but this does not
mean that the queue for those backends is empty. In these cases, LC simply picks a random backend
with no active requests, leading it to behave more similarly to a random load balancer. To illustrate
this challenge, we graph the queue length of each server over time under each load balancing
scheme in Figure 7 when there are 100 load balancers. We plot the queue length on the most and
least loaded server and fill in the area between them for each algorithm. The graphs show that
LC (blue area) tends to have significantly higher queue lengths and that the spread between the
most and least loaded backend is very large. In contrast, JSQ (orange area) keeps a much lower
average queue length, and the queue lengths for all servers are correlated, implying that they are
changing based on the burstiness of the incoming workload, not based on random decision-making.
Note that here there are 100 load balancers, yet the queue lengths on each server are on average
around 30 for LC, implying that most servers have zero active connections from most of the load
balancers. As a result, LC’s behavior is tending towards being uniformly random instead of being
able to intelligently use queue lengths.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

Dynamically Balancing Load with Overload Control for Microservices 22:9

Information Theoretic Analysis. To understand why LC does worse than JSQ, we also perform
an information theoretic analysis using the concept of Shannon entropy. We compare the entropy
equations for JSQ and LC to show that LC has significantly higher entropy, meaning we expect
greater randomness in its output which will lead to poorer decision-making. Let us consider the
following situation with " backend servers, ! frontend load balancers, - requests arriving at the
system in total, and at most . requests being seen by any of the ! load balancers.

—When JSQ is used, the load balancers are aware of the exact queue size in each of the backend
servers. This state can be represented as a vector, (["], where each entry ([9] represents the
queue size of the backend 9 , with the maximum value being - . Assuming all requests can
be directed to any of the backends, the number of states in this case can be, (- + 1)" . If we
assume, the probability of the system being in any state is uniformly distributed then:
� [�(&] = log2 ((- + 1)") =⇒ � [�(&] = " ∗ log2 (- + 1)

—When LC is used, each of the ! load balancers has its own view of the backends. The state in
this case can be represented by a matrix, ([!] ["], where ([8] [9] is the 8th load balancer’s
view of the 9th backend. Considering each load balancer can only see at most . requests, the
number of states for each load balancer is (. + 1)" . Across ! load balancers then, the size of
the state is ((. + 1)")! =⇒ (. + 1)"! . Hence, the entropy of the system in this case is
� [!�] = log2 ((. + 1)"!) =⇒ � [!�] = "! ∗ log2 (. + 1).

Comparing the above values, we can see that � [!�] ≥ � [�(&] since "! ∗ log2 (. + 1) ≥
" ∗ log2 (- + 1), and that the uncertainty of LC grows linearly with # . While our model of entropy
is imperfect since not all states will be uniformly distributed, the significant difference in entropy
suggests LC will tend to make decisions based on greater randomness than JSQ. Our model of
entropy cannot be directly related to metrics such as the variability of response time seen by clients,
but it helps explain why we should expect poorer choices in algorithms like LC. The lower entropy
for JSQ means that JSQ considers much fewer states (estimates of backend load) than LC and all of
these states are accurate. LC not only has to deal with a larger number of states, many of those
states contain inaccurate information. This uncertainty leads to the higher entropy for LC, which
increases the chance of picking a backend that is already heavily loaded, which in turn widens its
response time distribution.

Fundamentally, BLOC alleviates the issue raised here by realizing that the number of requests
actually pending on a backend, =02CD0; is almost always different than number of requests outstand-
ing from any particular frontend/client to that backend, =>DCBC0=38=6. BLOC simply introduces an
upper bound, # , for each backend. The backend then sends a binary hint to the client indicating
the potential availability of bandwidth to process further requests. In other words, the indicator
says that % [=02CD0; < #] > 0. Since this indicator is dependent on the difference # − =02CD0; , the
number of indicators sent out by the backend reduces as the outstanding requests in its queue rises.

4 System Design
In this work, our goal is to show that better load balancing can be done by combining AQM,
backpressure, and a novel “confidence chip” distribution scheme that allows upstream load balancers
to perform rate limiting in a self-organizing manner. The simple idea is that as requests flow
downstream, server metadata flows upstream to inform better load balancing. We wish to keep
each server under its maximum capacity, distributing the load evenly through the system, without
incurring overheads from explicit messaging or requiring global coordination which cannot scale
to large microservice deployments.

Our framework is divided into two logical parts. First, we use “confidence chips” as a form of
load information to make the load balancers’ decisions smarter. Confidence chips flow upstream

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

22:10 R. Bhattacharya et al.

Algorithm 1: Backend Request Processing
1: function Handle(F : http.ResponseWriter, A : http.Request)
2: if �0?028C~ and &D4D4!4=6Cℎ + 1 > �0?028C~ then

'4B?>=3 ()>>"0=~'4@D4BCB)
�G8C

3: end if
4: %A>24BB'4@D4BC (A)
5: if Random() < &D4D4!4=6Cℎ/(0.8 ∗�0?028C~) then
6: 2ℎ8? ← 0
7: else
8: 2ℎ8? ← 1
9: end if

10: Return chip bit with response
11: end function

from backend nodes, piggybacked in the response headers of successful requests. Rather than just
use local information like the number of active connections, the load balancers use the number of
confidence chips they have received from different backends as an indication of how likely they are
to be able to handle additional requests at this time. This allows the backend to help load balancers
coordinate request rates, without requiring any direct communication.

Second, BLOC uses overload control to restrict the number of active requests on the downstream
nodes. Downstream nodes preemptively reject incoming requests if they will cause them to become
overloaded. However, rather than simply dropping the requests, the upstream load balancer takes
this as a hint both to back off from this server for some time and to retry the request on a different
server.

A final key design consideration is that we seek to avoid adding complexity to the overall system
deployment or adding centralized services that cannot scale well to large systems. Thus we eschew
approaches such as the Redis-based global coordinator described previously. A centralized approach
would be difficult to deploy in practice and could incur high overhead in terms of latency and
resource cost if every request needed to access it in a large-scale system. Just as importantly, we
seek to support legacy code by incorporating BLOC into the sidecar proxies deployed alongside
applications. This allows us to seamlessly add this functionality without any code modifications to
the actual applications.

4.1 Confidence Chips
BLOC uses “confidence chips” as a way for upstream nodes to quickly learn which downstream
nodes are above or below capacity. Each downstream node probabilistically returns a chip to
upstream nodes piggybacked with the response header. An upstream node views the availability
of a chip for a downstream as an indication that the particular node will have enough capacity to
fulfill a request. The upstream spends a chip to make a request.

The probability of a downstream node returning a chip is related to how loaded the server is
currently. This probabilistic distribution also serves as a hedge against requests from upstream
nodes that the downstream is not talking to currently. We can reserve some capacity for upstream
nodes for whom we do not have an active request right now but who might send a request to
us soon. Also, since downstream nodes do not track chips granted, the probabilistic distribution
protects the downstream from becoming oversubscribed.

Algorithm 1 details how BLOC processes each request. BLOC allows users to provide a capacity
value in the configuration for the backends. This capacity value is used to limit the queue size in

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

Dynamically Balancing Load with Overload Control for Microservices 22:11

Algorithm 2: Retry and Backoff
1: function ProcessReqest(A4@D4BC)
2: A4CA~=D< ← 0
3: while A4CA~=D< ≤ C>C0;A4CA84B do
4: B4AE4A = PickServer(servers)
5: A4B?>=B4 = B4AE4A .�0=3;4 (A4@D4BC)
6: if A4B?>=B4 ==)>>"0=~'4@D4BCB then ⊲ Server becomes “inactive”
7: A4CA~ + +
8: B4AE4A .2ℎ8? ← 0 ⊲ Reset “chips”
9: B4AE4A .'2E)8<4 ← GetCurrentTime() ⊲ Calculate ResetInterval (line 5 and 9, algorithm 3)

from here
10: else
11: break
12: end if
13: end while
14: return A4B?>=B4

15: end function

each individual backend. Lines 2–3 show that if adding another request would push the current
queue size of the backend over the capacity configured then the request is rejected. Otherwise the
request gets processed (line 4).

Lines 5–9 of Algorithm 1 show our “confidence chips” calculation. This is a binary valued
indicator sent along with each response to inform upstream clients whether this backend has
capacity available to handle more requests. In order to determine the value of the confidence chip,
a random number, between 0 and 1, is compared against the ratio of capacity currently being used
on the backend (line 5). A confidence chip returned with the response has a value of 1 (line 8) if the
capacity ratio is lower than the random number. Otherwise the confidence chip has a value of 0
(line 6). Furthermore, the actual calculations are made against 80% of the defined capacity value to
provide some protection against overloading. This means that as the queue length on the backend
starts to approach 80% of its defined capacity, the backend will start sending less and less chips
with a value of 1. It will send no chips with the value of 1 once queue length exceeds 80% of the
defined capacity.

4.2 Client-Side Backoff and Retries
Algorithm 2 describes how each client sends requests to backends. We saw in Algorithm 1 that
any request that pushes a backend’s queue size beyond the defined capacity is rejected. In order to
handle such cases, we also define the number of times each request can be retried. The while loop,
lines 3–13 runs the overall algorithm. In line 4, we use the “PickServer” algorithm, described in the
next section, to choose a possible backend to route the request.

If the server rejects the request, then it is reflected in the response from the server, line 5. When
this happens, the upstream node increments the number of retries for that request (line 7), resets
all chips for that backend (line 8) and sets the probe timer (line 9). At this point, that particular
backend is considered to be “inactive.”

If the request is successful or we have exhausted the number of allowed retries for the request,
then the while loop (lines 3–13) is exited and the response is returned. Irrespective of the status of
the response, we also note when the server received the last response. A request is dropped only if
all retries have been exhausted.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

22:12 R. Bhattacharya et al.

Algorithm 3: BLOC for Server Selection
1: function PickServer(B4AE4AB)
2: B4AE4A1← RandomSelect(servers)
3: // Either “ResetInterval” has passed since last response. ⊲ This backend can be probed.
4: // Or the backend has a chip. ⊲ Backend is “active”
5: while ElapsedTime(B4AE4A1.'2E)8<4) ≤ ResetInterval and B4AE4A1.2ℎ8? == 0 do
6: B4AE4A1← RandomSelect(servers)
7: end while
8: B4AE4A2← RandomSelect(servers)
9: while ElapsedTime(B4AE4A2.'2E)8<4) ≤ ResetInterval and B4AE4A2.2ℎ8? == 0 do

10: B4AE4A2← RandomSelect(servers)
11: end while
12: if B4AE4A1.'4@B < B4AE4A2.'4@B then ⊲ Select server with lower active requests from this upstream
13: B4;42C43(4AE4A ← B4AE4A1
14: else
15: B4;42C43(4AE4A ← B4AE4A2
16: end if
17: if B4;42C43(4AE4A .2ℎ8? ≤ 0 and ElapsedTime(B4;42C43(4AE4A .'2E)8<4) > ResetInterval then
18: B4;42C43(4AE4A .'2E)8<4 ← GetCurrentTime() ⊲ Ensure this server is not probed too soon
19: end if
20: return B4;42C43(4AE4A

21: end function

4.3 Server Selection
BLOC’s algorithm for server selection, Algorithm 3, starts by picking two backends at random,
lines 2–9. However, the algorithm takes care to ensure that the servers selected are considered
“active” by the upstream, or that a reset interval has passed since an overloaded server was last
contacted. An upstream considers a backend “active” if and only if the upstream has a chip for that
backend. Lines 5 and 9 of Algorithm 3 test for this condition. Alternatively, lines 5 and 9 also test if
the predefined reset interval has passed since a response was last received from that backend. If this
condition is satisfied, then the upstream may select that server despite it not being “active.” This is
because we consider the state of the backend as unknown if at least the reset interval has passed
since a response was last received. This backend, despite being inactive, is chosen because we want
to probe inactive servers at regular intervals in order to update the upstream’s metadata about
them. However, when this happens we do not want to send another probe to the same backend too
quickly. This is ensured by updating this backend’s “RcvTime” to the current time (lines 17–19).
Unless a chip for this backend is received, it will be rejected for all future iterations that run in the
next “ResetInterval” units of time (lines 5 and 9).

When we have found two randomly selected servers that satisfy one of the conditions being
tested in lines 5 and 9, we pick the one with the lower number of pending requests, as known to this
particular client, (lines 12–16). Finally, this server is returned in line 4 of Algorithm 2. This is similar
to the LC algorithm but BLOC ensures that the servers selected are unlikely to be overloaded.

4.4 Server Capacity
The capacity parameter plays an important role in determining the performance of a system. This
parameter forms an upper bound on the size of the active queue of any upstream node in the cluster.

In the simplest case, a system administrator can specify a fixed Capacity value for each microser-
vice based on its expected service time and SLO. The Capacity value times the service time gives an

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

Dynamically Balancing Load with Overload Control for Microservices 22:13

upper bound on request queueing time. For simple services, this may be feasible, but for large-scale
applications with many microservices, or deployments on heterogeneous hardware with different
service costs, it may not be practical. Alternatively, BLOC has a simple method to dynamically
estimate the capacity. This makes the system compute a cumulative average of the number of active
requests in its queue for 30 seconds. The system then uses this average as the capacity value. We
reset and recompute this average every 30 seconds. It admits all requests by default in the first 30
seconds where the capacity value is not defined yet. Improving this capacity estimate is an area
needing further research.

5 Implementation and Experimental Setup
5.1 Customizable Microservice Generation
Our experiment testbed has been inspired by the Deathstarbench [17], which provides a set of
premade microservice applications for system benchmarking. However, Deathstarbench is limited
in its flexibility to only support its predefined applications. For BLOC, we built a customizable
microservice generator that can define arbitrary microservice topologies [6]. Each microservice
component is generated as a Python Flask service with a customizable request processing time
and can optionally drive the input of many other services (fanout). The fanout is simulated by
making parallel requests to each downstream service. Configuration files are generated to deploy
the services in a Kubernetes cluster and automatically interconnect them to form the service mesh.

5.2 Sidecar Proxies
We also built the BLOCProxy reverse proxy framework [6] from the ground up to enable us to
implement our algorithms with ease. The proxy handles ingress and egress traffic, allowing it to
implement both admission control and load balancing. We redirect all incoming and outgoing
traffic, except traffic to and from the proxy itself, to the proxy input and output ports, respectively.
The proxy maintains a local directory mapping pods to service types as well as the Active and
Inactive lists. During each request, the proxy can select the next endpoint by using a load-balancing
algorithm defined through an environment variable along with other metadata.

Currently, the system implements the following load-balancing algorithms:

—Random
—P2C LC
—BLOC

The BLOC egress proxy modifies the HTTP headers generated by the microservice application
to add a field indicating if confidence chips were generated. This is then interpreted and stripped
out by the BLOC ingress proxy on the upstream node that generated the request. As of now, our
implementation only supports HTTP1.1-based applications. However, our approach could easily be
extended to support other protocols, such as gRPC, broadening the types of applications that can
make use of our design without any code modifications to the applications themselves.

5.3 Control Plane
We also developed a simple control plane that uses the Kubernetes API to monitor live endpoints
for each service that has been deployed. The proxies make REST API calls to the control plane pods,
which run as a daemonSet in the Kubernetes cluster to populate their local service directories.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

22:14 R. Bhattacharya et al.

Fig. 8. Experimental setup.

5.4 Testbed Setup
In order to focus on load balancing between a pair of microservices, we use BLOC to run an
application consisting of three layers of services (Figure 8) with the total number of pods ranging
between 12 and 51 in a Kubernetes cluster running on 4 physical nodes. The Gateway layer consists
of a single pod that acts as the ingress gateway. All requests to the cluster are forwarded to this
gateway and are distributed to the frontend layer. The frontend layer, in turn, is variably sized. It
scales between 1 and 40 pods. This layer sends all requests to the backend layer. The backend layer
has a constant size of 10 pods. We overprovision the gateway and frontend layers so they will not
become the bottleneck.

5.5 Workload
Most of our experiments have been conducted with a basic backend service that simply sleeps for
250 ms. However, we also test BLOC with backend service costs between 100 and 500 ms and there
is provision for a variable service cost, which randomly selects a service cost uniformly in a range
configurable through the environment variables.

For load generation, we use two open-source tools:

—hey [16], which is a closed-loop load generation tool that allows us to configure a concurrency
for the requests we make

—a custom version of load test [1], that lets us define mean requests per second and generates
load according to a Poisson distribution with this configured mean.

6 Evaluation
6.1 Experimental Setup
We ran our experiments on cloudlab [2] servers. A Kubernetes cluster was created with four Intel
Xeon servers, each with 20 cores and 196 GB of memory. We then deployed our control plane that
ran a pod on each of the servers. These pods form the service that is queried to get information
about the backends of services running in the cluster. We create an affinity between our services
and the physical nodes, such that the gateway and frontend services run on three of the four
physical nodes. The fourth physical node can only schedule pods of the backend service. This was
done to ensure that the performance of the backend pods was not interfered with. We use hey [16]
as our closed-loop generator. We use the tool to send requests to the gateway for a fixed amount of
time (5 minutes) where every request starts a new TCP connection.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

Dynamically Balancing Load with Overload Control for Microservices 22:15

Fig. 9. BLOC (Cap = 10) provides a substantially tighter response time distribution by avoiding incast problems
and applying careful admission control.

In most of our experiments we compare BLOC against LC with 40 frontends and a centralized JSQ
approach. We implement JSQ by using a single node in the frontend tier running the LC algorithm
(since LC with 1 node is equivalent to JSQ). This allows us to see how BLOC compares against an
algorithm with perfect load balancing information as a nearly optimal baseline. However, in some
of our experiments, the single frontend node for the JSQ case can become a bottleneck leading to
worse performance than BLOC; we note these cases as they arise.

6.2 BLOC Overall Performance
Wefirst compare BLOC, LC, and JSQ to evaluate our approach’s impact on response time distribution.
Figure 9 shows the response time cumulative distribution function (CDF) of each approach
when the upstream nodes are accessing a shared pool of 10 backends. We compare 40 BLOC
upstream nodes with a fixed Capacity parameter of 10 against LC with either 40 or 1 upstream
node (which is equivalent to a centralized JSQ algorithm). While the median response times of all
approaches are similar, there are dramatic differences in their response time distributions. When
there are 40 upstream nodes, LC sees a very wide response time distribution, with the fastest 10% of
requests finishing within 1 second and the slowest 10% of requests taking about 4 seconds, giving a
10–90%ile range of 2.77 seconds. On the other hand, BLOC maintains a very narrow response time
window, with a range of 0.97 seconds. In fact, BLOC achieves a tighter window than LC running
with a single upstream node (we ensure that the frontend is not the bottleneck in these experiments
by using downstream backends with expensive service costs of 250 ms). Thus BLOC’s distributed
sidecars are able to effectively determine the relative loads on different servers, improving overall
system utilization and providing very consistent response times.

Next, we vary the service cost of the backend nodes to understand the impact on load balancer
performance. Figure 10 shows the improvement of BLOC over LC with forty frontends and 10
backends with a per request service cost ranging from 0.1 to 0.5 seconds. We use boxplots to show
the median (black line), upper and lower quartiles (box edges), and 90%tile tail latency (whiskers).
The response distribution of BLOC with 40 frontends is much closer to that of LC with a single
frontend compared to LC with 40 frontends. The presence of outliers beyond the upper whiskers
indicates a noteworthy observation: the 99th percentile tail latency of the BLOC when configured
with 40 frontends, closely parallels that of the LC when it operates with only a single frontend,
whereas that of LC with 40 frontends diverges from LC with 1 frontend as the service cost increases.
BLOC’s performance is similar to a centralized JSQ load balancer, although since it lacks perfect
information it cannot maintain as tight a response time distribution. However, with a very low

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

22:16 R. Bhattacharya et al.

Fig. 10. Performance improvement with BLOC over JSQ and LeastConn for different service costs.

Fig. 11. Sensitivity to capacity and impact on load imbalance.

backend service time (0.15 and below), we see that the single JSQ load balancer is the bottleneck,
resulting in worse performance than BLOC.

BLOC relies on its estimate of downstream capacity to control its AQM algorithm and allocation
of confidence chips. To illustrate the impact of the Capacity parameter, we evaluate several fixed
settings and BLOC’s dynamic capacity estimation technique. Figure 11 shows the difference in
performance when we used a Capacity of 10 (which our tests suggest is optimal for this configura-
tion) Capacity of 15 (which tends to too aggressively overload servers), and our dynamic Capacity
value based on the observed average. All of these approaches provide an improvement over LC, but
setting an appropriate value gives a tighter bound.

To further analyze the impact of Capacity, Figure 11(b) shows the level of imbalance on the
downstream servers. This is measured by looking at the number of requests served by each node
over time and calculating the standard deviation between them during each time interval; we then
plot the mean of this variability. The results show that our hand-tuned Cap = 10 setting provides the
greatest benefit, but that using the dynamic averaging approach also keeps the variance relatively
low.

6.3 Benefits of Different BLOC Components
BLOC employs several techniques to avoid overload and keep downstream nodes balanced, so
in this experiment, we quantify the benefits of each approach. In Figure 12(a), we show the CDF
of AQM, AQM with BLOC techniques and LC. We can see that using AQM to drop requests that
exceed the downstream node’s capacity (without the rest of BLOC’s functionality), provides a

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

Dynamically Balancing Load with Overload Control for Microservices 22:17

Fig. 12. The combination of all BLOC components ensures a tight response time distribution while minimizing
request drops.

substantial improvement in response time. However, this only shows the performance of requests
that are successfully processed, and as shown in Figure 12(a), AQM drops about 4,000 of the 12,000
requests sent during the experiment. Adding BLOC’s backoff technique provides a further benefit
to response time by reducing the chance that requests will be added to a long queue, however, it
leads to an even higher drop rate. Adding support for Retries substantially improves the system,
eliminating most of the drops and also providing a further reduction in the interquartile range. The
final BLOC system that supports AQM, Retries, and Backoff provides a significant improvement to
response times over LeastConn and reduces the number of failed requests by 22% (from 446 to 346)
compared to the system with only AQM and Retries.

6.4 BLOC under Bursty Workloads
The prior experiments used the Hey benchmarking tool, which is a closed-loop load generator
that seeks to continuously saturate the system. While this is an effective way to test the system
on the brink of overload, it may not be representative of real web workloads which tend to have
bursty periods of light and heavy load. In this experiment we use a customized version of loadtest
[1], which is an open loop generator that can send requests at variable rates. While the official
loadtest distribution follows a uniform distribution, our modified version sends requests following
a Poisson distribution which gives a more realistic bursty arrival process.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

22:18 R. Bhattacharya et al.

Fig. 13. 90th percentile response time (left-axis bars) and dropped requests (right-axis lines) with Poisson
load generated at different rates.

In Figure 13 (left-axis bars), we show the performance of BLOC relative to LC with 40 upstream
nodes and 10 downstream nodes under increasingly intense request rates. The results show that
BLOC provides a substantially better 90th percentile latency, allowing it to support a much larger
incoming request rate than LC. LC becomes overloadedwith very poor performance after a workload
of 35 req/sec, whereas BLOC is able to gracefully handle loads as high as 47 req/sec.

While BLOC provides a dramatic improvement in response time distribution at high load, it is
in part due to its preference to drop requests that will cause excessive queuing. To evaluate this,
Figure 13 (right-axis lines) shows the percent of requests dropped at each request rate for LC and
BLOC. At lower request rates, BLOC still drops a small fraction of requests due to the bursty arrival
pattern which can cause spikes in queue length.2 Nevertheless, BLOC’s drop rate is reasonably low,
and even when facing an overloaded system at the highest request rate, BLOC drops only 16% of
requests compared to LC dropping more than 80%.

6.5 Handling of New Resources
In this experiment, we start out by sending requests with loadtest [1] (open loop) to a cluster with
40 frontend services and 10 backend service instances. We increase the scale of the backend service
by one pod a minute into the experiment (total 5 minutes) and plot the response times in Figure 14.
The load being sent to the cluster makes the cluster slightly higher than the capacity of the cluster.
We see that under this amount of load, LC’s response times rise quite high very fast. Both LC and
BLOC have a mean response time of 5,000 ms in the first minute. But even after adding a new pod,
LC is still overloaded because it cannot effectively rebalance the queues on its servers. This would
likely lead to LC needing to add another pod to stabilize the load. On the other hand, BLOC is able
to utilize the newly added pod better and quickly reduces the mean response time to 3,400 ms, a
reduction of 32% reduction in mean response time. This illustrates the importance of load balancing
not just in reducing response times, but in reducing the total resources that must be assigned to
the system.

6.6 A Real Variable Cost Backend Application
We use a real application that resizes images in response to incoming requests. This resizing
application has a significant variance in its service cost, between 40 and 650 ms. Figure 15(a) shows

2In fact, we believe BLOC’s drops may be due to a bug causing the gateway node to incorrectly drop requests even though
the downstream nodes are not full.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

Dynamically Balancing Load with Overload Control for Microservices 22:19

Fig. 14. BLOC and LC behavior when adding new resources to the cluster.

Fig. 15. BLOC, JSQ vs. LC for applications with different service costs.

that BLOC is still able to make good decisions to optimize the response time of each request, despite
the large variance, matching the performance of a single LC frontend load balancer.

6.7 Low Backend Service Cost
When the service cost of the backend layer is low, the frontend layer becomes the bottleneck.
Scaling up the number of frontend layers improves performance. In this experiment, we have an
app that rotates images in response to incoming requests and the service cost for this backend varies
between 10 and 80 ms. Figure 15(b) shows us that while both LeastConnection-with-40-frontends
(LC40) and LeastConnection-with-1-frontend (LC01) have a narrow response time distribution,
LC40 has a significantly better performance. Further, we see that BLOC-with-40-frontends has a
response time distribution that is even narrower than LC40 and has a shorter tail than LC40.

6.8 BLOC vs. LC for a Complete Microservices Chain
In this experiment, we combine image resizing (highly variable service cost) and image rotation (low
service cost) components into a single backend application. Our experience dictates that estimating
the capacity of such a variable and multi-layered backend is extremely difficult. Figure 16 shows
that BLOC can easily outperform LC in such scenarios.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

22:20 R. Bhattacharya et al.

Fig. 16. BLOC, JSQ vs. LC for a complete chain.

Fig. 17. Impact of different values of capacity 90th percentile response time (left-axis bars) and dropped
requests (right-axis lines) with poisson load generated at different rates

6.9 Impact of BLOC Parameters
In Figure 17, we measured the width of the response time, the difference between 10 and 90
percentile responses, as we changed the static capacity values (left-axis bars). This result indicates
that results deteriorate quickly as we move away from the optimal capacity value. We also measured
how the number of failed requests changed as we changed the capacity value (right-axis lines). This
result is quite intuitive in that as we increase the capacity values, the number of errors decreases.

6.10 BLOC Performance with Variable Service Cost
Finally, we present a measure of the performance of BLOC vs. LC under variable service cost. The
service cost was chosen to be normally distributed with a mean of 250 ms and a 125 ms standard
deviation, mimicking the parameters of the image processing application. In these experiments,
refer to Figure 18, we saw that BLOC outperform LC.

7 Related Work
In this work, we have combined load balancing with overload control:

—Load Balancing approaches typically attempt to solve issues related to heterogeneity, perfor-
mance, and uniform load distribution.

—Overload Control are admission control schemes that let servers control the rate at which
clients can send requests.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

Dynamically Balancing Load with Overload Control for Microservices 22:21

Fig. 18. Static BLOC vs. LC variable service cost.

7.1 Load Balancing
There is a wide range of work on load balancing for web [19] and cloud applications [21]. In
microservices architectures, a load balancer plays an important role in terms of distributing work-
loads across multiple and various instances. There are two types of load balancers based on where
the load balancer is placed, server-side and client-side. A study of tradeoffs between server-side
and client-side load balancers is presented in [9]. We have based our work on evaluating the
LC algorithm, which is a client-side approximation of the JSQ algorithm [20], often used in the
microservices environment.

Research on the performance of load balancers, recently, has generally looked at topics like
handling heterogeneity [18], uniform load balancing with consistent connections[10], and so on.
While it has been established that with centralized load balancing it is not possible to significantly
improve JSQ [20], we find that this result does not port over to distributed client-side load balancing.
In this work, we tweak these load-balancing algorithms to be aware that their data might be stale
and to take overcommitment into account. As far as we know, there is no other work that takes a
look at the load-balancing algorithms in microservices networks.

7.2 Overload Control
Overload on a system can cause catastrophic failures[7] and the idea behind overload control
is to shed any excess load before it consumes any resources[24]. In this work, we primarily use
AQM to shed extra load. However, we do not want to sacrifice “goodput” [17] and as such build
overcommitment and retries into the system. To our knowledge, there have been no prior attempts
to use overload control toward load balancing in microservices.

7.3 Load Balancing with Server Feedback
There are two other systems [13, 15], that we know of, that incorporate feedback from the servers
into how requests are distributed. In [13], the load balancer gets resource usage statistics from
the servers to make its decisions. In our previous work [22], we have also used a similar feedback
loop along with a mCeasure of the server capacities. In a distributed load-balancing architecture
like microservices, however, this leads to convergence issues. In [15], the authors use overload
controls to ensure no backends are overloaded. However, the low target service cost of [15] enables
communication between all clients and all servers, in the form of registration messages, allowing
for a complete flow of information. BLOC works with a much higher service cost which implies
that it needs to load balance and protect against overload without any node-to-node messaging.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

22:22 R. Bhattacharya et al.

8 Conclusions
LC is a popular algorithm to balance load in microservices architecture and is based on JSQ, which
has been proven to closely approximate optimal load balancing in a single node centralized load
balancer. In the microservices world, the load balancer has moved from being a single centralized
node to multiple instances each attached to a client service (upstream nodes). Here, LC finds it
difficult to maintain the veracity of its metadata cache, which can atrophy quickly. This leads LC to
make bad load-balancing decisions in aggregation. This in turn leads to a significant widening of
the response time distribution and the lengthening of the tail.

In our framework, BLOC, we show that using overload controls judiciously overcomes this
problem and is a far simpler solution than maintaining a distributed state. We also show that
BLOC significantly improves overall performance. In our experiments, response time distribution
improved by 2–4 times and tail latency did so by nearly 2 times. Overall, our results show that
carefully combining overload controls with load balancing can lead to consistent response time
despite the presence of a large number of frontends sending requests to a shared set of backends.
BLOC is able to guarantee this performance consistency without sacrificing either user experience
(by dropping requests) or adding to the overall load and complexity of the system (by sending
metadata messages or using centralized caching services). We also show that BLOC can work
with systems with a wide range of service costs and can handle variable service costs given an
appropriate capacity estimator function. Our goal for BLOC is for it to become a more generic
load-balancing algorithm able to support systems in different operating ranges and our work here
indicates that possibility. Further work on BLOC can be directed at exploring various capacity
estimator functions that would further BLOC towards this goal.

Dynamic capacity estimation is a significant area of research in both industry and academia using
techniques from queuing theory, machine learning, and dynamic programming among others. In
this article, we show that a simple running average method renders BLOC much more performant
than state-of-the-art load-balancing algorithms. Thus investigating even more powerful methods
in the context of BLOC is one research direction worth exploring.

We have created a repository to enable anyone to refer to and run the code to verify our results
at https://github.com/MSrvComm/Experiments.

References
[1] [n. d.]. Custom Loadtest: Open Loop Poisson Load Generator. Retrieved from https://github.com/lyuxiaosu/loadtest
[2] [n. d.]. The Design and Operation of CloudLab: Flux Research Group. Retrieved from https://www.flux.utah.edu/

paper/duplyakin-atc19
[3] [n. d.]. Envoy Proxy - Home. Retrieved from https://www.envoyproxy.io/
[4] [n. d.]. Istio. Retrieved from https://istio.io/latest/
[5] [n. d.]. Kubernetes. Retrieved from https://kubernetes.io/
[6] [n. d.]. Microservices Communication. Retrieved from https://github.com/MSrvComm/original-date:2021-11-05T02:

23:34Z.
[7] Heather Adkins, Betsy Beyer, Paul Blankinship, Piotr Lewandowski, Ana Oprea, and Adam Stubblefield. 2020. Building

Secure and Reliable Systems: Best Practices for Designing, Implementing, and Maintaining Systems. O’Reilly Media, 557.
[8] Amazon Web Services. 2015. AWS re:Invent 2015: A Day in the Life of a Netflix Engineer (DVO203). Retrieved from

https://www.youtube.com/watch?v=-mL3zT1iIKw
[9] Marco Autili, Alexander Perucci, and Lorenzo De Lauretis. 2020. A hybrid approach to microservices load balancing.

In Microservices: Science and Engineering, 249–269.
[10] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostić, Gerald Q. Maguire, Panagiotis Papadimitratos, and Marco Chiesa.

2020. A high-speed load-balancer design with guaranteed per-connection-consistency. In Proceedings of the 17th
Usenix Conference on Networked Systems Design and Implementation (NSDI’ 20). USENIX Association, 667–684.

[11] Petra Berenbrink, Artur Czumaj, and Angelika Steger. 2000. Balanced allocations: The heavily loaded case. In Proceed-
ings of the 32nd Annual ACM Symposium on Theory of Computing. 745–754

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

https://github.com/MSrvComm/Experiments
https://github.com/lyuxiaosu/loadtest
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.envoyproxy.io/
https://istio.io/latest/
https://kubernetes.io/
https://github.com/MSrvComm/original-date: 2021-11-05T02:23:34Z
https://github.com/MSrvComm/original-date: 2021-11-05T02:23:34Z
https://www.youtube.com/watch?v=-mL3zT1iIKw

Dynamically Balancing Load with Overload Control for Microservices 22:23

[12] Ratnadeep Bhattacharya and Timothy Wood. 2022. BLOC: Balancing load with overload control in the microservices
architecture. In Proceedings of the IEEE International Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS ’22). 91–100. DOI: https://doi.org/10.1109/ACSOS55765.2022.00027

[13] Netflix Technology Blog. 2018. Rethinking Netflix’s Edge Load Balancing. Medium. Retrieved from https://
netflixtechblog.com/netflix-edge-load-balancing-695308b5548c

[14] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and Anthony D. Joseph. 2009. Understanding TCP incast
throughput collapse in datacenter networks. In Proceedings of the 1st ACM Workshop on Research on Enterprise
Networking (WREN ’09). ACM, New York, NY, 73–82. DOI: https://doi.org/10.1145/1592681.1592693

[15] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Alizadeh, and Adam Belay. 2020. Overload Control
for µs-scale RPCs with Breakwater. Retrieved from https://www.usenix.org/conference/osdi20/presentation/cho

[16] Jaana Dogan. [n. d.]. hey - Open Loop Load Generator. Retrieved from https://github.com/rakyll/heyoriginal-date:
2016-09-02T10:24:09Z

[17] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian
Ritchken, Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine
Leung, SiyuanWang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina Delimitrou.
2019. An open-source benchmark suite for microservices and their hardware-software implications for cloud & edge
systems. In Proceedings of the 24th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’19). ACM, New York, NY, 3–18. DOI: https://doi.org/10.1145/3297858.3304013

[18] Anshul Gandhi, Xi Zhang, and Naman Mittal. 2015. HALO: Heterogeneity-aware load balancing. In Proceedings of the
2015 IEEE 23rd International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems. 242–251. DOI: https://doi.org/10.1109/MASCOTS.2015.14

[19] Katja Gilly, Carlos Juiz, and Ramon Puigjaner. 2011. An up-to-date survey in web load balancing. World Wide Web 14,
2 (2011), 105–131. DOI: https://doi.org/10.1007/s11280-010-0101-5

[20] Varun Gupta, Mor Harchol Balter, Karl Sigman, and Ward Whitt. 2007. Analysis of join-the-shortest-queue routing
for web server farms. Performance Evaluation 64, 9 (2007), 1062–1081. DOI: https://doi.org/10.1016/j.peva.2007.06.012

[21] Pawan Kumar and Rakesh Kumar. 2019. Issues and challenges of load balancing techniques in cloud computing: A
survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 120:1–120:35. DOI: https://doi.org/10.1145/3281010

[22] Viyom Mittal, Shixiong Qi, Ratnadeep Bhattacharya, Xiaosu Lyu, Junfeng Li, Sameer G. Kulkarni, Dan Li, Jinho
Hwang, K. K. Ramakrishnan, and Timothy Wood. 2021. Mu: An efficient, fair and responsive serverless framework
for resource-constrained edge clouds. In Proceedings of the ACM Symposium on Cloud Computing (SoCC ’21). ACM,
New York, NY, 168–181. DOI: https://doi.org/10.1145/3472883.3487014

[23] M. Mitzenmacher. 2001. The power of two choices in randomized load balancing. IEEE Transactions on Parallel and
Distributed Systems 12, 10 (2001), 1094–1104. DOI: https://doi.org/10.1109/71.963420

[24] Jeffrey C. Mogul and K. K. Ramakrishnan. 1997. Eliminating receive livelock in an interrupt-driven kernel. ACM
Transactions on Computer Systems 15, 3 (1997), 217–252. DOI: https://doi.org/10.1145/263326.263335

[25] Martin Raab and Angelika Steger. 1998. “Balls into Bins” - A simple and tight analysis. In Proceedings of the 2nd
International Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM ’98). Springer,
Berlin, 159–170.

Received 8 March 2023; revised 21 March 2024; accepted 18 May 2024

ACM Transactions on Autonomous and Adaptive Systems, Vol. 19, No. 4, Article 22. Publication date: November 2024.

https://doi.org/10.1109/ACSOS55765.2022.00027
https://netflixtechblog.com/netflix-edge-load-balancing-695308b5548c
https://netflixtechblog.com/netflix-edge-load-balancing-695308b5548c
https://doi.org/10.1145/1592681.1592693
https://www.usenix.org/conference/osdi20/presentation/cho
https://github.com/rakyll/hey original-date: 2016-09-02T10:24:09Z
https://github.com/rakyll/hey original-date: 2016-09-02T10:24:09Z
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1109/MASCOTS.2015.14
https://doi.org/10.1007/s11280-010-0101-5
https://doi.org/10.1016/j.peva.2007.06.012
https://doi.org/10.1145/3281010
https://doi.org/10.1145/3472883.3487014
https://doi.org/10.1109/71.963420
https://doi.org/10.1145/263326.263335

	Abstract
	1 Introduction
	2 Background and Motivation
	3 LC Analysis
	4 System Design
	4.1 Confidence Chips
	4.2 Client-Side Backoff and Retries
	4.3 Server Selection
	4.4 Server Capacity

	5 Implementation and Experimental Setup
	5.1 Customizable Microservice Generation
	5.2 Sidecar Proxies
	5.3 Control Plane
	5.4 Testbed Setup
	5.5 Workload

	6 Evaluation
	6.1 Experimental Setup
	6.2 BLOC Overall Performance
	6.3 Benefits of Different BLOC Components
	6.4 BLOC under Bursty Workloads
	6.5 Handling of New Resources
	6.6 A Real Variable Cost Backend Application
	6.7 Low Backend Service Cost
	6.8 BLOC vs. LC for a Complete Microservices Chain
	6.9 Impact of BLOC Parameters
	6.10 BLOC Performance with Variable Service Cost

	7 Related Work
	7.1 Load Balancing
	7.2 Overload Control
	7.3 Load Balancing with Server Feedback

	8 Conclusions
	References

