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Abstract. The rapid advancements in deepfake technology pose significant 
challenges in detecting manipulated media. This research introduces a feature 
extraction and selection method to address this threat. An optimally integrated  
pre-trained model is introduced to extract features from face images, composed 
of three CNN models —DenseNet-121, EfficientNet-B0, and ResNet-18 —and 
fine-tuned on the Celeb-DF (V2) dataset. These features are stacked for diverse 
representations, and a novel Assimilation-Elimination (ASEL) selection 
algorithm is used to minimize redundancies. The selected features are then fed 
into a KNN classifier to determine if a image is real or manipulated. Experiments 
on Celeb-DF (V2) achieve an AUC score of 97.77%, confirming the model's 
robustness. Additionally, reduced feature sets from real images are transmitted 
over a noisy communication channel, optimizing storage and bandwidth needs. 
Afterwards, the recovered bits are fed into the proposed error-resilient Feature-
Driven Adversarial Image Reconstruction (FDAIR) model at the receiver, 
achieving image reconstruction comparable to state-of-the-art methods. 

1   Introduction 

In the context of remote forensic analysis, the integrity of digital evidence, particularly 
videos and images, is crucial due to the sophistication of deepfake technology.  
Ensuring data authenticity during transmission from local servers to forensic labs is 
critical to prevent tampering. Advances in technology have led to increasingly 
sophisticated methods for creating fake media content, posing significant challenges 
for forgery detection. Prior studies have explored various techniques for deepfake 
detection.  Auto-encoders trained on real face images have been used to obscure 
Generative Adversarial Network (GAN) fingerprints in synthetic images. [1] focused 
on eliminating visible signs of manipulation to make deepfakes blend seamlessly with 
authentic imagery. Face-swapping techniques further complicate detection efforts, with 
methods utilizing disparities between facial regions [2] and targeting specific areas like 
eyebrows [3]. To address these challenges, advanced methods have been proposed, 
such as Convolutional Neural Network (CNN) model based on domain-invariant 
representation learning [4] and methods to identify common GAN features to enhance 
detection generalization [5]. An attention-based approach focusing on specific facial 
regions to reduce the search space for identifying manipulated artifacts [6]. 



Transformers have been integrated to enhance generalization [7], while vision 
transformer models have been used for feature extraction [8]. Techniques like filter and 
feature ranking methods [9] and feature-level analysis further improve detection 
performance, highlighting the need for innovative approaches to counter deepfakes. In 
image generation and restoration, approaches such as generative priors and diffusion 
models have been discussed. PULSE proposed StyleGAN inversion for image 
upsampling [10] but struggles with fidelity at small downsampling factors. BRGM 
frames GAN inversion as Bayesian inference, with L-BRGM further optimizing quality 
[11]. Despite these advancements, forgery detection and image reconstruction face 
challenges like noise interference, limited model applicability, and high computational 
demands, emphasizing the need for more effective methods. 
 

This paper presents a novel 
deepfake detection and 
image reconstruction 
framework using features 
from diverse CNNs, 
stacked as shown in Fig. 1. 
At the sender, a feature 
selection strategy avoids 
overfitting, reduces 
computational cost, and 
improves generalization. 
Selected features are fed 
into a K-nearest neighbors 
(KNN) classifier to 
identify real and fake images. Detected fake images are discarded, while real content is 
transmitted over a lossy communication channel, whether it is wireless or wired. Upon 
reception, bits are recovered, and features are processed by the GAN-based Feature-
Driven Adversarial Image Reconstruction (FDAIR) model for image restoration. 
 

In summary, the contributions of this paper are presented as follows: 
 Developed a detection workflow model using features from CNNs (DenseNet-

121, EfficientNet-B0, ResNet-18) to enhance detection accuracy through 
increased features diversity. 

 Proposed an Assimilation-Elimination (ASEL) feature selection algorithm to 
mitigate overfitting, lower computational costs, and optimize bandwidth (BW) 
efficiency. Experiments show ASEL outperforms state-of-the-art methods in 
classification accuracy and Area Under Curve (AUC) score. 

 Proposed a FDAIR model to reconstruct images from reduced noisy feature 
sets. Our experimental evaluations of Peak Signal-to-Noise Ratio (PSNR), 
Structural Similarity Index (SSIM), and Normalized Root Mean Square Error 
(NRMSE) demonstrate its effectiveness in image reconstruction, indicating 
resilience against limited and noisy features. 

Fig. 1. Workflow of a proposed system model. 
 



The rest of the paper is organized as follows. Section 2 presents a technical approach 
for our proposed methods, while Section 3 discusses the experimental results. Finally, 
the paper is concluded in Section 4. 

2   Technical Approach 

This section discusses two key areas of our framework: feature selection and deepfake 
detection at sender, and a FDAIR model to reconstruct the images at the receiver. 

2.1   Deepfake Detection  

The proposed deepfake detection method uses the ASEL algorithm to select relevant 
features from stacked CNN outputs, achieving a near-optimal subset. A KNN classifier 
is then used for deepfake classification. 

2.1.1   Deep Feature Extraction 

For effective feature extraction, our approach is 
to integrate multiple CCN models. To determine 
the optimal number of component models, the 
accuracy gain is evaluated each time of adding 
one component model. The CCN models for the 
evaluation include. DenseNet-121 [12], 
EfficientNet-B0 [13], ResNet-18 [14], and GoogLeNet [15]. As shown in Fig. 2, the 
accuracy improvement ∆ by adding a model diminishes rapidly when adding fourth 
model at only 0.77%, which justifies our choice of three models. As shown in Fig. 1, 
flattened feature maps were obtained by applying global average pooling (GAP) to the 
top layer of each CNN model, resulting in dimensions of 1024 (DenseNet-121), 1280 
(EfficientNet-B0), and 2048 (ResNet-18). This compact feature representation 
facilitated subsequent feature combination and analysis for our deepfake detection 
algorithm. Using these diverse CNN models aimed to capture superior features, 
enhancing overall performance.   

2.1.2   Feature Rankings 

The features selection process is indicated in Fig. 3 where the stacked features are given 
to three different filtering methods: ReliefF [16], Mutual Information (MI) [17], and 
Minimum Redundancy Maximum Relevance (mRMR) [18] to produce a final rank 
vector. ReliefF identifies relevant features by computing weighted distances between 
dataset instances, distinguishing same-class from different-class instances. Features 
with larger differences among same-class neighbors and smaller differences with 
different-class neighbors receive higher ReliefF scores, indicating their importance.  
MI evaluates feature relevance by computing mutual information scores between 

Fig. 2. Models’ complexity-accuracy. 



features and the target variable. It starts with dimensionality reduction, computes 
marginal probabilities, applies a binning strategy for discretization. mRMR identifies 
informative features by 
evaluating relevance to the 
target and redundancy 
with other features. It 
prioritizes high-relevance, 
non-redundant features. 
All methods generate 
normalized scores for 
feature selection and are 
combined to compute a 𝑠𝑐𝑜𝑟𝑒(𝑋௜), weighted by 𝜔ଵ= 0.5, 𝜔ଶ= 0.25, and 𝜔ଷ= 0.25 respectively as indicated in 
Eq. (1). These weights determine the importance of each method while ranking. 

 𝑠𝑐𝑜𝑟𝑒(𝑋௜) =  𝜔ଵ × 𝑅𝑒𝑙𝑖𝑒𝑓𝐹௦௖௢௥௘௦ + 𝜔ଶ × 𝑚𝑅𝑀𝑅௦௖௢௥௘௦ + 𝜔ଷ × 𝑀𝐼௦௖௢௥௘௦  (1) 
 

where, 𝑅𝑒𝑙𝑖𝑒𝑓𝐹௦௖௢௥௘௦, 𝑚𝑅𝑀𝑅௦௖௢௥௘௦, and 𝑀𝐼௦௖௢௥௘௦ represent the importance score assigned 
to feature 𝑋௜ by respective method. These combined feature scores are then used to 
rank the features. Eq. (1) can be represented by standardizing the scores obtained from 
each feature selection method before combining them, ensuring that each method 
contributes proportionally to the final score as depicted in Eq. (1a). 
 𝑠𝑐𝑜𝑟𝑒(𝑋௜) =  𝜔ଵ × 𝑧ோ௘௟௘௜௙ி(𝑋௜) +  𝜔ଶ × 𝑧௠ோெோ(𝑋௜) + 𝜔ଷ × 𝑧ெூ(𝑋௜)      (1a) 
 

here, 𝑧ோ௘௟௘௜௙ி(𝑋௜) , 𝑧௠ோெோ(𝑋௜) , and 𝑧ெூ(𝑋௜)  are the standardized scores obtained from 
ReliefF, mRMR, and MI methods respectively for feature 𝑋௜ . The standardized scores 𝑧(𝑋௜) for feature 𝑋௜ can be computed as 𝑧(𝑋௜) = ௦௖௢௥௘(௑೔)ିఓఙ  that ensures that the scores 
have a mean of 0 and a standard deviation of 1. 

2.1.3   ASEL Based Feature Selection 

The conventional filter method for feature selection typically involves selecting top-
ranked features based on their relevance scores, often determined experimentally. 
However, this approach lacks validation beyond experimental results, raising doubts 
about the true contribution of chosen features to the classification process. Moreover, 
prioritizing only the highest-ranked features may not always lead to optimal selection, 
as redundant information may persist. To address this, we propose a novel method that 
iteratively refines the feature subset to enhance classification accuracy. Initially, the top 
η% of ranked features are selected, and the subset is iteratively updated by 
incorporating discarded features and excluding some previously selected ones. In each 
iteration, 𝛼% of the selected features are randomly removed, while 𝛽% of the non-
selected features are added for comparison with the existing feature subset to search for 
an optimal feature subset. The values of η, 𝛼%, and 𝛽% are determined experimentally. 
The comparison between the generated feature subset and the previous one is evaluated 
based on a fitness function as indicated in Eq. (2). 
 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) = 𝜃 × 𝑎𝑐𝑐 × (1 − 𝜃) × ቀ1 − ேೞ೐೗௡ ቁ − 𝛾 × 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑋)   (2) 

Fig. 3. Feature ranking and selection. 
 



where, 𝜃  represents a weight factor, 𝑎𝑐𝑐  represents the accuracy of the selected 
features, 𝑁௦௘௟  represents the number of selected features, 𝑛  represents the total 
number of features, 𝛾 is the regularization parameter allows controlling the trade-off 
between accuracy and feature complexity in the fitness calculation, and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑋) is 
a penalty term that accounts for redundancy of the selected features and can be 
represented as 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑋) = 𝛿 × 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦(𝑋). It penalized based on redundancy among 
selected features. For instance, high redundancy will increase the penalty. The 𝛿 is a 
scaling factor set to 0.6 and 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦(𝑋)  measures the redundancy among the 
selected features which can be computed as the average correlation among selected 
features. The fitness function, expressed as Eq. (2), balances feature accuracy 𝑎𝑐𝑐 and 
the length of the selected feature subset (𝑁௦௘௟), with the trade-off controlled by weight 𝜃. In this scenario, 𝜃 is set to 0.9. Feature accuracy 𝑎𝑐𝑐 is determined using a KNN 
classifier on the validation dataset.  

2.2   Proposed FDAIR Model for Image Reconstruction 

The proposed FDAIR model reconstructs images from a reduced feature set recovered 
at the receiver. The generator produces high-quality images, while the discriminator 
ensures their realism by evaluating feature authenticity. The training process combines 
perceptual, feature, adversarial, and feature preservation losses, weighted by 
hyperparameters 𝜆ଵ, 𝜆ଶ, and 𝜆ଷ, to optimize reconstruction quality and feature fidelity. 
FDAIR employs adversarial training and a feature space discriminator, effectively 
learning to reconstruct images without direct access to real images. The generator and 
discriminator both use a learning rate of 0.0001, a batch size of 32, and train for 100 
epochs. The overall objective function given as Eq. (3) involves a generator 𝐺 and a 
discriminator 𝐷, as seen in GANs. The goal is to optimize 𝐺 and 𝐷 such that 𝐺 
generates realistic data, while 𝐷 discriminates between real and generated data.  
 𝑚𝑖𝑛ீ𝑚𝑎𝑥஽(𝑉(𝐷, 𝐺) +  𝜆ଵ𝐿௣௘௥௖௘௣ + 𝜆ଶ𝐿௙௘௔௧ + 𝜆ଷ𝐿௣௥௘௦௘௥௩)  (3) 
 

Here, 𝜆ଵ , 𝜆ଶ , and 𝜆ଷ  are hyperparameters that control the contribution of each loss 
term to the overall objective. 

2.2.1   Generator and Discriminator 

As shown in Fig. 4, the 
novel generator design for 
high-quality image 
reconstruction integrates 
several key modules. It 
starts by receiving reduced 
noisy features, then uses a 
Multi-Scale Feature 
Extraction module to 
capture diverse scales. 
Attentional Residual 

Fig. 4. Proposed generator modules in the FDAIR model. 
 



Blocks (ARBs) enhance focus and stability, followed by Cross-Scale Feature Fusion 
Modules (CSFFMs) that refine feature representation through downsampling and 
upsampling. The Progressive Upsampling Module (PUM) increases resolution and 
reduces artifacts, while the Attention Refinement Module (ARM) emphasizes 
important regions. Finally, the output module generates the image, ensuring superior 
feature fidelity. 

The discriminator evaluates the realism of reconstructed images using only their feature 
representations, without access to input features or real images. This approach ensures 
high-quality reconstruction. Employing a U-Net architecture designed in [19], the 
discriminator captures both local and global contextual information. The U-Net's 
encoder-decoder structure extracts hierarchical feature representations, identifying 
detailed patterns and distinctions crucial for differentiating real from generated 
features. Despite not accessing original images, the discriminator uses adversarial, 
feature, and preservation loss functions to guide reconstruction. The adversarial loss 
ensures the generator produces realistic feature representations, while feature and 
preservation losses maintain alignment and essential attributes during reconstruction. 

2.2.2   Loss Functions 

Adversarial Loss: It represents the adversarial component of the GAN. 𝑚𝑖𝑛ீ𝑚𝑎𝑥஽൫𝐸ி೟[log 𝐷(𝐼|𝐹௧)] + 𝐸ி೟,೥ൣlog൫1 − 𝐷(𝐺(𝐹௧, 𝑧)|𝐹௧)൯൧൯    (3a) 

where 𝐹௧  represent recovered set of reduced features at the receiver, 𝐼  is the real 
image associated with features 𝐹௧, 𝐺(𝐹௧, 𝑧) represents generated image from generator 𝐺  given input features 𝐹௧  and random noise 𝑧 . The discriminator 𝐷  tries to 
maximize this loss term by correctly classifying real images as real log 𝐷(𝐼|𝐹௧) and 
generated images as fake log൫1 − 𝐷(𝐺(𝐹௧ , 𝑧)|𝐹௧)൯. The generator minimizes this loss term 
to fool the discriminator. 
 

Feature Loss: It ensures the generated image's features match the input features. 
 𝐿௙௘௔௧ =  ‖𝐹௧ − 𝐺(𝐹௧, 𝑧)‖ଶଶ               (3b) 
 

Perceptual Loss: It measures the perceptual difference between the synthesized image 𝐼௦௬௡ and the reconstructed image 𝐼መ. 
 𝐿௣௘௥௖௘௣ =  ଵே ∑ ฮ𝜑௜(𝐼௦௬௡) − 𝜑௜(𝐼መ)ฮଶଶே௜ୀଵ        (3c) 
 

The 𝜑௜  represents a feature extraction function at layer 𝑖 , and 𝑁  represents the 
number of layers used to extract features.  

 

Preservation Loss: This loss ensures that certain attributes are preserved in the 
generated image: 𝐿௣௥௘௦௘௥௩ =  ଵெ ∑ ฮ𝜓௝(𝐹௧) − 𝜓௝(𝐺(𝐹௧ , 𝑧))ฮଶଶெ௝ୀଵ    (3d) 
 

The 𝜓௝  function extracts specific attributes from the image, and 𝑀 represents the 
number of attributes being preserved. 



3   Results and Discussions 

In this section, we evaluated our proposed deepfake detection method's robustness by 
analysing its performance under various challenges present in Celeb-DF (V2) dataset 
as “CeDF” [20]. It was divided into training, validation, and test sets. We used 
equidistant frames for training and the first I-frame for validation and testing. Faces 
were cropped using the Multi-task Cascaded Convolutional Networks (MTCNN) 
algorithm, and only the face image with the highest confidence score was retained. We 
employed three CNNs with batch size of 32 for 100 epochs, using the Adam optimizer. 
Accuracy was computed with a KNN classifier with n_neighbors set to 5. Using Area 
Under Curve (AUC) score and test accuracy as primary metrics, we evaluated its 
effectiveness and generalization capability. These metrics revealed how well the 
method distinguished between real and fake content and performed across varied 
conditions in the dataset. Also, we comprehensively evaluated our FDAIR model's 
effectiveness by comparing it with other state-of-the-art approaches such as SRGAN 
[21], ESRGAN [22], and A-ESRGAN [19].  To ensure objectivity, we utilized three 
standard evaluation metrics: PSNR, SSIM, and NRMSE, particularly focusing on 
image reconstruction.  

3.1   Evaluation for Deepfake Detection 

Our experiments determined the optimal 
parameters for feature selection: η (30-50), 𝛼 (5-10), and 𝛽 (5-10). As indicated in the 
Table 1., the best performance was achieved 
with η=30, 𝛼=10, and 𝛽=10.  
 
 

The confusion matrix for the proposed 
method is shown in Fig. 5(a), reveals that 
only 11 images are misclassified when 
trained and tested on the CeDF dataset. To 
evaluate the randomness impact, the 
algorithm ran for 1000 iterations. Fitness 
scores, shown in Fig. 5(b), saturated after 
about 240 iterations with regularization term set to 0, 
suggesting near-optimal features were 
found. Higher values of regularization 
term improved the fitness score more 
slowly, indicating a balance between 
regularization and performance. In 
Fig. 5(c), the reduced feature set (339 
features, 10.8 kbits) optimizes 
transmission BW and storage usage, 
requiring only 16.5%, 26.3%, and 

Table 1.  Ablation study on the 
hyperparameters of the proposed ASEL. 
 

Parameters 

 

Performance Score (%) 

𝜂 𝛼 𝛽 Validation 
Accuracy 

Feature 
Length 

Objective 
Score 

30 05 05 97.76 482 95.13 

30 05 10 98.27 557 94.97 

30 10 05 98.59 373 96.49 

30 10 10 98.83 339 97.03 

40 05 05 96.56 1046 90.53 

40 05 10 96.79 1199 89.59 

40 10 05 94.30 1161 88.03 

40 10 10 97.01 1176 89.17 

 
Table 2.  Performance of individual and combined 
models. 

Model # Features Accuracy (%) AUC (%) 

DenseNet-121 1024 92.48 90.79 

EfficientNet-B0 1280 92.85 91.49 

ResNet-18 2048 95.18 93.13 

Stacked Features 4352 95.73 97.01 

Reduced Features 339 97.53 97.77 

 



33% of the storage compared to ResNet-18 (2048 features, 65.5 kbits), EfficientNet-
B0 (1280 features, 41.0 kbits), and DenseNet-121 (1024 features, 32.8 kbits), 
respectively. This reduction is quite significant for bandwidth-constraint networks. 

 
Fig. 5. Performance evaluation. (a) Confusion matrix. (b) Fitness scores. (c) Comparing storage 
and BW gain among feature types obtained from different models.  
 
We also evaluate the overall effectiveness of the architecture and its components when 
test artifacts are known during model training. We assess three CNN models both 
individually and in combination. Additionally, we evaluate the proposed method's 
performance, which includes a feature 
selection process applied to the combined 
features.  The test accuracy and AUC 
scores for the CeDF dataset are 
summarized in Table 2. Results indicate 
that the model using combined features 
outperforms the individual models with 
improved performance of 1.75%. We 
evaluated our deepfake detection method 
using test accuracy and AUC score as performance metrics. As reported in Table 3, our 
method outperforms the other state-of-the-art techniques, demonstrating superior 
performance with only 339 features, achieving a test accuracy of 97.53% and an AUC 
score of 97.77%. 

3.2   Evaluation for Proposed Error-resilient FDAIR Model 

Fig. 6 compares the performance of image reconstruction methods: SRGAN, 
ESRGAN, A-ESRGAN, and a proposed 
method, using SSIM, PSNR, and 
NRMSE. The average results are shown 
in Table 4 indicating that the proposed 
method excels in all metrics, achieving 
the highest SSIM and PSNR and lowest 
NRMSE when comparing with other 
state-of-the-art methods. For instance, 
the proposed method improves SSIM by 

Table 3.  Comparison with other state-of-the-
art methods. 

Experiment Method # 
Features 

Accuracy 
(%) 

AUC 
(%)   

CeDF 
Dataset 

[20] 2048 95.37 98.88 

[23] 1024 65.64 65.33 

[24] 300 68.33 78.04 

Proposed 339 97.53 97.77 

Table 4.  Evaluating proposed FDAIR model 
with other state-of-the-art methods. 
 

Method SSIM PSNR (dB) NRMSE 

SRGAN 0.657 23.72 0.072 

ESRGAN 0.770 28.04 0.044 

A-ESRGAN 0.858 31.93 0.028 

Proposed 0.876 32.89 0.025 
 



33.47%, PSNR by 38.65%, 
and reduces NRMSE by 
65.19% compared to 
SRGAN. These results 
highlight the proposed 
method's superior image 
reconstruction quality, 
visual fidelity, and noise 
reduction ability.  
 
As depicted in Fig. 7, our 
proposed FDAIR model 
demonstrates strong 
resilience to noise, 
maintaining consistent 
performance across 
different SNR levels. Key 
metrics—SSIM (average 
0.872, standard deviation 
0.0015), PSNR (average 32.64 dB, standard deviation 0.0861), and NRMSE (average 
0.025, standard deviation 0.0026)—show minimal variation. This indicates that the 
model effectively preserves image quality and structural similarity despite increasing 
noise, showcasing its robustness in noisy environments. 

4   Conclusion 

This research presents a robust approach to deepfake detection and adversarial image 
reconstruction, utilizing deep feature extraction and selection. Leveraging pre-trained 
CNN models—DenseNet-121, EfficientNet-B0, and ResNet-18—fine-tuned on the 
Celeb-DF (V2) dataset, the study achieves high accuracy in distinguishing real from 
manipulated images. The novel ASEL feature selection algorithm effectively reduces 
redundant features, enhancing KNN classifier efficiency, resulting in an impressive 
AUC score of 97.77%, outperforming existing approaches. Moreover, the method 
optimizes BW by transmitting reduced feature sets over noisy wireless channels. At the 
receiver, the proposed FDAIR model significantly improves image quality, evident in 
a 33.47% SSIM enhancement, 38.65% PSNR improvement, and 65.19% NRMSE 
reduction compared to state-of-the-art SRGAN method. Also, the FDAIR model shows 
strong resilience to noise, maintaining consistent performance across SNR levels. This 
study enhances deepfake detection and ensures image quality in adverse conditions, 
offering value for applications like remote forensic analysis. Future work aims to 
balance accuracy and computational complexity, potentially exploring knowledge 
distillation approaches.  
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                   SRGAN    ESRGAN  A-ESRGAN     Proposed 

Fig. 6. Performance evaluation of proposed FDAIR model. 
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Fig. 7. The FDAIR’s resilience against noisy features. 
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