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Abstract. The rapid advancements in deepfake technology pose significant
challenges in detecting manipulated media. This research introduces a feature
extraction and selection method to address this threat. An optimally integrated
pre-trained model is introduced to extract features from face images, composed
of three CNN models —DenseNet-121, EfficientNet-B0, and ResNet-18 —and
fine-tuned on the Celeb-DF (V2) dataset. These features are stacked for diverse
representations, and a novel Assimilation-Elimination (ASEL) selection
algorithm is used to minimize redundancies. The selected features are then fed
into a KNN classifier to determine if a image is real or manipulated. Experiments
on Celeb-DF (V2) achieve an AUC score of 97.77%, confirming the model's
robustness. Additionally, reduced feature sets from real images are transmitted
over a noisy communication channel, optimizing storage and bandwidth needs.
Afterwards, the recovered bits are fed into the proposed error-resilient Feature-
Driven Adversarial Image Reconstruction (FDAIR) model at the receiver,
achieving image reconstruction comparable to state-of-the-art methods.

1 Introduction

In the context of remote forensic analysis, the integrity of digital evidence, particularly
videos and images, is crucial due to the sophistication of deepfake technology.
Ensuring data authenticity during transmission from local servers to forensic labs is
critical to prevent tampering. Advances in technology have led to increasingly
sophisticated methods for creating fake media content, posing significant challenges
for forgery detection. Prior studies have explored various techniques for deepfake
detection. Auto-encoders trained on real face images have been used to obscure
Generative Adversarial Network (GAN) fingerprints in synthetic images. [1] focused
on eliminating visible signs of manipulation to make deepfakes blend seamlessly with
authentic imagery. Face-swapping techniques further complicate detection efforts, with
methods utilizing disparities between facial regions [2] and targeting specific areas like
eyebrows [3]. To address these challenges, advanced methods have been proposed,
such as Convolutional Neural Network (CNN) model based on domain-invariant
representation learning [4] and methods to identify common GAN features to enhance
detection generalization [5]. An attention-based approach focusing on specific facial
regions to reduce the search space for identifying manipulated artifacts [6].



Transformers have been integrated to enhance generalization [7], while vision
transformer models have been used for feature extraction [8]. Techniques like filter and
feature ranking methods [9] and feature-level analysis further improve detection
performance, highlighting the need for innovative approaches to counter deepfakes. In
image generation and restoration, approaches such as generative priors and diffusion
models have been discussed. PULSE proposed StyleGAN inversion for image
upsampling [10] but struggles with fidelity at small downsampling factors. BRGM
frames GAN inversion as Bayesian inference, with L-BRGM further optimizing quality
[11]. Despite these advancements, forgery detection and image reconstruction face
challenges like noise interference, limited model applicability, and high computational
demands, emphasizing the need for more effective methods.

This paper presents a novel
deepfake detection and
image reconstruction
framework using features
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In summary, the contributions of this paper are presented as follows:

e Developed a detection workflow model using features from CNNs (DenseNet-
121, EfficientNet-B0O, ResNet-18) to enhance detection accuracy through
increased features diversity.

e  Proposed an Assimilation-Elimination (ASEL) feature selection algorithm to
mitigate overfitting, lower computational costs, and optimize bandwidth (BW)
efficiency. Experiments show ASEL outperforms state-of-the-art methods in
classification accuracy and Area Under Curve (AUC) score.

e Proposed a FDAIR model to reconstruct images from reduced noisy feature
sets. Our experimental evaluations of Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), and Normalized Root Mean Square Error
(NRMSE) demonstrate its effectiveness in image reconstruction, indicating
resilience against limited and noisy features.



The rest of the paper is organized as follows. Section 2 presents a technical approach
for our proposed methods, while Section 3 discusses the experimental results. Finally,
the paper is concluded in Section 4.

2 Technical Approach

This section discusses two key areas of our framework: feature selection and deepfake
detection at sender, and a FDAIR model to reconstruct the images at the receiver.

2.1 Deepfake Detection

The proposed deepfake detection method uses the ASEL algorithm to select relevant
features from stacked CNN outputs, achieving a near-optimal subset. A KNN classifier
is then used for deepfake classification. 100
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For effective feature extraction, our approach is
to integrate multiple CCN models. To determine 70
the optimal number of component models, the &
accuracy gain is evaluated each time of adding one o Tree Four
one component model. The CCN models for the MRl ConRgearion
evaluation  include.  DenseNet-121  [12],
EfficientNet-BO [13], ResNet-18 [14], and GoogLeNet [15]. As shown in Fig. 2, the
accuracy improvement A by adding a model diminishes rapidly when adding fourth
model at only 0.77%, which justifies our choice of three models. As shown in Fig. 1,
flattened feature maps were obtained by applying global average pooling (GAP) to the
top layer of each CNN model, resulting in dimensions of 1024 (DenseNet-121), 1280
(EfficientNet-B0), and 2048 (ResNet-18). This compact feature representation
facilitated subsequent feature combination and analysis for our deepfake detection
algorithm. Using these diverse CNN models aimed to capture superior features,
enhancing overall performance.

Fig. 2. Models’ complexity-accuracy.

2.1.2  Feature Rankings

The features selection process is indicated in Fig. 3 where the stacked features are given
to three different filtering methods: ReliefF [16], Mutual Information (MI) [17], and
Minimum Redundancy Maximum Relevance (mRMR) [18] to produce a final rank
vector. ReliefF identifies relevant features by computing weighted distances between
dataset instances, distinguishing same-class from different-class instances. Features
with larger differences among same-class neighbors and smaller differences with
different-class neighbors receive higher ReliefF scores, indicating their importance.
MI evaluates feature relevance by computing mutual information scores between
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combined to compute a

score(X;), weighted by w,= 0.5, w,= 0.25, and w;= 0.25 respectively as indicated in
Eq. (1). These weights determine the importance of each method while ranking.

score(X;) = w, X Relief FS°TS + w, X mRMR*°"® + wy x MIs®™es (1)

where, ReliefFses, mRMRsr*s, and MI*°"* represent the importance score assigned
to feature X; by respective method. These combined feature scores are then used to
rank the features. Eq. (1) can be represented by standardizing the scores obtained from
each feature selection method before combining them, ensuring that each method
contributes proportionally to the final score as depicted in Eq. (1a).

score(X;) = wq X Zpereirr (X)) + Wy X Zypur (Xo) + 03 X 23 (X;) (1a)

here, zgeeifr(X)) s Zmrmr(X), and z,, (X)) are the standardized scores obtained from
ReliefF, mRMR, and MI methods respectively for feature X;. The standardized scores
z(X;) for feature X; can be computed as z(X;) = score@®d# that ensures that the scores
have a mean of 0 and a standard deviation of 1.

2.1.3 ASEL Based Feature Selection

The conventional filter method for feature selection typically involves selecting top-
ranked features based on their relevance scores, often determined experimentally.
However, this approach lacks validation beyond experimental results, raising doubts
about the true contribution of chosen features to the classification process. Moreover,
prioritizing only the highest-ranked features may not always lead to optimal selection,
as redundant information may persist. To address this, we propose a novel method that
iteratively refines the feature subset to enhance classification accuracy. Initially, the top
n% of ranked features are selected, and the subset is iteratively updated by
incorporating discarded features and excluding some previously selected ones. In each
iteration, a% of the selected features are randomly removed, while % of the non-
selected features are added for comparison with the existing feature subset to search for
an optimal feature subset. The values of 1, %, and % are determined experimentally.
The comparison between the generated feature subset and the previous one is evaluated
based on a fitness function as indicated in Eq. (2).

fitness(X) = 6 x acc X (1 —6) X (1 - %) —y xpenalty(X)  (2)



where, 6 represents a weight factor, acc represents the accuracy of the selected
features, N, represents the number of selected features, n represents the total
number of features, y is the regularization parameter allows controlling the trade-off
between accuracy and feature complexity in the fitness calculation, and penalty(X) is
a penalty term that accounts for redundancy of the selected features and can be
represented as penalty(X) = § x redundancy(X). It penalized based on redundancy among
selected features. For instance, high redundancy will increase the penalty. The § is a
scaling factor set to 0.6 and redundancy(X) measures the redundancy among the
selected features which can be computed as the average correlation among selected
features. The fitness function, expressed as Eq. (2), balances feature accuracy acc and
the length of the selected feature subset (N,,,), with the trade-off controlled by weight
6. In this scenario, @ is set to 0.9. Feature accuracy acc is determined using a KNN
classifier on the validation dataset.

2.2 Proposed FDAIR Model for Image Reconstruction

The proposed FDAIR model reconstructs images from a reduced feature set recovered
at the receiver. The generator produces high-quality images, while the discriminator
ensures their realism by evaluating feature authenticity. The training process combines
perceptual, feature, adversarial, and feature preservation losses, weighted by
hyperparameters 1,, 1,,and 2, to optimize reconstruction quality and feature fidelity.
FDAIR employs adversarial training and a feature space discriminator, effectively
learning to reconstruct images without direct access to real images. The generator and
discriminator both use a learning rate of 0.0001, a batch size of 32, and train for 100
epochs. The overall objective function given as Eq. (3) involves a generator G and a
discriminator D, as seen in GANs. The goal is to optimize G and D such that G
generates realistic data, while D discriminates between real and generated data.

mincmaxD (V(D, G) + Aleercep + AZLfeat + ASLpreserv) (3)

Here, 1,, 4,, and 1, are hyperparameters that control the contribution of each loss
term to the overall objective.

2.2.1 Generator and Discriminator

As shown in Fig. 4, the
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Blocks (ARBs) enhance focus and stability, followed by Cross-Scale Feature Fusion
Modules (CSFFMs) that refine feature representation through downsampling and
upsampling. The Progressive Upsampling Module (PUM) increases resolution and
reduces artifacts, while the Attention Refinement Module (ARM) emphasizes
important regions. Finally, the output module generates the image, ensuring superior
feature fidelity.

The discriminator evaluates the realism of reconstructed images using only their feature
representations, without access to input features or real images. This approach ensures
high-quality reconstruction. Employing a U-Net architecture designed in [19], the
discriminator captures both local and global contextual information. The U-Net's
encoder-decoder structure extracts hierarchical feature representations, identifying
detailed patterns and distinctions crucial for differentiating real from generated
features. Despite not accessing original images, the discriminator uses adversarial,
feature, and preservation loss functions to guide reconstruction. The adversarial loss
ensures the generator produces realistic feature representations, while feature and
preservation losses maintain alignment and essential attributes during reconstruction.

2.2.2  Loss Functions

Adversarial Loss: It represents the adversarial component of the GAN.

mingmaxp (Er,[log DU|F)] + Ep,, [log(1 — D(G(F.. D)IFD)]) (3a)

where F, represent recovered set of reduced features at the receiver, I is the real
image associated with features F,, G(F,z) represents generated image from generator
G given input features F, and random noise z. The discriminator D tries to
maximize this loss term by correctly classifying real images as real logD(I|F,) and
generated images as fake log(1 — D(G(F,, 2)|F,)). The generator minimizes this loss term
to fool the discriminator.

Feature Loss: It ensures the generated image's features match the input features.

Liear = IF; — G(F., 2|13 (Sb)
Perceptual Loss: It measures the perceptual difference between the synthesized image
I, and the reconstructed image /.

A 112

Lpercep = % IiV:1||(pi(15yn) - (pi(l)nz (30)
The ¢, represents a feature extraction function at layer i, and N represents the
number of layers used to extract features.

Preservation Loss: This loss ensures that certain attributes are preserved in the
generated image:

Lyresers = =l (F) = ¥, GFE 2| (3d)

The y; function extracts specific attributes from the image, and M represents the
number of attributes being preserved.



3  Results and Discussions

In this section, we evaluated our proposed deepfake detection method's robustness by
analysing its performance under various challenges present in Celeb-DF (V2) dataset
as “CeDF” [20]. It was divided into training, validation, and test sets. We used
equidistant frames for training and the first I-frame for validation and testing. Faces
were cropped using the Multi-task Cascaded Convolutional Networks (MTCNN)
algorithm, and only the face image with the highest confidence score was retained. We
employed three CNNs with batch size of 32 for 100 epochs, using the Adam optimizer.
Accuracy was computed with a KNN classifier with n_neighbors set to 5. Using Area
Under Curve (AUC) score and test accuracy as primary metrics, we evaluated its
effectiveness and generalization capability. These metrics revealed how well the
method distinguished between real and fake content and performed across varied
conditions in the dataset. Also, we comprehensively evaluated our FDAIR model's
effectiveness by comparing it with other state-of-the-art approaches such as SRGAN
[21], ESRGAN [22], and A-ESRGAN [19]. To ensure objectivity, we utilized three
standard evaluation metrics: PSNR, SSIM, and NRMSE, particularly focusing on
image reconstruction.

3.1 Evaluation for Deepfake Detection
Our experiments determined the optimal Table 1. Ablation study on the

parameters for feature selection: n (30-50), hyperparameters of the proposed ASEL.
a (5-10), and B (5-10). As indicated in the

Table 1., the best performance was achieved Parameters Performance Score (%)
with T]:3 0, 0.'=10, and [)’=10 @ « I Validation | Feature | Objective
Accuracy Length Score
30 05 05 97.76 482 95.13
The confusion matrix for the proposed [35 [ os | 10 9827 557 9497
method is shown in Fig. 5(a), reveals that [5, 10 | os 98,59 73 96.49
only 11 images are misclassified when [35 [ 10 | 10 98.83 339 97.03
trained and tested on the CeDF dataset. To [ 4 | o5 | o5 96.56 1046 9053
evaluate the randomness impact, the [ [ os | 10 96,79 1199 .59
algorithm ran for 1000 iterations. Fitness [ [ 10 | os 94.30 1161 43,03
scores, shown in Fig. 5(b), saturated after [, | 10 | 10 97.01 176 3917

about 240 iterations with
regularization term set to 0, Table2. Performance ofindividual and combined
suggesting near-optimal features were models.

found. Higher values of regularization Model #Features | Accuracy (%) | AUC (%)
term improved the fitness score more DenseNet-121 1024 92.48 90.79
slowly, indicating a balance between EfficientNet-B0 12580 9285 o149

regularization and performance. In

A ResNet-18 2048 95.18 93.13
Fig. 5(c), the reduced feature set (339
. .. Stacked Features 4352 95.73 97.01
features, 10.8 kbits) optimizes
Reduced Features 339 97.53 97.77

transmission BW and storage usage,
requiring only 16.5%, 26.3%, and




33% of the storage compared to ResNet-18 (2048 features, 65.5 kbits), EfficientNet-
BO (1280 features, 41.0 kbits), and DenseNet-121 (1024 features, 32.8 kbits),

respectively. This reduction is quite significant for bandwidth-constraint networks.
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We also evaluate the overall effectiveness of the architecture and its components when
test artifacts are known during model training. We assess three CNN models both
individually and in combination. Additionally, we evaluate the proposed method's
performance, which includes a feature

selection process applied to the combined Table 3. Comparison with other state-of-the-

art methods.

features. The test accuracy and AUC : = Acemrasy | ATUC
scores for the CeDF dataset are | -0 | M9 | peatwres | (%) %)
summarized in Table 2. Results indicate 1201 2048 9537 | 9888
that the model using combined features CeDF 23] 1024 05.64 | 65.33
outperforms the individual models with Dataset 1241 300 6833 | 78.04
improved performance of 1.75%. We Proposed | 339 97.53 | 97.77

evaluated our deepfake detection method

using test accuracy and AUC score as performance metrics. As reported in Table 3, our
method outperforms the other state-of-the-art techniques, demonstrating superior
performance with only 339 features, achieving a test accuracy of 97.53% and an AUC
score of 97.77%.

3.2 Evaluation for Proposed Error-resilient FDAIR Model

Fig. 6 compares the performance of image reconstruction methods: SRGAN,

ESRGAN, A-ESRGAN, and a proposed
method, using SSIM, PSNR, and
NRMSE. The average results are shown

in Table 4 indicating that the proposed Method SSIM PSNR(@B) | NRMSE
method excels in all metrics, achieving SRGAN 0.657 23.72 0.072
the highest SSIM and PSNR and lowest ESRGAN 0.770 28.04 0.044
NRMSE when comparing with other A-ESRGAN 0.858 31.93 0.028
state-of-the-art methods. For instance, Proposed 0.876 32.89 0.025

the proposed method improves SSIM by

Table 4.

Evaluating proposed FDAIR model
with other state-of-the-art methods.
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As depicted in Fig. 7, our
proposed FDAIR model

demonstrates strong
resilience  to  noise,
maintaining consistent
performance across

different SNR levels. Key
metrics—SSIM  (average
0.872, standard deviation
0.0015), PSNR (average 32.64 dB, standard deviation 0.0861), and NRMSE (average
0.025, standard deviation 0.0026)—show minimal variation. This indicates that the
model effectively preserves image quality and structural similarity despite increasing
noise, showcasing its robustness in noisy environments.

SNR 2dB 4dB 6dB 8dB 10dB
Fig. 7. The FDAIR’s resilience against noisy features.

4  Conclusion

This research presents a robust approach to deepfake detection and adversarial image
reconstruction, utilizing deep feature extraction and selection. Leveraging pre-trained
CNN models—DenseNet-121, EfficientNet-B0O, and ResNet-18—fine-tuned on the
Celeb-DF (V2) dataset, the study achieves high accuracy in distinguishing real from
manipulated images. The novel ASEL feature selection algorithm effectively reduces
redundant features, enhancing KNN classifier efficiency, resulting in an impressive
AUC score of 97.77%, outperforming existing approaches. Moreover, the method
optimizes BW by transmitting reduced feature sets over noisy wireless channels. At the
receiver, the proposed FDAIR model significantly improves image quality, evident in
a 33.47% SSIM enhancement, 38.65% PSNR improvement, and 65.19% NRMSE
reduction compared to state-of-the-art SRGAN method. Also, the FDAIR model shows
strong resilience to noise, maintaining consistent performance across SNR levels. This
study enhances deepfake detection and ensures image quality in adverse conditions,
offering value for applications like remote forensic analysis. Future work aims to
balance accuracy and computational complexity, potentially exploring knowledge
distillation approaches.
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