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NUMERICAL ANALYSIS OF A CLASS OF PENALTY DISCONTINUOUS
GALERKIN METHODS FOR NONLOCAL DIFFUSION PROBLEMS

QIiaNG Du'®, Linr Ju?®, JIANFANG Lu®* AND XIAOCHUAN TIAN?

Abstract. In this paper, we consider a class of discontinuous Galerkin (DG) methods for one-
dimensional nonlocal diffusion (ND) problems. The nonlocal models, which are integral equations,
are widely used in describing many physical phenomena with long-range interactions. The ND problem
is the nonlocal analog of the classic diffusion problem, and as the interaction radius (horizon) vanishes,
then the nonlocality disappears and the ND problem converges to the classic diffusion problem. Under
certain conditions, the exact solution to the ND problem may exhibit discontinuities, setting it apart
from the classic diffusion problem. Since the DG method shows its great advantages in resolving prob-
lems with discontinuities in computational fluid dynamics over the past several decades, it is natural
to adopt the DG method to compute the ND problems. Based on [Q. Du, L. Ju, J. Lu and X. Tian,
Commun. Appl. Math. Comput. 2 (2020) 31-55], we develop the DG methods with different penalty
terms, ensuring that the proposed DG methods have local counterparts as the horizon vanishes. This
indicates the proposed methods will converge to the existing DG schemes as the horizon vanishes,
which is crucial for achieving asymptotic compatibility. Rigorous proofs are provided to demonstrate
the stability, error estimates, and asymptotic compatibility of the proposed DG schemes. To observe the
effect of the nonlocal diffusion, we also consider the time-dependent convection—diffusion problems with
nonlocal diffusion. We conduct several numerical experiments, including accuracy tests and Burgers’
equation with nonlocal diffusion, and various horizons are taken to show the good performance of the
proposed algorithm and validate the theoretical findings.
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1. INTRODUCTION

Nonlocal modeling has become quite popular in describing some physical phenomena involving nonlocal
interactions of finite range in recent years. Unlike the classic local partial differential equation models, the
nonlocal models can describe the physical phenomena in a setting with reduced regularity requirements and
allow the singularities and discontinuities to occur naturally. Additionally, due to the finite interaction range,
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the nonlocal models would be more computationally efficient compared to some integro-differential equations
characterized by an infinite range of interactions. The benefits of nonlocal models have led to their widespread
use in various fields, such as crack and fracture in solid mechanics [24,49,50], traffic flows [41], nonlocal wave
equation [31,39], nonlocal convection—diffusion problems [29,56], phase transitions [25,33], and image processing
[37,38]. Nonlocal volume-constrained diffusion models have a strong connection with the fractional Laplacian
and fractional derivatives [18,27]. The boundary conditions of the nonlocal diffusion (ND) problems are defined
on a nonzero volume region outside the domain, serving as a natural extension of those in differential equation
problems. Since most singular phenomena consist of both smooth and nonsmooth regions, a natural approach
is to apply nonlocal models in the nonsmooth regions and local models in the smooth regions. Consequently, if
local models are used near the boundary, the boundary conditions would remain the classic ones. This leads to
the seamless coupling of the local and nonlocal models, see [20,32] and the references cited therein.

Currently, there are several research topics on nonlocal models, including nonlocal vector calculus [19,28,40],
nonlocal trace spaces [36,55], nonlocal modeling and its mathematical investigations and numerical simula-
tions, to name a few, [21,24-26,29-31,33,34,41,44,52,56,61]. For a comprehensive literature review, readers
can refer to [18,23,27] and the references therein. Among the various numerical methods for nonlocal prob-
lems, the discontinuous Galerkin (DG) finite element method is a natural choice due to its effectiveness in
handling singularities and discontinuities. In 1973, Reed and Hill introduced the first DG method to solve the
steady transport equation [45]. Around 1990, Cockburn and Shu et al. combined the third-order total variation
diminishing Runge-Kutta method [47,48] in temporal discretization with DG method in spatial discretization
and successfully solved hyperbolic conservation laws [10-12, 14, 15]. Since then, the DG method has gained
significant attention and become widely used in many fields, such as aeroacoustics, oceanography, meteorol-
ogy, electromagnetism, granular flows, turbulent flows, viscoelastic flows, magneto-hydrodynamics, oil recovery
simulation, semiconductor device simulation, transport of contaminants in porous media and weather forecast-
ing, etc. Meanwhile, the study on the DG method for diffusion problems was developed independently in the
1970s and there exist various DG methods for diffusion problems. To name a few, there are symmetric interior
penalty Galerkin method [22], nonsymmetric interior penalty Galerkin method [46], Baumann-Oden’s method
[3], Babuska—Zldmal’s method [2], local DG method [13], ultra-weak DG method [8], recovery DG method [58],
direct DG method [42] and hybridizable DG method [16], sparse grid DG method [60], weak Galerkin method
[59], embedded DG method [17], etc. In particular, in [1] Arnold et al. provided a general framework to analyze
the DG methods with interior penalty and revealed the key aspects of constructing these methods.

Even though many DG methods have been constructed and proposed for classic diffusion problems previously,
these DG methods cannot be trivially extended to ND problems. The major difficulty lies in the absence of
differential operators in the nonlocal diffusion problems, which means integration by parts cannot be used,
and jumps do not appear in the weak formulations. In [9], Chen and Gunzburger proposed a discontinuous
finite element method for peridynamic models in the continuous finite element framework using the piecewise
polynomial finite element space. They observed that the convergence of the numerical solutions depends on the
choice of the horizon and mesh size when using the piecewise constant discretizations. In [54], Tian and Du
constructed a nonconforming DG method for nonlocal variational problems. However, none of the previously
mentioned DG methods are asymptotically compatible (see, e.g., [53,57]). In [34], the authors developed a DG
method for ND problems, which is a nonlocal analog of the local DG method [13] and achieved asymptotic
compatibility. Later in [35], the authors proposed a penalty DG method, which is a nonlocal analog of Babuska—
Zldmal’s DG method [2]. In this paper, we extend this work by constructing a more general DG method for
ND problems. We provide a general framework for the penalty DG methods applied to ND problems and
artificially construct the penalty terms involving jumps. With the artificial penalty terms, we are able to recover
several aforementioned well-known DG methods. Theoretical results on boundedness, stability, and a priori error
estimates are also provided. To observe the nonlocal diffusion effect, we consider a convection—diffusion problem
with nonlocal diffusion. With the standard DG discretization for the convective term and the proposed methods
for the ND term, we obtain the L2-stability in the semi-discrete case. Several numerical examples, including
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accuracy tests, nonsmooth ND problems, and Burgers’ equations with nonlocal diffusion, are presented to
validate the good performance of the proposed algorithm.

The rest of the paper is organized as follows. In Section 2, we first introduce the nonlocal diffusion problem
and its variational form, then propose the discontinuous Galerkin methods with some artificial penalty terms.
In Section 3, we study the boundedness, stability, and a priori error estimates for the proposed schemes.
The convection—diffusion model with nonlocal diffusion is considered and a semi-discrete analysis is given. In
Section 4, we show some numerical examples, including the smooth and nonsmooth problems, and the time-
dependent convection—diffusion problem with nonlocal diffusion. Concluding remarks are given in Section 5.

2. METHOD FORMULATION

In this section, we first introduce the one-dimensional ND problem and its variational form. Next, we construct
the penalty DG methods for the ND problem with artificial penalty terms. The penalties on the jumps not only
ensure that the integral is well-defined but can also be adjusted to create nonlocal analogs of several existing
DG methods for classic diffusion problems.

2.1. Problem description
Consider the one-dimensional steady-state ND problem with the nonlocal volume constraint in the following

‘Céu:fév 'fEEQé (a’?b)7 (2 1)
u=0, r€Qs 2 [a—d,a)Ubb+ 4], '

where § > 0 is a constant. The operator Ls is defined as
)
Lxu(e) = =2 [ (uly) = @)oo 9)

The kernel function 45(z,y) is nonnegative and symmetric. For simplicity, in the paper, we consider a special
case that

’?('I’y):rY(S):’Y(_SL §=T—Y,
{sg%(s) € Lf (R). ' (22)

loc

The natural energy space associated with (2.1) is
S:{UGL2 (?2) Hlvlls < oo, szonQ(;},

where € = QU Qs and the semi-norm |[v||s is defined as

5
Joll3 =2 / 75(5) /Q (EFo(x))? deds,

where Efw(x) = w(z+s) —w(z). In fact, the semi-norm || ||s is a norm on S (see e.g. [54]). Then the variation
form of (2.1) is as follows:

Find u € § such that B(u,v) = (f,v), VveES, (2.3)

where the bilinear form is given as

5 b+6
B(u,v) 22/0 ~v5(8) B Efu(x) Efv(z)dx ds, (2.4)
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and (-,-) is the usual L? product on Q. Note that the integral in B(u,v) requires the values of u outside §~2,
therefore we take the zero extension of w such that v = 0 on Q°.
Since s%v;5(s) € L1, .(R), without loss of generality we assume that

loc
s
/ s2y5(s)ds = 1.
-5

When § — 0, the nonlocal diffusion problem (2.1) becomes the heat equation with Dirichlet boundary condition
as follows:

—Ugy = fv T e Q7
{u | (2.5)

We refer the readers to [18,23,27] for more details.

2.2. Penalty discontinuous Galerkin methods

To construct the penalty DG method, we first take the partition of the domain Qas T, = {Ij =
N+m ith
(xj_%,:cj+%) }jzfm«i»l’ wit
x

=a, ayy1=b w1 <a—0<T_ 41, Ty <OFIS Ty (2.6)

SIS
W=

Assume the partition 7}, is regular, i.e., there exists a constant v > 0 such that
vh < p. (2.7)

where h, p are given as

h=maxhj, p=minh;, h; =x;, 1 —x; 1. (2.8)
J J
Then we define the finite element space as
V=V = {v e L*(Q): vl € Pelly), j=1,---,N, vjo, = 0}, (2.9)

where Py (I;) is the space of polynomials on I; whose degrees are at most k. Following [35], we divide B(u,v)
in (2.4) into three parts as follows:

B(u,v) = By(u,v) + Ba(u,v) + Bs(u,v), Yu,veES, (2.10)

where the above three terms are given as
h
Bi(u,v) = 2/ vs5(s) g / Efu(z)Efv(r)dzds,
0 - s
J i

h
By (u,v) :2/0 '75(3)2 . Efu(z)Efv(r)dzds, (2.11)

J J
§
Bs(u,v) :2/ 75(3)2/ Efu(x)Efv(z)dzds,
h —J1;
J J
where I, and I7, are given as

Iy = (xj*%’xj% —s), Ijy= (%#% - vajJr%)’ h = min{p, ¢}
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In [35], we showed B(u,v) may not be well-defined in the discrete space V}, since Ba(u,v) would cause troubles.
Since I3, = (a:j+% — s,xj+%), then u(z) and u(xz + s) are in the different elements, and this may lead to

v5(s)(u(z + s) — u(x))(v(z + s) — v(x)) not integrable on (0,k) when u,v € V,. We now take the similar
treatment in [35] and put the boundary terms together, then we can obtain the bilinear form at the discrete
level in the following.

Bh(uh, 'Uh) = E(Uh, 'Uh) + J(uh, Uh) + ,uP(uh, ’Uh)7 (212)
where p > 0 is taken to be large enough to ensure the stability and E(up,vp,), P(up,vp) are defined as

h
E(up,vp) :ZZ/O 75(5)/1 Efuy(z)Ef vy (x) deds

s
j,1

+ QZ/Oh vs5(s) /1 (ijz(x) - [[Uh]]jJr%) (Ejvh(x) - [[Uh]]ﬂ%) dx ds

where [w];; 1 = w(x;'+%) - w(acj_Jr%). If we define g, (x, s) in the following;:
Efv(r) —[v];41, whenzelf,, sc(0 h)
v y = ’ ) ’ ’ 213
go(@;5) {E;‘U(JJ), * elsewhere. (2.13)

Then we have
b
E(up,vp) :2/ vs5(s) E / Guy, (T, 8)gu, (x, s) dx ds.
0 = JI;
J J

J(up,vp) consists of boundary terms obtained by an integration by parts in the nonlocal sense and different
choices of J(up,vp) and p lead to various DG schemes. For instance, we show three kinds of DG formulations in
the following by choosing different J(uy, vp,) and p, and the local limits of these DG methods have been known
for many years.

— Nonlocal version of Babuska—Zldmal method [2] (nBZ):

J (up,vp) =0,
( h h) i (2.14)
uw=0 (h ) .
Here k is the degree of the polynomials in th.
— Nonlocal version of IP method [22] (nIP):
h
J(up,vp) = QZ[[U;L]]H_% / 75(5)/ Gu,, (¢, 8) dx ds
j 0 5.2
(2.15)

3
+22[uhﬂj+%/ %(8)/ Gon (@, ) dwds,
j 0 e

p=0(h").
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— Nonlocal version of NIPG method [46] (nNIPG):
h

J(up, vp) ZQZ[[vh]]jJF%/O Y5 ($) /I Gu,, (¢, 8) dx ds

3.2

i (2.16)
2%y [ 6(6) [ (o) deds

u:O(hfl).

In particular, the nBZ method has already been analyzed in [35]. In the rest of the paper, we focus on the
two DG schemes, nIP and nNIPG.

Remark 2.1. As previously mentioned, several DG methods exist for diffusion problems in the literature.
Although only three DG methods are listed above, this approach can be extended to several penalty DG
methods in [1] without substantial difficulty. It is worth noting that the penalty term P(uy,v;,) may require
suitable modifications of the lifting operator. We refer readers to [1] for more details.

Now we present the penalty DG formulation for the ND problem (2.1) as follows:
Find up € Vj, such that By, (up,vp) = (fs,vn), VYun € Vy, (2.17)

where By, (up,vp) is given in (2.12), and J(up, v) and p can be taken either one from (2.14), (2.15) or (2.16).

3. BOUNDEDNESS, STABILITY AND A PRIORI ERROR ESTIMATES

In this section, we consider the boundedness and stability of the DG methods. The nIP ((2.17) and (2.15))
and nNIPG schemes ((2.17) and (2.16)) are consistent, while the nBZ scheme ((2.17) and (2.14)) is not. To
control the inconsistency error in the nBZ method, the so-called superpenalty technique was applied to estimate
the inconsistent term, see, e.g., [1,35]. In this section, we focus on nIP and nNIPG methods, deriving the
boundedness, stability, and a priori error estimates for these two DG methods. Throughout this section, we let
C > 0 represent a generic constant independent of A and § but with possibly different values. Now let us define
the semi-norms for v € V/(h) 2 Vj, + S as follows:

5
|U|2E,h = 22/ ’Y&(S)/ 9o (,5)° dzds,
i 70 1
, h ) )
07, =2> hy | w(s)= | gu(z,9) duds, (3.1)
, J 0 s I3

h
|v|§37h:/0 () ds 3D .

J

To consider the boundedness and stability for the bilinear form By, (-, ), we define the norm for v € V(h) as
follows:

2 2 2
1ol = [vlz,, + 55 + 4 [0l - (3-2)
To see that ||| - ||| is a norm on V},, we have the following proposition in [35].

Proposition 3.1. For the general kernels vs satisfying (2.2), it holds that for some constant C > 0 independent
of 6 and h such that

lvallez < Clllonlll,  Vn € V. (3.3)
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3.1. Boundedness

The boundedness is straightforward after we define the norm ||| - ||| on V(h). For instance, we consider the
term J(up,vp) in (2.15). In fact, Vv, w € V}, + S, by Cauchy—Schwarz inequality we have

ZMJ‘% /Oh%(S) /1 Gw(z,s)drds

3.2

i . : 1 . : (3.4)
< /0 s2y5(s ds;E J+1 Zh / ~s(s /Ihgw(x,s) dzds
< (20)7 % lelpawlsn,
where p is defined in (2.8). Similarly, we have
H 1
Sl [ 2006 [ ontnoh o < 207 ol (35)
7,2

From (3.4), (3.5) and (2.15), we obtain

J(v,w) < V2p~ % (|U|P’h o] .5 ’ ) . (3.6)

Therefore, for any pu > 1/p, by Cauchy—Schwarz inequality we have

1
By (v,w) < |lg, lwlg, + V2p~2 (‘w|P,h Wl yn +vlps |w|J,h) +u|vlpy, [wlpy,

(3.7)
< 2{[[llH[lwlll, - Yo, w e V(h).
3.2. Stability
We now show the DG methods (2.17) are stable, i.e. 3C5s > 0 independent of h and ¢ such that
By, (vh,vh) > Cs|||’Uh|H2, Yop € Vi (38)

From the definition of the bilinear form By (-, ) in (2.12), for any v;, € V3, we have
By (vn,v) = |vnlg + J (0n, o) + 1 [vnlp, -

therefore, we can obtain the stability once J(vp, vy ) is controlled. A Lemma is presented below, which is crucial
in deriving the stability of the nIP method.

Lemma 3.1. For any v, € V},, there exists a constant Cy > 0 independent of h and §, such that
2 2
|’Uh|J7h <Cy |Uh|E7h- (3.9)

The proof of Lemma 3.1 is given in Appendix A.
If (3.9) holds, upon using J(vp, vp) < 2p*% |vr|p,n [vr| g from (3.6) and Cauchy—Schwarz inequality we then
have

2 _1 2
By (vhyvn) > |vnlgy — 2072 [vnlpy, [vnlgp + 1 (vnlpy,

v

2 - 2 12 2
[nl g = 2C0p™" |vnlpy, — (2C0) ™ |vnly s + 1 lonlpy,

v

1 2 — 2
3 [onlz 5 + (n—2Cop™") lvnlpp (3.10)

Y]

—1 2 2 2
(2Co +2) (|Uh‘E,h + lvnly, + 4 |Uh‘P,h>

+ (u —2Cop~ " — 1 (2Co + 2)_1) onlp), -
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Therefore, if we take u sufficiently large, for instance pu > (1 — (2Cy + 2)~1)~12Cyp~!, such that
p—2Cop™" — p(2Co +2)7' > 0,

then from (3.10) we immediately obtain desired result (3.8) with Cs = (2Cy + 2)~ L.

3.3. An a priori error estimate

In the previous section, we have obtained the boundedness and stability of the DG methods (2.17), we now
consider the consistency and approximation error. In the error estimates, we first make the assumption that
the exact solution u is smooth, which means u does not have discontinuities inside the domain 2 so that the
continuous interpolation can be defined. We take the continuous interpolant u;y € Vj, of the exact solution u so
that w — uy will be zero at the element interfaces, then we have the following approximation properties [35]:

hu—urllze < CR* fulypes and[Ju—urll] < CR* Jul s (3.11)

1/2
where C' > 0 is independent of h and ¢, and |u|gr+1 = (fﬁ(ai“*lu)Qdm) is the semi-norm. We refer the

readers to [5] for more details.

In [35], we know that with enough smoothness of the exact solution u, the bilinear form B(u, vy) is well-defined
and B(u, v,) = (fs, vn). For the nIP method and nNIPG method, if they are consistent, i.e. By (u, vy) = B(u,vy),
we then have

By, (u,vn) = B (u,vn) = (f5,vn) = Bp (un,vn), Vou € Vj.

In fact, we can check the consistency with some calculations that

h
E (u,vp) + J (u,vp) =2 Z/o 75(3)/ Efu(x)Efvy(z) dw ds

s
IJ'>1

+2Z/:’75(5)

5
+2 Z/h vs(s) /I Efu(x)Efvy(z)drds

Efu(x) (Ejvh(m) - [[vh]]jJr%) dz ds

I3
3,2

h
+2 [onljys / Y5 (s) / Efu(z)dzds
J 0 I3 5
= B (u,vp) + Ba (u,vp) + Bs (u,vp,) = B (u,vp,) .

Note that we use the smoothness of u that [[u]]j_‘_% = 0, Vj, which also leads to P(u,v,) = 0, thus we have
By (u,vp) = E(u,vp) + J(u,vp) + pP(u,v,) = B(u, vp). Therefore, the nIP method is consistent, as well as the
conventional IP method, and it also holds for the nNIPG method.

So far, we have obtained the boundedness, stability, approximation properties and consistency of the DG
methods (2.17), we now proceed to derive the error estimates. For the consistent DG method nIP and nNIPG,
we have

Cilllur — unl|l* < By (ur — un, ur — up)
= By (ur — u,ur — up) + By (u — up,ur — up) (3.12)

< 2|[Jur = ulll{[lur — unll]-



PENALTY DISONTINUOUS GALERKIN METHODS FOR NONLOCAL DIFFUSION PROBLEMS 2043

With (3.11), (3.12) and triangle inequality, we then obtain
w = wunll] < [l = urll] + [[lur — unl]]

< (14 &) lhu = urll < C8* ful s (3.13)
Cs

For the nBZ method, we also have a similar result as (3.13). Since the nBZ method is not consistent, we need to

make an extra effort to control the inconsistent term. In fact, the nBZ method relies on a rather heavy penalty

and it may require some preconditioning since the condition number of the stiff matrix would be large due to

this penalty. For more details, one can refer to [35]. We now summarize the above results as follows.

Theorem 3.1. Consider the DG methods (2.17) for solving the ND problem (2.1), with the finite element space
Vi, defined in (2.9) and the degrees of the piecewise polynomials k > 1. With suitable penalties on the jumps of
element interfaces, such as in (2.15), (2.16) and (2.14), there exists a unique numerical solution up € Vi, to

(2.17). Assume the exact solution of (2.1) v € H*+! (Q), then we have the following error estimate:
1w = unll] < Ch* [full g -

Remark 3.1. From (3.13), we can see the L? error ||u—uyl|z2 is controlled by the interpolation error |||u—u|||
for the nIP and nNIPG methods. For integrable kernels with a fixed horizon 4, the discrete energy norm ||| - |||
is equivalent to the L? norm (see e.g. [43]). Thus, in this situation, we have the error estimate:

e = unlll < COR [lull grrss.

3.4. Asymptotic compatibility

In the continuous level, when the horizon 6 — 0, fs — fo in the dual space of the energy space S, and the
solution u of the ND problem (2.1) converges to the solution w;,. of the corresponding local problem (2.5) (see
e.g. [27]), i.e.

lu — wioel| 2 — 0, asd — 0. (3.14)

It is desirable to preserve such a limiting behavior in the numerical approximations, termed as asymptotic
compatibility [53], such that w, — uj. when 0,h — 0 simultaneously. In [52], Tian and Du studied several
existing numerical schemes and showed some of the numerical discretizations might not preserve such a limiting
behavior. Later in [53], Tian and Du established an abstract mathematical framework for the numerical studies
of a class of parametrized problems. We show that the DG method (2.17) is also asymptotically compatible
under some appropriate conditions, stated in the following theorem.

Theorem 3.2. Consider the DG methods (2.17) for solving the ND problem (2.1), with the finite element space

ViF defined in (2.9), k > 1. Assume the exact solution u € Hl"‘ﬁ(ﬁ), 0<pB<1, and ||u||H1+B 6) is uniformly

bounded with respect to the parameter §. Then the DG methods (2.17) are asymptotically compatible, i.e.
llun — wioell 2 — 0, as d,h — 0. (3.15)

Remark 3.2. The assumption of the solution u € Ht5 (ﬁ), 0 < 8 < 1is valid for the ND problem (2.1) with
a truncated fractional kernel. The H'*# regularity of solution of such problem with any fixed § was shown in
Theorem 3.4 from [6]. However, it is quite difficult to obtain a -independent bound for the H'*# norm of u for
general kernel and data f5, thus the uniform estimate in § of H'# regularity still remains an open question to
be explored.

To prove the Theorem 3.2, we first introduce a result in Chapter 14 from [5] as follows, which plays a key
role in obtaining the asymptotic compatibility in the fractional space.
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Lemma 3.2. Suppose T is a linear operator that maps HP(Q) to L*(Q2) and HI(Q) to L*(Q), where p,q are
some positive integers. then T maps HO=0P+04(Q) to L*(Q), V0 < 6 < 1. Moreover,

1-6 0
||T||H(179)1>+9qﬂ[,2 < HTHHP—)LL) HTHHqHL?'

In the proof of Theorem 3.2, we would like to consider the interpolation between L(Hg(Q2) N H%(Q), L3())
and L(HE(Q), L*(9)), and this is the case when p =1,¢ = 2 in Lemma 3.2.

Proof of Theorem 3.2. From the discrete Poincaré’s inequality (3.3) and (3.12), we have
lur — unll > < Cllfur — unl|| < Cllur —ull].
Therefore, by the triangle inequality and (3.3), we can obtain
lu —unll g2 < llu—wurll 2 + [lur —unll 2 < Clllur = wll],

where u; € Vj, is the continuous interpolant of the exact solution u. For u € H? (fNZ), from (3.13) we have

lu = unll 2 < Chljull g -
Now we claim that

[ = unllpz < C flull g - (3.16)
If (3.16) holds true, then we can denote a linear operator Tw := u — uj, and obtain

1T~z <C Tl g2p2 < Che

With p =1,¢ = 2 in the Lemma 3.2, we conclude

T\ a6 e < CR?, YO< B <1

which indicates ||u — up||z2 < ChP||u||g1+s, where C is independent of § and h. Therefore, ||u — up||z2 — 0 as
h — 0. since ||ujoe — u)|r2 — 0 as § — 0, then

[tioe = unllp2 < llutoe = ull 2 + lu —unll - — 0, as é,h — 0.

This indicates the DG methods (2.17) are asymptotically compatible for the exact solution v € HtA (fl),
0<pB<l.
It remains to prove (3.16). For the consistent DG method nIP and nNIPG, for any vy, € V3, we have

Cslllvn — unll|® < B (v — un, vn — up)
= By (Uh — U, Vp — uh) + By, (u — Up, Vp — uh) (3.17)
< 2{|jon — ull|[[[vn — unll],

which implies

2
llon = unlll < &-lllvw = ulll, Vo € Vi
S
Together with the Proposition 3.1, we have

[on = unllg2 < Clllon — unll]| < Clfon = ulll
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By triangle inequality and above inequality, we obtain

lw = unll g2 < llu=wnllp2 + llon — unll 2

(3.18)
< llu —vall 2 + Cllvn — ulll.

Since (3.18) holds true for any vy, € V},, then we take v, = 0 and obtain
lu—unllp2 < llullpz + Clllulll = lull 2 + C lulls < C flullg

which proves the claim (3.16). The estimate ||ul|s < C|lu||g: used in the last inequality can be found in, e.g.,
[4]. O

3.5. Application to convection—diffusion problems

In this subsection, we consider the time-dependent convection—diffusion problem with nonlocal diffusion as
follows:

{ut +f(u),+o0Llsu=Ffs, x€Q t>0, (3.19)

U(IE,O) = UO(I)v z € (),

with periodic or compactly supported boundary conditions. f(u) is the flux function and f, = fs(x,t) is the
source function. In the numerical approximation of convection-dominated problems, one of the computational
challenges is the sharp transitions of the numerical solution. In particular, when ¢ = 0 the solution of (3.19)
may evolve into shock discontinuities even with the smooth initial condition. There are many studies on the DG
discretization of f(u)., see e.g. [51] and the references therein. Now assume we have the partition of the domain
the same as in (2.6), we then construct the semi-discrete DG methods for (3.19): seek up(-,t) € V4, such that

/ (uh)t vp do + Aj (uh,vh) + UBh’j (u;“vh) = / fs'Uh de, Yy € Vh, (320)
) I;

I

where A;(un,vp) is defined as

1
2 J—3

A (upyvn) = fips (n)j41 — fioy(on) 1 — : f(un) (vn), dz

with fj+% is the monotone flux and Zj By, j(up,vn) = Bp(up,v,) with By, (up,vy,) defined in (2.12). Take
vp, = up, in (3.20) and sum it over j, we have

d

oqp Iun (o5 + Y~ Ay (unyun) + 0B (un, un) = (foyun) -
J

Denote F(u) = [“ f(s) ds, we then have

> Ay () = 3 (Faa )y = Fims o))y = (PG, y) = Fl(an)])))

=3 (Frelmn)yyy = Fea)fy = (Fln)sy) = P, )
_ Z /(()) (£ = F ()7 )t ) -

By the above semi-discrete analysis, we can obtain the L?-boundedness of the numerical solution, stated in the
following theorem.
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Theorem 3.3. For the DG methods (3.20), the numerical solution satisfies

i lun (-, )17 + 293' + 0 Bp (un, un) = (fs,un), (3.21)
J

where ©; is given as

@j[wmﬁ;(ﬂmf(wm;;xwglo)duza

- 2
u
iy

Thanks to the monotone flux, we are able to obtain ©; > 0. We refer the readers to e.g. [51] for more details.
From the previous analysis, we have By, (up,up) > Csl||upnl||? > Cllun||?>. Therefore, when fs = 0, we can see
that the numerical solution decays exponentially as time evolves.

Remark 3.3. For the time-dependent convection—diffusion problems, we recommend treating the diffusion
term implicitly to have a relaxed CFL condition. Particularly, when both convection and diffusion co-exist, we
could use the implicit-explicit (IMEX) Runge-Kutta method, such that the convection term could be treated
explicitly and the diffusion term could be treated implicitly.

4. NUMERICAL EXPERIMENTS

In this section, we show some numerical results to validate the theoretical results presented in the previous
section. For simplicity, we take the uniform mesh, i.e. h; = h. We consider the kernel function as

vs(s) = 3{59’7—3‘ Is|”* on (=4,9).

Then s2y5s(s) is integrable for a < 3. In the numerical tests, we take o = 1/2, 5/2 such that v; could have
different kinds of singularities. We use the five-point Gauss—Legendre quadrature when computing the integrals
for s > h. And for those integrals that s close to 0, we use the exact integration because they are the improper
integrals involving singularities. For both nIP and nNIPG methods, we take the penalty parameter y as u = 5/h
unless otherwise specified. We choose different values of ¢ in the numerical tests to show the good performance
of the proposed numerical methods. For the time-dependent problems, we adopt the nIP method for nonlocal
diffusion term, and the time discretization method is the 4th order implicit-explicit Runge-Kutta method with
6 stages [7]. Since we treat the convective term explicitly and the diffusive term implicitly, we take the CFL
condition as 7 = O(h) where 7 is the time step. Specifically, the CFL number is taken as % for the numerical
simulation of the time-dependent convection—diffusion equation.

Example 1. For the steady-state problem (2.1), we take the source term as

)
ﬁ@%?ﬂ/;w®@@+ﬂfﬂ@%m r e (0,7),

where g(z) is defined by

~ [sin®(z), =€ (0,7),
g(w) = { 0, elsewhere.

Thus the exact solution is u(x) = g(z). The computational domain is Q = (0, 7).
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TABLE 1. L? errors and convergence orders produced by the nIP scheme (2.17) and (2.15) when

k =1 in Example 1.

a N §=10"° §=m/6 6 =2.5h §=vh
L? error Order L? error Order L? error Order L? error Order
24  3.996E—-03 - 1.697E—-03 - 1.706E—-03 — 1.703E—-03 -
36 1.803E—03 1.963 7.483E—04 2.019 7.516E—04 2.022 7.502E—-04 2.021
48 1.019E—-03 1.982 4.199E—-04  2.008 4.214E—-04 2.011 4.204E—-04 2.013
% 60 6.540E—04 1.989 2.685E—04 2.004 2.693E—04 2.007 2.688E—04 2.004
72  4.548E—04 1.993 1.864E—04 2.002 1.868E—04  2.005 1.865E—04  2.005
84 3.344E—-04 1.995 1.369E—04  2.002 1.372E—04 2.003 1.370E—04 2.003
96 2.562E—-04 1.996 1.048E—04 2.001 1.0560E—04 2.002 1.049E—-04 2.001
24  3.996E—03 - 1.998E—03 — 2.129E—-03 — 2.096E—03 -
36 1.803E—03 1.963 8.435E—04 2.126 9.417E—-04 2.012 &8.980E—04 2.090
48 1.019E—-03 1.982 4.613E—04  2.098 5.288E—04 2.006 4.939E—-04 2.078
% 60 6.540E—04 1.989 2.900E—04 2.080 3.381E—04 2.004 3.112E—-04 2.071
72  4.548E—04 1.993 1.990E—04 2.067 2.347TE—04 2.002 2.136E—04 2.064
84 3.344E—-04 1.995 1.449E—-04 2.058 1.724E—04  2.002 1.554E—-04  2.060
96 2.562E—-04 1.996 1.102E—-04 2.051 1.320E—04 2.001 1.181E—04 2.056

TABLE 2. L? errors and convergence orders produced by the nIP scheme (2.17) and (2.15) when

k =2 in Example 1.

a N §=10"° §=m/6 § = 2.5h §=+vh
L? error Order L? error Order L? error Order L? error Order
24  1.79TE-04 - 1.012E—-04 — 1.049E—-04 — 1.041E-04 -
36 5.358E—05 2984 2.936E—05 3.052 3.166E—05 2.954 3.090E—05 2.996
48  2.266E—05 2.992 1.211E-05 3.079 1.345E—-05 2.977 1.294E—-05 3.025
% 60 1.161E-05 2.995 6.078E—06 3.089 6.906E—06 2.986 6.586E—06 3.026
72  6.724E—-06 2.997 3.458E—-06  3.094 4.003E—-06  2.991 3.773E—06  3.056
84 4.236E—06 2.998 2.146E—06 3.096 2.524E—06 2.993 2.370E—06 3.016
96 2.838E—06 2.998 1.419E—-06 3.096 1.692E—06 2.995 1.575E—06 3.061
24 9.746E—-05 - 7.991E-05 — 7.997TE—-05 — 7.995E—04 —
36 2.855E—05 3.028 2.366E—05 3.002 2.368E—05 3.002 2.367TE—05 3.002
48 1.200E—05 3.014 9.978E—05 3.001 9.985E—-05 3.001 9.980E—05 3.001
% 60 6.131E-05 3.008 5.108E—06 3.001 5.112E—06 3.001 5.109E—-06 3.001
72  3.545E—06 3.006 2.956E—06 3.000 2.958E—06 3.000 2.956E—06 3.001
84 2.231E-06 3.004 1.861E—06 3.000 1.863E—06 3.000 1.862E—06 3.000
96 1.494E—-06 3.003 1.247E—06 3.000 1.248E—06  3.000 1.247E—06  3.000

2047

From the results reported in Tables 1, 2 and 3, we can see the optimal order of convergence for nIP scheme
(2.17) and (2.15) with various o and ¢ as the mesh is refined. We also observe the designed order of convergence
for nNIPG scheme (2.17) and (2.16) for the results reported in Tables 4, 5 and 6. Note that the order is not
optimal for an even degree in the classic NIPG method, which coincides with the case § = 1076 in Table 5.
However, for v5(s) is locally integrable (a = 1/2) with fixed horizon § = 7/6, the energy norm is equivalent
to the L? norm. Then, from Remark 3.1, we have the optimal convergence order of 3 in the energy norm. The

optimal rate of convergence can also be found in the case v;5(s) is locally integrable with horizon § = Vh.
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TABLE 3. L? errors and convergence orders produced by the nIP scheme (2.17) and (2.15) when
k = 3 in Example 1.

a N §=10"° §=m/6 | § = 2.5h | s=vh
L? error Order L? error Order L? error Order L? error Order

24 1.189E-05 -~ 2.668E-06 — 2.672E-06 - 2.672E-06 —

36 1.357TE—06 5.353 5.198E—-07 4.034 5.206E—-07 4.034 5.204E—07 4.035
48 3.576E-07 4.635 1.637TE-07 4.016 1.639E-07 4.017 1.638E—-07 4.017
60 1.339E-07 4.403 6.692E—-08 4.009 6.699E—-08 4.010 6.696E—-08 4.010
72 6.112E-08 4.300 3.224E—08 4.006 3.226E—08 4.007  3.225E—08 4.007
84 3.194E-08 4.209 1.739E-08 4.004 1.740E—-08 4.005 1.740E—08 4.004
96 1.834E—-08 4.157 1.019E-08 4.003 1.020E-08 4.004 1.019E-08 4.004
24 1.189E-05 — 3.182E-06 — 3.185E—-06 — 3.184E-06 —

36 1.357E—-06 5.353 6.338E—-07 3.980 6.345E-07 3.979 6.342E-07 3.980
48 3.576E-07 4.635 2.011E-07 3.990 2.014E-07 3.990 2.012E-07 3.991
60 1.339E-07 4.403 8.246E—-08 3.994 8.259E—-08 3.994 8.251E-08 3.994
72 6.112E—-08 4.300 3.979E—-08 3.996 3.986E—-08 3.995 3.982E—-08 3.996
84 3.194E-08 4.209 2.149E-08 3.997 2.154E-08 3.995 2.150E-08 3.996
96 1.834E—-08 4.157 1.260E—-08 3.997 1.264E—-08 3.990 1.261E—-08 3.995

(SIS

ot

TABLE 4. L? errors and convergence orders produced by the nNIPG scheme (2.17) and (2.16)
when k£ = 1 in Example 1.

a N §=10"° §=m/6 5 =2.5h §=+h
L? error Order L? error Order L? error Order L? error Order
24  2.107TE-03 - 1.704E—-03 - 1.711E-03 - 1.709E—-03 -

36 9.325E—04 2.011 7498E-04 2.025 7.519E-04 2.028 7.513E—04 2.026
48  5.237E-04 2.005 4.204dE-04 2.011 4.213E-04 2.014 4.208E-04 2.015
60 3.349E—04 2.003 2.687E—04 2.006 2.691E—-04 2.008 2.690E—04 2.006
72 2.325E-04 2.002 1.865E—04 2.004 1.867TE—-04 2.006 1.866E—04 2.006
84 1.708E—04 2.002 1.369E—-04 2.003 1.371E-04 2.004 1.370E—04 2.003
96 1.307E—-04 2.001 1.048E—-04 2.002 1.049E-04 2.003 1.049E-04 2.002
24  2.107TE-03 - 1.710E-03 - 1.716E—-03 — 1.714E-03 —

36 9.325E-04 2.011 7.527E-04 2.024 7.567E-04 2.020 7.548E-04 2.023
48 5.237E-04 2.005 4.218E-04 2.013 4.244E-04 2.010 4.230E-04 2.013
60 3.349E-04 2.003 2.695E—-04 2.008 2.713E-04 2.005 2.702E-04 2.008
72 2.325E-04 2.002 1.869E—04 2.006 1.883E—04 2.004 1.874E—04 2.007
84 1.708E—-04 2.002 1.372E-04 2.005 1.382E-04 2.003 1.376E—-04 2.005
96 1.307E-04 2.001 1.050E-04 2.004 1.058E—-04 2.002 1.0563E—-04 2.004

SIS

ot

Example 2. Consider a non-smooth case for (2.1). We take the locally integrable kernel ~5 that 6 = 1/8,
a =1/2. g(z) is taken as

0, elsewhere.

g(x){l, v€(1,1),

With the definition of fs similar in the Example 1, we have the solution u(z) = g(x). The computational domain
is Q= (0,1).
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TABLE 5. L? errors and convergence orders produced by the nNIPG scheme (2.17) and (2.16)

when k£ = 2 in Example 1.

a N §=10"° §=m/6 6 =2.5h §=vh
L? error Order L? error Order L? error Order L? error Order
24  5.449E-04 - 1.085E—-04 — 1.136E—-04 — 1.123E-04 -
36 2.398E—04 2.024 3.168E—05 3.036 3.541E—05 2.876 3.348E—05 2.984
48 1.345E—-04 2.012 1.312E—05 3.065 1.565E—-05 2.839 1.409E—05 3.008
% 60 8.591E-05 2.007 6.600E—06 3.077 8417E—-06 2.779 7.179E—-06 3.023
72  5.961E—05 2.005 3.761E—-06  3.084 5.134E—-06 2.711 4.127E—-06  3.036
84 4.37T7TE—05 2.003 2.337TE—06 3.088 3.416E—06 2.642 2.592E—06 3.018
96 3.350E—05 2.003 1.546E—06 3.091 2.422E-06 2.577 1.726E—06 3.047
24 4.259E—-04 — 3.580E—04 — 4.300E—04 — 4.128E—04 —
36 1.870E—04 2.030 1.311E—-04 2.478 1.899E—04 2.018 1.655E—04 2.254
48 1.047E-04 2.015 6.397TE—05  2.494 1.065E—04 2.009 8.640E—05 2.259
% 60 6.688E—05 2.009 3.662E—05 2.500 6.810E—05 2.006 5.218E—05 2.260
72  4.639E—05 2.006 2.321E-05 2.502 4.726E—05  2.004 3.456E—05  2.259
84 3.406E—05 2.004 1.578E—05 2.503 3.470E—05 2.003 2.440E—05 2.259
96 2.607TE—-05 2.003 1.130E—-05 2.503 2.656E—05 2.002 1.805E—05 2.258

TABLE 6. L? errors and convergence orders produced by the nNIPG scheme (2.17) and (2.16)

when k = 3 in Example 1.

a N §=10"° §=m/6 6 =2.5h §=vh
L? error Order L? error Order L? error Order L? error Order
24  9.843E-06 - 2.678E—06 — 2.683E—-06 — 2.682E—-06 —
36 1.915E—06 4.037 5.208E—07 4.038 5.217E—07 4.039 5.213E—07 4.039
48  6.027E—-07 4.019 1.639E—07 4.019 1.641E—-07 4.020 1.640E—07 4.020
% 60 2.462E—07 4.011 6.697E—08 4.011 6.706E—08 4.012 6.701E—08 4.011
72  1.186E—07 4.008 3.225E—08 4.007 3.229E—-08 4.008 3.227E—08 4.008
84 6.396E—08 4.005 1.740E—08 4.005 1.741E—08 4.006 1.740E—08 4.005
96 3.747TE—08 4.004 1.019E—-08 4.004 1.020E—08 4.004 1.020E—08 4.004
24  9.843E—-06 — 4.049E—-06 — 4.311E-06 — 4.242E—-06 —
36 1.915E—06 4.037 7.450E—-07 4.175 8.337E—07 4.052 7.933E—07 4.135
48  6.027E—-07 4.019 2.271E-07 4.129 2.617TE—-07 4.028 2.435E—07 4.106
g 60 2463E—07 4.011 9.091E—-08 4.103 1.067TE—08 4.019 9.771E—08 4.092
72  1.186E—07 4.008 4.315E—08  4.087 5.130E—08 4.018 4.640E—-08 4.084
84 6.396E—08 4.005 2.302E—08 4.076 2.760E—08 4.022  2.474E—08 4.080
96 3.747TE—08 4.004 1.337TE—-08 4.068 1.612E—08 4.029 1.435E—08 4.079

2049

Figure 1 plots of the numerical solution produced by the nIP scheme (2.17) and (2.15), from which we can
see there are no obvious oscillations in the numerical solutions, indicating the proposed algorithm can handle
the singularities and discontinuities well.

Example 3. In this example, we consider the time-dependent convection—diffusion problems (3.19) with f(u) =
u and the periodic boundary condition. The coefficient o is taken to be 1/2. With a suitable choice of source
function f,, we have the exact solution as u(z,t) = e~*sin®(x). The computational domain = (0,7) and the
final time is T' = 2.2.



2050

08

0.6

04f

0.2

exac
° N=60

Q. DU ET AL.

exac
° N=60

08

0.6

04f

0.2

exac
° N=60

FIGURE 1. Plots of the numerical solution in Example 2 produced by the nIP scheme (2.17) and
(2.15), 6 = 1/8,a0 = 1/2, N = 60. Solid line: exact solution. Red circles: numerical solutions.

() k=1 (b) k=2 (c) k=3

TABLE 7. L? errors and convergence orders produced by the scheme (3.20) and (2.15) when
k =1 in Example 3, o0 = 1/2.

a N §=10"° §=m/6 § =2.5h §=+h
L? error Order L? error Order L? error Order L? error Order
24  4.361E—-04 - 2.196E-04 - 1.971E-04 - 2.000E—04 -
36 1.963E—04 1.969 1.049E—04 1.823 8.513E—-05 2.071 8.854E—05 2.009
48 1.109E—-04 1.984 6.214E—-05 1.819 4.732E-05 2.041 4.979E—-05 2.001
% 60 7.114E-05 1.990 4.126E—05 1.835 3.010E—05 2.027 3.194E—05 1.989
72 4.946E—05 1.994 2.942E-05 1.855 2.083E—05 2.019 2.221E-05 1.993
84 3.636E—05 1.995 2.205E—05 1.872 1.527E—05 2.013 1.636E—05 1.985
96 2.785E—-05 1.997 1.714E-05 1.886 1.168E—05 2.010 1.254E—-05 1.988
24 4.361E—-04 - 2.207TE-04 - 2.347TE—-04 - 2.311E-04 -
36 1.963E—04 1.969 9.316E—05 2.127 1.036E—04 2.016 9.897E—05 2.092
48 1.109E—04 1.984 5.096E—05 2.097 5.815bE—05 2.008 5.443E—05 2.078
g 60 7.114E-05 1.990 3.205E—05 2.078 3.717TE—05 2.005 3.430E—05 2.070
72 4.946E—05 1.994 2.199E—-05 2.067 2.580E—05 2.004 2.354E—-05 2.064
84 3.636E—05 1.995 1.602E—05 2.056 1.895E—05 2.002 1.714E—05 2.059
96 2.785E—05 1.997 1.218E—-05 2.049 1.450E—05 2.002 1.303E—05 2.055

From the results reported in Tables 7, 8 and 9, we show the error and order of convergence of ||u — up]|

produced by the scheme (3.20) and (2.15). For k = 3, we take the penalty parameter p = 7/h.

Example 4. We consider the convection—diffusion problem in Example 3 with piecewise constant initial values

uo(7) = {"”’

We consider two kinds of initial conditions:

(i) wy =0, u, = 1.
(ii) w =1, u, = 0.

U,

r <0,
x> 0.

To see the nonlocal diffusion effect, we take four different values of 0. We take locally integrable kernel with
a=1/2,§ =1/8. The computational domain is @ = (—9,9), and the final time is T' = 2.
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TABLE 8. L? errors and convergence orders produced by the scheme (3.20) and (2.15) when

k =2 in Example 3, o = 1/2.

a N §=10"° §=m/6 § = 2.5h §=+vh
L? error Order L? error Order L? error Order L? error Order
24  1.973E-05 - 1.386E—05 — 1.380E—-05 - 1.393E—-05 -
36 5.900E—06 2.977 3.985E—-06 3.074 3.971E—06 3.072 4.160E—06 2.981
48 2.498E—-06 2.987 1.635E—06 3.096 1.627TE—-06  3.101 1.731E-06  3.048
% 60 1.282E—06 2.991 8.219E—-07 3.083 8.166E—07 3.090 8&.818E—07 3.022
72 T7.427TE—07 2993 4.698E—-07 3.068 4.663E—07 3.073 5.021E—-07 3.089
84 4.681E—-07 2.995 2.933E—-07 3.055 2.910E—07 3.060 3.157TE—07 3.011
96 3.138E—07 2.996 1.953E—07 3.046 1.936E—-07 3.049 2.091E—07 3.084
24  1.090E-05 — 9.0656E—06 — 9.029E—06 — 9.035E—06 —
36 3.184E-06 3.034 2.675E—06 3.010 2.659E—-06 3.016 2.663E—06 3.013
48 1.336E—06 3.019 1.125E—-06  3.009 1.118E—06  3.012 1.120E—06  3.011
g 60 6.821E—06 3.013 5.752E—07 3.008 5.711E—07 3.009 5.723E—07 3.009
72 3.941E-07 3.009 3.324E—-07 3.008 3.300E—07 3.008 3.30TE—07 3.008
84 2.479E-07 3.007 2.091E—07 3.007 2.076E—07 3.007 2.080E—07 3.007
96 1.659E—-07 3.006 1.400E—07 3.007 1.390E—07 3.006 1.392E—-07  3.006

TABLE 9. L? errors and convergence orders produced by the scheme (3.20) and (2.15) when

k = 3 in Example 3, o = 1/2.

a N §=10"° §=m/6 § = 2.5h §=+vh
L? error Order L? error Order L? error Order L? error Order
24 5.539E—-07 - 3.290E-07 - 3.0561E-07 - 3.083E—07 —
36 1.060E—07 4.078 6.818E—08 3.882 5.843E—08 4.076 5.986E—08 4.042
48  3.256E—08 4.103  2.258E—08 3.842 1.829E—-08 4.037 1.887E—08 4.014
% 60 1.307TE—08 4.091 9.575E—09 3.844 7.455E—09 4.022 7.724E—09 4.002
72  6.216E—09 4.075 4.740E—09 3.857 3.586E—09 4.015 3.726E—09  3.999
84 3.324E—-09 4.061 2.610E—09 3.872 1.932E—-09 4.010 2.014E—09 3.992
96 1.936E—09 4.050 1.553E—09 3.886 1.132E—09 4.008 1.181E—09 3.994
24 5.539E—-07 - 3.557TE—-07 - 3.558E—-07 - 3.557TE-07 -
36 1.060E—07 4.078 7.051E—08 3.991 7.055E—08 3.990 7.052E—08 3.991
48  3.256E—08 4.103 2.233E—08 3.996 2.235E—08 3.995 2.234E—-08 3.996
g 60 1.307TE—08 4.091 9.152E—09 3.998 9.162E—09 3.997 9.154E—09 3.998
72 6.216E—09 4.075 4.415E—09 3.999 4.420E—09 3.998 4.416E—-09 3.999
84 3.324E-09 4.061 2.383E—09 3.999 2.387TE—09 3.997 2.384E—09 3.998
96 1.936E—09 4.050 1.397E—-09  3.999 1.400E—09 3.995 1.398E—09  3.998

2051

From Table 10, we can see the errors and orders of convergence for the Riemann problems in Example 4.
The reference solution is computed with the refined mesh h = 1/50 and the L? errors are computed by the
absolute errors ||up — Uret||z2([—2,6)). The orders are around 3 and even higher when h becomes smaller. This
phenomenon may be because the spatial error is small compared to the temporal error as the mesh is refined.
Figure 2 plots the numerical solution produced by the scheme (3.20) and (2.15), from which we can see the
numerical solutions become smooth with the nonlocal diffusion term, compared to the one without the nonlocal
diffusion. We can also see that the transition width becomes larger as we increase the coefficient of the nonlocal
diffusion term. This indicates that nonlocal diffusion can be another option when adding artificial diffusion to
numerical schemes, especially for physical problems containing long-range interactions.
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TABLE 10. L? errors and convergence orders produced by the scheme (3.20) and (2.15) when
k =2 in Example 4, § = 1/8, 0 = 1/5. The L? errors are computed on [—2, 6].

h 1/2 1/3 1/4 1/5 1/6 1/7 1/8
LC. (i) L%error 2223E—04 6.897E—05 2.913E—05 1.456E—05 8.084E—06 4.815E—06 2.997E—06
Order - 2.886 2.996 3.107 3.228 3.362 3.549
LC. (i) L?error 2223E—04 6.897E—05 2.913E—05 1.456E—05 8.084E—06 4.815E—06 2.997E—06
Order  — 2.886 2.996 3.107 3.228 3.362 3.549
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FIGURE 2. Plots of the numerical solution in Example 4 produced by the scheme (3.20) and
(2.15),6 =1/8,a =1/2, k =2, h = 1/6. Solid line: exact solution with o = 0. Green dash line:
o = 1/48. Blue dash-dot line: o0 = 1/24. Red long dash line: o0 = 1/12. Light blue dash dot dot
line: 0 =1/6. (a) I.C. (i). (b) I.C. (ii)

TABLE 11. L? errors and convergence orders produced by the scheme (3.20) and (2.15) when
k =2 in Example 5, § = 7/6, 0 = 7/15.

N 48 60 72 84 96 108 120
L? error  3.965E—05 2.903E—05 2.238E—05 1.731E—05 1.334E—05 1.040E—05 8.351E—05
Order - 1.397 1.426 1.667 1.951 2.113 2.083

Example 5. Consider the viscous Burgers’ equation with f(u) = u?/2 in (3.19). We take the locally integrable
kernel with o = 1/2, 6 = 7/6. The computational domain is Q = (0,27) and the final time is 7' = 1.6. Note
that at time T' = 1.6, the exact solution of the inviscid Burgers’ equation (¢ = 0) contains a shock discontinuity
inside the domain.

In Example 5, we investigate the nonlocal diffusion term for a convection—diffusion equation with the nonlinear
convective term. From Table 11, we can see the errors and orders of convergence for the Example 5. The reference
solution is computed with the refined mesh h = 7/250 and the L? errors are computed by the absolute errors
l|n —tret|| L2 (j0,24])- The convergence rate is around 2 and is not optimal, which could be associated with the lack
of regularity of the exact solution. We still observe the same phenomenon as in Example 4 from the numerical
solutions plotted in Figure 3, which again demonstrates the effect of the nonlocal diffusion.



PENALTY DISONTINUOUS GALERKIN METHODS FOR NONLOCAL DIFFUSION PROBLEMS 2053

——— exac solu with =0
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FIGURE 3. Plot of the numerical solution in Example 5 produced by the scheme (3.20) and
(2.15), 6 =7/6,a = 1/2, k = 2, N = 60. Solid line: exact solution with o = 0. Green dash line:
o = 7/120. Blue dash dot line: ¢ = 7/60. Red long dash line: ¢ = 7/30. Light blue dash dot
dot line: o0 = 7/15.

5. CONCLUSION

In this paper, we propose a class of penalty discontinuous Galerkin (DG) methods for nonlocal diffusion
(ND) problems. The ND problem is an integral equation with a possibly singular kernel, which can describe
physical systems with long-range interactions and allow solutions with low regularity. Therefore, it is natural to
adopt the DG method to compute the ND problem when the solution contains singularities and discontinuities.
The proposed DG methods in this paper have corresponding local counterparts, indicating that these methods
work at least for the vanished horizon. We also present theoretical results on boundedness, stability, a priori
error estimates, and asymptotic compatibility. To illustrate the nonlocal diffusion effect, we consider the time-
dependent convection—diffusion equation with nonlocal diffusion and conduct a semi-discrete analysis. Numerical
tests demonstrate that our methods are high-order, stable, and asymptotically compatible. Currently, the DG
methods are developed for one-dimensional ND problems, and extending these methods to multidimensional
problems is part of our future work.

APPENDIX A. THE TECHNICAL PROOF OF LEMMA 3.1

Proof. First let us consider two cases: 0 < s < ep and ep < 5 < h, where ¢ € (0,1) will be determined later. In
fact, with the definition of | - |5, in (3.1), we have

|Uh|.2],h =Ji+ Js, (A.1)

where J; and Js are defined as

Jl—QZh/ vs5(s é/l (Ej’v;b—[[vh]]j+%)2 dx ds,

3,2

J2—2Zh / ~s(s i/s (E:vh—[[vh}]jJr%)z dx ds.
7.2
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We now consider Ji, i.e. the case 0 < s < ep, and we have

ep 1 2
J1 §4Zhj/0 ’}/5(8);/8 (vh(x+s) —vh(x;%)) dz ds
J 3.2

ep 1 B 2
+ 42 h; /0 v5($) 5 /I (vh(x) - vh(:rj+%)) dzds.
j 32

In fact, we have

/5 (”h(x+s)—”h(xj+%)>2dx§/s /:+s Oyon(y)dy | da

3.2 3.2 it3
2

T+s
<[ ] 1) @i

1, >
=38 HﬁyvhﬂLoo(I;“g) :

Similarly, we also have
(onle) — vn(as, ) do < 3 5® 9y0n
I, h hi5+4 =3 yORIlLeo (15 ,) -
Plug (A.3) and (A.4) into (A.2), with inverse estimates we then obtain

4 [ 2 2
LSgA a(s)ds 3y (10,002 e+ 10y0nlEes )
J

ep
< C/ s2y5(s) ds E HayvthLQ(Ij).
0 -
J

Next we consider the | - |z, defined in (3.1). Similar to (A.1), we divide the |vp|3 ;, into three parts:

|"Uh|2E’h = Fy + Ey + Es,

where By = Fy 1 + Ei 2, Eo = FEy 1 + Es 2, and Fs3 are given as

ep ep
El,l = 22/ '75(5)/ guh(x,s)Q dx ds, E1,2 = Z/ 75(3)/ gvh(x78)2 dz ds,
7o 1, 7o 1

2

Eyq = QZ/EZL%(S)/I

i
5
Es ZQZ/E 'y(;(s)/l Goy, (,8)? dz ds.
J 5

We claim that for e sufficiently small but independent of i and J, we have

ep
anc/ Py5(s)ds S 10,0nl 21 -
0 .
J

1,2)

h
Gu,, (7, 5)* dz ds, E2,2:2Z/ 75(5)/ Gu,, (z,5)% dzx ds,
j Jep I,

(A.2)

(A.3)

(A7)
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If (A.7) holds, then J; can be bounded by E4 1. Now we prove that (A.7) is true when ¢ is appropriately chosen.
From the definition of g,, (z,s) in (2.13), we know that g,, (z,s) = Efvx(x) on I, x (0,ep). By Taylor
expansion, we obtain

+ ~ Qo)
Efvp(x) =vp(x+s) —op(x) = Z I
1=1
Thus, with Cauchy—Schwarz inequality, we have
" oLy (x) ’
/ Goy, (2,8)* do = / <Z zh sl> dz
s s I
s 151 \i=1
ko
= / (8I’Uh(l‘)s)2 dr + 2/ (Opvn(x)s) (Z 63311;;(33) sl> dx
Is I — :
g1 ) | , J,1 =2 (AS)
51 \i=2 i
1 "ol (x) ’
> 752/ (axvh(z))Q dx—/ Z e M) de.
2 Ui Is I
g1 71 \1=2
Note that s € (0,ep), then with Cauchy—Schwarz inequality and inverse estimates we have
/ < =~ Do () l>
> d

s l!

i1 \i=2
A 2

— / (Z A op(x)(hy —s)' 7L (hy —s)~1H1 u) da

i1 \i=2 (A.9)

where C5 > 0 is independent of A and ¢. Since

i g 2l72—€71_811€71 0= (= 2
1—¢ Tl Y\ =¢e)

=2

we then take e statisfying ¢ < 1/(1 4 1/4C5 + 1) such that &1 < 1/(4C5 + 1), which implies

178116_1 < 0251

Cae
21 1l—e1 T 1—¢

1
< —.
— 4
Therefore, plugging (A.9) into (A.8) with small ¢ satisfying the above inequality, we obtain

/ Goy, (z,8) dz > 352/ (0, (x))? da. (A.10)
I;J 15,1
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If we take the Taylor expansion of Efvp(z) that

lv x S
Bon(e) = -y BT oy

1=1
we can still obtain a similar result in the following.

/I;1 Gon (z,5)% dz > i s / ((Bpvn) (x + 5))* da. (A.11)

3,1

Therefore, with (A.10) and (A.11) we can obtain

B=3 [ ) (2 / guh<x,s>2dx> ds

4,1

/0 5°75(s) Z </ij1 (Bpvn(z))? dz + /I;1 ((Dpvn)(z + 5))? dm) ds (A.12)

J

/Osp (5 2 /I (Orn(a))” drds,

>

e~ =

>

=

which is exactly the result we want, as we claim in (A.7). Now let us fix € = ¢¢ so that (A.7) holds, we then
consider the another case: egp < s < h. In fact, we have

h 1 9
Jy < QZhj/ vs5(s) —/I (E;'vh — [[vh]]ﬁ%) dzds
j gop ;72

€op
. (A.13)
<2VZh /hy(s)/ (E*v [vr] )2 deds = 2 F
< — j 5 s Uh = [Vnljy1 = —lLnpo,
€0 5 ! op I3, I+ €0
where v is defined in (2.7). Therefore, by (A.5), (A.6), (A.7) and (A.13), we obtain (3.9) and complete the
proof. O
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