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) ::= Int | Bool | ) → ) | List )
Γ ⊢ �) : )

8 ∈ Z

Γ ⊢ 8 : Int

1 ∈ B

Γ ⊢ 1 : Bool Γ ⊢ nil : List ) Γ ⊢ cons ℎ C : ) → List ) → List )

Γ, G : ) ⊢ G : )

Γ, G : )1 ⊢ 1 : )2
Γ ⊢ λG : )1 . 1 : )1 → )2

Γ ⊢ 5 : )1 → )2 Γ ⊢ 0 : )1
Γ ⊢ 5 0 : )2

Γ, G : )1 ⊢ 0 : )1
Γ, G : )1 ⊢ 1 : )2

Γ ⊢ let G : )1 = 0 in 1 : )2

Γ ⊢ 0 : List )1 Γ ⊢ 1 : )2
Γ, ℎ : )1, C : List )1 ⊢ 2 : )2

Γ ⊢ match 0 with nil ⇒ 1 ; cons ℎ C ⇒ 2 : )2

Fig. 6. A typed core language

3 Typed Editing

Zipper editing, like the traditional structure editing it extends, preserves the syntactic well-
formedness of programs. However, it does not necessarily preserve well-typedness. Let’s add
a few types to our core language of the previous section (integers, booleans, and lists) that will
enable us to encode the map example of the introduction, and define a standard simple type system
with recursive let, pattern matching on lists, and typed holes �) , as shown in Figure 6.

Recall the edits required to add a parameter to the map function (Figure 1). While the result
of performing all four of the edits yields a well-typed program, performing just the first edit of
inserting λf : Bool → Bool . 〈〉 leaves the program in an intermediary ill-typed state since type
annotation of map would still be List Bool → List Bool.

Any system that aims to operate on intrinsically typed terms needs to account for how such an
edit changes types in the program. To that end, we will introduce a grammar of type diffs, encoding
precisely how a type is transformed into a new type after an edit. We will use X to range over these

diffs and write )1
X
=⇒ )2 for a diff X which changes type )1 to )2. The grammar of diffs for our core

language is shown below; we will systematically generalize to other language features in Section 5:

X ::= Int | Bool | X → X | List X | +〈) → 〈X〉〉 | −〈) → 〈X〉〉 | ) / )

The first two of these constructors are identity diffs which don’t alter the type:

Int
Int
===⇒ Int Bool

Bool
=====⇒ Bool

The next two constructors represent diffs which preserve a top level constructor of a type, and
apply diffs to the child types:

)1
X1
==⇒ ) ′

1 )2
X2
==⇒ ) ′

2

)1 → )2
X1 → X2
=========⇒ ) ′

1 → ) ′
2

)
X
=⇒ ) ′

List )
List X
======⇒ List ) ′
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28:12 Jacob Prinz, Henry Blanche�e, and Leonidas Lampropoulos

At this point, the down boundary surrounds a _ abstraction so our algo-
rithm looks at the corresponding typing rule (on the right). To proceed,
Pantograph must unify the incoming diff with the type of the conclusion
of the rule, � → �. The result is that � is mapped to an identity diff Int, so
our system ignores it. On the other hand, � maps to the interesting part of
the type diff. The other appearance of � in the rule is in the type of G in
the context of the premise, which means we need to propagate a change
to a context.

Output
︷           ︸︸           ︷
Γ, G : � ⊢ C : �

Γ ⊢ _G .C : � → �︸               ︷︷               ︸
Unify input diff with � → �

In order to express such a change, we introduce a notion of context diffs, which describe how
a context changes, either by altering a variable by a given type diff, inserting a new variable, or
removing a variable. We will discuss these further in Section 5.2.

Δ ::= ∅ | Δ, G : X | +〈〈Δ〉, G : ) 〉 | −〈〈Δ〉, G : ) 〉

Using a context diff, our system can propagate the knowledge of how the type of G changes into
the body of the abstraction. So far we have elided context diffs on the diff boundaries to facilitate a
simpler introduction. However, the full form of diff boundaries that we need to use when there is a
nontrivial context diff is Δ ⊢ X , encoding a change to both the context and type. Propagating such a
diff results in the following term:

(_G : {G}
↓

∅,G :+〈Bool→〈Int〉〉⊢�=C
) (_~.10) (step 3)

The boundary now surrounds a variable and Pantograph looks up the corresponding rule:

Γ, G : ) ⊢ G : )

There are two occurrences of ) in the conclusion of the rule, one in the context and one in the
type. The existence of such nonlinearities, where the same variable appears twice in the same part
of a typing rule, will inform some of the details of our exposition later on. In this case, the algorithm
unifies the diff with the first occurrence of the ) in the context, creating a new boundary in the
opposite direction with a diff corresponding to the other occurrence of ) in the type:

(_G : {G}
↑
+〈Bool→〈Int〉〉

) (_~.10) (step 4)

Finally, the system has arrived at the locationwhere the edit must bemade. Until now, propagation
of the diffs though the syntax was determined by the structure of the typing rules. However, at this
final step, the choice of what the system does with the diff is a more subjective design decision—we
could chose to simply leave an error boundary. Pantograph automatically inserts arguments to
functions when necessary, according to the following rule:

{C}
↑

Δ⊢+〈�→〈X 〉〉
{ {C ��}

↑

Δ⊢X

Pantograph has 8 such alteration rules hard-coded in to determine how it makes edits, which we
describe fully in Section 5.5. But in this case, applying this rule gives us the final result of the edit:

(_G .G �Bool) (_~.10) (step 5)
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5 Diffs and Diff Propagation In Detail

So far we have shown examples of the automatic changes that Pantograph makes in response to a
user’s edit. In this section, we will finally describe the underlying mechanism in detail. First, we
will unify the treatment of type and context diffs, introducing a category of diffs over arbitrary
trees. Then, we will describe an algorithm to propagate these boundaries through the program as a
small-step operational semantics, and explore the metatheory of the entire system.

5.1 Terms and Types as Trees

To operate on our types, contexts, and typing rules algorithmically, we will represent them in
a standard intrinsic style: whereas in extrinsic typing rules the term is included in the typing
judgement, in intrinsic ones the premises are implicitly understood to refer to the children of the
form. For example, below is the typing rule for an application C1 C2 rewritten into intrinsic style;
the two premises are derivations for C1 and C2.

Γ ⊢ C1 : � → � Γ ⊢ C2 : �

Γ ⊢ C1 C2 : �

142><4B
−−−−−−→

Γ ⊢ � → � Γ ⊢ �

Γ ⊢ �

Types and contexts both have particular grammars, but almost all of these details are irrelevant
to the propagation algorithm. As a result, we can take inspiration from S-expressions [McCarthy
1960], and instead consider both of them as trees over a set of labels ; which we represent with B .
Each tree consists of a label and a list of children:

B ::= ; B

We collect all of the type constructors {;→, ;Int, ;Bool, ;List} and context constructors {;∅, ;�,�}
into a set of labels ; . We also make a label ;G for each variable G , since these appear in typing rules
too. In addition, we have a set of metavariables U and for each a label ;U . Finally, we include a label
for our typing judgement ;⊢. A typing rule can then be understood as B × B , a list of trees for each
premise, and a tree for the conclusion. For example, we can represent the context and type of the
first premise of the let typing rule (Γ, G : � ⊢ �) with a tree:

(;⊢ (;�,� ;Γ ;G ;�) ;�)

With this representation, all one hole contexts are simply trees with a child missing; we will use 2
to represent single-label steps of a one-hole context, and � to represent a list of such steps.

2 ::= ; B 〈〉 B � ::= 2

5.2 The Category of Diffs

Now that we have abstracted away any specific notion of types, contexts, or judgements into the
single abstraction that a tree of labels provides, we can define diffs between arbitrary trees. We
denote these with 3 , generalizing both the type diffs X and the context diffs Δ. There are only four
constructors, in direct correspondence with the diffs presented in Section 3: the first leaves a top
level label unchanged, and changes each child by a diff. The second and third constructors add or
remove a single label step 2 , and then apply another diff inside the hole of 2 . The final constructor
simply replaces one tree with another.

3 ::= ; 3 | +〈2 〈3〉〉 | −〈2 〈3〉〉 | B / B
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We can also generalize our judgement B1
3
=⇒ B2 to range over these general purpose diffs:

∀8, B8
38
==⇒ B′8

; B8
; 38
====⇒ ; B′8

B
3
=⇒ B′

B

+〈2 〈3〉〉
========⇒ 2 [B′]

B
3
=⇒ B′

2 [B]

−〈2 〈3〉〉
========⇒ B′ B1

B1 / B2
=======⇒ B2

These diffs admit an identity and a composition operator, which will be useful to define Pantograph’s
algorithm.

Endpoints. If B1
3
=⇒ B2, then we define 3.1 and 3.2 as the endpoints B1 and B2 respectively.

Identity diffs. Given any tree B , there is an identity diff B
83B
===⇒ B given by

83; B1 ...B= = ; 83B1 ...83B=

We will often write just 83 when the tree is unambiguous.

Composition. Given two diffs sharing an endpoint C1
31
==⇒ C2 and C2

32
==⇒ C3, we can compose them

together: C1
31 ◦ 32
=======⇒ C3. Composition is defined recursively over the structure of the diffs. Each diff

represents a change to a tree, and their composition is a single diff which performs both changes.
Therefore, the resulting diff generally contains all of the ‘+’ and ‘-’ constructors from the two inputs
combined. The exception is if we compose two diffs which add and then remove the same one-hole

context — then the two cancel out. In the following definition, we write 3 for a list of diffs, and 3.1

(or 3.2) for the list of left (or right) endpoints.

(; 31 . . . 3=) ◦ (; 3 ′1 . . . 3 ′=) = ; (31 ◦ 3
′
1) . . . (3= ◦ 3 ′=)

+〈2 〈3〉〉 ◦ −〈2 〈3 ′〉〉 = 3 ◦ 3 ′

3 ◦ +〈2 〈3 ′〉〉 = +〈2 〈3 ◦ 3 ′〉〉
−〈2 〈3〉〉 ◦ 3 ′ = −〈2 〈3 ◦ 3 ′〉〉

+〈0.1 〈3〉 1.1〉 ◦ (; 0 3 ′ 1) = +〈0.2 〈3 ◦ 3 ′〉 1.2〉

(; 0 3 ′ 1) ◦ −〈0.2 〈3〉 1.2〉 = −〈0.1 〈3 ◦ 3 ′〉 1.1〉

31 ◦ 32 = 31 .1 / 32.2 otherwise

Finally, the next two theorems state that identities and compositions behave as expected, forming
a category where the objects are trees and the morphisms are diffs:

Theorem 1 (Identity-Compose).

83 ◦ 3 = 3 ◦ 83 = 3

Theorem 2 (Associativity of composition). Given any three diffs B1
31
−→ B2

32
−→ B3

33
−→ B4,

(31 ◦ 32) ◦ 33 = 31 ◦ (32 ◦ 33)

The proofs of these two theorems proceed by induction over the diffs. The full proofs can be
found in the extended version of this article [Prinz et al. 2024], Appendix C.
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5.3 Typing One-Hole Contexts with Diffs

As we have shown, Pantograph performs automatic edits when the user inserts or removes a
one-hole context. Each automatic edit begins by placing diff boundaries around the location of the
edit. We associate each one-hole context with a diff that describes how it changes the type and
context of the program where it is inserted. For a one-hole context step 2 , we write Δ ⊢ 2 : X to
represent that from the inside to the outside, the context and type of 2 change by diffs Δ and X . For
most language constructs, the types and contexts inside and outside their one-hole context 2 are
either exactly the same (which gives rise to an identity diff), or unrelated (which gives rise to a
replace diff). Only for a few constructs is the relationship between inside and outside types and
contexts more involved: _ abstractions, applications, and forms which introduce variables.

−〈〈Δ〉, G : �〉 ⊢ λG : � . 〈〉 : +〈� → 〈�〉〉

Δ ⊢ 〈〉 C : −〈� → 〈�〉〉
−〈〈Δ〉, G : )1〉 ⊢ let G : )1 = C in 〈〉 : )2
−〈〈Δ〉, G : )1〉 ⊢ let G : )1 = 〈〉 in C : )1 / )2

−〈〈−〈〈Δ〉, ℎ : ) 〉〉, C : List ) 〉 ⊢ match 0 with nil ⇒ 2 ; cons ℎ C ⇒ 〈〉 : List )

To lift diffs from one-hole context steps to entire one-hole contexts, we can simply compose the
diffs along the individual steps:

83 ⊢ 〈〉 : 83

Δ2 ⊢ 2 : X2 Δ1 ⊢ � : X1

Δ1 ◦ Δ2 ⊢ 2 [�] : X1 ◦ X2

This allows us to get a diff for any one hole context which goes from the context and type inside
to the context and type outside. In order to get the diff going the other way from the outside to the
inside, we define a function which flips a diff and swaps its endpoints:

flip (; 31 . . . 3=) = ; (flip 31) . . . (flip 3=)

flip +〈2 〈3〉〉 = −〈2 〈flip 3〉〉

flip −〈2 〈3〉〉 = +〈2 〈flip 3〉〉

flip (B1 / B2) = B2 / B1

When the user makes an edit, Pantograph sets up diff boundaries into the program around the
location of the edit. The type boundaries introduced in Section 4 have unsurprising typing rules:

Δ.1 ⊢ C : X.1

Δ.2 ⊢ {C}
↓

Δ⊢X
: X.2

Δ.2 ⊢ C : X.2

Δ.1 ⊢ {C}
↑

Δ⊢X
: X.1

There are three ways to make such an edit: inserting a one-hole context, removing one, or directly
editing a type annotation.

Inserting a one-hole context. If the context and type of �′ change by diffs Δ and X such that
Δ ⊢ �′ : X , then the user may insert it if the term at the cursor has context Δ.2 and type X.1.
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Pantograph then sets up the configuration � [{�′ [{C}
↓

(flip Δ)⊢83
]}

↑

83⊢X
]. For example, if the user adds

a parameter to a map function as in Figure 7, the system will set up the following configuration:

let map : List Bool→ List Bool =

{ _5 : Bool → Bool.

{ ... }
↓
+〈〈83 〉,5 :Bool→Bool〉⊢83

}
↑

83⊢+〈 (�>>;→�>>; )→〈!8BC �>>;→!8BC �>>; 〉〉

in ...

Deleting a one-hole context. Given a selection �1 [�2 [C]], the user can delete �2, as in Figure 9. If

Δ ⊢ �2 : X , then Pantograph will set up �1 [{{C}
↓

Δ⊢83
}
↑

83⊢(flip X )
].

Editing a type annotation. When the user edits the annotation of a _ abstraction as in Figure 8 by
a type diff X , Pantograph sets up the configuration

{λG : X.2 . {C}
↓

83,G :X⊢83
}
↑

83⊢X→83

Similarly, when the user edits the annotation of a let expression as in Figure 10 by a type diff X ,
Pantograph sets up the configuration

let G : X.2 = {C1}
↓

83,G :X⊢X
in {C2}

↓

83,G :X⊢83

5.4 Diff Propagation

Recall the example in Section 4, and in particular the steps 1-3 where a diff boundary passed
‘through’ an application and a _ abstraction. Making use of our understanding of syntax as trees,
we can define the algorithm which performs these steps.

Γ ⊢ � → � Γ ⊢ �

Γ ⊢ �

Recall the intrinsic typing rule for applications from earlier (on
the right). It has three metavariables: �, �, and Γ. For each appli-
cation in the program, each of these metavariables is instantiated
as some specific tree. When we propagate a diff boundary through a construct of our language,
the construct remains the same, but the values of the metavariables from the typing rule change.
Therefore, we introduce the notion of a diff substitution f , a mapping from the metavariables in a
given typing rule to diffs. Whenever a diff boundary is propagated through a form, our algorithm
finds a diff substitution on the metavariables in its typing rule which describes how the instantia-
tions of the metavariables change. We write f B to represent the substitution of the metavariables
in B by f ; any metavariable not in the domain of f is mapped to an identity diff.

Using this notion of a diff substiution, we can attempt to propagate diff boundaries through any
language construct. Suppose that we have some language construct r with = premises B1 . . . B= and
conclusion B which may all refer to a shared set of metavariables in its intrinsic typing rule:

B1 . . . B=

B

Then, in order to propagate a diff boundary down into such a form, we need only find a diff
substitution f , with domain of the metavariables in B , such that the incoming diff has the form
f B . We may then apply that same substitution to each B8 to get the diff which must be propagated
down into the 8th child:

{A C1 . . . C=}
↓
f B { A {C1}

↓
f B1 . . . {C=}

↓
f B=
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We can write a similar rule for dealing with an upwards boundary into a form:

A C1 . . . {C8 }
↑
f B8 . . . C= { {A {C1}

↓
f B1 . . . C8 . . . {C=}

↓
f B= }

↑
f B

Specialized to applications in particular, we get the following three propagation rules:

{C1}
↑

Δ⊢X1→X2
C2 { {C1 {C2}

↓

Δ⊢X1
}
↑

Δ⊢X2

C1 {C2}
↑

Δ⊢X
{ {{C1}

↓

Δ⊢X→83
C2}

↑

Δ⊢83

{C1 C2}
↓

Δ⊢X
{ {C1}

↓

Δ⊢83→X
{C2}

↓

Δ⊢83

The second of these application rules recovers the behavior from step (2) in Section 4.
We can similarly specialize the two generic rules above to any form in Pantograph. However, they

are not quite sufficient in the case of nonlinearities, or typing rules in which the same metavariable
appears multiple times in a premise or the conclusion. For example, consider the intrinsic typing
rule for a recursive let construct:

Γ, G : � ⊢ � Γ, G : � ⊢ �

Γ ⊢ �

The metavariable � appears twice in the first premise. If one were to apply a substitution to that
first premise f (Γ, G : � ⊢ �), then both �s would necessarily map to the same diff. However, we
would like to have the following propagation rule for recursive let constructs, in which a type diff
propagates up from the definition, causing a context diff to be sent back down.

let G : �.1 = {C1}
↑

Δ,G :83⊢X
in C2 { {let G : X.2 = {C1}

↓

83,G :X⊢83
in {C2}

↓

Δ,G :X⊢83
}
↑

Δ⊢83

Our propagation rule from before won’t help, because there is no substitution of metavariables
such that Γ, G : � ⊢ � can be made equal to Δ, G : 83 ⊢ X , since 83 ≠ X . The solution will be to focus
onto only the part of the incoming diff which is not the identity. In particular, we can decompose
the diff into a one-hole context consisting only of identity diffs, and a non-identity diff:

Δ, G : 83 ⊢ X = (Δ, G : 83 ⊢ 〈〉) [X]

We can now finally write the propagation rules in their fully general form. Any language
construct rwith a typing rule of the form above gives rise to the following propagation rules (where
3><(f) is the domain of f , and �+ (B) is the set of metavariables in B):

B = 2 [B′] 3><(f) = �+ (B′)

{A C1 . . . C=}
↓

(f83 � ) [f B′ ]
{ {A {C1}

↓
f B1 . . . {C=}

↓
f B= }

↑

(f � ) [f83 B′ ]

Propagate ↓

B8 = � [B′8 ] 3><(f) = �+ (B′8 )

A C1...{C8 }
↑

(f83 � ) [f B′
8
]
...C= { {A {C1}

↓
f B1 . . . {C8 }

↓

(f � ) [f83 B′
8
]
. . . {C=}

↓
f B= }

↑
f B

Propagate ↑

This final version of the propagation rules is capable of propagating diff boundaries through every
form in every situation that arises in Pantograph, even in the presence of nonlinearities.
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5.5 Pantograph’s Automatic Edits

Once diff boundaries are placed after an edit, Pantograph propagates the diff boundaries through
the program and alters the program according to a small-step operational semantics, which we
describe in this section. We also reproduce all of the rules in a compact table in the extended version
of this article [Prinz et al. 2024], Appendix A.

Propagation rules. The first two rules are the Propagate ↓ and Propagate ↑ rules from the
previous section which propagate diff boundaries through every form in our language. The only
exception is variables, whose propagation rules we list below 1 :

{G}
↓

� [Δ, G :X ]⊢83
{ {G}

↑

83⊢X
Propagate-Var ↓1

{G}
↓

� [Δ, G :83 ]⊢X
{ {G}

↑

� [Δ, G :X ]⊢83
Propagate-Var ↓2

Alteration rules. Next, Pantograph has a set of rules which enable the automatic edits shown
by example in Section 3. First, Pantograph can automatically insert and remove _ abstractions
(Figure 8). The following three rules enable this behavior:

{C}
↓

Δ⊢+〈�→〈X 〉〉
{ λG : � . {C}

↓
+〈〈Δ〉, G :�〉⊢X

Insert-Abs ↓

{λG : � . C}
↓

Δ⊢−〈�→〈X 〉〉
{ {C}

↓
−〈〈Δ〉, G :�〉⊢X

Delete-Abs ↓

λG : � . {C}
↑

Δ,G :83⊢+〈�→〈X 〉〉
{ {{C}

↓
−〈〈Δ〉,G :�〉⊢83

}
↑

Δ⊢�→X
Delete-Abs ↑

Pantograph can also automatically insert applications, or replace them with commented ones as
the type of a function changes (Figure 8). This is governed by the following rules:

{C}
↑

Δ⊢+〈�→〈X 〉〉
{ {C ��}

↑

Δ⊢X
Insert-App ↑

{C1}
↑

Δ⊢−〈�→〈X 〉〉
C2 { {//〈〈C1〉 {C2}

↓

Δ⊢83
〉}

↑

Δ⊢X
Displace-App ↑

{C1 ��}
↓

Δ⊢+〈�→〈X 〉〉
{ {C1}

↓

Δ⊢83→X
Delete-App ↓

Finally, Pantograph will automatically replace bound variables with free variables when necessary
and vice versa (Figure 9), according to the following rules:

{G}
↓

� [−〈〈Δ〉, G :) 〉 ]⊢83
{

//G) Local-To-Free

{//G) }
↓

� [+〈〈Δ〉, G :) 〉 ]⊢)
{ G Free-To-Local

All together, these eight rules describe how Pantograph automatically changes a program in
response to a user’s edit. The alteration rules take precedence over the propagation rules when
both can apply. Additionally, Delete-App ↓ takes precedence over Insert-Abs ↓.

Diff Boundary Rules. Finally, Pantograph has eight rules used to deal with special cases involving
diff boundaries themselves. First, two rules eliminate diff boundaries containing only identity diffs.

{C}
↓

83⊢83
{ C Identity ↓

{C}
↑

83⊢83
{ C Identity ↑

Next, two rules enable diff boundaries to cross each other when the meet, so long as they don’t
both modify the same side of the typing judgement:

{{C}
↑

83⊢X
}
↓

Δ⊢83
{ {{C}

↓

Δ⊢83
}
↑

83⊢X
Interchange 1

{{C}
↑

Δ⊢83
}
↓

83⊢)
{ {{C}

↓

83⊢)
}
↑

Δ⊢83
Interchange 2

1In our implementation, using a typed representation of de Bruijn indices [de Bruijn 1972] the two variable propagation

rules are also actually derived from the generic propagation rules as well.
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Two more rules stop type diffs from propagating in or out of function applications. For example, in
Figure 10, a type diff is propagated up from the f variable. The following two rules stop it around
the function application, keeping the effect of the edit local to the definition it was made on and
giving the user the choice of how to proceed. We define a neutral form as either a variable, a built-in
function (such as cons), or a neutral form applied to an argument. These rules take precedence over
the Propagate but not the alteration rules.

{C}
↓

Δ⊢X
{ {{C}

↓

Δ⊢83
}!
X.1/X.2

� [{{C}!
X.2/X.1

}
↑

Δ⊢83
]





if C is a neutral form,
and � ≠ 〈〉 C2

Neutral-Error ↓

� [{C}
↑

Δ⊢X
] { Neutral-Error ↑

Finally, if no other rules apply, diff boundaries are converted into type error boundaries in the
program:

{C}
↓

Δ⊢X
{ {{C}

↓

Δ⊢83
}!
X.1/X.2

{{C}!
X.2/X.1

}
↑

Δ⊢83





if no other rules apply
and X ≠ 83

Fallthrough-Error ↓

{C}
↑

Δ⊢X
{ Fallthrough-Error ↑

5.6 Metatheory of the Propagation Rules

The system we have presented in this paper is quite intricate. In this section, we will state and
sketch the proofs of the correctness properties of our automatic edit system — full proofs can be
found in the extended version of this article [Prinz et al. 2024], Appendix B.

Theorem 3 (Progress). If C resulting from an edit has a diff boundary (other than an up boundary

at the top), then for some C ′, C { C ′

If at the end of propagation the program has the form {C}
↑

Δ⊢X
, we prove an invariant on the

contexts in up boundaries that shows that Δ = 83 . In this case, Pantograph removes the boundary
and the program has a new type.

Otherwise, given a boundary with diff Δ ⊢ X , if X ≠ 83 , then by definition either the Fallthrough-
Error rule or some other rule applies. On the other hand, if X = 83 , then we must show that a
Propagate rule always applies. For most of the typing rules in Figure 6, this is straightforward, as
the context in most conclusions and premises is a single metavariable Γ with which any diff can
unify. However, a few typing rules have a non-trivial context, such as that of a _ abstraction. In the
full proof we use our invariant to deal with these cases.

Theorem 4 (Type Preservation). For any C { C ′, if Γ ⊢ C : ) then Γ ⊢ C ′ : )

All of the diff boundary rules preserve the type of the term, as well as the type of sub-terms. The
proof proceeds by case analysis over the small-step propagation rules. Full details can be found in
the full proof.

Theorem 5 (Termination). For any program with diff boundaries resulting from an edit in

Pantograph, there is no infinite sequence of step rules that can be applied.

Proving termination of the boundary propagation is more involved. Taking a look at the rules
above, we can observe that up boundaries can turn into down boundaries, but with the exception
of the Variable∗ rules, no down boundary can ever turn into an up boundary. Also, with the
exception of the Insert-∗ rules, the upwards boundaries make progress to the top of the program
and the downwards boundaries make progress to the leaves. Therefore, the path of a boundary
through the program will be to first go up, and then go down, and then disappear. We formalize
this intuition in the full proof, providing a decreasing metric over terms with diff boundaries.
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Nondeterminism. In most cases, there is only one rule that can apply to a given diff boundary.
However, the order in which multiple boundaries are propagated is left unspecified, and in some
situations it is not obvious that the order does not matter. For example, the following situation
arises during diff propagation at the second call to f in Figure 8:

{{5 }
↑
+〈Int→〈Bool→Bool〉〉

}
↓
+〈Int→〈Bool→Bool〉〉

Either the down boundary can be stepped first, applying Insert-Abs ↓ and then Delete-Abs ↑, or
the up boundary can be stepped first, applying Insert-App ↑ and then Delete-App ↓. But either
way, the result is the same term f.

More generally, we have proven the following confluence result. Using C1 {
∗ C2 to mean that C1

steps to C2 after zero or more steps,

Theorem 6 (Confluence). For any program with diff boundaries C resulting from an edit in

Pantograph, if C {∗ C1 and C {
∗ C2, then there exists C ′ such that C1 {

∗ C ′ and C2 {
∗ C ′

The core idea of the confluence proof is to consider all of the pairs of rules which could step the
same term, and show that the same term can be reached regardless of which rule was chosen first.
The difficult cases are those like the example above, where an up diff boundary is inside a down
diff boundary, because in these cases two different rules can alter the same part of the program.
However, such situations are rare. We again observe that up boundaries can only turn to down
boundaries at the Propagate-Variable rules. Therefore, with an exception in neutral forms, the
property that no up boundary is a descendant of a down boundary is preserved by the rules. In
the full proof, we formalize this intuition by proving two invariants that are preserved by all of
Pantograph’s rules. These invariants reduce the number of possible cases to only eight, all of which
we discuss in the full proof.

6 User Study

To convincingly establish the effectiveness of a particular editor, one would need to undertake a
thorough empirical comparison of its effectiveness compared to other editors—a herculean task way
beyond the scope of this work. Instead of comparing our editor to other state-of-the-art structure
editors (such as Hazel or MPS), in this section we empirically investigate the feasibility of our
approach—whether programmers can learn to think and program in the paradigm presented in this
paper. Furthermore, we investigate qualitatively which aspects of Pantograph worked well or badly,
and compare and contrast how participants use Pantograph and the text editor. We describe a user
study in which participants were first given a short introductory tutorial on using Pantograph,
before being asked to complete a series of basic programming tasks using either Pantograph or a
text editor.

Participants. We sought participants with prior experience with strongly-typed and functional
programming languages, so we recruited 13 students (11 male, 1 female, 1 unstated; ages 19-25)
from CMSC 433, an upper level functional programming course at the University of Maryland, and
offered participants a $30 compensation. Recruitment materials included a link to Pantograph, and
one participant used it recreationally before the study.

Editors and Tasks. We designed a version of Pantograph 2 and a text editing environment, both
using a simple ML-style programming language, for the study. The text editor was based on
Monaco [Microsoft 2024], the library behind the popular editor Visual Studio Code [Microsoft

2Available here.
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2015]. We augmented Monaco with syntax highlighting, automatic type-checking, and inline typing
diagnostics. Further, we designed software to conduct the study, available here.

Each participant solved the same sequence of 12 tasks (T1-T12). The tasks were designed in six
pairs and each participant solved one task from each pair in each editor. Four tasks (T1, T2, T7, T8)
were taken from a prior study on Tylr [Moon et al. 2022], asking participants to transcribe a given
program and then edit it into a second given one. Another pair of tasks (T5, T11) was inspired by a
prior study of MPS [Berger et al. 2016], in which participants were instructed to fix definitions of a
common mathematical law given a correct version to copy. Because we also wanted to test each
participant’s ability to program using our typed editing paradigm rather than merely copy given
code, we designed six programming tasks: two tasks to implement a function using a given fold
function (T3, T9), two tasks to generalize a given function implementation in a specified way (T4,
T10), and two tasks to implement a simple recursive function over a list (T6, T12).

Procedure. The participants were given a 1-hour tutorial on Pantograph consisting of interactive
examples and exercise which explained typed tree editing, zipper editing and selections, and
type boundaries. During the tutorial, we actively answered questions and assisted participants.
Additionally, each participant was given 5 minutes to familiarize themselves with the text editor.

After the tutorial, the participants were randomly divided into two groups. Group A solved
the first six tasks in Pantograph and the last six tasks in the text editor, while group B used the
editors in the reverse order. While solving tasks, participants were allowed to ask questions about
the language or editor but not about how to solve the task. When a participant’s code passed a
task’s test suite, the software indicated that they could continue to the next task. Participants were
informed that they should skip any task that they thought they couldn’t finish or was taking them
too long.

6.1 �antitative Analysis

The user study yielded roughly 10 hours of screen recordings. In all, 156 tasks were attempted by
the participants. Two participants (one in Group A and one in Group B) skipped at least six tasks,
including all of the programming tasks in both editors—we chose to omit these two participants’
data from the following analysis, although we discuss this issue further in the limitations section.
Further, we discarded the data points (4 in Pantograph and 2 in text) where our test suite mistakenly
indicated to a participant that their solution was correct when it was actually incorrect. This left us
with 124 data points on tasks, 121 of which were solved and 3 of which were skipped.

Figure 12 shows the duration of each task for each editor. Overall, Pantograph was slower than
the text editor for most tasks. It was 1.4× slower on average overall, measured as the geometric
mean of the ratio between the average duration of each editor on each task.
In order to view these task durations by participant, we need a way to compare times across

different tasks. We define a participant’s relative task time as the ratio of their time to the average
time taken on that task. We plotted the average relative task time in each editor for each participant
in Figure 13. To account for skipped tasks in this calculation, we used the maximum time taken for
that task by any participant. Some of the participants performed similarly in both editors, while
some performed significantly more slowly in Pantograph than the text editor. Overall, most of the
participants in the study were able to effectively solve the tasks using Pantograph.

6.2 �alitative Analysis

While the quantitative data demonstrate that the participants were generally able to solve tasks
in Pantograph, albeit somewhat slower than in the text editor, a qualitative analysis is necessary
to answer more specific questions. In order to discover which aspects of Pantograph helped or
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multiple forms into a query such as 1 + 1, despite that in Pantograph forms can only be input one at
a time and so these queries are not valid. The second is that some participants, in a situation where
the cursor was around a term that they intended to apply to an argument, attempted to immediately
query the argument without first inserting an application form. These particular patterns only
occurred for the 4 participants who had the longest relative Pantograph times, and one participant
who skipped all of the coding problems.

Conversely, one code represented an understanding that Pantograph should not be used like a
text editor. Four participants opted to skip writing type annotations while transcribing programs in
T1 and T7, and instead allow Pantograph to infer them automatically — a behavior with no analog
in text editing. These were the 4 participants with the fastest relative Pantograph times.

Diff propagation working well. Two tasks (T4 and T10) had a simple intended solution in Panto-
graph which would make use of diff propagation to add an argument to a function. All but two
participants made use of the diff propagation to solve the problem - one manually rewrote a function
call instead, and the other skipped the problem. Additionally, while no other tasks necessarily
required diff propagation, most participants made use of it to at some point to fix a mistake.

Diff propagation getting in the way. On the other hand, there were two common patterns in
which diff propagation obstructed a participant from programming in the way they wanted to.
These were not characteristic of only participants who had longer relative Pantograph times, but
rather there was no clear correlation - we believe these to represent flaws with Pantograph. Most
of these cases involved creation of type boundaries.

The first pattern was that participants accidentally changed the type of a variable by making an
edit to one of its arguments. We can be certain that these alterations were unintentional because
they occurred in problems where a type annotation was given and should not be changed. Most
participants (7 of 13) had this problem at some point. Typically the edits were locally sensible, but
the edit unintentionally caused a type diff to propagate to a variable definition.
The second pattern of confusion arose when a participant wanted to insert the child of a form

at their cursor before inserting the parent form. In some cases Pantograph supports with, like
wrapping 〈〉 + � around 1. But in particular on task T12, participants needed to input lambda
abstractions surrounding a match expression. A few participants decided to first input the match
before the lambda abstractions (1 in text and 3 in Pantograph), even though directly inputting the
lambda abstractions afterwards alters the type of the surrounding function by diff propagation.

Syntax Errors. In both editors, participants tried to use invalid syntax. In the text editor the
invalid syntax was marked by the editor with a syntax error, and in Pantograph the query is invalid
and cannot be inserted into the program in the first place. Syntax errors were much more common
in the text editor — all but 1 participant input syntax errors in text at some point, while only 3
participants ever input invalid syntax into a Pantograph query, excepting the earlier mentioned
pattern of inputting multiple forms in one query. One benefit of a structure editor like Pantograph
is that it requires less memorization of syntax, although it is possible that more practice with the
text editor could have prevented many of the syntax errors made in text.

Type errors. Again in both editors, participants tried to input ill-typed forms—in the text editor
this leads to a type error after the fact, while in Pantograph either a query is not allowed, or a type
boundary appears elsewhere in the program. Type errors appeared in 24 attempted tasks in the text
editor, while participants attempted to input ill-typed queries in 14 attempted tasks in Pantograph.
Visible types on holes in Pantograph may have helped participants avoid trying to directly input
an ill-typed term more often than in the text editor, although as mentioned above there were also
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many situations where type boundaries appeared due to diff propagation, not counted here as
ill-typed queries.

Selections. Two tasks (T2 and T11) had a simple intended solution involving a selection. Most
participants used selections, except a fewwho rewrote the expressions entirely (1 time in Pantograph
and 6 times in text). Additionally, almost all edits made using text selections (excepting small
selections in a single word) corresponded to structured edits: 5 selection based text edits were
directly equivalent to a zipper edit with a one-hole context; 7 were not quite equivalent to a zipper
edit but were immediately followed by a small additional edit that made it equivalent to one; 5
selection based text edits amounted to swapping two entire terms; and 2 more amounted to moving
a term. On the other hand, only one selection based text edit did not correspond to a structured edit -
a participant wrote part of an expression, and then deleted it with a selection. Finally, in Pantograph,
participants were often unsure about how to make a selection, as evidenced by behavior making
several experimental selections before deciding what to do next—which occurred 15 times during
tasks attempted in Pantograph, compared to only 6 times in those attempted in the text editor.

6.3 Limitations

As discussed above, no other structure editor was used in this study, so our results offer little insight
into how our system compares to other structure editors. Additionally, while the tasks in our study
were intended to represent realistic programming scenarios, the results may not generalize to real
world programming in a fully developed system. Finally, the participants had no experience with
Pantograph before the study (with one exception) but had an hour to practice with it during the
study; at the same time, they had plenty of prior experience using a text editor for similar languages,
but only five minutes to practice with it during the study. It is not clear how the results might
change if participants had the same amount of practice in both editors.
Unlike prior studies on structure editors such as Berger et al. [2016]; Moon et al. [2022, 2023]

which focus on transcription tasks, we also included programming tasks. Although we intended the
tasks to be easy enough to complete in the time allotted for the study, two participants were still
not able to complete any of these coding tasks in either editor, getting stuck on an early problem
and then quickly skipping later problems. As we had not planned task time limits beforehand we
decided on our problem skipping protocol during the study, and it is possible that this design flaw
influenced the participant’s decisions to skip problems.

Finally, there was a large potential for bias and non-reproducibility: we facilitated the user study
in person, and the participants were aware that the we created Pantograph, which has been shown
to cause bias [Dell et al. 2012]. Additionally, the Pantograph tutorial involved us actively teaching
participants in a one-on-one manner, which could lead to different results with different teachers.
Our decision to allow participants to ask questions about the editor and language while solving the
tasks may have additionally affected the results of the study, as our decisions in answering these
questions were subjective.
Taking into account all of these limitations, we re-emphasize that our goal was to demonstrate

our approach’s feasibility rather than its effectiveness relative to state of the art structure editors
and explore the advantages and disadvantages of Pantograph compared to a traditional text editor.
Through this user study, we learned that students were able to learn to use Pantograph relatively
effectively in a short amount of time, but we also discovered many opportunities for improvement
in our ongoing efforts to develop an intrinsically typed structure editor. We leave a thorough
empirical evaluation of different structure editors for future work.
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2006; Siek et al. 2015], which allows ill-typed (according to a strict type system) programs to be
considered well-typed by converting the type errors into dynamic type checks. It can also run
programs with holes, giving users feedback about partial programs.

To address viscosity, Tylr [Moon et al. 2022, 2023] introduces gradual structure editing, allowing
the user to locally break the tree structure of the program and get hints about how to fix the
ill-formed fragment. Tylr introduced a concept of “structural obligations” that, given an ill-formed
program, encode where certain syntactic delimiters must be inserted in order to yield a well-formed
program. In essence, gradual structured editing allows the user to edit their program as if it was
text, get structured support for the fragment of the program that is well-structured, and hints
about how to fix the fragment that is ill-formed. The authors conducted two user studies, which
demonstrate that this approach can improve fluidity in comparison to a more traditional rigidly
tree-structured editor.
Moon et al. [2023] also identify several specific barriers to fluidity with strict tree editors,

includingmultiplicity, or the lack of the ability to place terms temporarily anywhere in the program
during edits. While our zipper editing paradigm improves the fluidity of a tree editor, multiplicity
remains a problem in Pantograph — in particular, swapping two terms is difficult.

Recent versions of Hazel incorporate Tylr, replacing its older tree-based interface. Furthermore,
they re-check the program after each edit using a novel algorithm. Chen et al. [2024]; Zhao et al.
[2024] replace a standard type checking algorithm with a marking algorithm, which inputs untyped
preterms and marks them with various marks indicating typing problems, including ones similar
to our type error boundaries. The algorithm is superior at placing type errors to many prior type
checking algorithms because of its focus on neutrality, or not making unwarranted assumptions
about error placements. In addition, the algorithm can assign static meaning to many programs on
which a traditional type checker would give up, and can give suggestions for automatic fixes for
type errors. However, as we discussed earlier, approaches like this which re-check the program
after an edit contrast with Pantograph’s approach of placing errors during an edit.

Other Editors. Other ways of manipulating structured syntax have been devised. Paredit [Paredit
Team 2022] is a tree editor which provides structured operations on S-expressions [McCarthy 1960].
Beyond tree editors, graph editors, like the system design environment LabVIEW [Bitter et al. 2006],
represent the program as nodes which the programmer can connect with edges.

In order to compactly represent and contrast the diverse designs of existing structure editors, we
chose 8 representative editors and compare them on four criteria. The first two criteria pertain to
how strictly structured the editor is. The last two criteria pertain to fluidity; they are not intended
as a benchmark of fluidity, but rather are chosen to highlight the differences between different
approaches.

Editor All states are
well-formed
trees

Intrinsically
typed edits
or re-check

Swap terms
conveniently
(multiplicity)

Can re-order e.g.
� [((G∗2)+1)] and
� [((G + 1) ∗ 2)]

Text No Re-check Yes Yes, 1 cut-paste
Paredit Yes (Untyped) Yes Yes, many actions
MPS Yes Re-check No No
Scratch Yes Intrinsic Yes Yes, 6 moves
Early Hazel Yes Intrinsic No No
Tylr Partially (Untyped) Yes Yes, 2 cut-paste
Current Hazel Partially Re-check Yes Yes, 2 cut-paste
Pantograph Yes Intrinsic No Yes, 1 cut-paste
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Other related works. Many approaches have been developed for locating (and fixing) errors in
existing programs, contrasting with Pantographs intrinsically typed approach as we discussed
earlier. There is a large body of work on improving a type checker’s ability to locate type errors,
including Wand [1986], which improves on a Hindley Millner type inference algorithm to track
the reasons for failed unification; and Tip and Dinesh [2001] and Schilling [2012], which report a
slice of all program locations contributing to an error. Bidirectional type checking [Dunfield and
Krishnaswami 2021], prescribes specific locations in programs where types are inferred or checked.

Automated program repair [Le Goues et al. 2021] uses various techniques to automatically find
and fix bugs in a program. For example, GenProg [Le Goues et al. 2012] uses a genetic algorithm to
randomly vary a program until it passes test cases. In contrast to Pantograph, these algorithms
operate on existing code rather than as part of the editing process.

Ornaments [McBride 2010] encode relationships between data types. Williams and Rémy [2017]
use ornaments to facilitate automatic refactoring of code. Ornaments can encode more possible
relations between types than our diffs (although only at data types), but require a user-written
definition rather than being derived from the shape of any edit as diffs are in Pantograph.

9 Conclusion

In this paper we presented a zipper editing scheme which generalizes text editing in a structured
setting, allowing users to edit a program while maintaining syntactic well-formedness. In this
way, zipper editing is conceptually analogous to text editing while providing the advantages of
structure editing. We also introduced a type editing system which extends zipper editing. Without
requiring the user to learn any new interactions beyond zipper editing, it allows edits to maintain
the well-typedness of the program. The user may make any edit which locally can be reconciled
to be well-typed, and our diff propagation system will keep the rest of the program aligned to
whatever changes were made.

The modern text editing interface has stood as the dominant code editing interface for decades,
and programmers have correspondingly internalized its concepts as second nature. This familiarity
creates a barrier to entry for alternative editing systems that ask users to learn new concepts.
However, the widespread adoption of complex IDEs and editor plugins suggests a strong desire for
functionality that is difficult to integrate with text editing.
Since programs are fundamentally tree-structured, structure editing offers innate advantages

conceptually organizing basic and advanced edits alike. In the introduction, we posed the possibility
of designing a general fluid structure editor that never resorts to operating over untyped or ill-
formed syntax. Our contributions with Pantograph show that this goal is achievable, by placing a
powerful typed editing system into an interface as simple, expressive, as language-generic as, and
in direct correspondence with, those in text editing.

Data Availability Statement

An extended version of this paper is available [Prinz et al. 2024], containing full proofs of the
theorems in Section 5.
An artifact [Blanchette and Prinz 2024] containing the source code for Pantograph, as well as

the web application for Pantograph and the user study, is available. The web application can also
be found at https://pantographeditor.github.io/Pantograph/.
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