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Abstract

Microfluidics has emerged as a foundational process for creating highly uniform emulsions and
bubbles. To enable integration of microfluidic platforms into industrial processes, achieving
precise control over the size uniformity of microfluidic-generated bubbles and emulsions is
crucial. Even if the external variables such as flow rates or pressures are kept constant,
microfluidic processes can be easily disturbed by unknown factors that would substantially
compromise the uniformity of resulting emulsions and bubbles. In this study, we introduce a
two-step soft-sensor approach that combines a convolutional neural network (CNN) and an
image recognition algorithm for feature extraction to detect both the flow regime and the size
and uniformity of resulting bubbles. By using the CNN to detect flow regimes, our controller is
able to restore the bubble-producing flow regime in response to disturbances. Beyond self-
recovery, our controller actively adjusts to minimize errors, maintain setpoints, mitigate
disturbances, and ensure system stability over extended periods. 99.2% of bubbles produced
during an 8-hour period remain within 5% of the setpoint with our controller taking action. By
leveraging the soft sensor and artificial intelligence-assisted feedback control, our work presents
a widely applicable approach for precise and automated control of microfluidics in diverse

applications.

1. Introduction

Microfluidics enables the production and manipulation of multi-phasic mixtures such as gas

bubbles, liquid droplets and multiple emulsions with unparalleled precision and control.
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Leveraging advanced techniques in micro/nano-fabrication, precise microchannels can be
manufactured to control droplets and bubbles for a wide range of advanced applications [1]. For
example, chemical reactions can be induced in single droplets, providing a unique platform to
conduct high-throughput analyses and synthesis with minimal reagents use and reduced waste
[2—4]. Furthermore, droplet microfluidics facilitates the encapsulation of delicate biological
materials such as cells and proteins under mild conditions that preserve their functionality and
viability, which is particularly well-suited for the development of low-cost and highly efficient
biomedical diagnostics and therapeutics [5—7]. The precision and scalability of droplet
microfluidics enables fabrication of functional particles such as microbubbles, microcapsules and
nanoparticles with precisely designed morphology and functionality, enhancing disease
diagnostics as well as controlled release and targeted delivery of various pharmaceutical actives
[8-10].

Achieving consistent uniformity in the production of droplets and bubbles throughout the
operation of microfluidic devices is crucial for harnessing the full benefits of this technology.
The maintenance of uniformity is, however, challenged by several factors, which necessitates
continuous user intervention to adjust flow rates and pressures, ensuring that the droplet and
bubble production maintains the desired dimensions and properties. Even seemingly negligible
changes in operating conditions can cause large fluctuations in performance of device output
because of the sensitivity of flow behaviors of fluids at the microscopic scale. Over time, the
performance of microfluidic devices may be further compromised by issues such as surface
fouling, changes in wetting properties, channel clogging and the solvent-induced swelling of the

microfluidic devices [11-13]. These factors introduce additional layers of complexity in
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achieving and maintaining the uniformity of droplet and bubble generation, posing significant

challenges to the scalability and reliability of microfluidic applications.

Developing autonomous microfluidic systems capable of self-adapting to changing conditions
would enable the precise formation of a wide array of droplets and bubbles with complex
composition and morphology without direct operator intervention [ 14]. The realization of such a
capability will enhance the efficiency and effectiveness of droplet and bubble microfluidics and
simultaneously lead to new applications that leverage the full potential of this versatile

technology.

A few recent studies have demonstrated the ability to control droplet microfluidics, using
technologies such as neural networks and reinforcement learning to gather insight on flow
regimes in microfluidics over various flow conditions [15,16]. Other techniques involve the use
of impedance electronics embedded into the microfluidic device as a sensor for measuring
microbubble diameter as a function of the voltage measured or measuring the interference
pattern created by focusing a laser on droplets in the outlet channel using piezoelectric transducer
[17,18]. Vision Development Module within LabVIEW (National Instruments™) has been used
for droplet detection and control using a virtual instrument [19]. In addition, feedback sensors
have been developed for precise control of flowrates and pressures in microfluidic devices off-
chip [20,21]. Despite these advances, many of these approaches use highly sophisticated sensing
techniques that involve specialized equipment not traditionally used in microfluidics, do not have

the ability to easily measure process variables on-chip, and do not have the ability to control the
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system when it is disturbed to reach different flow regimes, such as one in which bubbles or

droplets are not produced.

In this study, we introduce an autonomous microfluidics system that relies simply on
microscopic imaging and is trained with a convolutional neural network (CNN) to return the
process to the desired microbubble production flow regime. Our system is able to control the size
of microfluidic bubble production using only commercially available pressure controllers, a
microscope, and a high-speed camera, all of which are commonly employed in microfluidic
setups. We generate gas bubbles in a flow-focusing device by applying pressure to the dispersed
gas phase using a high-pressure nitrogen canister. Additionally, we use pressure-driven flow,
also from a high-pressure nitrogen canister, to pressurize a liquid reservoir, thereby pushing the
liquid into the microfluidic chip. Pressure driven flow of the aqueous phase is chosen over
commercially available syringe pumps because of their significantly reduced response times
without periodic fluctuations [22]. Gas bubbles are selected over liquid droplets due to their
greater size variability for various reasons including the compressibility of the gas phase, large
interfacial tension, and significantly different viscosity of the two phases, necessitating enhanced

control.

Our control system actively adjusts either the liquid driving pressure or gas pressure to ensure
the bubbles being produced match the user-specified setpoint for the bubble diameter while
showing effective setpoint tracking, disturbance rejection, and stability over an eight-hour

period. Potentially, our approach can be trained to control the shape of particles produced by
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microfluidics such as rods and discs, and higher-order geometries such as double emulsions and

Janus droplets.

2. Materials and Methods

2.1. Flow focusing generator for gas-bubble production

We use a well-established flow-focusing generator to produce gas bubbles [23,24]. This
geometry splits the continuous phase into two streams which subsequently surround and pinch
off the dispersed phase at a cross junction, as shown in Figure 1. The symmetry of the junction
allows for more flexibility in the size and frequency of bubble generation. The immiscibility of
the two phases forces bubbles to form through either a dripping or jetting mechanism [25]. The
dripping regime involves the periodic breakup of a fluid stream into bubbles due to capillary
instability. This instability arises from the interplay of surface tension and viscous forces. The
dripping frequency is governed by the capillary number (Ca), representing the ratio of viscous to
capillary forces. The jetting regime involves the stretching of a fluid stream into an extended jet
due to the dominance of inertial forces or viscous forces over capillary forces. Microfluidic
droplets and bubbles produced in the jetting regime are larger and less uniform compared to
those formed in the dripping regime due to the unfixed interface position during breakup [26].
Controlling the flows of the two fluid phases to maintain microfluidic generation in the dripping

regime is critical to maintaining the uniformity of resulting droplets and bubbles [27].
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Figure 1. Control schematic using CNN & image recognition for PID control of microfluidic

bubble generation. Created with BioRender.com.

In this study, we use a flow-focusing geometry to produce nitrogen gas (dispersed phase)

bubbles in an aqueous phase of 0.5 wt% sodium dodecyl sulfate (SDS) dissolved in DI water

(continuous phase). The dispersed phase is injected into the device as pressurized nitrogen gas

controlled by a differential pressure controller and the continuous phase is injected by using a

differential pressure controller to adjust the pressure in a pressurized liquid reservoir and thus

drive flow into the microfluidic device as depicted in Figure 1. All microfluidic devices in this
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study have undergone hydrophilic-surface treatment to ensure stable formation of gas bubbles

using a 2 wt% polyvinyl alcohol (PVA) solution [12].

2.2. Proportional-integral-derivative (PID) control

PID control is one of the most fundamental types of control and is widely used in industrial
applications due to its simplicity and effectiveness [28]. It has been widely studied, can address a
wide range of process behaviors, and is straightforward to implement, making it a natural choice
for control of microfluidics. PID feedback control operates by continuously comparing the
desired setpoint to the process output, giving the error, e. The proportional term responds to the
current error, the integral term accumulates past errors to eliminate steady-state discrepancies
(offset), and the derivative term accounts for the rate of change of the error, as shown in

Equation 1.

u(t) = Kee(t) + [  e(t)dt + Ketpe + ¢ 1)

170 dt

where K is the proportional gain, 7; is the integral time-constant in minutes, 7p is the derivative
time constant in minutes, and c; is the controller bias (actuating signal when e=0) [28]. These
terms are combined to compute the controller output (u(t)), aiming to reduce the error and
maintain stable and precise control of the process. In this study, two separate control schemes are
explored: manipulating the pressure of the dispersed air phase to control microbubble diameter

and manipulating the liquid driving pressure of the continuous phase to control microbubble

diameter as illustrated in the control scheme of Figure 1.

Altering the PID tuning parameters K, 77, and 7p can significantly influence the response of the

controller; increasing the proportional gain enhances responsiveness, but may lead to



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

overshooting, while adjusting the integral and derivative time-constants affects the elimination of
steady-state error and reduces the settling time, respectively. This method has been used in many
applications, but it relies on measuring the process output in real-time. Numerous process
parameters, including pressure and temperature, can be measured directly using commercially
available real-time in-line sensors. However, microfluidic processes currently lack reliable,
industry-proven inline sensor technologies that can directly measure the important process
variables that need to be controlled such as size, shape, and flow regime. Thus, we use an
artificial intelligence (Al)-based approach to create an indirect sensor, known as a soft-sensor,

when controlling microfluidics.

2.3. Soft sensors

When sensor variables are difficult to measure, soft-sensors can be used to estimate them. There
are three types of soft-sensor models: knowledge-based models that rely on first principles,
black-box models that are data-driven, and hybrid models that combine the two [29]. In this
study, a black-box model consisting of a two-step process is used to estimate the flow regime
and diameter of the process output, gas bubbles. The first step in our process is using a
convolutional neural network (CNN) for image classification. CNNs have played a crucial role in
the development and advancement of computer vision and artificial intelligence (AI) [30]. In this
study, a linear architecture CNN is used to classify the microfluidic output into one of three
regimes: liquid-dominated flow, air-dominated flow, and microbubble flow, as shown in Figure
2. The second step in our process is using a Hough image recognition algorithm for detection of
the microbubbles. This algorithm is designed for feature extraction and gives outputs of their

location and diameter.
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Figure 2. Representative training three flow regimes for CNN: (a) A liquid-dominated flow
regime without bubble generation, (b) bubble generation in the dripping regime, and (c) air-

dominated jetting regime.

Our novel soft-sensor operates as follows: first, a CNN trained for image classification
determines the current flow regime of the process from a snapshot of the device taken by a high-
speed microscope camera. When the process is in a bubble producing dripping regime, an image
recognition algorithm measures the diameter of the bubbles being produced. The combination of
the CNN and image recognition is the soft-sensor output on which the controller acts to match
the bubble diameter to the user-specified setpoint. When the process is not in a bubble producing
flow regime, a direct controller action is taken to return the process to the production of gas
bubbles. Our two-step approach is superior to other microfluidic control techniques because of
its ability to return to the bubble-producing dripping regime when a disturbance causes it to

move into a flow regime in which bubbles are not being produced. Our controller acts in real-
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time and can obtain measurements and adjust setpoints with an average sampling frequency of

108 milliseconds.

2.4. Microfluidic fabrication and operation

Photomasks for microfluidic geometries were purchased from Artnet Pro, Inc. Silicon wafers
were cleaned with IPA and DI water before oxygen plasma cleaning (Anatech) for enhanced
bonding. SU-8 2025 photoresist was spin coated onto the silicon wafer before soft-baking at
65°C for 3 minutes, then at 95°C for 6 minutes. The wafer was exposed to 160 mJ/cm? at 365 nm
intensity (ABM). After exposure, the wafer was post-baked for 2 minutes at 65°C and then for 6
minutes at 95°C. Lastly, the silicon wafer was gently agitated for 8 minutes in SU-8 developer.
PDMS (SYLGARD 184) was mixed in a 10:1 weight ratio of elastomer to curing agent. The
mixture was degassed in a vacuum chamber for 1 hour to remove all bubbles before curing for 1
hour in an 80°F oven. The resulting elastomer mold was cut from the master and oxygen plasma
bonded to a glass slide. 2 wt% PV A was surface coated onto the PDMS for a hydrophilic coating
[12].

The aqueous phase in all experiments was 0.5 wt% SDS dissolved in DI water. The aqueous
phase was administered using a differential pressure controller (Alicat) to pressurize a liquid
reservoir to drive flow into the device. Compressed nitrogen (Airgas) was used for the dispersed
phase and was controlled using a differential pressure controller (Alicat). Images used for the
control scheme were taken on a Nikon eclipse TE200 inverted microscope with 3 different high-
speed cameras, a Photron Mini AX-200, a Phantom Vision Research v7.3, and a Phantom Vision

Research v611 proving the adaptability of this approach across multiple microfluidic setups.
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2.5. Neural network architecture and training

A sequential 19-layer CNN was created using the Keras API inside of Tensorflow. The
architecture contained 4 convolution layers using 3 x 3 convolutions and 2 x 2 max pooling. The
remaining structure was flattened with a dropout layer set at 50%. There were two dense layers,
one with rectified linear activation and the final layer with softmax activation function. The
neural net was trained with 128 x 600 resolution images. 43,554 images were used for neural net
training and the net was validated with an additional 4,839 images. 100% accuracy was achieved

for both training and validation sets within 5 epochs as shown in Figure 3.

1.00 4
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0.90 ~
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Figure 3. Training and validation accuracy of CNN.

2.6. Image recognition and feature extraction

Image recognition was completed using Matlab image recognition functions. Since the bubbles
in this work are circular, the function imfindcircles was used. This built-in function uses a Hough
transform to isolate features and extract their location and size. Hough transforms are techniques

used in computer vision and image analysis for feature extraction [31]. This is used to measure
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the size, position, and uniformity of every bubble present in an image as part of the soft-sensor

output.

3. Results and Discussion

3.1. Ziegler-Nichols tuning

Tuning the PID control parameters is required to achieve reliable controller responses. In this
study, we tune a single-input, single-output (SISO) controller to control the output diameter of
bubbles made in a microfluidic device by varying either the air pressure of the dispersed phase,
or the liquid driving pressure of the continuous phase. Ziegler-Nichols open-loop response
tuning rules are used to acquire initial tuning parameters before adjustments are made to obtain
the desired responses. Ziegler-Nichols tuning is appropriate because the system responses exhibit
first-order plus dead-time behavior (FOPDT). Tuning parameters are obtained without the
controller while monitoring the response to a step change in the manipulated variable. As shown
in the process reaction-curve in Figure 4, a tangent line through the inflection point is drawn to
estimate the delay time (74) and response time (7). Here, u is the step change in the process input,
such as gas pressure, and y is the change in the measured process variable, which is the bubble

diameter herein. These variables are used to calculate controller parameters, where K = 1.2

(TTATL;), ;= 2.0 74 and tp = 0.5 74 [32]. Small changes in tuning parameters are then made to
d

achieve the desired slightly overdamped response from our controller.
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variable to a step change in the manipulated variable used for Ziegler-Nichols open-loop tuning

[31].

For a step pressure increase from 18.7 to 20.3 kPa, an increase in diameter is shown in Figure 5.
Plotting the tangent line to the curve, the delay time is 1.1 second and the response time is 1

second. These yield K- = 0.125 kPa/um, 7; = 2.2 seconds, and tp = 0.55 seconds.
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Figure 5. Diameter response (a) from open-loop step change in pressure from 18.7 kPa to 20.3

kPa (b) using Ziegler-Nichols tuning.

Instead of the gas pressure, the flowrate of the continuous phase is manipulated by varying the
liquid driving pressure. For a driving pressure step change from 31.7 kPa to 29.6 kPa, the delay
time is 1.2 seconds, and the response time is 2.3 seconds, yielding K- =-0.21 kPa/pum, t; = 2.4

seconds, and tp = 0.6 seconds, as shown in Figure 6.
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Figure 6. Diameter response (a) from open-loop step change in flowrate created by a step change

in liquid pressure from 31.7 kPa to 29.6 kPa (b) using Ziegler-Nichols tuning.

3.2. Setpoint Tracking

Setpoint tracking by PID control holds significant importance in optimizing process
performance, ensuring close adherence to desired operating conditions and allowing for switches
to new operating setpoints. For many microfluidic processes, effective changes in bubble/droplet
diameters are required for different applications. For example, the gas bubble diameter is crucial
in determining its resonance frequency, particularly in applications where bubbles serve as a
contrast agent in ultrasound sonography [33]. In the context of microfluidic reactors, the droplet
diameter plays a crucial role in influencing the reaction rates and kinetics of associated chemical

processes [34].
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With our controller, we can dynamically manipulate either the continuous phase (aqueous
flowrate via liquid driving pressure), or the dispersed phase (air pressure) to reach a desired
setpoint, output bubble diameter. Figures 7-10 show the experimental controller actions after a
diameter setpoint changes at time zero. Each color represents a different setpoint change: dashed
lines for setpoint changes, and solid lines for process variable changes. The liquid driving
pressure (aqueous flowrate) is kept constant, and the air pressure is manipulated by the controller
to reach the new setpoint in Figures 7 and 8, where the first shows the response for an increase in
the diameter setpoint and the latter for a decrease in the diameter setpoint. Both responses are
adjusted to be slightly overdamped; that is, having small overshoot before settling to the desired
value, with all responses settling to the new setpoint in under 100 seconds — similar to those in
other microfluidic control studies [20]. This response is more reliable compared to underdamped
systems having large oscillations in diameter and long settling times. Underdamped tuning

parameter responses are shown in Figures S1 and S2.
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Figure 7. Setpoint tracking diameter responses (a) while varying pressure (b) while at constant

aqueous flowrate for increases in diameter setpoint.
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Figure 8. Setpoint tracking diameter responses (a) while varying pressure (b) while at constant

aqueous flowrate for decreases in diameter setpoint.

We also perform tests with constant pressure while manipulating the aqueous flowrate via liquid
driving pressure to achieve the new setpoint as shown in Figures 9 and 10. The controller can
achieve changes in setpoint for increases in diameter as shown in Figure 9 and for decreases in
diameter as shown in Figure 10. Again, these responses are overdamped, not allowing any
overshoot, and it is seen that response times are considerably faster using pressure driven flow
for the aqueous phase than widely used commercially available syringe pumps seen in Figures

S3 and S4.
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3.3. Disturbance Rejection

Disturbance rejection is needed to overcome all potential disruptions during process operation.
This is especially important in intricate microfluidic processes in which minute variations can
have large impacts on the process outputs due to inherently-small length scales. Such
disturbances in microbubble production occur due to changes in air pressure, aqueous phase
flowrate, fouling, clogging, changes in wetting properties, and external factors that cannot be
anticipated [11,12,14]. For example, a random physical vibration such as one produced by
motion of a person near the microfluidic set-up can significantly impact the uniformity of the

resulting bubbles.

Our control system is superior to many microfluidic controllers because its CNN architecture
allows it to recover from sharp disturbances that would otherwise move to non-bubble generating
flow regimes, as shown in Figures 11 and 12. In Figure 12a, there are no bubbles being produced
at a pressure of 29.3 kPa, so the controller linearly increases the pressure until bubbles are
generated and the controller obtains an error for PID diameter control. The onset of bubble
production occurs 21.5 seconds later at a breakthrough pressure of 41.9 kPa shown in Figure
12b. Now that bubbles are being produced and the controller can measure an error, PID control
takes over and reduces the pressure to 35.7 kPa to reach the intended setpoint shown in Figure
12¢. Basic PID control cannot achieve this transition to bubble creation because without bubbles,
there is no way to obtain the current error. A recovery of flow regime video is shown in Video
S5. Although neural networks for microfluidics control have been reported, their controllers are

trained in the bubble generating regime only and do not account for the complex nature of bubble
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346  Figure 12. Time series response to sharp disturbance knocking flow out of a bubble producing
347  flow regime. (a) System that has been disturbed and is in a liquid dominated flow regime — no
348  longer producing bubbles. (b) Moment breakthrough pressure is reached by CNN allowing

349  bubbles to be produced. (c) Controller continued to reduce the pressure from the breakthrough
350  pressure to reach the setpoint diameter of 70 pum.

351

352  To track the CNN's activation frequency in disturbance recovery, a one-hour test is conducted at
353  a constant setpoint, beginning with a dispersed phase pressure of 0 kPa. The CNN increases the
354  pressure to initiate bubble production, after which PID control maintains the setpoint. The CNN

355 activates if disturbances push the system into liquid- or air-dominated flow regimes. Over the

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4920634
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hour, PID control maintained the setpoint 99.2% of the time, but the CNN's disturbance recovery
is crucial for sustained bubble production, as shown in Figure S6. This experiment demonstrates
the controller's ability to start from a zero pressure condition using the CNN to drive the pressure

up into the bubble production regime.

In addition to large disturbances, our controller overcomes disturbances small enough to create
error only in the bubble diameter. As mentioned, two separate control schemes can be employed:
altering dispersed phase pressure to regain the setpoint after a disturbance in flowrate as shown
in Figure 13 and manipulating flowrate by changing liquid driving pressure to maintain setpoint
after a disturbance in pressure as shown in Figure 14. The former shows a slightly overdamped
response as the pressure slowly decreases without overshoot to regain the diameter setpoint after
the flowrate disturbance. The pressure response is able to regain the setpoint in under 20
seconds. The latter is also a slightly overdamped response to return the diameter to the setpoint
following a sharp increase in dispersed phase pressure that causes the diameter to increase
quickly above the setpoint. The controller increases the liquid driving pressure and thus the

aqueous flowrate returns the bubbles to the setpoint in only 20 seconds.
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378  Figure 14. Diameter response (a) to maintain the setpoint value by varying the liquid driving
379  pressure (¢) to overcome an air pressure disturbance (b).
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381  Another important aspect of disturbance rejection is the ability to remain stable for long periods
382  oftime. A typical operating shift in manufacturing industries in the US and many countries is
383  eight hours [35] during which many changes in operating conditions can occur. Figure 15 shows
384  performance of a gas bubble generation process left unattended without control measures (i.e.,
385 the flowrate and the pressure are kept constant). Over extended durations, frequent disruptions in
386  flow conditions lead to significant variations in the output bubble size. Remarkably, only 2.16%
387  of the produced bubbles fall within 5% of the initial bubble diameter. The exact cause of these
388  disruptions is unknown, necessitating the implementation of a control system to counteract them,
389  as they cannot be systematically eliminated from the process.
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392  Figure 15. Long-term diameter response (a) of an open-loop control system with constant air
393  pressure (b) at constant aqueous flowrate.
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This drastic variability is avoided with control action, as shown in Figure 16. Despite
disturbances, the controller adjusts the pressure to maintain the setpoint. Throughout the eight-
hour period, our controller achieved 99.2% accuracy, with bubbles deviating by no more than
5% from the setpoint. Notably, the pressure required to satisfy the setpoint must be increased
gradually by over 50%; while we do not fully understand the physical origin of such an
adjustment in the pressure, this result nevertheless highlights the importance of feedback control

to enable stable and robust microfluidic manufacturing.

(a)

= =

o w

o =)
1 1

TP PR

Diameter (um)
(9]
o

o

o

5000 10000 15000 20000 25000
(b) f

=)}
o
L

Pressure (kPa)
wu
o

s
o
1

0 5000 10000 15000 20000 25000
Time (s)

Figure 16. Long-term diameter response (a) of a closed-loop control system with varying air

pressure (b) at constant aqueous flowrate.

4. Conclusions

Microfluidic devices offer precise control for producing droplets and bubbles crucial for various
industries. Transitioning from laboratory to industrial-scale operations poses challenges

presented by disturbances, fouling, and changes in device performance. These necessitate
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continuous monitoring and adjustments to manipulated variables that maintain user-specified
setpoints. The integrating feedback controllers herein enhance product uniformity and reduce
the labor-intensive tasks associated with process maintenance, addressing a critical need in
scaling-up microfluidic processes for industrial applications. Our experimental results show that
PID control is a resilient feedback control mechanism, relying on a soft-sensor to obtain error
measurements using artificial intelligence in the face of unreliable physical measurements. Our
CNN-driven, soft-sensor identifies flow regimes enabling the controller to regain bubble-
producing flow regimes when shifted by disturbances to undesired regimes. In addition to self-
recovery, our controller reduces errors while maintaining setpoints, countering disturbances, and
stabilizing operation over long times. Our controller permits over 99% of bubbles produced
during 8-hours to fall within 5% of setpoint diameters; in contrast to only 2.16% when control
action is not implemented. Leveraging a combination of machine learning and image recognition
software, soft-sensors herein enable feedback control in droplet-based microfluidic systems,
potentially enhancing control over the size, shape, and functionality of microfluidic-generated

emulsions.
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