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10 Abstract

11 Microfluidics has emerged as a foundational process for creating highly uniform emulsions and 

12 bubbles. To enable integration of microfluidic platforms into industrial processes, achieving 

13 precise control over the size uniformity of microfluidic-generated bubbles and emulsions is 

14 crucial. Even if the external variables such as flow rates or pressures are kept constant, 

15 microfluidic processes can be easily disturbed by unknown factors that would substantially 

16 compromise the uniformity of resulting emulsions and bubbles. In this study, we introduce a 

17 two-step soft-sensor approach that combines a convolutional neural network (CNN) and an 

18 image recognition algorithm for feature extraction to detect both the flow regime and the size 

19 and uniformity of resulting bubbles. By using the CNN to detect flow regimes, our controller is 

20 able to restore the bubble-producing flow regime in response to disturbances. Beyond self-

21 recovery, our controller actively adjusts to minimize errors, maintain setpoints, mitigate 

22 disturbances, and ensure system stability over extended periods. 99.2% of bubbles produced 

23 during an 8-hour period remain within 5% of the setpoint with our controller taking action. By 

24 leveraging the soft sensor and artificial intelligence-assisted feedback control, our work presents 

25 a widely applicable approach for precise and automated control of microfluidics in diverse 

26 applications.

27

28 1. Introduction

29 Microfluidics enables the production and manipulation of multi-phasic mixtures such as gas 

30 bubbles, liquid droplets and multiple emulsions with unparalleled precision and control. 
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31 Leveraging advanced techniques in micro/nano-fabrication, precise microchannels can be 

32 manufactured to control droplets and bubbles for a wide range of advanced applications [1]. For 

33 example, chemical reactions can be induced in single droplets, providing a unique platform to 

34 conduct high-throughput analyses and synthesis with minimal reagents use and reduced waste 

35 [2–4]. Furthermore, droplet microfluidics facilitates the encapsulation of delicate biological 

36 materials such as cells and proteins under mild conditions that preserve their functionality and 

37 viability, which is particularly well-suited for the development of low-cost and highly efficient 

38 biomedical diagnostics and therapeutics [5–7]. The precision and scalability of droplet 

39 microfluidics enables fabrication of functional particles such as microbubbles, microcapsules and 

40 nanoparticles with precisely designed morphology and functionality, enhancing disease 

41 diagnostics as well as controlled release and targeted delivery of various pharmaceutical actives 

42 [8–10].

43 Achieving consistent uniformity in the production of droplets and bubbles throughout the 

44 operation of microfluidic devices is crucial for harnessing the full benefits of this technology. 

45 The maintenance of uniformity is, however, challenged by several factors, which necessitates 

46 continuous user intervention to adjust flow rates and pressures, ensuring that the droplet and 

47 bubble production maintains the desired dimensions and properties. Even seemingly negligible 

48 changes in operating conditions can cause large fluctuations in performance of device output 

49 because of the sensitivity of flow behaviors of fluids at the microscopic scale. Over time, the 

50 performance of microfluidic devices may be further compromised by issues such as surface 

51 fouling, changes in wetting properties, channel clogging and the solvent-induced swelling of the 

52 microfluidic devices [11–13]. These factors introduce additional layers of complexity in 
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53 achieving and maintaining the uniformity of droplet and bubble generation, posing significant 

54 challenges to the scalability and reliability of microfluidic applications.

55

56 Developing autonomous microfluidic systems capable of self-adapting to changing conditions 

57 would enable the precise formation of a wide array of droplets and bubbles with complex 

58 composition and morphology without direct operator intervention [14]. The realization of such a 

59 capability will enhance the efficiency and effectiveness of droplet and bubble microfluidics and 

60 simultaneously lead to new applications that leverage the full potential of this versatile 

61 technology.

62

63 A few recent studies have demonstrated the ability to control droplet microfluidics, using 

64 technologies such as neural networks and reinforcement learning to gather insight on flow 

65 regimes in microfluidics over various flow conditions [15,16]. Other techniques involve the use 

66 of impedance electronics embedded into the microfluidic device as a sensor for measuring 

67 microbubble diameter as a function of the voltage measured or measuring the interference 

68 pattern created by focusing a laser on droplets in the outlet channel using piezoelectric transducer 

69 [17,18]. Vision Development Module within LabVIEW (National Instruments™) has been used 

70 for droplet detection and control using a virtual instrument [19]. In addition, feedback sensors 

71 have been developed for precise control of flowrates and pressures in microfluidic devices off-

72 chip [20,21]. Despite these advances, many of these approaches use highly sophisticated sensing 

73 techniques that involve specialized equipment not traditionally used in microfluidics, do not have 

74 the ability to easily measure process variables on-chip, and do not have the ability to control the 
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75 system when it is disturbed to reach different flow regimes, such as one in which bubbles or 

76 droplets are not produced. 

77

78 In this study, we introduce an autonomous microfluidics system that relies simply on 

79 microscopic imaging and is trained with a convolutional neural network (CNN) to return the 

80 process to the desired microbubble production flow regime. Our system is able to control the size 

81 of microfluidic bubble production using only commercially available pressure controllers, a 

82 microscope, and a high-speed camera, all of which are commonly employed in microfluidic 

83 setups. We generate gas bubbles in a flow-focusing device by applying pressure to the dispersed 

84 gas phase using a high-pressure nitrogen canister. Additionally, we use pressure-driven flow, 

85 also from a high-pressure nitrogen canister, to pressurize a liquid reservoir, thereby pushing the 

86 liquid into the microfluidic chip. Pressure driven flow of the aqueous phase is chosen over 

87 commercially available syringe pumps because of their significantly reduced response times 

88 without periodic fluctuations [22]. Gas bubbles are selected over liquid droplets due to their 

89 greater size variability for various reasons including the compressibility of the gas phase, large 

90 interfacial tension, and significantly different viscosity of the two phases, necessitating enhanced 

91 control. 

92

93 Our control system actively adjusts either the liquid driving pressure or gas pressure to ensure 

94 the bubbles being produced match the user-specified setpoint for the bubble diameter while 

95 showing effective setpoint tracking, disturbance rejection, and stability over an eight-hour 

96 period. Potentially, our approach can be trained to control the shape of particles produced by 
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97 microfluidics such as rods and discs, and higher-order geometries such as double emulsions and 

98 Janus droplets.

99 2. Materials and Methods

100 2.1. Flow focusing generator for gas-bubble production 

101 We use a well-established flow-focusing generator to produce gas bubbles [23,24]. This 

102 geometry splits the continuous phase into two streams which subsequently surround and pinch 

103 off the dispersed phase at a cross junction, as shown in Figure 1. The symmetry of the junction 

104 allows for more flexibility in the size and frequency of bubble generation. The immiscibility of 

105 the two phases forces bubbles to form through either a dripping or jetting mechanism [25]. The 

106 dripping regime involves the periodic breakup of a fluid stream into bubbles due to capillary 

107 instability. This instability arises from the interplay of surface tension and viscous forces. The 

108 dripping frequency is governed by the capillary number (Ca), representing the ratio of viscous to 

109 capillary forces. The jetting regime involves the stretching of a fluid stream into an extended jet 

110 due to the dominance of inertial forces or viscous forces over capillary forces. Microfluidic 

111 droplets and bubbles produced in the jetting regime are larger and less uniform compared to 

112 those formed in the dripping regime due to the unfixed interface position during breakup [26]. 

113 Controlling the flows of the two fluid phases to maintain microfluidic generation in the dripping 

114 regime is critical to maintaining the uniformity of resulting droplets and bubbles [27]. 

115
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116
117 Figure 1. Control schematic using CNN & image recognition for PID control of microfluidic 

118 bubble generation. Created with BioRender.com.

119

120 In this study, we use a flow-focusing geometry to produce nitrogen gas (dispersed phase) 

121 bubbles in an aqueous phase of 0.5 wt% sodium dodecyl sulfate (SDS) dissolved in DI water 

122 (continuous phase). The dispersed phase is injected into the device as pressurized nitrogen gas 

123 controlled by a differential pressure controller and the continuous phase is injected by using a 

124 differential pressure controller to adjust the pressure in a pressurized liquid reservoir and thus 

125 drive flow into the microfluidic device as depicted in Figure 1. All microfluidic devices in this 
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126 study have undergone hydrophilic-surface treatment to ensure stable formation of gas bubbles 

127 using a 2 wt% polyvinyl alcohol (PVA) solution [12].

128 2.2. Proportional-integral-derivative (PID) control

129 PID control is one of the most fundamental types of control and is widely used in industrial 

130 applications due to its simplicity and effectiveness [28]. It has been widely studied, can address a 

131 wide range of process behaviors, and is straightforward to implement, making it a natural choice 

132 for control of microfluidics. PID feedback control operates by continuously comparing the 

133 desired setpoint to the process output, giving the error, e. The proportional term responds to the 

134 current error, the integral term accumulates past errors to eliminate steady-state discrepancies 

135 (offset), and the derivative term accounts for the rate of change of the error, as shown in 

136 Equation 1. 

137 𝑢(𝑡) = 𝐾𝐶𝑒(𝑡) +
𝐾𝐶
𝜏𝐼 ∫

𝑡
0 𝑒(𝑡)𝑑𝑡  + 𝐾𝐶𝜏𝐷

𝑑𝑒
𝑑𝑡 + 𝑐𝑠 (1)

138 where 𝐾𝑐 is the proportional gain, 𝜏𝐼 is the integral time-constant in minutes, 𝜏𝐷 is the derivative 

139 time constant in minutes, and 𝑐𝑠 is the controller bias (actuating signal when 𝑒=0) [28]. These 

140 terms are combined to compute the controller output (𝑢(𝑡)), aiming to reduce the error and 

141 maintain stable and precise control of the process. In this study, two separate control schemes are 

142 explored: manipulating the pressure of the dispersed air phase to control microbubble diameter 

143 and manipulating the liquid driving pressure of the continuous phase to control microbubble 

144 diameter as illustrated in the control scheme of Figure 1. 

145

146 Altering the PID tuning parameters 𝐾𝐶, 𝜏𝐼 , and 𝜏𝐷 can significantly influence the response of the 

147 controller; increasing the proportional gain enhances responsiveness, but may lead to 
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148 overshooting, while adjusting the integral and derivative time-constants affects the elimination of 

149 steady-state error and reduces the settling time, respectively. This method has been used in many 

150 applications, but it relies on measuring the process output in real-time. Numerous process 

151 parameters, including pressure and temperature, can be measured directly using commercially 

152 available real-time in-line sensors. However, microfluidic processes currently lack reliable, 

153 industry-proven inline sensor technologies that can directly measure the important process 

154 variables that need to be controlled such as size, shape, and flow regime. Thus, we use an 

155 artificial intelligence (AI)-based approach to create an indirect sensor, known as a soft-sensor, 

156 when controlling microfluidics.

157

158 2.3. Soft sensors

159 When sensor variables are difficult to measure, soft-sensors can be used to estimate them. There 

160 are three types of soft-sensor models: knowledge-based models that rely on first principles, 

161 black-box models that are data-driven, and hybrid models that combine the two [29]. In this 

162 study, a black-box model consisting of a two-step process is used to estimate the flow regime 

163 and diameter of the process output, gas bubbles. The first step in our process is using a 

164 convolutional neural network (CNN) for image classification. CNNs have played a crucial role in 

165 the development and advancement of computer vision and artificial intelligence (AI) [30]. In this 

166 study, a linear architecture CNN is used to classify the microfluidic output into one of three 

167 regimes: liquid-dominated flow, air-dominated flow, and microbubble flow, as shown in Figure 

168 2. The second step in our process is using a Hough image recognition algorithm for detection of 

169 the microbubbles. This algorithm is designed for feature extraction and gives outputs of their 

170 location and diameter.
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171

172 Figure 2. Representative training three flow regimes for CNN: (a) A liquid-dominated flow 

173 regime without bubble generation, (b) bubble generation in the dripping regime, and (c) air-

174 dominated jetting regime.

175

176 Our novel soft-sensor operates as follows: first, a CNN trained for image classification 

177 determines the current flow regime of the process from a snapshot of the device taken by a high-

178 speed microscope camera. When the process is in a bubble producing dripping regime, an image 

179 recognition algorithm measures the diameter of the bubbles being produced. The combination of 

180 the CNN and image recognition is the soft-sensor output on which the controller acts to match 

181 the bubble diameter to the user-specified setpoint. When the process is not in a bubble producing 

182 flow regime, a direct controller action is taken to return the process to the production of gas 

183 bubbles. Our two-step approach is superior to other microfluidic control techniques because of 

184 its ability to return to the bubble-producing dripping regime when a disturbance causes it to 

185 move into a flow regime in which bubbles are not being produced. Our controller acts in real-
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186 time and can obtain measurements and adjust setpoints with an average sampling frequency of 

187 108 milliseconds. 

188 2.4. Microfluidic fabrication and operation 

189 Photomasks for microfluidic geometries were purchased from Artnet Pro, Inc. Silicon wafers 

190 were cleaned with IPA and DI water before oxygen plasma cleaning (Anatech) for enhanced 

191 bonding. SU-8 2025 photoresist was spin coated onto the silicon wafer before soft-baking at 

192 65°C for 3 minutes, then at 95°C for 6 minutes. The wafer was exposed to 160 mJ/cm2 at 365 nm 

193 intensity (ABM). After exposure, the wafer was post-baked for 2 minutes at 65°C and then for 6 

194 minutes at 95°C. Lastly, the silicon wafer was gently agitated for 8 minutes in SU-8 developer. 

195 PDMS (SYLGARD 184) was mixed in a 10:1 weight ratio of elastomer to curing agent. The 

196 mixture was degassed in a vacuum chamber for 1 hour to remove all bubbles before curing for 1 

197 hour in an 80°F oven. The resulting elastomer mold was cut from the master and oxygen plasma 

198 bonded to a glass slide. 2 wt% PVA was surface coated onto the PDMS for a hydrophilic coating 

199 [12].

200 The aqueous phase in all experiments was 0.5 wt% SDS dissolved in DI water. The aqueous 

201 phase was administered using a differential pressure controller (Alicat) to pressurize a liquid 

202 reservoir to drive flow into the device. Compressed nitrogen (Airgas) was used for the dispersed 

203 phase and was controlled using a differential pressure controller (Alicat). Images used for the 

204 control scheme were taken on a Nikon eclipse TE200 inverted microscope with 3 different high-

205 speed cameras, a Photron Mini AX-200, a Phantom Vision Research v7.3, and a Phantom Vision 

206 Research v611 proving the adaptability of this approach across multiple microfluidic setups.
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207 2.5. Neural network architecture and training 

208 A sequential 19-layer CNN was created using the Keras API inside of Tensorflow. The 

209 architecture contained 4 convolution layers using 3 x 3 convolutions and 2 x 2 max pooling. The 

210 remaining structure was flattened with a dropout layer set at 50%. There were two dense layers, 

211 one with rectified linear activation and the final layer with softmax activation function. The 

212 neural net was trained with 128 x 600 resolution images. 43,554 images were used for neural net 

213 training and the net was validated with an additional 4,839 images. 100% accuracy was achieved 

214 for both training and validation sets within 5 epochs as shown in Figure 3. 

215

216 Figure 3. Training and validation accuracy of CNN. 

217 2.6. Image recognition and feature extraction 

218 Image recognition was completed using Matlab image recognition functions. Since the bubbles 

219 in this work are circular, the function imfindcircles was used. This built-in function uses a Hough 

220 transform to isolate features and extract their location and size. Hough transforms are techniques 

221 used in computer vision and image analysis for feature extraction [31]. This is used to measure 
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222 the size, position, and uniformity of every bubble present in an image as part of the soft-sensor 

223 output.

224 3. Results and Discussion

225 3.1. Ziegler-Nichols tuning

226 Tuning the PID control parameters is required to achieve reliable controller responses. In this 

227 study, we tune a single-input, single-output (SISO) controller to control the output diameter of 

228 bubbles made in a microfluidic device by varying either the air pressure of the dispersed phase, 

229 or the liquid driving pressure of the continuous phase. Ziegler-Nichols open-loop response 

230 tuning rules are used to acquire initial tuning parameters before adjustments are made to obtain 

231 the desired responses. Ziegler-Nichols tuning is appropriate because the system responses exhibit 

232 first-order plus dead-time behavior (FOPDT). Tuning parameters are obtained without the 

233 controller while monitoring the response to a step change in the manipulated variable.  As shown 

234 in the process reaction-curve in Figure 4, a tangent line through the inflection point is drawn to 

235 estimate the delay time (𝜏𝑑) and response time (𝜏). Here, u is the step change in the process input, 

236 such as gas pressure, and y is the change in the measured process variable, which is the bubble 

237 diameter herein. These variables are used to calculate controller parameters, where 𝐾𝐶 = 1.2

238 ( 𝜏𝛥𝑢𝜏𝑑𝛥𝑦
), 𝜏𝐼 = 2.0 𝜏𝑑 𝑎𝑛𝑑 𝜏𝐷 = 0.5 𝜏𝑑 [32]. Small changes in tuning parameters are then made to 

239 achieve the desired slightly overdamped response from our controller.

240

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4920634

Pr
ep

rin
t n

ot 
pe

er 
rev

iew
ed



241

242 Figure 4. Process reaction curve for a first-order plus dead time (FOPDT) response in the process 

243 variable to a step change in the manipulated variable used for Ziegler-Nichols open-loop tuning 

244 [31].

245

246 For a step pressure increase from 18.7 to 20.3 kPa, an increase in diameter is shown in Figure 5.  

247 Plotting the tangent line to the curve, the delay time is 1.1 second and the response time is 1 

248 second. These yield KC  = 0.125 kPa/μm, 𝜏𝐼 =  2.2 seconds, and 𝜏𝐷 =  0.55 seconds. 

249
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250

251 Figure 5. Diameter response (a) from open-loop step change in pressure from 18.7 kPa to 20.3 

252 kPa (b) using Ziegler-Nichols tuning.

253

254 Instead of the gas pressure, the flowrate of the continuous phase is manipulated by varying the 

255 liquid driving pressure. For a driving pressure step change from 31.7 kPa to 29.6 kPa, the delay 

256 time is 1.2 seconds, and the response time is 2.3 seconds, yielding KC  = -0.21 kPa/μm, 𝜏𝐼 =  2.4 

257 seconds, and 𝜏𝐷 =  0.6 seconds, as shown in Figure 6.
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258

259 Figure 6. Diameter response (a) from open-loop step change in flowrate created by a step change 

260 in liquid pressure from 31.7 kPa to 29.6 kPa (b) using Ziegler-Nichols tuning.

261

262 3.2. Setpoint Tracking

263 Setpoint tracking by PID control holds significant importance in optimizing process 

264 performance, ensuring close adherence to desired operating conditions and allowing for switches 

265 to new operating setpoints. For many microfluidic processes, effective changes in bubble/droplet 

266 diameters are required for different applications. For example, the gas bubble diameter is crucial 

267 in determining its resonance frequency, particularly in applications where bubbles serve as a 

268 contrast agent in ultrasound sonography [33]. In the context of microfluidic reactors, the droplet 

269 diameter plays a crucial role in influencing the reaction rates and kinetics of associated chemical 

270 processes [34]. 

271
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272 With our controller, we can dynamically manipulate either the continuous phase (aqueous 

273 flowrate via liquid driving pressure), or the dispersed phase (air pressure) to reach a desired 

274 setpoint, output bubble diameter. Figures 7-10 show the experimental controller actions after a 

275 diameter setpoint changes at time zero. Each color represents a different setpoint change: dashed 

276 lines for setpoint changes, and solid lines for process variable changes.  The liquid driving 

277 pressure (aqueous flowrate) is kept constant, and the air pressure is manipulated by the controller 

278 to reach the new setpoint in Figures 7 and 8, where the first shows the response for an increase in 

279 the diameter setpoint and the latter for a decrease in the diameter setpoint. Both responses are 

280 adjusted to be slightly overdamped; that is, having small overshoot before settling to the desired 

281 value, with all responses settling to the new setpoint in under 100 seconds – similar to those in 

282 other microfluidic control studies [20]. This response is more reliable compared to underdamped 

283 systems having large oscillations in diameter and long settling times. Underdamped tuning 

284 parameter responses are shown in Figures S1 and S2.

285

286 Figure 7. Setpoint tracking diameter responses (a) while varying pressure (b) while at constant 

287 aqueous flowrate for increases in diameter setpoint. 
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288

289 Figure 8. Setpoint tracking diameter responses (a) while varying pressure (b) while at constant 

290 aqueous flowrate for decreases in diameter setpoint.

291

292 We also perform tests with constant pressure while manipulating the aqueous flowrate via liquid 

293 driving pressure to achieve the new setpoint as shown in Figures 9 and 10. The controller can 

294 achieve changes in setpoint for increases in diameter as shown in Figure 9 and for decreases in 

295 diameter as shown in Figure 10. Again, these responses are overdamped, not allowing any 

296 overshoot, and it is seen that response times are considerably faster using pressure driven flow 

297 for the aqueous phase than widely used commercially available syringe pumps seen in Figures 

298 S3 and S4. 

299

300

301
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302

303 Figure 9. Setpoint tracking diameter responses (a) while varying liquid driving pressure (b) while 

304 at constant air pressure for increases in diameter setpoint. 

305

306 Figure 10. Setpoint tracking diameter responses (a) while varying liquid driving pressure (b) 

307 while at constant air pressure for decreases in diameter setpoint.

308
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309 3.3. Disturbance Rejection

310 Disturbance rejection is needed to overcome all potential disruptions during process operation. 

311 This is especially important in intricate microfluidic processes in which minute variations can 

312 have large impacts on the process outputs due to inherently-small length scales. Such 

313 disturbances in microbubble production occur due to changes in air pressure, aqueous phase 

314 flowrate, fouling, clogging, changes in wetting properties, and external factors that cannot be 

315 anticipated [11,12,14]. For example, a random physical vibration such as one produced by 

316 motion of a person near the microfluidic set-up can significantly impact the uniformity of the 

317 resulting bubbles. 

318

319 Our control system is superior to many microfluidic controllers because its CNN architecture 

320 allows it to recover from sharp disturbances that would otherwise move to non-bubble generating 

321 flow regimes, as shown in Figures 11 and 12. In Figure 12a, there are no bubbles being produced 

322 at a pressure of 29.3 kPa, so the controller linearly increases the pressure until bubbles are 

323 generated and the controller obtains an error for PID diameter control. The onset of bubble 

324 production occurs 21.5 seconds later at a breakthrough pressure of 41.9 kPa shown in Figure 

325 12b. Now that bubbles are being produced and the controller can measure an error, PID control 

326 takes over and reduces the pressure to 35.7 kPa to reach the intended setpoint shown in Figure 

327 12c. Basic PID control cannot achieve this transition to bubble creation because without bubbles, 

328 there is no way to obtain the current error. A recovery of flow regime video is shown in Video 

329 S5. Although neural networks for microfluidics control have been reported, their controllers are 

330 trained in the bubble generating regime only and do not account for the complex nature of bubble 
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331 breakup at elevated pressures or flowrates often needed to achieve breakthrough and induce 

332 breakup [16]. 

333

334

335 Figure 11. Diameter responses (a) while varying air pressure (b) to overcome liquid-dominated 

336 flow by reaching the breakthrough pressure of 41.9 kPa and tapering down to 35.7 kPa to 

337 achieve a setpoint of 70 μm corresponding to images in Figure 12. Diameter values of zero 

338 indicate no bubbles production. 

339

340

341

342

343
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344

345 (a)                  (b)                  (c) 

346 Figure 12. Time series response to sharp disturbance knocking flow out of a bubble producing 

347 flow regime. (a) System that has been disturbed and is in a liquid dominated flow regime – no 

348 longer producing bubbles. (b) Moment breakthrough pressure is reached by CNN allowing 

349 bubbles to be produced. (c) Controller continued to reduce the pressure from the breakthrough 

350 pressure to reach the setpoint diameter of 70 μm. 

351

352 To track the CNN's activation frequency in disturbance recovery, a one-hour test is conducted at 

353 a constant setpoint, beginning with a dispersed phase pressure of 0 kPa. The CNN increases the 

354 pressure to initiate bubble production, after which PID control maintains the setpoint. The CNN 

355 activates if disturbances push the system into liquid- or air-dominated flow regimes. Over the 
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356 hour, PID control maintained the setpoint 99.2% of the time, but the CNN's disturbance recovery 

357 is crucial for sustained bubble production, as shown in Figure S6. This experiment demonstrates 

358 the controller's ability to start from a zero pressure condition using the CNN to drive the pressure 

359 up into the bubble production regime.

360

361 In addition to large disturbances, our controller overcomes disturbances small enough to create 

362 error only in the bubble diameter. As mentioned, two separate control schemes can be employed: 

363 altering dispersed phase pressure to regain the setpoint after a disturbance in flowrate as shown 

364 in Figure 13 and manipulating flowrate by changing liquid driving pressure to maintain setpoint 

365 after a disturbance in pressure as shown in Figure 14. The former shows a slightly overdamped 

366 response as the pressure slowly decreases without overshoot to regain the diameter setpoint after 

367 the flowrate disturbance. The pressure response is able to regain the setpoint in under 20 

368 seconds.  The latter is also a slightly overdamped response to return the diameter to the setpoint 

369 following a sharp increase in dispersed phase pressure that causes the diameter to increase 

370 quickly above the setpoint. The controller increases the liquid driving pressure and thus the 

371 aqueous flowrate returns the bubbles to the setpoint in only 20 seconds. 

372
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373

374 Figure 13. Diameter response (a) to maintain the setpoint value by varying the air pressure (b) to 

375 overcome a flowrate disturbance caused by a change in liquid driving pressure (c). 

376

377

378 Figure 14. Diameter response (a) to maintain the setpoint value by varying the liquid driving 

379 pressure (c) to overcome an air pressure disturbance (b).

380
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381 Another important aspect of disturbance rejection is the ability to remain stable for long periods 

382 of time. A typical operating shift in manufacturing industries in the US and many countries is 

383 eight hours [35] during which many changes in operating conditions can occur. Figure 15 shows 

384 performance of a gas bubble generation process left unattended without control measures (i.e., 

385 the flowrate and the pressure are kept constant). Over extended durations, frequent disruptions in 

386 flow conditions lead to significant variations in the output bubble size. Remarkably, only 2.16% 

387 of the produced bubbles fall within 5% of the initial bubble diameter. The exact cause of these 

388 disruptions is unknown, necessitating the implementation of a control system to counteract them, 

389 as they cannot be systematically eliminated from the process.

390

391

392 Figure 15. Long-term diameter response (a) of an open-loop control system with constant air 

393 pressure (b) at constant aqueous flowrate.

394
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395 This drastic variability is avoided with control action, as shown in Figure 16. Despite 

396 disturbances, the controller adjusts the pressure to maintain the setpoint. Throughout the eight-

397 hour period, our controller achieved 99.2% accuracy, with bubbles deviating by no more than 

398 5% from the setpoint. Notably, the pressure required to satisfy the setpoint must be increased 

399 gradually by over 50%; while we do not fully understand the physical origin of such an 

400 adjustment in the pressure, this result nevertheless highlights the importance of feedback control 

401 to enable stable and robust microfluidic manufacturing.

402

403

404 Figure 16. Long-term diameter response (a) of a closed-loop control system with varying air 

405 pressure (b) at constant aqueous flowrate.

406 4. Conclusions

407 Microfluidic devices offer precise control for producing droplets and bubbles crucial for various 

408 industries. Transitioning from laboratory to industrial-scale operations poses challenges 

409 presented by disturbances, fouling, and changes in device performance.  These necessitate 
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410 continuous monitoring and adjustments to manipulated variables that maintain user-specified 

411 setpoints.  The integrating feedback controllers herein enhance product uniformity and reduce 

412 the labor-intensive tasks associated with process maintenance, addressing a critical need in 

413 scaling-up microfluidic processes for industrial applications. Our experimental results show that 

414 PID control is a resilient feedback control mechanism, relying on a soft-sensor to obtain error 

415 measurements using artificial intelligence in the face of unreliable physical measurements. Our 

416 CNN-driven, soft-sensor identifies flow regimes enabling the controller to regain bubble-

417 producing flow regimes when shifted by disturbances to undesired regimes. In addition to self-

418 recovery, our controller reduces errors while maintaining setpoints, countering disturbances, and 

419 stabilizing operation over long times. Our controller permits over 99% of bubbles produced 

420 during 8-hours to fall within 5% of setpoint diameters; in contrast to only 2.16% when control 

421 action is not implemented. Leveraging a combination of machine learning and image recognition 

422 software, soft-sensors herein enable feedback control in droplet-based microfluidic systems, 

423 potentially enhancing control over the size, shape, and functionality of microfluidic-generated 

424 emulsions.
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