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ABSTRACT
In this article, we develop a computational approach for estimating
the most likely trajectories describing rare events that correspond to
the emergence of non-dominant genotypes. This work is based on the
large deviations approach for discrete Markov chains describing the
genetic evolution of large bacterial populations. We demonstrate that
a gradient descent algorithm developed in this article results in the fast
and accurate computation of most likely trajectories for a large number
of bacterial genotypes. We supplement our analysis with extensive
numerical simulations demonstrating the computational advantage of
the designed gradient descent algorithm over other, more simplified,
approaches.

ARTICLE HISTORY
5 September 2023
22 October 2024

KEYWORDS
Discrete-time Markov chain;
bacterial evolution;
large-deviations; gradient
descent

1. Introduction

Many biological systems can be modeled as random complex systems with a large number
of individual interacting agents. The genetic evolution of large bacterial or viral popula-
tions is one such example. Moreover, in many applications, random mutations play an
important role in describing rare events, such as the emergence of non-dominant genotypes
with new biological properties. Examples of such rare events have been observed in long
genetic experiments of Escherichia coli. For instance, variation of resistance levels in bacterial
populations without exposure to antibiotics [1], the emergence of genotypes with lower
fitness but with a higher degree of adaptation or evolvability [2, 3], or the emergence
of wider cell sizes but later reverting to the original cell shape [4] are only a few such
examples.

Large-deviations theory provides a unified and efficient framework for studying rare events
in a wide range of random models, such as Markov chains (MCs), Gaussian processes,
stochastic differential equations, etc. (We refer to [5–13] for examples.) For instance, for
random evolution of large populations, interesting large deviation results were obtained in
[14–17]. These works study the Darwinian evolution of asexual populations in the vector
space of phenotypic traits that are transmitted to offspring with rare variations due to
gene mutations. In this model, competition for limited resources forces a roughly periodic
selection.
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In the present work, we focus on rare random genetic evolutionary events in bacterial
populations, such as the emergence of a low-fitness genotype that reaches high frequency
in the population. Computing the most likely evolutionary paths realizing such rare genetic
events is a complicated mathematical problem, even for simplified stochastic models of
bacterial population evolution. The stochastic genetic evolution of large bacterial populations
observed in long-term laboratory experiments (see, e.g., [18–23]) has typically beenmodeled
by simplified MC models (see Section 2), which are fitted to experimental data. To analyze
rare events for these types of MCmodels, we developed [24, 25] a large deviations theoretical
framework summarized in Section 3.

The numerical computation of the most likely evolutionary paths realizing rare genetic
events involves an optimization problem and, thus, is computationally intractable for straight-
forward greedy search algorithms as soon as the number of genotypes exceeds four. In
this article, we develop and test several algorithms for the numerical computation of the
most likely genetic evolution trajectory connecting the initial population histogram H and
a terminal histogram G (see also [26]). We demonstrate that the gradient decent algorithm
developed in this article (see Section 5) is capable of computing the most likely evolutionary
trajectory for a large number (up to 20) of interacting genotypes. In particular, we present a
computational example for 10 genotypes and compare computing times with more straight-
forward approaches.

1.1. Laboratory experiments on bacterial genetic evolution. For bacteria, such as Escherichia
coli, genetic evolution has been explored in many long-term laboratory experiments (see,
e.g., [2, 3, 19, 27–36]. For instance, in [19, 18], on each day t ! N a bacterial population
with initial large size N cells grows freely during the day until the daily dose of nutrients is
exhausted. A$er nutrient exhaustion, the cell population remains dormant until the end of
the day. Therefore, daily growth duration is practically determined by the (fixed) daily dose of
nutrients and hence can be considered fixed throughout the experiment. The growth of each
sub-population with a particular fixed genotype is determined by the corresponding growth
rate, which is related to the fitness of this genotype. In addition, rare random mutations can
also occur. At the end of the day t, the population size becomes a large multiple of N, and
one selects by dilution a random sub-sample of roughly N cells, which becomes the initial
population on the day t + 1. Thus, the bacterial population at the beginning of each day
is roughly the same size, N. Typical values for N can range from 105 to 108. For g ! N
genotypes, one records (daily if feasible) frequencies of cells with each genotype and thus, each
population is characterized by its population histogramHt = [Ht(1),Ht(2), . . . ,Ht(g)] ! Rg

of genotype frequenciesHt(j), j = 1, . . . , g. For the colony of j-cells (i.e., cells with genotype j),
daily growth by cell divisions roughlymultiplies its initial size by a fixed growth factor Fj " 1.
We assume that genotypes are ordered by increasing fitness so that F1 < F2 < . . . < Fg . Thus,
the genotype g is called dominant, and its frequency Ht(g) tends to 1 for large t. At each j-
cell division, the genotype j is typically inherited by the two daughter cells, unless a very rare
random genotype mutation from j to k #= j occurs. Mutations approximately follow a Poisson
distribution with a very small mutation rate, typically ranging from 10−9 to 10−6.

1.2. Fixation of non-dominant genotypes and rare genetic events. For any non-dominant
genotype j < g initially absent in the population, a j-cell colony may emerge for the first
time on day t, due to random mutations. However, for large populations of size N, this new



STOCHASTIC ANALYSIS AND APPLICATIONS 3

j-cell colony has an extremely small probability of reaching fixation at some later day t + τ ,
i.e., of reaching a high frequency Ht+τ (j) (e.g., higher than 40%). Indeed, this probability
vanishes at an exponential rate as N increases. To enable a precise analysis of rare genetic
events such as fixation of non-dominant genotypes, we have developed (see [24]) a large
deviation theory framework underlying the stochastic genetic evolution of large bacterial
populations. In our stochastic models, the initial population at the beginning of each day
t has the same size N due to random sub-sampling selection at the end of the previous day.
Consider any fixed time T > 0. The random genetic evolution of the bacterial population
over T days is then a random sequence of histograms H = {H1, . . . ,HT}, characterized by
a MC over the set H ⊂ Rg of all histograms of dimension g. This MC path space "T is the
set of all possible sequencesH = {H1, . . . ,HT} of population histograms. For large N > 105
and fixed initial histogramH, the probability distribution PN of the random pathsH starting
at H1 = H is highly concentrated around a single path, namely the unique mean trajectory
M = {Mt , t = 1, 2, . . . ,T} starting at H (i.e.,M1 = H).

In a large deviation theory framework, a key step is to determine the rate functional
λ : "T → R+,

which controls the probabilities of rare genetic events (we defineλ in (6)). For each population
trajectoryH ! "T starting at H1 = H, we have computed the limit

lim
N→∞

1
N log PN(H) = −λ(H) ≤ 0.

Whenever H is not identical to the mean trajectory M starting at H1 = H, one has
λ(H) > 0 and the probabilityPN(H) is a vanishing exponential of the order of exp(−Nλ(H)).

1.3. Contributions. Given any two population histograms H and G, the most likely random
population path H ! "T such that H1 = H and HT = G is the deterministic path H$

minimizing the cost function λ(H) over all paths H ! "T such that H1 = H and HT = G.
Themain focus of this paper is developing and testing practical algorithms enabling computation
of the most likely path H$ connecting two given histograms H and G in T steps. This task
can be quite challenging for straightforward algorithms when the number of genotypes g
exceeds four. This problem has several natural analogies with the computation of a geodesic
connecting two points on a smooth Riemannian manifold. In particular, we have identified a
recursive reverse-time equation for computing the optimal trajectory H$ given the final and
penultimate histograms. Since the penultimate histogram is not known a priori, this leads
to an optimization problem with respect to the penultimate histogram. We present several
algorithms to numerically compute H$ for 3 ≤ g ≤ 20. We also would like to point out
that computing these rare paths is crucial for estimating fixation probabilities by importance
sampling simulations. For instance, a$er the most likely path has been computed, one can
develop Monte-Carlo importance sampling simulations for trajectories that are close to the
most likely path and, thus, efficiently estimate probabilities of rare events (e.g., probability of
reaching the final histogram). The code is available at [37].

1.4. Manuscript organization. In the next section, we describe the MC model and discuss
the three daily stages for bacterial populations: growth, mutations, and dilution. In Section
3, we discuss the main results from the large deviations theory. In particular, we introduce
the one-step cost function (15) and the formula for the reverse computation of the most
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likely trajectory (22). We present the two simpler algorithms for the computation of the most
likely evolutionary trajectories and discuss their efficiency in Section 4. The gradient descent
algorithm is presented in Section 5. Conclusions are presented in Section 6 and Appendix A,
B, and 5.3 summarizes the main notation used in this article, computational parameters, and
the gradient descent formulas, respectively.

2. Simplified genetic evolutionmodel for bacterial populations

The MC model of population evolution studied here, as well as in [24], has been applied
to emulate the stochastic evolution of large bacterial populations observed in long-term
laboratory experiments [18]. We assume that there is a fixed number of possible genotypes
denoted as {1, 2, . . . , g}. In cell population pop(t) observed at the beginning of day t, the initial
frequency of j-cells (cells with genotype j) is denoted as Ht(j), and the population histogram
Ht =

[
Ht(1), . . . ,Ht(g)

]
characterizes the state of pop(t). On day t, the initial population

pop(t) goes through three successive phases: (i) deterministic growth, (ii) randommutations,
and (iii) random selection of a subsample of fixed size N, which then becomes pop(t + 1).
Hence, all populations pop(t), t = 1, 2, . . ., have the same fixed (large) size N.

Definition 2.1. The set of all possible histogramsH = {H ! Rg} are vectors of length g such
that 0 ≤ H(j) ≤ 1 and

∑
j H(j) = 1. Please note thatH ⊂ Rg is compact and convex.

2.1. First phase: daily deterministic growth

During the deterministic growth, the number of j-cells increases from initial size NHt(j) to
the final sizeNHt(j)Fj, where Fj > 1 is a fixed multiplicative growth factor. The growth factor
can be computed as Fj = exp(%t×aj), where%t is the duration of deterministic daily growth
(assumed fixed in our model) and aj is the fitness of genotype j. We assume that genotypes
are ordered by their fitness, i.e., the vector F = [F1, . . . , Fg] of growth factors is ordered by
increasing fitness, so that F1 < · · · < Fg , and g is called the dominant genotype. At the end
of the growth phase, pop(t) reaches the size N〈F,Ht+, and the initial histogram Ht becomes
&(Ht), where the function & : H → H is given by

&j(H) = FjH(j)/〈F,H+ for all j = 1, . . . , g, and H ! H. (1)
Here, 〈 · , · + denotes the standard inner product of two vectors in Rg .

2.2. Second phase: daily randommutations

In bacterial evolution, each time a cell splits into two new cells, random mutations between
genotypes may occur with very small probabilities. We have studied this type of daily
dynamics using stochastic differential equations with Poisson noise in [38]. However, in this
work, focused on the computational aspects of rare event analysis, we simplify the daily
population dynamics by assuming that all random mutations occur simultaneously at the
end of each daily deterministic growth period.

In the model considered here, during the day t mutation phase, all individual cells may
randomly mutate, independently of each other. Each j-cell has a very small probability m ≤
10−6 of mutating, and the conditional (given that a mutation occurs) probability of a j-cell
mutating into a k-cell is given by a fixed number 0 ≤ qj,k ≤ 1 for k #= j and qj,j = 0. For
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each j, we assume that, given Ht , the random number of mutants emerging among j-cells is
Poisson distributed with meanmNFjHt(j). Thus, the key mutation parameters are
• a smallmutation rate 0 < m ≤ 10−6,
• the g × g matrix Q = {qj,k} of genotype transition probabilities with

∑
k qj,k = 1 and

qj,j = 0.
Denote R ! Rg ×Rg a randommatrix with Rj,k describing the number of j-cells mutating

into k-cells on day t. The main diagonal of the mutation matrix R is equal to 0, and its
conditional mean, given Ht = H, verifies

E(R/N | Ht = H) = ρ(H) with coefficients ρ(H)j,k = mqj,kFjH(j), (2)

where R/N denotes a normalized random mutation matrix with N being the number of
cells in the population at the beginning of each day.

2.3. Third phase: daily random selection

A$er deterministic growth and random mutations, the population pop(t) becomes a much
larger population POP(t) of size N〈F,Ht+. Typically, in E. coli laboratory experiments,
size(POP(t)) " 200N. At the end of the day t, the daily selection phase is implemented by
selecting from POP(t) a random sample of fixed sizeN and denoting this sample as pop(t+1).
On day t + 1, pop(t + 1), in turn, undergoes growth, mutation, and end-of-day random
selection of N cells. For E. coli experiments, daily random selections are o$en implemented
by dilution of POP(t). Next, we introduce some notation and discuss a mathematical model
for dilution.

Definition 2.2. Matrix A is called N-rational if for a positive integer N all the coefficients of
NA are non-negative integers.

Given Ht = H and R/N = r, the random population histogram Jt of POP(t) is given by

Jt(j) = (j(H, r) = 1
〈F,H+

(

H(j)Fj −
∑

k
rj,k +

∑

k
rk,j

)

. (3)

Here,N〈F,H+ ∑
k rj,k andN〈F,H+ ∑

k rk,j is the total number of cellsmutating “out” of and
“into” the genotype j, respectively. The random histograms Ht and the normalized random
mutation matrices r = R/N are N-rational by construction.

Since pop(t + 1) is a random subsample of size N extracted from POP(t), the conditional
distribution ofNHt+1 given the histogram Jt = J of POP(t) is amultinomial distributionµN,J
defined by

µN,J(v) = N!
∏

j=1...g

(J(j))v(j)
v(j)!

for any vector v = [v(1), . . . , v(g)] of non negative integers with
∑

j v(j) = N. More
precisely, for any N-rational histogram G, one has

P(Ht+1 = G | Jt = J) = P(NHt+1 = NG | Jt = J) = µN,J(NG).
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2.4. Markov chain of population histograms:mean trajectories

Definition 2.3. H is an interior histogram if H ! H and H(j) > 0 for all j = 1, . . . , g.

Definition 2.4. The distance between two histograms H,H′ ! H is given by

‖H − H′‖ = sup
j=1,...,g

|H(j) − H′(j)|.

The preceding succession of three daily phases (growth, mutations, and selection) defines
a stochastic processHt as a discrete Markov chain Pr(Ht+1 = H′ | Ht = H) with trajectories
taking values in the compact convex setH ⊂ Rg of population histograms,where t = 1, 2, . . .,
indexes successive days.Using themathematical formalism for the three daily stages discussed
above, one can compute transition probabilities Pr(Ht+1 = H′ | Ht = H) for any histograms
H′,H ! H. Since at the beginning of each day, we consider populations of fixed size, N, all
trajectories consist of N-rational g-dimensional vectors and, thus, the Markov chain Ht has
a finite number of states. The path space "T of this Markov chain for 1 ≤ t ≤ T is the set
of all sequences H = {H1, . . . ,HT} of N-rational population histograms, endowed with the
distance ‖H − H′‖ = maxt=1,...,T ‖Ht − H′

t‖.
Themean trajectory Mt = E(Ht |H1 = H) is recursively computed as [24]

Mt+1(H) = f (Mt(H)), (4)

where the function f is the one-step conditional mean f (H) = E(Ht+1|Ht = H) given by

fj(H) = 1
〈F,H+

(

FjH(j) − m
∑

k
qj,kFjH(j)+m

∑

k
qk,jFkH(k)

)

, j = 1 . . . g. (5)

For a fixed population size N, the mean trajectoryM verifies limt→∞ Mt = Ĥ, where the
histogram Ĥ is given by Ĥ(g) = 1 and Ĥ(j) = 0 for all j < g. Thus, the limit mean histogram
Ĥ exhibits a fixation of the genotype g having the highest daily growth factor Fg .

The key parameters of this Markov chain model are a large population size N ≥ 105 and
a small mutation rate m ≤ 10−6. The biological context is characterized by the fixed set of
evolution parameters {g, F,Q}, where
• g is the number of genotypes,
• F =

[
F1, . . . , Fg

]
is the vector of ordered daily growth factors, and

• Q is a g×gmatrix with qj,k being the conditional (given that amutation occurs) probability
that a mutant j-cell becomes a k-cell.
For instance, in the E. coli experiments [19, 18], parameters of the Markov chain Ht can

typically be selected in the following range 105 ≤ N ≤ 108, 10−9 ≤ m ≤ 10−6, 5 ≤ g ≤ 10,
and 200 ≤ F1 < · · · < Fg ≤ 500. For many genetic experiments, the conditional probability
qj,k that a mutant j-cell becomes a k-cell cannot be directly estimated from data. Hence, for
simplicity, we assume uniform genotype transition probabilities qj,k = 1/(g − 1) for all k #= j
with qj,j = 0.

3. Rare events and large deviation asymptotics

In a previous paper [24], we have rigorously studied the large deviation asymptotics for the
Markov chain of population histograms. Those results are applicable as soon as N ≥ 105
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and m ≤ 10−6, and we now recall the main results proved in [24]. Fix any T > 0. Any
random events of interest concerning trajectories of the Markov chain can be defined as a
subset E ⊂ "T . For increasing N ≥ 105 and fixed initial histogram H1 = H, the random
pathsH starting atH1 = H have a probability distribution PN on "T , which becomes highly
concentrated around the mean trajectoryM starting atH. Indeed, any closed subset E of "T
such thatM /! E has probability PN(E) vanishing at exponential speed as N → ∞. For large
N, E becomes a rare event and we introduce a more precise definition.

Definition 3.1. For fixed initial histogram H1 = H and time T > 1 we call E ⊂ "T a rare
event if 1

N log(PN(E)) → −)(E) as N → ∞. Here, )(E) = minH!E λ(H), where λ(H)

is the rate functional (or the cost of the path H) defined in (6). As a short-hand notation we
then write PN(E) is log-equivalent to exp(−N)(E)).

3.1. Most likely histogram trajectory linking two population histograms

Definition 3.2. A pathH = {H1, . . . ,HT} ! "T is called an interior path if all histogramsHt
are interior histograms, i.e., they verify Ht(j) > 0 for j = 1, . . . , g.

Denote TN ⊂ "T the thin tube of all paths in "T lying within distance 1/N of H. Then
(see [24]), asN → ∞ the probabilitiesPN(TN) are definition log-equivalent to exp(−Nλ(H)),
where the rate function λ(H) ≥ 0 is given by

λ(H) =
T−1∑

t=1
C(Ht ,Ht+1). (6)

Here, C(H,G) ≥ 0 is a computable one-step cost function (see (13) below).
The most likely path L(H,G) = {L1 = H, L2, . . . , LT = G} connecting histograms H and

G in T steps is then determined by minimizing λ(H) over all paths H = [H1, . . . ,HT] such
that H1 = H and HT = G, i.e.,

L(H,G) = H$ = arg min
H!"+

T (H,G)
λ(H),

where

"+
T (H,G) = {H ! "T : H1 = H and HT = G} (7)

is a restricted space of paths.
As shown in [24], any most likely path H$ = [H$

1, . . . ,H$
T] must verify a second order

recursive equation expressing explicitly H$
t in terms of H$

t+1,H$
t+2. This article explores effi-

cient strategies for computing the pathH$ since such numerical computations are particularly
challenging if the number of genotypes g exceeds 4.

3.2. The one-step cost function C(H,G)

On each day t, the initial random histogram Ht , the normalized matrices rt = Rt/N of ran-
dom mutations, and the histogram Jt of POPt a$er mutations, must verify the deterministic
relation Jt = ((Ht , rt) in (3). Since the number Nµt(j) of mutants among the j-cells of POPt
is inferior to the size NFjHt(j) of the j-cells colony, rt must belong to the setM(Ht) of g × g
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matrices with entries rj,k defined by

M(H) =
{

r : rj,k ≥ 0; rj,j = 0; and
g∑

k=1
rj,k ≤ H(j)Fj for all j

}

. (8)

Thus, µt(j) have independent slightly truncated Poisson distributions with means
mFjHt(j).

Fix any interior histogramH and any matrix r ! M(H). Denote J = ((H, r). As a short-
hand notation, we use Ht ≈ H, rt = Rt/N ≈ r, whenever the sup-norms ‖Ht − −H‖ and
‖rt − −r‖ are bounded by c/N for some fixed constant c > 0. One then has a similar bound
for ‖Jt − −J‖, for which we also write Jt ≈ J. The rate function controlling large deviations
from the mean for products of truncated Poisson distributions is determined in [24] to show
that for any interior histogram H, any matrix r ! M(H), and for N → ∞ one has

Pr(rt ≈ r | Ht ≈ H) is log- equivalent to exp(−Nu(r,H)), (9)

where

u(r,H) =
∑

j,k
rj,k log rj,k − rj,k

[
1+ log(mqj,kFjH(j))

]
+mqj,kFjH(j). (10)

Given Jt , the conditional distribution of NHt+1 is a multinomial distribution with mean
NJt , and its large deviations from themean are controlled by an explicit rate function. Indeed,
for any two interior histograms (G, J), and for N → ∞, one has [24]

Pr(Ht+1 ≈ G | Jt ≈ J) is log- equivalent to exp(−NKL(G, J)), (11)

where the Kullback–Leibler divergence KL(G, J) ≥ 0 is finite, and given by

KL(G, J) =
∑

j
G(j) log G(j)J(j) (12)

Since J = ((H, r), one has
Pr({Ht+1 ≈ G} and {rt ≈ r} | Ht ≈ H) = Pr(Ht+1 ≈ G | Jt ≈ J)P(rt ≈ r | Ht ≈ H)

so that, due to (11) and (9),

Pr({Ht+1 ≈ G} and {rt ≈ r} |Ht ≈ H) is log-equivalent to exp(−Nv(H, r,G)),
where v(H, r,G) = u(H, r)+ KL(G,((H, r)).

The approximate one-step transition probability Pr({Ht+1 ≈ G} | Ht ≈ H) is then log-
equivalent to the sum over all r ! M(H) of the vanishing exponentials exp(−Nv(H, r,G)).
This sum is log-equivalent to the largest of all these terms, namely exp(−NC(H,G)), where
the one-step cost function C(H,G) ≥ 0 is defined by

C(H,G) = min
r!M(H)

v(H, r,G) = min
r!M(H)

[u(r,H)+ KL(G,((H, r))] . (13)

Therefore, for arbitrary interior histograms H,G, and N → ∞, we have the asymptotic
result

Pr({Ht+1 ≈ G} |Ht ≈ H) is log-equivalent to exp(−NC(H,G))). (14)

The costC(H,G) ≥ 0 can only take the value 0whenG = f (H) = E(Ht+1 | Ht = H), with
f (H) given by (5).Hence, forH fixed and largeN, theMarkov transition kernel is concentrated
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at exponential speed (in N) on a fixed, small neighborhood of f (H). When H,G are interior
histograms, i.e., when min(H) > 0 and min(G) > 0, the cost C(H,G) is a finite smooth
function ofH andG. Moreover, for a small enoughmutation ratem ≤ 10−6, the costC(H,G)
has an explicit expansion inm given by

C(H,G) = KL(G,&(H))+m
∑

j,k
FjH(j)qj,k[1 − Uk/Uj] + O(m2), (15)

where Uj = exp(Gj/(FjH(j))) and & ! Rg with &(j) = FjH(j)/〈F,H+.

3.3. Large deviation asymptotics in path space

The path space "T of the Markov chain Ht is endowed with a natural distance (see Section
2.4). For any path H = [H1, . . . ,HT] in "T and any small ε > 0 define the closed “tube” of
paths T (H, ε) centered at the pathH by

T =
{
H′ ! "T such that ‖H′ − H‖ ≤ ε

}
. (16)

We say that T is an interior tube if all H′ ! T are interior paths. We extend the one-step
cost C(H,G) to amulti-steps cost functional λ(H) ≥ 0 defined for anyH ! "T by

λ(H) =
T−1∑

t=1
C(Ht ,Ht+1). (17)

The rate function λ(H) defined for paths H ! "T can be formally extended to a rate
functional )(A) ≥ 0 defined for all subsets A ⊂ "T by

)(A) = inf
H!A

λ(H). (18)

The cost function C(H,G) is continuous in H and G on the set of interior histograms.
This implies that when H is any fixed interior path, then )(T (H, ε)) → λ(H) as ε → 0.
As N → ∞, we proved in [24] that λ(H) is the large deviations rate functional controlling
probabilities of rare events for our Markov chain. This result is formulated as follows.

Theorem 3.1. Fix an interior path H = [H1, ...,HT] ! "T, and an interior tube of paths
T (H, ε). Denote h = [h1, ..., hT] a random path of population histograms staring at h1 = H1.
Then, as N → ∞, the probabilities PN(h ! T ) are log-equivalent to exp(−N)(T )), where
the set functional ) is defined by (18). More precisely, the “thin” tubes of paths T (H, 1/N) have
probabilities PN(h ! T ) which are log-equivalent to exp(−Nλ(H)) as N → ∞.

Proof See [24].

The non-negative rate functional λ(H) can only reach the value 0 when H is the mean
trajectory M starting at H1 (see (4)). Thus, mean trajectories are also called zero-cost paths.
When the initial condition of theMarkov chain is fixed atH1 and asN → ∞, the probabilities
PN(H) vanish exponentially fast ifH is not the zero-cost pathM starting atH1 but tends to 1
exponentially fast ifH = M.

Consider fixed histograms H and G and recall the definition of the space of restricted
paths "+

T (H,G) in (7). Consider pathsH ! "+
T (H,G) and the corresponding set of all tubes
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T (H, 1/N). Then, the most likely tube T (H$, 1/N) is centered around the path H$ which
solves the minimization problem

H$ = arg min
H!"+

T (H,G)
λ(H), (19)

where λ(H) is given by (17).
For interior histograms H and G, this minimization problem always has at least one

solution H$ which depends on the number of steps T ≥ 1. Any such minimizing path is
a most likely path linking H to G in T steps. Indeed, for the Markov chain of population
histograms, and for large N, following the thin tube T (H$, 1/N) in path space maximizes
the probability of reaching histogram G at time T given H1 = H. In fact, for large N, both
Pr(HT = G | H1 = H) and Pr(H ! T (H$, 1/N) are log-equivalent to exp(−Nλ(H$)). Note
that the optimal rate λ(H$) also depends on T.

In long-term studies of bacterial evolution, one may know that the population evolved
from a remote past ancestor histogram H to a currently observed histogram G, without
knowing the precise time duration between these two observations. This leads to the problem
of finding both the unknown time T and the most likely path linking H to G in T steps.
In our numerical benchmark studies below, we implemented this type of computation by
numerically minimizing in T the optimal rate λ(H$). Our computational strategies outlined
in this article yield both an optimal number of steps T$ and a most likely path H$(T$) !
"+

T$(H,G). The uniqueness of T$ and H$(T$) has not been proved but our numerical
computations of H$(T$) for many random pairs (H,G) indicate that uniqueness is likely to
hold for almost all interior histograms H and G.

3.3.1. Analogy between most likely population paths and riemannian geodesics. For many
classes of continuous time Markov processes in Rk, large deviation rate functions analogous
to λ have been explicitly determined. For instance, for stochastic differential equations (SDEs)
with noise multiplied by a small parameter ε, denote pε(f ) the probability that a random SDE
path remains within a thin tube around the smooth path ft ! Rk for all t ≤ T. Then (see [10,
7]), pε(f ) is roughly equivalent to exp(−λ(f )/ε2), with a rate function λ(f ) ≥ 0 given by

λ(f ) =
∫

[0,T]
Cost(ft , f ′t ) dt when f ′t ! L2(0,T), (20)

whereCost(u, v) ≥ 0 is an explicit smooth function of u, v ! Rk. Given x, y ! Rk, themost
likely SDE path f such that f0 = x and fT = y, is determined byminimizing λ(f ) over all paths
f subject to f0 = x and fT = y. All minimizing paths f $ must verify ∂f λ(f ) = 0, where ∂f λ
is the differential of λ(f ). This yields a non-linear, second-order differential equation verified
by f $ for all t, to be solved under the constraints f $0 = x, f $T = y.

On any RiemannianmanifoldS , all geodesics ft ! Smust verify an analogous second-order
ordinary differential equation (ODE). Indeed, a geodesic connecting f0 = x to fT = y #= x in
S is a minimizing path for the kinetic energy Kin(f ) defined by

Kin(f ) = 1
2

∫

[0,T]

〈
f ′t , γft f ′t

〉
dt when f ′t ! L2(0,T), (21)
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where the quadratic form γz is the Riemann metric at z ! S . Note that if one sets

Cost(ft , f ′t ) =
1
2

〈
f ′t , γft f ′t

〉

then Kin(f ) has the same form as λ(f ) given in (20).
Minimizing the kinetic energyKin(f ) aswell asminimizing the SDE rate functionλ(f )over

all smooth paths ft such that f0 = x and fT = y lead to solving two similar second-orderODEs
with endpoint constraints. Similarly, minimizing our rate functional λ(H) over all discrete-
time paths H ! "+

T (H,G) leads (see the next section) to solving in reverse time a recursive
equation of order two, analogous to the second-order ODEs for continuous-time problems
discussed above. Thus, in this article, the most likely path H$ ! "+

T (H,G) connecting two
population histograms H and G will also be called a geodesic from H to G.

3.4. Reverse time computation ofmost likely paths

Any most likely path H$ ! "+
T (H,G) must solve the cost minimization problem (19). As

proved in [24] for small mutation rate m, any such minimizing path H$ ! "+
T (H,G) is fully

determined by its last two histograms H$
T = G and H$

T−1. Indeed, H$ must verify the reverse
time recursive equation

H$
t = χ(H$

t+1,H$
t+2) for all 1 ≤ t ≤ T − 2, (22)

where χ(y, z) is an explicit histogram-valued smooth function defined for all interior his-
tograms (y, z). For small mutation ratem ≤ 10−6, the first-order Taylor expansion of χ(y, z)
was computed in [24] as follows:

χ(y, z) 0 x+ O(m2) with xj = Yj(1+mwj) for j = 1, . . . , g. (23)
Here, given the histograms y and z, one computes the interior histogram Y and the vector

w ! Rg by the following explicit formulas (where j, k = 1 . . . g)

Xj =
yj
Fj

exp
( Fj

〈F, y+ − zj
yj

)
> 0, Yj =

Xj∑
k Xk

,

ej,k = exp
(
−yj/(FjYj)+ yk/(FkYk)

)
,

.j =
∑

k

(
qj,kej,k − FkXk

FjXj
qk,jek,j

)
,

fj,k = exp
(
−zj/(Fjyj)+ zk/(Fkyk)

)
,

/j = Fj
∑

k
qj,k −

(
Fj +

zj
yj

)∑

k
fj,kqj,k − zj

Fjy2j

∑

k
Fkykqk,jfk,j,

w = . + / − 〈Y ,. + /+.
The reverse recurrence (22) reduces the computation ofH$ to the optimization searchwith

respect to the penultimate histogram
Z$ = arg min

Z!H+
λ
(
[H1 ≡ H,H2, . . . ,HT−1 = Z,HT ≡ G]

)
,

where H+ = {Z : Z ! H and Z(j) > 0} is the set of all possible interior histograms. Then,
the optimal trajectory is given by H$ = [H,H2, . . . ,HT−1 ≡ Z$,HT ≡ G], where Ht are
computed from (22) for t = T − 2,T − 3, . . . , 3, 2.
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Note that conditionH1 = H is always enforced; consequently, we use the reverse recursive
relationship (22) only until t = 2.

We always seek HT−1 = Z$ among interior histograms so that the path H generated by
Equation (22) is an interior path. Next, we consider this numerical problem, which is similar
to reverse geodesic shooting on Riemannian manifolds, and is quite challenging when g ≥ 4.

We call the T-steps cost minimizing path H$ ! "+
T (H,G) the geodesic of length T from

H to G, and we denote its (minimized) cost λ(H$) by λ$
T(H,G). To fully determine the most

likely path when the number T of path steps is allowed to be arbitrary, one needs to compute
λ$(H,G) = min

T≥1
λ$
T(H,G)

and the optimal number of steps T$ such that λ$(H,G) = λ$
T$(H,G). For given interior

histograms H,G, and mutation rates m small enough, we conjecture that a finite T$ always
exists, as supported by numerical simulations outlined below.

For any interior geodesic H = [H1, . . . ,HT = G], all the intermediary histograms Ht
are fully determined by both G and the penultimate histogram Z = HT−1 due to the reverse
recurrence (22). In particular, the initial histogram H1 is then a smooth function of G and Z
defined iteratively by

θ1(Z,G) = G, θ2(Z,G) = Z, and θt = χ(θt−1, θt−2) for t ≥ 3. (24)
Here, θT = [θT , θT−1, . . . , θ2, θ1] represents the trajectory H = [H1, . . . ,HT = G] in

reverse time, i.e., θT = H1, θ1 = G, θ2 = HT−1, etc. Notice that it is very unlikely that the
reverse computation of the most likely path using (24) would amount to θT = H1. Therefore,
when searching for the most likely path H$ ! "+

T$(H,G) we use the reverse formula (24)
to compute θt for 3 ≤ t ≤ T and then “connect” path θT to H using the zero-cost mean
path starting at H. Then, the resulting most likely pathH$ is given as a concatenation of two
paths—the zero-costmean path and the path θT . Then,H$ connectsH andG by construction
and the cost of H$ is the cost of θT plus the cost of the “connection” between the mean path
and θT . This “connection” can occur at an arbitrary time 2 ≤ τ ≤ T. The key question for the
reverse time geodesic shooting is to find a penultimate histogram Z = HT−1 and an integer
τ ≥ 2 such that θτ is close to the mean path starting at H.

4. Algorithms for reverse time geodesic shooting

As discussed in the previous section, to compute numerically the most likely path one
needs to perform an optimization search for the penultimate histogram HT−1 = Z. This
optimization problem can be combined with the search for the optimal number of steps, T$.
First, we consider the problem of computing the optimal cost λ$

T(H,G) for a fixed number of
steps, T.

To this end, we need to fix a set S ⊂ H+ of interior penultimate histograms. (We discuss
how to select S efficiently in Sections 4.2 and 4.3, respectively.) We compute the optimal
penultimate histogram by performing an optimization over Z ! S , i.e.,

Z$ = argmin
Z!S

λ
(
[H1 ≡ H,H2, . . . ,HT−1 = Z,HT ≡ G]

)
,

and an approximate geodesic is given by H$ = [H1 ≡ H,H2, . . . ,HT−1 = Z$,HT ≡ G],
where Ht are computed from (22) for t = 2, . . . ,T − 2. However, we need to account
for the fact that the histogram Hk = χ(Hk+1,Hk+2) (for 1 < k < T − 1) can be a



STOCHASTIC ANALYSIS AND APPLICATIONS 13

boundary histogram. In this case, we cannot continue reverse shooting by using (22). Instead,
we connectHk with amean trajectory starting atH. During the reverse shooting computation,
formula (22) can result in Hk being a boundary histogram. In this case, we have to connect
Hk−1 with the mean trajectory and continue the computation. This can occur for more than
one value of k and we connect with the mean trajectory every time Hk ends up on the
boundary. This approach is discussed in the next section.

4.1. Computation of approximate geodesics

To define a boundary histogram, we first define a small number ε(N). For practical values
m ≤ 10−6 and N ≥ 105, it can be defined as ε(N) = 50/N, so that ε(N) ≤ 5 × 10−5. Next,
we define a boundary histogram where at least one of the genotypes is nearly extinct.

Definition 4.1. A histogram H ! H is a boundary histogram if minj=1,...,g H(j) ≤ ε(N).

Next, to combine the optimization of the cost function for the penultimate histogram Z !
S and the number of steps,T, we define themaximumpossible number of steps in the optimal
trajectory, Tmax. In practice, one can safely take Tmax ≈ 4g, . . . , 5g

since rare event geodesics with strictly positive cost have a relatively small number of steps
(see Section 4.4). The value for Tmax above is an approximate practical guideline; longer
trajectories can be explored if it is computationally feasible.

Then, for each Z ! S we perform the reverse shooting using the following two steps:

Step 1. Compute recursively the open ended reverse time trajectory θ by the reverse time
recursion (22)

θ1 = G, θ2 = Z, and θt = χ(θt−1, θt−2) for t ≥ 3.

The iterative computation of θt is stopped at time τ if either τ = Tmax − 1 or if θτ is a
boundary histogram.

Step 2a. If τ = Tmax − 1, then θτ is an interior histogram and we “connect” the reverse
path to H by assigning θTmax = H.

Step 2b. If τ < Tmax − 1, then θτ is a boundary histogram and we “connect” the
reverse path using the mean trajectory starting at H. In particular, the mean trajectory
M = [H,M2, . . . ,MTmax−τ ] of length Tmax − τ is computed using (4). Notice that the cost of
the mean trajectory is always zero. Next, we perform a search for two indexes (u, v) such that
cost λ(Mu, θv) is minimal among all (u, v) such that 1 ≤ u ≤ Tmax−τ and 1 ≤ v ≤ τ . Notice
that this search is fast since Tmax is not very large. Then, the trajectory connecting H and G
is given by H = [H,M2, . . . ,Mu, θv, . . . , θ2,G] with the cost given by (17). By construction,
the length of this trajectory is less or equal to Tmax and the penultimate histogram is θ2 = Z.

Since S is finite, optimization search over all Z ! S yields an optimal penultimate
histogram Z$ ! S and the optimal trajectoryH$ = [H,H2, . . . ,Z$ ≡ HT$−1,G ≡ HT$] with
T$ ≤ Tmax by construction. Of course, the optimal trajectory H$ and the number of steps
T$ can potentially depend on the choice of the set S . Thus, it might be necessary to consider
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Table 1. Cardinality card(S) for different choices of the number of genotypes, g, and the discretization
level, ζ .
(g, ζ ) (3, 500) (4, 200) (5, 100) (6, 100) (7, 100) (8, 100)

card(S) 1.3 × 105 1.4 × 106 0 108 0 1010 0 1012 0 1014

very large sets of penultimate histograms to find a global minimizing trajectory connecting
H andG. Therefore, we discuss heuristic arguments for constructing S to reduce the number
of penultimate histograms and the corresponding computational cost.

4.2. Brute-force search

One obvious choice would be to takeS = H+, the set of all interior histograms. However, this
choice is computationally intractable, and also not necessary. Instead, one can attempt to use
a much coarser discretization ofH+. Thus, we introduce a parameter ζ with 100 ≤ ζ ≤ 500
and denoteH+

ζ the set of all interior ζ -rational histograms. SetH+
ζ provides discretization of

H+ with mesh size 1/ζ and we can set S = H+
ζ . Note that in this case card(S) 0 ζ g−1. The

number of penultimate histograms in S for different values of g and ζ are listed in Table 1.
One can see that it is relatively easy to implement a straightforward search over all Z ! S for
g ≤ 4 genotypes. However, even for a coarse discretization with ζ = 100, the direct approach
becomes computationally intractable (even with a parallelization on 20 nodes) for g > 5.

One can attempt to develop an iterative refinement strategy starting with a coarse dis-
cretization of, e.g., ζ1 = 20. Optimization over the set of all penultimate histograms in
S1 = H+

ζ1
will result in an optimal path and optimal penultimate histogram Z$

1. However,
this path is unlikely to be the global minimizer due to a coarse discretization ofH+. Then, it
is possible to select S2 as a small neighborhood around Z$

1 with a finer discretization ζ2 > ζ1.
This will result in an optimal penultimate histogram Z$

2, which can be refined further. This
yields an iterative approach for computing the most likely path and the optimal penultimate
histogram Z$. However, this iterative approach is still exceedingly expensive for g ≥ 6.
Therefore, we discuss a different approach for selecting the set S next.

4.3. p-Quantile approach for constructingS
In the case of three genotypes, g = 3, an extensive computation of geodesics is very fast for
S = H+

ζ with ζ = 500. Thus, for g = 3 we performed extensive numerical investigation
and computed many most likely paths connecting pairsH and G selected randomly from the
set H+. We conjecture that for g = 3, most likely paths H$ ! "+(H,G) have penultimate
histograms Z$ with a fairly low last step cost C(Z$,G). This suggests that the set S of
penultimate histograms can be selected to minimize the last step cost C(Z,G).

This can be implemented by explicitly computing the derivative of the last step cost and
selecting a set S with a fairly low Euclidian norm ‖∂Z C(Z,G)‖ (see Section 5.3).

Instead of utilizing the derivative of the last step cost, we have developed a more efficient
p-quantile approach for selectingS . This approach is based on the same conjecture of low last-
step costs for optimal geodesics. Consider the set H+

ζ of interior histograms that discretizes
the set of all interior histograms,H+ with step 1/ζ . Next, compute one-step costs C(Z,G) for
all Z ! H+

ζ and denote /p the p-quantile of such one-step costs. Then, the set S ≡ S(p) of
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Table 2. Mean most likely path length computed for g = 3, 4, 5.
g #Geodesics Mean length

3 10,000 5.02± 0.02
4 5,000 6.82± 0.04
5 240 4.92± 0.05

penultimate histograms can be chosen as

S(p) = {Z ! H+
ζ | C(Z,G) < /p}. (25)

For ζ = 100, the cardinality of S(p) is roughly p × 102g−2. The choice S = S(p) always
reduces the computing time for the brute-force approach discussed in the previous section
by a factor of approximately p. Numerical results are presented in Section 4.4.2.

4.4. Numerical results

In this section, we describe numerical results designed to compare the two approaches for
constructing the set of penultimate histograms discussed in Sections 4.2 and 4.3, respectively.
The main goal is to demonstrate the computational efficiency of the p-quantile approach. We
also discuss the biological consequences of the computed most likely paths. The parameters
of our model are estimated from laboratory experiments on the genetic evolution of E. coli
bacteria [28, 39] and are presented in Section B.

All computations in this article were carried out on the Opuntia multi-node cluster avail-
able at the University of Houston. Each of these nodes is equipped with 20 core CPUs (Intel
Xeon E5-2680v2 2.8 GHz). Each computational task was divided into 20 approximately equal
parts, and all computational parts were carried out in parallel. On each node, computational
performance is increased by exploiting (hyper-)threading via MATLAB’s parallel computing
toolbox.

4.4.1. Results for g = 3, 4, 5 genotypes
Runtimes for simulations with both approaches for constructing the set S are reasonable for
g = 3, 4, 5 genotypes and ζ = 100. Thus, we first perform simulations in this parameter
regime to compare the approaches presented in Sections 4.2 and 4.3, respectively.We selected
10,000, 5,000, and 240 random pairs (H,G) of terminal histograms for g = 3, 4, and 5,
respectively. For each pair (H,G) we then used ζ = 100 and performed the search for the
optimal trajectory with S = H+

ζ .
The distribution of lengths for computed geodesics is described by the statistics reported

in Table 2. We also display the histogram of geodesics lengths for g = 3 and g = 4 genotypes
in Figure 1. The average length of geodesics for g = 3, 4, 5 genotypes is quite short (at the
order of T = 6 days). In the context of E. coli laboratory experiments, the doubling time
for the colony is approximately 20 min under optimal growth conditions. However, optimal
conditions cannot be maintained for the whole 24-h period; the actual growth duration
is about 9 to 10 h per day (see, e.g., [18]), a$er that, the population is dormant until the
beginning of the next day when a random subsample of fixed size N is generated by dilution,
and a fresh daily dose of nutrients is injected. Thus, in practical experimental setups growth
factors are in the range [200, 240]. Therefore, most daily cell lineages involve approximately
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Figure 1. Histogram of most likely paths lengths in computations for g = 3 (left) and g = 4 (right)
genotypes.

Table 3. Efficiency of the p-quantile algorithm for g = 3, 4, 5 genotypes.
p 100% 75% 50% 25% 10% 5% 1%

g = 3 1 1 1 0.95 0.54 0.35 0.20
g = 4 1 1 1 1 0.94 0.66 0.25
g = 5 1 1 1 1 1 1 0.71

Efficiency is defined as the fraction of most likely paths coinciding for the p-quantile and straightforward algorithms.

70 successive generations of cells and the most likely path of length T corresponds to about
70 × T generations of bacterial cells.

When the terminal histogramG is fairly different from initial histogramH, but at the same
time has a low concentration of the fittest genotype k = g, and most likely path connectingH
andG is a rare event occurringwith a very small probability. A relatively smallmost likely path
length indicates that whenever a rare event of this type is realized, it essentially happens in a
succession of a few highly unlikely steps. An analogous phenomenon has been noted formany
diffusions with a small noise (e.g., [7]), where the unlikely escape from a stable equilibrium
point essentially only occurs when the process trajectory picks at each time point the most
unlikely direction, namely the direction opposite to the dri$.

Next, we consider the p-quantile approach for generating the set of penultimate his-
tograms, S . We consider percentiles p ! {1%, 5%, 10%, 15%, 20%, 25%, 100%}, and for each
pair (H,G) in the random sample we compute the best approximatemost likely path using the
p-quantile algorithm.We then define the efficiency of the p-quantile algorithmas the fractions
of most likely paths that are identical to the straightforward approach. The efficiency of the
p-quantile algorithm is reported in Table 3.

Table 3 demonstrates that the efficiency of the p-quantile algorithm increases very quickly
as g increases. Our results indicate that the smallest percentile enabling full efficiency verifies
p(3) = 50%, p(4) = 25%, p(5) = 5%. Thus, for ζ = 100, by extrapolating the observed
speed of increase of efficiency as g increases, we conjecture that p(6) ≈ 1%, p(7) < 1%, and
p(g) 2 1% for g ≥ 8.However, the corresponding cardinal number ofS (same as the number
of penultimate histograms to test to compute a single most likely path) can be estimated as
card(S) ≈ 5 × 104, 3.2 × 105, 5 × 106, 108 for g = 3, 4, 5, 6, respectively. Moreover, card(S)
seems to still increase at an exponential speed for g ≥ 7. This is re%ected by a significant
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Table4. Mean runtimeper node in theparallel executions of themost likely path searchwith thep-quantile
algorithm for the generation of S .
p 100% 75% 50% 25% 10% 5% 1%

g = 3 3 min 2.5 min 2 min 1.5 min 1 min 1 min 1 min
g = 4 2 hrs 1.8 hrs 1 hr 7 min 3 min 2.5 min 1.5 min
g = 5 3.2 hrs 2.2 hrs 1 hr 38 min 32 min 30 min 26 min

Table 5. Themost likely pathH$ connecting H = H1 and G = H6 for g = 7 genotypes computed with the
p-quantile algorithm. -
steps histogram entries

H1 0.600 0.100 0.100 0.050 0.050 0.050 0.050
H2 0.510 0.101 0.101 0.070 0.072 0.096 0.050
H3 0.383 0.112 0.111 0.084 0.085 0.161 0.064
H4 0.266 0.114 0.114 0.094 0.095 0.239 0.078
H5 0.170 0.110 0.110 0.100 0.100 0.320 0.090
H6 0.100 0.100 0.100 0.100 0.100 0.400 0.100

We display each histogram Hi on the i-th row of the table.

increase in computational time as g increases reported in Table 4. Therefore, this rules out
using the p-quantiles algorithm for g ≥ 9, even with efficient parallelization over 20 nodes.

4.4.2. Results for g = 7 and g = 8 genotypes
For a fixed g, the efficiency of the p-quantile algorithm is an increasing function of p, since
the size of penultimate histograms, S , is an increasing sequence, as p increases. Therefore, we
can also define a relative efficiency, where we compare the most likely paths computed using
two different sets of penultimate histograms, Sp1 and Sp2 , corresponding to two different
percentiles p2 > p1. The most likely path computed with a higher percentile will always
have a lower or equal cost compared to the most likely path computed with a lower percentile
because Sp1 ⊂ Sp2 . Since the computation of the most likely paths for g = 7, 8 genotypes is
much more expensive compared to g ≤ 6, we analyze the relative efficiency for g = 7, 8 for
only one pair of (H,G) and only two percentiles p1 = 10% and p2 = 20%. We consider the
mutation ratem, the mutation matrix Q, and growth factors F as discussed in Section B. The
pairs of histograms (H,G) are presented below.

Simulations with g = 7 genotypes::
H = [0.6, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05], G = [0.1, 0.1, 0.1, 0.1, 0.1, 0.4, 0.1].

Simulations with g = 8 genotypes::
H = [0.5, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05], G = [0.05, 0.05, 0.1, 0.05, 0.05, 0.1, 0.5, 0.1].
The discretization level for S is chosen to be ζ = 100 and ζ = 50 for g = 7 and g = 8,

respectively. The p-quantile algorithm for constructing S results in the same most likely path
for both p1 = 10% and p2 = 20% and both g = 7, 8. Thus, we conjecture that the efficiency
of the p-quantile algorithm is close to one for p = 10% and g = 7, 8. The corresponding costs
and lengths of the most likely paths for g = 7, 8 are cost(H$, g = 7) = 0.0264, cost(H$, g =
8) = 0.0534 and T$

g=7 = 6, T$
g=8 = 7. Most likely paths for g = 7 and g = 8 are presented in

Tables 5 and 6, respectively.
For g = 7 and g = 8 computational tasks may not be distributed evenly over all parallel

nodes due to the requirement to check dynamically whether a particular histogram belongs to
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Table 6. Themost likely pathH$ connecting H = H1 and G = H7 for g = 8 genotypes computed with the
p-quantile algorithm.
steps histogram entries

H1 0.500 0.100 0.100 0.100 0.050 0.050 0.050 0.050
H2 0.405 0.103 0.082 0.115 0.040 0.063 0.103 0.089
H3 0.301 0.101 0.095 0.112 0.046 0.077 0.171 0.097
H4 0.209 0.092 0.104 0.102 0.051 0.089 0.251 0.102
H5 0.137 0.080 0.107 0.087 0.053 0.096 0.335 0.105
H6 0.085 0.065 0.105 0.069 0.052 0.100 0.420 0.104
H7 0.050 0.050 0.100 0.050 0.050 0.100 0.500 0.100

We display each histogram Hi on the i-th row of the table.

the set of penultimate histograms. Therefore, parallelization depends on how the histograms
inS are distributed over the nodes. Typically, the p-quantile is not parallelized well for large g,
with only a few (between one and five) of the nodes performing themajority of computations.

We conclude that the p-quantile algorithm is feasible and produces adequate results g ≤ 8,
but becomes quite computationally expensive for g ≥ 7. However, we also conclude that for
g ≥ 9 this strategy is not computationally feasible. Thus, we present an alternative geodesic
shooting algorithm based on gradient descent.

5. Gradient descent for reverse geodesic shooting

Below, we describe an alternative strategy based on geodesic shooting.

5.1. Background: reverse geodesic shooting on riemannianmanifolds

Let S be a smooth Riemannian manifold of dimension k. Let us fix the time interval [0,T],
as well as two distinct points x, y ! S . As discussed at the end of 3.3, to seek a Riemannian
geodesic ft ! S connecting x to y, one can solve—under the constraints f0 = x and fT = y—
the Jacobi second-order differential equation

[
∂

∂ft
− d

dt
∂

∂f ′t

]
Cost(ft , f ′t ) = 0, (26)

where Cost(ft , f ′t ) =
〈
f ′t , γft f ′t

〉
and γz is the quadratic form defined by the Riemann metric at

z ! S . The Jacobi ODE satisfied by ft is then of the form

f ′′t = 2(f ′t , ft) for 0 < t < T, (27)

where2(u, v) is afixed smooth function ofu ! S , v ! Rk, easily derived from theRiemannian
quadratic form γz.

Classical reverse geodesic shooting proceeds as follows: Let Vy be the tangent space to
S at point y. Fix any vector v ! Vy. Then solve the ODE (27) in reverse time t < T a$er
initialization by setting fT = y and f ′T = v. Then ft = F(t, y, v) is a smooth function of
(t, y, v). For fixed x and y, one seeks a vector v ! Vy minimizing the Riemannian distance
dist(x, f0) between the prescribed initial x and f0 = F(0, y, v). This search then proceeds by
numerical gradient descent in v within the fixed tangent vector space Vy.
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5.2. Gradient descent for geodesic shooting in the space of histograms

Given two interior histograms H,G ! H+, we now outline the gradient descent algorithm
to compute the most likely path H$ connecting H and G. The unknown optimal number of
steps T$ has to be determined as well. We will successively explore the integer values T =
3, 4, . . . ,Tmax with the upper bound on the path’s length Tmax ≤ 5g. Let S be the set of all
histograms Z ! H+ such that minj=1,...,g Z(j) ≥ 0.005. Consider a fixed T ! [3,Tmax]. Then
for anyZ ! S the geodesic shooting algorithm (see 4.1) computes the open ended reverse time
geodesic {θ1 = G, θ2 = Z, . . . , θt , . . . , θT−1} by the recursion θt = χ(θt−1, θt−2), iterated for
t ≥ 2 as long as θt is not a boundary histogram. Then the forward time path Ht = θT−t+1,
t = 2, . . . ,T ≤ Tmax, is a geodesic connecting histograms H2 = θT−1 with HT = G in
T − 1 steps. This path also verifies HT−1 = Z. We can extend this path to t = 1 by setting
H1 = H. This adds a single first step from H1 = H to H2 ≡ θT−1 with an additional cost
C(H,H2). This extension defines an approximate geodesic H connecting H to G in T steps
with penultimate histogramHT−1 = Z. This approximate geodesic is completely determined
by Z and T. The total cost of this geodesic is given by

λ(H) = C(H,H2)+
∑

t=2,...,T−1
C(Ht ,Ht+1),

where C(y, z) is the one-step cost given by (13). Recall that C(y, z) is a smooth function of
interior histograms y and z. Moreover, one has Ht = θT−t+1 for t ≥ 2, where θt is the
smooth function of Z,G. Hence, the cost λ(H) can be treated as a smooth function of the
penultimate histogram, Z, if we consider H, G, and T fixed. One can compute the gradient
of the total cost W(Z) = ∂Zλ(H) ! Rg with explicit formulas summarized in the next
section. Thus, we can use the gradient descent algorithm to compute the optimal pathH$. The
gradient descent algorithm results in a sequence of penultimate histogramsZ1,Z2, . . . ,Zn, . . .
and corresponding paths H1,H2, . . . ,Hn, . . .. We initialize the gradient decent algorithm at
random, such that for Z1 ! S the path H1 = [H,H(1),2, . . . ,H(1),T−1 = Z1,H(1),T = G]
consists of interior histograms. For n ≥ 2, gradient descent algorithm computes

Y = Zn−1 − .nW(Zn−1), s(Y) =
g∑

j=1
Y(j), and Zn+1 = Y/s(Y),

where Zn−1 is the penultimate histogram from the previous step, computed together with the
cost of the path λ(Hn−1) and the gradientW(Zn−1). The gain parameter .n > 0 needs to be
chosen small enough to guaranteeminj Y(j) > 0 and also guarantee that the pathHn consists
of interior histograms. In addition, we use the Armijo line search [? ] to calibrate the step size
.n. The gradient descent algorithm is terminated at step n if either n = 500 or if the cost
λ(Hn) stopped decreasing. We perform the gradient decent for all values of T ! [3,Tmax]
and select the most likely path H$ connecting H and G as the path with the minimal total
cost with respect to T.

5.3. Gradients of the rate functions

Before we present our results, we provide the derivations of the expressions used for our
gradient descent algorithm outlined in the former section.
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5.3.1. Gradient of rate function for reverse geodesics. Any geodesics (represented in reverse
time) θ = [θ1 ≡ G, θ2 ≡ Z, . . . , θT = H] is fully determined by the final and penultimate
histograms G and Z, since for t ≥ 3 θt is given by a recursive relationship θt = χ(θt−1, θt−2)
in (22). The trajectory cost is given by λ(θ) = ∑T−1

t=1 C(θt+1, θt) where C(·, ·) is the one-step
cost in (15).

Next, we consider the number of steps,T,fixed andderive the gradientDZλ(θ)with respect
to the penultimate histogram Z. Using the chain rule

DZλ(θ) =
T−1∑

t=1

[

∇xC(x, y)
∣∣∣∣
(x,y)=(θt+1,θt)

DZθt+1 + ∇yC(x, y)
∣∣∣∣
(x,y)=(θt+1,θt)

DZθt

]

, (28)

where ∇xC(x, y) and ∇yC(x, y) are row vectors and DZθt+1 and DZθt are matrices with
(DZθt)ij = ∂θt(i)/∂z(j). Then DZλ(θ) is a column vector.

We can express the derivative DZθt as

DZθt = Dxχ(x, y)
∣∣∣∣
(x,y)=(θt−1,θt−2)

DZθt−1 + Dyχ(x, y)
∣∣∣∣
(x,y)=(θt−1,θt−2)

DZθt−2, (29)

where both Dxχ(x, y) and Dyχ(x, y) are matrices. For t = 1, 2, DZθ1 ≡ DZG = 0 and
DZθ2 ≡ DZZ = I (the identity matrix). Therefore, formula (29) can be used to computeDZθt
for t > 2. A$er that, formula (28) can be used to compute the gradient DZλ(θ). Next, we
need to derive expressions for partial derivatives of C(x, y) and χ(x, y), where x and y are two
arbitrary internal histograms.

5.3.2. Gradient of one-step cost. The one-step cost C(H,G) from H to G is given by

C(H,G) = KL(G,&)+m
∑

j#=k
FjH(j)Qj,k(1 − Uk/Uj),

where

&(j) = FjH(j)
〈F,H+ , KL(G,&) =

∑

j
G(j) log(G(j)/&(j)), Uj = exp

( G(j)
FjH(j)

)
.

SinceH is a histogram normalized to one, its entries are not independent and we can express
H(g) = 1−∑

j=1...g−1H(j). Thus, we compute the partial derivatives of& above with respect
to H(j) for j < g. We obtain the following expressions

∂H(j)&(j) = Fj〈F,H+ − FjH(j)(Fj − Fg)
〈F,H+2 for j < g,

∂H(k)&(j) = FjH(j)(Fg − Fk)
〈F,H+2 for j, k < g, j #= k,

∂H(j)&(g) = −Fg〈F,H+ − FgH(g)(Fj − Fg)
〈F,H+2 for j < g.

Derivatives of KL divergence can be computed as follows

∂H(j)KL = −
∑

k

G(k)
&(k)∂H(j)&(k), ∂G(j)KL = log G(j)

&(j) − log G(g)
&(g) .
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We can also obtain explicit expressions for the derivatives of Uj:
∂H(j)Uj = −UjG(j)/FjH(j)2 and ∂G(j)Uj = Uj/FjH(j) for j < g,

and
∂H(j)Ug = UgG(g)/FgH(g)2, ∂G(j)Ug = −Ug/FgH(g).

The differential DHU is a matrix of partial derivatives (DHU)j,k = ∂H(k)Uj. Denote

ρ = ρ(H,G) = m
∑

j#=k
FjH(j)Qj,kUk/Uj.

For s < g, the partial derivatives of ρ with respect to H(s) and G(s) are given by

∂H(s)ρ(H,G) = m
[
FgQg,s

(

−Us
Ug

+H(g)
(DHU)s,sUg − Us(DHU)g,s

U2
g

)

+ FsQs,g

(Ug
Us

+H(s)
(DHU)g,sUs − Ug(DHU)s,s

U2
s

)

+
∑

k=1,...,g−2
k#=s

(
FsQs,k

(Uk
Us

− H(s)Uk(DHU)s,s
U2
s

)
+mFkH(k)Qk,s

(DHU)s,s
Uk

)

+
∑

k=1,...,g−2
k#=s

(

−FgQg,kUk

(
1
Ug

+ H(g)(DHU)g,s
U2
g

)

+mFkH(k)Qk,g
(DHU)g,s

Uk

) ]
,

and

∂G(s)ρ(H,G) = m
[ ∑

k=1,...,g−1
k#=s

(
−Qs,k

Uk
Us

+ FkH(k)Qk,s
Us

UkFsH(s)

)

+
g−1∑

k=1

(
Qg,k

Uk
Ug

− FkH(k)Qk,g
Ug

UkFgH(g)

) ]
.

The formulas above yield the partial derivatives of the cost C(H,G) with respect to H(j)
and G(j) for j < g,

∂H(j)C(H,G) = ∂H(j)KL − ∂H(j)ρ(H,G),
∂G(j)C(H,G) = ∂G(j)KL − ∂G(j)ρ(H,G).

These last two formulas then provide the gradients ∇HC(H,G) and ∇GC(H,G).

5.3.3. Gradient of reverse geodesic. As discussed previously, any geodesics {θT , θT−1, θ1}
satisfies the recursive relationship given by θt = χ(θt−1, θt−2). Thus, we consider partial
derivatives of the vector-valued function x = χ(y, z), where the function χ(y, z) is defined
by the following expressions

Xs =
ys
Fs

exp
( Fs

〈F, y+ − zs
ys

)
, Ys =

Xs∑
t Xt

,
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es,k = exp
(

− ys
FsYs

+ yk
FkYk

)
,

.s =
∑

k#=s

(
Qs,kes,k − FkXk

FkXs
Qk,sek,s

)
,

fs,k = exp
(

− zs
Fsys

+ zk
Fkyk

)
.

/s = Fs
∑

k
Qs,k −

(

Fs +
zs
ys

∑

k
fs,kQs,k − zs

Fsy2s

∑

k
FkykQk,sfk,s

)

,

ws = .s + /s − 〈Y ,. + /+,
xs = Ys +mYsws.

For any vector valued functionV = V(y, z) ! Rg differentials with respect to y, z ! Rg are
g × g matrices with entries (DyV)ij = ∂y(j)V(y, z)(i) and (DzV)ij = ∂z(j)V(y, z)(i). Similarly,
the differentials Dye, Dze, Dyf , and Dzf of the matrices e and f are g × g × g tensors, with
coefficients denoted (Dye)s,k,q = ∂y(q)es,k, with similar notations for other tensor differentials.

From the expression for Xs we obtain

(DyX)s,s = exp
( Fs

〈F, y+ − zs
ys

) ( 1
Fs

+ zs
Fsys

− ys(Fs − Fg)
〈F, y+2

)
,

(DzX)s,s = − 1
Fs

exp
( Fs

〈F, y+ − zs
ys

)
,

(DzX)s,k = 0, (DyX)s,k =
ys(Fg − Fk)

〈F, y+2 exp
( Fs

〈F, y+ − zs
ys

)
for s #= k.

Let S = ∑
s Xs ! R. Then one has

(DzS)k = (DzX)k,k

(DyS)k = exp
( Fk

〈F, y+ − zk
yk

)( 1
Fk

+ zk
Fkyk

− yk(Fk − Fg)
〈F, y+2

)

+
∑

s=1,...,g
s#=k

exp
( Fs

〈F, y+ − zs
Fs

) ys(Fg − Fk)
〈F, y+2 .

Then we can compute

(DyY)s,k =
S(DyX)s,k − Xs(DyS)k

S2 and (DzY)s,k =
S(DzX)s,k − Xs(DzS)k

S2 .

Next, differentiating es,k we obtain for q #= s #= k,

(Dye)s,k,s = es,k

(
ys(DyY)s,s − Ys

Y2
s

− yk(DyY)k,s
FkY2

k

)

,

(Dye)s,k,k = es,k

(
ys(DyY)s,k

FsY2
s

+ Yk − yk(DyY)k,k
Y2
k

)

,
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(Dye)s,k,q = es,k

(
ys(DyY)s,q

FsY2
s

− yk(DyY)k,q
FkY2

k

)

,

(Dze)s,k,q = es,k

(
ys

FsY2
s
· (DzY)s,q − yk

FkY2
k
· (DzY)k,q

)

.

Differentiating . we obtain for q < g

(Dy.)s,q =
∑

k#=q
Qs,k(Dye)s,k,q −

∑

k#=s

FkQk,s
Fs

(
ek,s

(DyX)k,qXs − Xk(DyX)s,q
X2
s

+ Xk(Dye)k,s,q
Xs

)

and for s < g

(Dz.)s,s =
∑

k#=s

(
Qs,k(Dze)s,k,s − FkXkQk,s

Fs
(Dze)k,s,sXs − ek,s(DzX)s,s

X2
s

)
.

Next, for s = 1, . . . , g, q < g and s #= q,

(Dz.)s,q = Qs,q(Dze)s,q,q − FqQq,s
FsXs

(
eq,s(DzX)q,q + Xq(Dze)q,s,q

)

+
∑

k#=s, k#=q

(
Qs,k(Dze)s,k,q − FkXk

FsXs
Qk,s(Dze)k,s,q

)
.

The expression for fs,k implies that for s < g, k = 1, . . . , g,

(Dyf )s,k,s =
fs,kzs
Fsy2s

and (Dzf )s,k,s = − fs,k
Fsys

,

and for s = 1, . . . , g, k < g, q #= s, q #= k,

(Dyf )s,k,k = − fs,kzk
Fky2k

, (Dzf )s,k,k =
fs,k
Fkyk

, and (Dyf )s,k,q = 0.

The formula for / implies that for s < g,

(Dy/)s,s =
zs
y2s

∑

k
fs,kQs,k −

(
Fs +

zs
ys

) ∑

k#=s
(Dyf )s,k,sQs,k

+ 2zs
Fsy3s

∑

k
FkykQk,sfk,s − zs

Fsy2s

∑

k#=s
FkykQk,s(Dyf )k,s,s,

(Dz/)s,s = − 1
ys

∑

k
fs,kQs,k −

(
Fs +

zs
ys

)∑

k
Qs,k(Dzf )s,k,s

− 1
Fsy2s

∑

k
FkykQk,sfk,s − zs

Fsy2s

∑

k
FkykQk,s(Dzf )k,s,s.

For s = 1, . . . , g, q < g and s #= q, we have

(Dy/)s,q = −
(
Fs +

zs
ys

)
Qs,q(Dyf )s,q,q − zsFqyqQq,s(Dyf )q,s,q

Fsy2s
− zsFqQq,sfq,s

Fsy2s
,

(Dz/)s,q = −



Fs +
zs
ys
)
∑

k#=s
Qs,k(Dzf )s,k,q



 − zs
Fsy2s

∑

k#=s
FkykQk,s(Dzf )k,s,q.
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The formula for w implies that for s < g, k < g

(Dyw)s,k = (Dy.)s,k + (Dy/)s,k − (DyS)k,
(Dzw)s,k = (Dz.)s,k + (Dz/)s,k − (DzS)k.

Finally, from xs = Ys +mYsws, we obtain

(Dyx)s,k = (DyY)s,k(1+mws)+mYs(Dyw)s,k,
(Dzx)s,k = (DzY)s,k(1+mws)+mYs(Dzw)s,k.

Since x = χ(y, z) the last two formulas provide gradients of χ(y, z) with respect to y
and z.

5.4. Numerical results

For g = 8, we tested the gradient descent algorithm for the same pair H,G used in Section
4.4.2 and parameter values in Section B. For g = 8, the computational time for the p-quantile
algorithm discussed in Section 4.4.2 is approximately one hour. The optimal penultimate
histogram and the total trajectory cost computed given by the p-quantile algorithm are given
by the row H6 in 6 and λ̃ = 0.0534, respectively.

The gradient descent algorithm yields the most likely path with a smaller overall cost λ$ =
0.0343 and the penultimate histogram

Z$ = [0.0841, 0.0651, 0.1129, 0.0664, 0.0564, 0.0999, 0.4188, 0.0963].
Moreover, the computational time using the gradient descent algorithm was drastically

reduced to 20 s on a single computational node. Therefore, the gradient decent algorithm for
computing themost likely path is superior to the p-quantile approach discussed earlier in this
article.

Due to a significant reduction in computational time using the gradient descent algorithm,
we can apply this approach for g = 10 genotypes. Parameters are given in SectionB. The initial
and the target histograms were chosen as

H = [0.45, 0.10, 0.10, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05],
G = [0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.10, 0.45, 0.10].

The gradient descent algorithm yields the best geodesic H$ = {H1 = H, . . . ,H9 = G}
connecting H to G in T$ = 9 steps, with the total trajectory cost λ(H$) = 0.0259 and
penultimate histogram

Z$ = H8 = [0.0726, 0.0606, 0.0625, 0.0567, 0.0572, 0.0573, 0.0559, 0.0997, 0.3810, 0.0974].
The total computing timewas around 40 s on one single node.Here, we present the analysis

of convergence for T$ = 9.
We also studied the rate of convergence of norm ‖H − θT$−1‖2 and the total cost of the

trajectory with respect to the optimization step, n. We expect to observe linear convergence
since we consider a standard (first-order) gradient descent scheme.We observe that the norm
and the cost did not change drastically a$er approximately n = 18 for the experiments carried
out in this section, showcasing a quick convergence to a good solution for the considered
problem (detailed results are reported in [26]). Since the convergence of gradient descent is
in general not independent of the problem dimension, we expect to observe a slower rate at
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larger values for g. Accelerated gradient descent schemes (withmomentum) or quasi-Newton
methods can serve as a remedy. However, given the overall small dimension (g 2 1000), we
do not think higher-order optimization algorithms are required.

The gradient descent algorithm is considerably faster compared to a more straightforward
p-quantile discretization approach. In particular, the computing time for g = 10 only doubles
compared with the computing time for g = 8. Thus, the gradient descent algorithm can be
successfully used to analyze the most likely paths for a relatively large number of genotypes.
This work will be carried out in a successive paper where we analyze realistic biological
scenarios of rare events.

The efficiency and performance of the gradient descent algorithm depend on the initial
penultimate histogram, Z1, and selecting an adequate starting penultimate histogram is quite
crucial to get the correct most likely path connectingH andG. Similar to other applications of
the gradient descent algorithm to nonlinear problems, the optimization search can converge
to a local minimum. In addition, the gradient descent algorithm is only applicable if the
trajectory generated by Z1 consists of interior histograms. Therefore, we performed studies
of how random selection of Z1 affects the performance of the gradient descent algorithm. In
particular, we generated K = 154 initial penultimate histograms {Z(k)

1 , k = 1, . . . ,K} and
a$er fixing the number of steps the optimal value (T$ = 7 and T$ = 9 for g = 8 and
g = 10, respectively), we performed gradient decent search for each penultimate histogram.
For g = 8, 131 paths out of 154 resulted in interior paths. Moreover, approximately 50 paths
had a trajectory cost essentially equal to 0.03425, which is approximately the optimal cost
for g = 8. This corresponds to a success rate of ≈ 38% for random initializations of the
gradient descent approach for g = 8. For g = 10, only 52 out of 154 random choices of
Z1 resulted in paths consisting of interior histograms. Moreover, among these 52 paths, 25
paths had costs in the range [0.0216, 0.0235] and only five had the approximate lowest cost of
0.0216. This implies that it is necessary to perform many realizations of the gradient descent
algorithm with many values of the penultimate histogram. It is possible to combine a coarse
discretization of the space of interior histogramsH with the gradient descent algorithm or to
find a good starting point by performing a coarse greedy search to find a good initial point.

6. Conclusions

In this article, we discuss the large deviations theory for Markov Chains modeling genetic
evolution for bacterial populations. In particular, these models describe the long-term labo-
ratory E. coli experiments where cells undergo daily growth, mutations, and dilutions. It has
been demonstrated that such long-term evolutionary experiments o$en lead to the emergence
of new bacterial genotypes. Thus, the Markov chains discussed in this article are aimed at
modeling the stochastic dynamics of population histograms of genotype frequencies. We
outlined the main theoretical results from a previous paper [24, 25]. These theoretical results
lay the mathematical foundation for deriving the cost function for evolutionary trajectories
connecting two arbitrary histograms. In particular, we focus on rare events and the large
deviation analysis of trajectories when one of the emergent bacterial sub-populations does not
have the highest fitness (i.e., not the dominant genotype in the population). Such trajectories
correspond to the cost-minimizing paths and have very small probabilities, which cannot be
computed directly by, for instance, ensemble simulations.
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We present several algorithms for computing the most likely trajectories connecting the
initial and the final histograms. The computation is performed “in reverse time” and themost
likely trajectories are completely determined by the final and penultimate histograms. Since
the penultimate histogram is not known, this leads to an optimization problem with respect
to the penultimate histogram. We present several algorithms for computing the most likely
trajectories connecting the initial and the final histograms. The computation is performed
“in reverse time” and the most likely trajectories are completely determined by the final
and penultimate histograms. Since the penultimate histogram is not known, this leads to an
optimization problem with respect to the penultimate histogram. We compare and contrast
the straightforward and the p-quantiles search algorithms in Section 4. These algorithms
are based on a relatively straightforward optimization problem, where the set of candidate
penultimate histograms is constructed with a relatively coarse discretization. We discuss the
efficiency of the p-quantile search algorithm and demonstrate its applicability for the number
of genotypes g ≤ 8. and the p-quantile search algorithms in Section 4. These algorithms
are based on a relatively straightforward optimization problem, where the set of candidate
penultimate histograms is constructed with a relatively coarse discretization. We discuss the
efficiency of the p-quantile search algorithms and demonstrate its applicability for the number
of genotypes g ≤ 8.

To handle problems with a larger number of possible genotypes in bacterial populations,
we develop a more efficient gradient descent algorithm in Section 5. In particular, we derive
explicit expressions for the gradient of the cost function with respect to the penultimate
histogram. We demonstrate that this algorithm is easily computationally applicable to prob-
lems with g ≤ 10 genotypes. Moreover, we also estimate that this algorithm is potentially
applicable for problems with up to g = 20 genotypes. Since the corresponding optimization
problem is nonconvex, one potential drawback of the gradient descent algorithm is that it
might converge to a local minimum, as discussed at the end of Section 5.4. Therefore, for
problemswith g > 10 genotypes, one probably has to combine the gradient descent algorithm
with the p-quantiles approach, so that the starting penultimate histogram in the gradient
descent algorithm is selected near an optimal point. The computational framework developed
in this article stands ready to tackle interesting biological problems such as the emergence of
genotypes with lower fitness but with a higher degree of adaptation. This involves considering
amutationmatrixQwith non-uniformmutation rates. These experiments will be carried out
in a consecutive paper.

Numerical algorithms presented in this article can be potentially used for two types of
applications—(i) reconstructing the most likely path connecting the initial and the final
histograms and (ii) performing the importance sampling MC simulations in path space
and, thus, computing the small probabilities of reaching the target histogram. Both of these
applications were addressed in [26]. In practice, it is not possible to determine the genetic
composition of the bacterial population during each generation, since these experiments
o$en run for tens of thousands of generations (see, e.g., [28]). Therefore, the detailed genetic
evolutionary path can be reconstructed using the numerical technique presented in this
article. The second application involves performing MC importance sampling simulations
where the original Markov chain is modified so that all paths remain close to the most
likely path connecting the initial and the final histograms. This enables computing accurate
estimates of the actual probability of reaching the target histogram. We demonstrated that
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our computational strategy allows addressing both applications in a practical setting with a
relatively large number of genotypes g ≈ 20.
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A. summary of notation

Below, we summarize the notation used in this manuscript.
• g ! N: number of genotypes in the bacterial population
• N ! N: number of cells in the bacterial population
• m ! R: mutation rate
• H ! Rg : population histogram of bacterial frequencies frequencies;H = [H(1),H(2), . . . ,

H(g)] with H(j) ≥ 0 for j = 1, . . . , g and
∑g

j=1H(j) = 1
• H(j) ! [0, 1]: frequency of genotype j in the population
• Ht ! Rg : population histogram of bacterial frequencies on day t
• Ht(j) ! [0, 1]: frequency of genotype j in the population on day t
• [F1, F2, . . . , Fg]: ordered genotype growth factors with F1 < F2 < . . . < Fg
• H ⊂ Rg : space of all histograms
• H+ = {H : H ! H and H(j) > 0 for all j = 1, . . . , g} is the set of all interior histograms
• H = {H1, . . . ,HT}: time-dependent path of length T (days) in the spaceH connecting the

initial histogramH1 and the final histogram HT
• "T : space of all paths of length T
• "+

T : space of all interior paths of length T; ifH ! "+
T thenHt(j) ≥ ε for all 1 ≤ t ≤ T and

1 ≤ j ≤ g and for some ε 2 1

B. growth factors and selective advantages

In all simulations in this article the mutation rate is m = 10−8. The g × g mutant transfer
matrix Q has all diagonal coefficients Qi,i = 0, and all non-diagonal coefficients Qi,j =
1/g − 1 for i #= j.

For simulations with g = 3, 4, 5 genotypes growth factors F = [F1, . . . , Fg] are given by
• g = 3: F = [200, 305.6, 377.7],
• g = 4: F = [200, 305.6, 339.7, 377.7],
• g = 5: F = [200, 305.6, 339.7, 358.2, 377.7].
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For simulations with g = 7, 8, and 10 genotype growth factors are given by
• g = 7: F = [200, 289.8, 305.6, 322.2, 339.7, 358.2, 377.7],
• g = 8: F = [200, 274.8, 289.8, 305.6, 322.2, 339.7, 358.2, 377.7],
• g = 10:F = [200, 2001.04, 2001.05, 2001.06, 2001.07, 2001.08, 2001.09, 2001.10, 2001.11, 2001.12].
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