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trends. Additionally, there is a desire to compare such within-species patterns across

patterns while simultaneously accounting for phylogenetic non-independence.

Handling Editor: Gustavo Burin Consequently, deciphering how intraspecific trends evolve remains a challenge.

3. Here we introduce an extended phylogenetic generalized least squares (E-PGLS)
procedure which facilitates comparisons of within-species patterns across species
while simultaneously accounting for phylogenetic non-independence.

4. Our method uses an expanded phylogenetic covariance matrix, a hierarchical
linear model, and permutation methods to obtain empirical sampling distributions
and effect sizes for model effects that can evaluate differences in intraspecific
trends across species for both univariate and multivariate data, while conditioning
them on the phylogeny.

5. The method has appropriate statistical properties for both balanced and imbalanced
data. Additionally, the procedure obtains evolutionary covariance estimates that
reflect those from existing approaches for nonstructured intraspecific variation.
Importantly, E-PGLS can detect differences in structured (i.e. microevolutionary)
intraspecific patterns across species when such trends are present. Thus, E-PGLS
extends the reach of phylogenetic comparative methods into the intraspecific
comparative realm, by providing the ability to compare within-species trends

across species while simultaneously accounting for shared evolutionary history.
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1 | INTRODUCTION

Deciphering patterns of phenotypic variation is a mainstay of evo-
lutionary research, yet the analysis of phenotypic data remains
distinctly different enterprises between microevolutionary and
macroevolutionary studies. At contemporary timescales, microevo-
lutionary investigations strive to identify the relationship between
patterns of phenotypic variation across individuals or populations,
and the environmental factors that underlie selection and the gen-
eration of phenotypic change. These studies leverage phenotypic
information from many individuals (typically hundreds or more), and
across multiple populations, to elucidate the ecological factors that
associate with patterns of phenotypic diversity within species (e.g.
Beausoleil et al., 2023; Collyer et al., 2015; Reyes-Puig et al., 2023;
Stroud et al., 2023; Tejero-Cicuéndez et al., 2023). In contrast to
within-species studies, macroevolutionary studies utilize a phyloge-
netic perspective to examine trait associations across species and in
light of evolutionary history. Here, phylogenetically informed statis-
tical procedures are leveraged to evaluate trait associations across
species while accounting for their phylogenetic non-independence
(Felsenstein, 1985; Harmon, 2019; Harvey & Pagel, 1991; Martins
& Hansen, 1997; O'Meara, 2012). As with microevolutionary analy-
ses, selective forces are thought to play an important role in shap-
ing phenotypic diversification across taxa and clades, as well (Burns
et al., 2024; Hunt et al., 2023; Sidlauskas, 2008). However, while it is
generally thought that phenotypic patterns resulting from contem-
porary processes may ‘scale up’ to macroevolutionary patterns found
across species and clades, evaluating this prediction is challenging,
as it requires the ability to interrogate microevolutionary patterns
in a phylogenetic context (i.e. account for the non-independence
among species when evaluating within-species trends).

In macroevolutionary studies, phylogenetic comparative meth-
ods (PCMs) are a set of statistical tools that enable biologists to
condition the data on the phylogeny under a particular model of
evolutionary change (Brownian motion, Ornstein-Uhlenbeck, etc.).
Patterns of covariation between traits may then be evaluated across
species while accounting for the evolutionary relationships among
them (Felsenstein, 1985; Harmon, 2019; Harvey & Pagel, 1991;
Martins & Hansen, 1997; O'Meara, 2012). Since their advent in the
late 20th century, the development of PCMs has progressed at a rapid
pace, resulting in myriad analytical tools that enable evolutionary bi-
ologists to evaluate a wide array of biological hypotheses describing
how ecological and evolutionary forces shape patterns of pheno-
typic diversification (Adams, 2014a, 2014b; Beaulieu et al., 2012;
Blomberg et al., 2003; Butler & King, 2004; Clavel et al., 2015;
Collyer et al., 2022; Gaboriau et al., 2024; Khabbazian et al., 2016;
Mitov et al., 2019; O'Meara et al., 2006; Revell & Harmon, 2008;
Uyeda & Harmon, 2014).

Phylogenetic comparative analyses typically use species means
as trait data, and thus implicitly assume that intraspecific variation
is negligible relative to interspecific variation (Felsenstein, 2008;
Garamszegi, 2014; lves et al., 2007). This is not always the case.
Additionally, because species means are obtained from finite
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samples of measured individuals, estimation error will be present
(Felsenstein, 2008; lves et al., 2007; Lynch, 1991). Together, this
uncertainty can result in inaccuracy during PCM analyses, which
can have a profound effect on biological inferences. For example,
within-species variation can instigate bias in parameter estimates
(Felsenstein, 2008; lves et al., 2007), can generate elevated type |
error rates for hypothesis testing procedures (Felsenstein, 2008;
Harmon & Losos, 2005), can result in low statistical power of such
tests (Harmon & Losos, 2005) and can cause model misspecification
when comparing the fit of alternative evolutionary models to pheno-
typic data (Silvestro et al., 2015). To mitigate these effects, several
procedures have been developed that incorporate intraspecific vari-
ation into the PCM analytical pipeline (Felsenstein, 2008; Gaboriau
etal., 2020; Hadfield & Nakagawa, 2010; Hansen & Bartoszek, 2012;
Ives et al., 2007; Kostikova et al., 2016; Revell & Reynolds, 2012;
Villemereuil & Nakagawa, 2014). In general, these procedures con-
sider the totality of within-species variation as measurement error,
which is represented as nonstructured (random) sampling error
around the mean phenotype. Macroevolutionary trends across spe-
cies may be evaluated while taking into consideration both within-
species variation, as well as the phylogenetic non-independence
among taxa. Importantly, the variation among sampled individuals,
populations or other units within species all contribute to the over-
all within-species variation, but without regard to the underlying
sources that might influence that variation.

Nonetheless, intraspecific variation is often structured in biolog-
ically meaningful ways that convey additional information that em-
piricists wish to investigate, particularly at microevolutionary scales.
For instance, differences between the sexes (i.e. sexual dimorphism)
or phenotypic differences that vary with body size (e.g. allometric
trends) represent structured patterns of intraspecific variation and
are frequently of interest to investigate and compare among taxa
(Juarez & Adams, 2022; Reyes-Puig et al., 2023; Tejero-Cicuéndez
et al., 2023). Clearly, when comparing such patterns across species,
one must also account for their phylogenetic non-independence,
but current analytical approaches cannot interrogate and compare
microevolutionary trends sampled within species, while simultane-
ously accounting for phylogenetic non-independence based on re-
latedness defined at the species level. Thus at present, we lack tools
that are capable of bridging this particular microevolutionary—mac-
roevolutionary divide.

In this work, we introduce a novel phylogenetic comparative
method for comparing within-species patterns among species while
accounting for their phylogenetic non-independence. Our approach
may be used to evaluate trends in univariate or multivariate phe-
notypic data, and extends phylogenetic generalized least squares
procedures (E-PGLS) by fitting individual-level data in a hierarchi-
cal linear model while conditioning on an expanded phylogenetic
covariance matrix. Permutation procedures are developed which
generate empirical sampling distributions and effect sizes for model
effects, allowing the statistical evaluation of both species-level pat-
terns and for comparing within-species trends among species across
the tree of life. As demonstrated below, the E-PGLS procedure
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displays appropriate statistical properties, with acceptable type |
error and high statistical power. Additionally, when intraspecific
variation is nonstructured (random), E-PGLS obtains evolutionary
covariance estimates that are comparable to those found from exist-
ing approaches (Felsenstein, 2008). However, a unique contribution
of our approach is that when within-species variation is structured,
E-PGLS is capable of detecting differences in intraspecific patterns
across taxa when such trends are present. Thus, E-PGLS facilitates
the comparison of within-species (microevolutionary) patterns
across species while accounting for among-species variation, as well
as the phylogenetic non-independence of those species. As such,
E-PGLS is capable of revealing macroevolutionary insights regarding
the evolution of intraspecific phenotypic trends in a manner that is

currently beyond the reach of standard PCMs.

2 | CONCEPTUAL DEVELOPMENT
2.1 | Model construction

E-PGLS combines a hierarchical linear model and an expanded phy-
logenetic covariance matrix to interrogate variation in one or more
phenotypic traits while conditioning the individual-level data on the
phylogeny. Let n represent the total number of individuals sampled
across N species, with n; individuals sampled for the ith species, such
that 2511 n; = n. It is not assumed that species have the same n;. As
shown below, the approach may be used with imbalanced data (which
occurs frequently due to sampling limitations when utilizing museum
collections or field samples). Phenotypic values, Z = f(Y), comprise an
n x p matrix for n individuals, with p measured traits per individual. Z
may represent mean-centred data (Y — 7), or a set of transformed vari-
ables, such as Procrustes-aligned coordinates representing geometric
morphometric shape data (Adams et al., 2013; Rohlf & Slice, 1990).
Next, an n x (N + k) linear model design matrix, X can be constructed
that describes both species values and within-species covariates or
sub-species factors. X is a partitioned matrix, that is X = Xg | Xy, with
X, containing species classifiers and Xy corresponding to factors (e.g.
sex, population, ecotype) or covariates (e.g. size, performance) meas-
ured at the individual (within-species) level. The hierarchical linear

model describing patterns of phenotypic variation is then defined as:
Z=XBs + X,By +E (1)

where Xs is an nx N species design matrix of dummy variables (Os
and 1s), whose N columns designate the species to which each in-
dividual belongs, and Xy is an n x k design matrix containing one or
more explanatory variables. Model coefficients are found in the N x p
and k X p matrices ﬁx and ﬁs respectively, and E is an n x p matrix of
residual error, distributed as: E ~ /%N(O, Qn). Here, E follows a matrix
normal distribution (a generalization of a multivariate normal distribu-
tion), with expected covariances that express the correlations among
species as a result of their shared phylogenetic history (Blomberg
etal.,, 2012; Garland & Ives, 2000; Grafen, 1989).

Coefficients in Equation 1 are estimated jointly, not iteratively.
The equation could be written as, Z:X§+E, recognizing that
X = (Xs| Xx) and B= (2—)5(). Equation 1 conveniently demonstrates
that coefficients and estimates from them can be separated into
species and within-species effects. However, this should not imply
that species effects are estimated first and within-species effects
second, in a sequence. Rather, the linear model design matrix and
matrix of coefficients are concatenated from the submatrices shown
separately in Equation 1.

In standard PGLS implementations that utilize one individual
per species (e.g. the species mean), phylogenetic correlations are
expressed in Q, which is an N x N phylogenetic covariance matrix ob-
tained from the phylogeny under a particular model of evolutionary
change (Brownian motion, Ornstein-Uhlenbeck, etc.). The residual
error of E-PGLS follows an analogous construction, but where Q,
is an n x n expanded phylogenetic covariance matrix, describing the
expected covariation among individuals across species due to phy-
logenetic non-independence. This matrix is found by pre- and post-

multiplying the species-level phylogenetic covariance matrix Q by Xg:
Q, = XsQX! (2)

where X is the species design matrix defined above. As with standard
implementations of PGLS, Q in Equation 2 may be obtained under a
Brownian motion model, or using some other model of evolutionary
change, such as an Ornstein-Uhlenbeck model. Thus, Q, describes
the evolutionary covariation among individuals as is expected under
the specified model of evolutionary divergence found in Q (additional
scaling options for Q, are described in the Supporting Information).
Using Equation 2, individuals sampled from the same species display
the same expected covariances when compared to individuals from
other species. Note that Equation 2 provides a mathematically com-
pact means of obtaining the expanded phylogenetic covariance matrix
in Lopez-Fernandez et al. (2014).

An important attribute of E-PGLS is the ability to compare
within-species (microevolutionary) patterns across taxa while ac-
counting for phylogenetic non-independence. To accomplish this,
species-specific within-species patterns (cross-species effects)
are modelled by including interactions between model main ef-
fects and the species design matrix (e.g. XCX = Xy x X;). Note that
if Xy contains more than one independent variable, cross-species
trends could be considered for multiple factors or covariates in Xy.
Incorporating cross-species trends in Equation 1 results in the full
E-PGLS hierarchical model:

Z =XsBs + XyBy + X, B¢, +E. 3)

In general, these three sets of coefficients—species (§5), full-clade
association of a trait with an independent variable (ﬁx) and cross-
species comparisons (ﬁcx)—should allow an expansion of hypothesis
tests compared to standard PGLS (which provides By, only.) First, it
could be possible to test for a species effect (based on ﬁs) because of
replicated observations within species. Second, it would be possible
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to test for heterogeneity of microevolutionary patterns (ﬁcx) and pos-
sibly infer the association of microevolutionary patterns with respect
to macroevolutionary events (e.g. subclade distinction of microevolu-
tionary relationships). Hypothesis tests first require, however, reliable
estimates of micro- and macroevolutionary parameters.

2.2 | Parameter estimation

Once the components of the linear model have been constructed,
the data are conditioned on the phylogeny using phylogenetic
transformation (Adams, 2014b; Adams & Collyer, 2015, 2018b,
2022; Garland & lves, 2000), and model parameters are obtained.
Phylogenetic transformation is an implementation of the well-
known statistical transformation that reformulates generalized
least squares (GLS) problems to ordinary least squares (OLS) prob-
lems (see Johnston & DiNardo, 1997; Judge et al., 1985; Kariya &
Kurata, 2004; Rencher, 2000). Following Garland and Ives (2000),

the phylogenetic transformation matrix is found as,

p= (UA‘1/2UT>_14 (4)

Here,Uand A are matrices of eigenvectors and eigenvalues of Q,,.
Note that @, is not of full rank, because its rows and columns are
replicated for each n; within each species. Thus, the number of ei-
genvectors and eigenvalues used in Equation 4 is restricted to the
rank of Q,. Additionally, because Q, contains many zero elements,
sparse-matrix methods and enhanced analytical algorithms (linear
model checkers, sensu Baken et al., 2021) can be used to increase
computational efficiency.

Using P, the data matrix is conditioned on the phylogeny via ma-
trix projection (i.e. phylogenetic transformation): 7 = PZ Next, the
model design matrices are concatenated (i.e. Xior = Xs | Xx | Xc,), and
the model design matrix is also conditioned on the phylogeny via
matrix projection: )~(tot = PX,.+- Model parameters are then obtained
using OLS procedures:

~ ~t ~ 1.1 ~
Bt = (thtxtot> XtotZ (5)

The linear model design matrix and coefficients in Equation 5
represent a condensed nomenclature for concatenated matrices,
which are used for joint estimation of species, within-species, and
cross-species coefficients and effects. The partitioning of matrices

can be illustrated as

Xiot = <X5|Xx|xcx)’

and

Biot =| By |

Methods in Ecology and Evolution EEé“n“lﬁ!m.l

SOCIETY

§5 represents coefficients (parameter estimates) that describes
macroevolutionary differences among species mean phenotypes,
while §Cx describe differences in species-specific (i.e. microevolu-
tionary) trends. On the other hand, @X can represent either micro-
evolutionary or macroevolutionary patterns, depending upon the
study design. For example, coefficients of ﬁx representing covariates
in Xy that segregate across species encode for patterns that differ
among species, and thus describe macroevolutionary trends across
the phylogeny. By contrast, coefficients of ﬁx representing factors
in Xy that assign individuals within species to different groups (e.g.
population or sex) describe microevolutionary trends within spe-
cies. Together, the set of coefficients in ﬁtot are used in combination
with the set of model design matrices in X, to estimate the vari-
ance components of the phylogenetic linear model, and to conduct
permutation-based hypothesis testing procedures that evaluate

model terms statistically.

2.3 | Variance components

E-PGLS requires that within-species variation is taken into considera-
tion while evaluating other effects in the model. This mathematical
requirement dictates the manner in which sums of squares and cross-
products (SSCP) matrices and variance components are calculated.
For the species effect, E-PGLS uses marginal (type Ill) sums of
squares, which estimates the SSCP between a model containing all
terms and a model lacking the species term. Here, the full and re-
duced models are found as Xg = Xs | Xx | X¢, and Xg = Xg | Xx | Xc,,
which differ only by species parameters (X, is a vector of 1s: the
“intercept” model). Model parameters are then estimated as above,

and the difference in estimations between models is

AZ =27, -Z,=X:B;—X:B,

~ ~

Bs B
= (XsIXelXc, )| By | = (XolXuIXe, )| Bx ®)
Be, J, Be, ),

= (Xs B r+XxBxr+Xc,Bc, r ) - <XOBO,R +XxBxr+Xc, Be, r )

From this the SSCP for the species effect while holding constant
all other effects in the model is found as

S= (220 )PTP(2-20) = (2-24) ' (2~ 2e). )

The variances and covariances associated with the species effect
is then found by dividing Sgby N — 1.

For all remaining effects in the model, E-PGLS uses conditional
(type Il) sums of squares to obtain variance components. Here, intra-
specific variation is restricted within species blocks, ensuring that
the other model effects are not confounded by inter-species effects.
This is accomplished by comparing full and reduced models for the
effect of interest, but still containing the species effect, X,. For in-
stance, the difference between fitted values for X can be found as
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AZy =7 - Zp=X:B; —X3B,
= (Xsﬁs,F +XX§X,F> - (Xsﬁs,k>-

This ensures that the effect of X is conditioned on the estimation of

(8)

species means, which are also conditioned on the non-independence
of those means because of phylogenetic relatedness. SSCP matrices
for each model effect are then obtained in a manner analogous to
Equation 7, except that the reduced and full models both contain X.

Likewise, the cross-species XCX SSCP matrix is estimated based
on a difference between fitted values from the previous full model,
now the reduced model, and a full model containing X,

AZc, =Z¢—Zy=X¢Br —XzBg
~ N ~ N N 9)
= (Xs Bs s +XxBy s +Xc Be, ¢ ) - <Xs Bsr +XxBxr >

Type Il SSCP estimation means that for multiple cross-species
comparisons, effects are conditioned on phylogenetically adjusted
species means and the common trends of the multiple variables.

Finally, the residuals of the model are obtained by contrasting

the data and fitted values of the E-PGLS model containing all terms,

E=Z-Z,=Z-X:B;
~ N ~ (10)
=Z- (xSBS,F +XxByr+Xc, BCX,F).

The residual SSCP, Spegiauss = (PE)'PE=E"P'PE=E"Q 'E, is
then calculated as in Equation 7. Additional details of the E-PGLS

procedure may be found in the Supporting Information.

2.4 | Inferential statistics and permutation
procedures

To evaluate model effects, E-PGLS uses a combination of robust sta-
tistical summary measures and the randomization of residuals in a
permutation procedure (RRPP: Collyer et al., 2015, 2022; Adams &
Collyer, 2018b, 2022). Generally, linear model summary statistics are
found from SSCP matrices for various terms in the model relative
to the residual covariance matrix, £gequare = 1= 1) Spesiguaiss This
forms the basis of inferential tests. Using this approach, the residual
SSCP may be leveraged to obtain MANOVA statistics based on the
Eigen decomposition of a matrix product that generalizes the ratio of
term SSCP to residual SSCP,

UAUT = SE:sidualssTerm' (11)

Note that this decomposition is often necessary, as the data (2)
may be rank-deficient; in which case, the data are first subjected to
a principal components analysis, and all calculations above are based
on the set of non-trivial dimensions (i.e. those whose 4 > 0). From
Equation 11, MANOVA statistics (e.g. Roy's maximum root (4,
Wilks' A, etc.) may then be obtained as a summary of multivariate

dispersion (for additional information see Supporting Information).

Additionally, one may obtain a series of multivariate test
statistics using likelihood. Here, the determinant of UAUT (i.e.
det(s-1

ResiduaIsSTel’m)) is a ratio of determinants. This value is equiva-

lent to a likelihood ratio and may be obtained for each term in the
model. Then, a permutation test evaluating these values is commen-
surate with a non-parametric likelihood ratio test (for additional in-
formation see Supporting Information).

Alternatively, an F-statistic can be calculated based on the traces
of the SSCPs, which therefore does not require matrix inversion.

Here the summary statistic is calculated as

F= tr-(STerm) /dfTerm ‘ (12)
tr(sResiduaIs) /deesiduaIs

where tr represents the trace of the matrix (i.e. the sum of its diago-
nal elements), and Stem aNd Sgegiguals are the SSCP matrices as above.
Note that for univariate data, Equation 12 is the standard F-statistic,
though it may be used for data of any dimension, including those
containing singular dimensions (e.g. when p > N: see Adams, 2014b;
Adams & Collyer, 2022). For this reason, F-statistics are commonly
obtained in this manner for high-dimensional data (e.g. Anderson
& Robinson, 2001; Goodall, 1991; Klingenberg & Mclntyre, 1998).
However, unlike the MANOVA statistics derived from Equation 11,
this F-statistic does not incorporate the covariances among variables
in its calculation.

For any of these summary statistics, permutation procedures
are then used to generate empirical sampling distributions.
Here, residuals from the reduced model for each model effect
are permuted, as they represent the appropriate exchangeable
units for the RRPP procedure (for justification see Supporting
Information, and also Collyer et al.,, 2015, 2022; Adams &
Collyer, 2018b, 2022). In addition, for all model effects except
Xs, RRPP is restricted to within species so that intraspecific ef-
fects are not confounded by interspecific effects (for details,
see Supporting Information).

Finally, effect sizes may be calculated for each term in the model

to provide a means of evaluating the strength of signal of each effect,

Hobs )
Oy ’

Z= (13)
where u and ¢ are the mean and standard deviation of the normal-
ized empirical sampling distribution of the test statistic (e.g. 8 = f(F)),

respectively.

3 | SIMULATION METHODS AND RESULTS

To verify the performance of E-PGLS, we used a series of stochastic
sampling experiments to examine its behaviour under various condi-
tions. Below we report on the two primary simulation experiments.
Additional simulations under a wider set of conditions may be found

in the Supporting Information.
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3.1 | PGLS with nonstructured (random)
intraspecific variation

First, when intraspecific variation is nonstructured, it may be treated
as random sampling error around the mean phenotype. Thus, under
these conditions, we would expect that E-PGLS should perform simi-
larly to existing methods that can incorporate within-species varia-
tion (e.g. Felsenstein, 2008; Ives et al., 2007). To verify whether this
was the case, we conducted a series of stochastic sampling experi-
ments. Our design was as follows: phenotypic values were simulated
on a phylogeny under Brownian motion (BM) with a known covaria-
tion between traits, and individuals within species were generated
by adding nonstructured (random) variation to the mean phenotypic
values for that species. We then estimated the evolutionary covaria-
tion between traits using species means, within-species independent
contrasts (Felsenstein, 2008) and E-PGLS.

To implement this test, we simulated 1000 pure birth phylog-
enies for N = 100 species. Two phenotypic traits were simulated on
each phylogeny under Brownian motion (BM), using an input covari-
ance matrix (X) whose trait covariance was ¢ = 0.4. For each dataset,
a random number of individuals (n; = 1 — 10) was selected for each
species, and phenotypic values for each individual were generated
by adding nonstructured (random) variation to the mean phenotypic
values for that species (Yn‘_‘_ = VN, + E r(00.2)- This procedure generated
nonstructured intraspecific variation among individuals within species
in a manner similar to the simulations performed by Felsenstein (2008).
For each dataset, we then estimated the covariation between the
two traits using E-PGLS, within-species independent contrasts
(Felsenstein, 2008), and using species means. Computer code and ad-
ditional details are found in the Supporting Information.

3.1.1 | Results

Our analyses revealed that when intraspecific variation was
nonstructured (random), estimates of covariation between traits
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obtained from E-PGLS and from within-species contrasts closely
matched the input value, and displayed considerably less variation
across datasets as compared with estimates obtained using species
means (Figure 1). Additionally, across simulations there was a very
strong correlation between estimates from E-PGLS with those
from within-species contrasts (r = 0.94). Thus, when intraspecific
variation was nonstructured, we verified that E-PGLS provided
estimates of evolutionary trait covariation commensurate with those
obtained using prior PCMs that incorporate within-species variation

as random error into the analysis (Felsenstein, 2008).

3.2 | Comparing within-species patterns:
Structured intraspecific variation

One important advance that E-PGLS enables is the ability to com-
pare within-species (i.e. microevolutionary) patterns across species,
while simultaneously conditioning this analysis on the phylogeny.
Accomplishing this amounts to an evaluation of structured patterns
of intraspecific variation, where those patterns may differ across
species. In this section, we evaluated whether E-PGLS was capable
of detecting differences in structured patterns of within-species var-
iation across the phylogeny. To verify this, we performed stochastic
sampling experiments similar to those described above but where
the multivariate phenotypes also contained structured intraspecific
variation. The structured intraspecific variation represented phe-
notypic differences between groups of individuals within species,
as may be found between sexes, localities or other biological fac-
tors of interest. Additionally, structured variation was simulated to
be species-specific, where some species displayed within-species
patterns while others did not. Simulations were also performed
where the degree of structured intraspecific variation differed in
its intensity across simulations. We then used E-PGLS to evaluate
phenotypic variation attributed to potential effects via the model,
Z= X5§5 + Xxﬁx + XGpﬁcp + chpgcc,, + E, where the subscript, ¢, re-
fers to a grouping factor with two levels.

o | n v =
g Species means — 6 g. r=094
E-PGLS a B
=== \Nithin Sp. PIC w8
= Simulated value o ‘ T T
8 | 0.1 0.3 0.5 0.7
® Within Sp. PIC
>
Q
c
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3 O +
o N
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FIGURE 1 Histogram of evolutionary =
covariance estimates for 1000 simulated o
datasets. Estimates of evolutionary =
covariance were obtained using (1) species
means, (2) within-species independent
contrasts and (3) E-PGLS. Inset is a dot o
plot between estimates from within- T T ! T T ‘
0.0 0.2 0.4 0.6 0.8 1.0

species independent contrasts and
E-PGLS for all 1000 datasets.

Evolutionary covariance
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To implement this test, we first simulated 1000 pure birth
phylogenies for N =100 species. Three phenotypic traits (Y,
and X;) were simulated on each phylogeny under Brownian mo-
tion (BM), using an input covariance matrix (X) with all trait co-
variances set to ¢ =0.5. For each dataset, n; =4 individuals per
species were generated (i.e. balanced within-species sampling),
and individuals within species were randomly assigned to one
of two groups. Additional simulations were also conducted with
n; = 10 individuals per species, as well scenarios where the num-
ber of individuals within species was imbalanced (n; = 2,4,6,8 or
10 individuals per species). These simulations were performed to
evaluate the effect of varying levels of within-species sampling
on the approach (see Supporting Information). For each simula-
tion, phenotypic values for individuals were obtained by adding
multivariate normal variation M (0, X) to the mean phenotypic val-
ues for that species (following Felsenstein, 2008). Group-specific
differences were then incorporated into Y by adding chﬂxc,, to all
individuals. Here, X5, was a design matrix of Os and 1s indicat-
ing group association for all individuals. For half of the species
(randomly selected), we set the values of Xg, to zero, so that no
group-specific variation was added to these species. ﬂxcp then
modelled the strength of structured within-species group dif-
ferences for a given simulation and varied progressively across
simulations as ﬂXc,, =(0.0,0.2,0.4,0.6,0.8,1.0), the choice of which
depended on conditions for that stochastic sampling experiment.
When combined, XG,,/}XG” generated no structured patterns of
intraspecific variation (when ﬂxc,, =0.0), or increasing levels of
structured patterns of intraspecific variation (when ﬂxcp > 0.0).
This enabled the evaluation of type | error and statistical power
respectively. Empirical sampling distributions for these effects
were also scrutinized, and compared to parametric distributions
(theoretical density functions). Finally, additional simulations
were performed under a wider set of conditions and using other
types of X variables, such as a covariate rather than a grouping
factor (see Supporting Information). Computer code and addi-
tional details are found in the Supporting Information.

3.2.1 | Results

Our analyses revealed that E-PGLS was capable of detecting pat-
terns of structured variation, and did so with increasing power
when stronger within-species patterns were present (Figure 2a).
The method also had appropriate type | error when no structured
variation was included. Additionally, E-PGLS detected cross-species
trend differences, again with appropriate type | error rates and
high power (Figure 2a). Unsurprisingly, statistical power increased
with an increasing number of species (results not shown), and with
greater within-species sampling (n,) and with balanced data; though
statistical power was acceptable under all scenarios examined (see
Supporting Information). Finally, empirical sampling distributions
for model effects closely matched the parametric F-distributions
(Figure 2b,c), indicating that significance levels obtained from these
distributions were appropriate. Overall, these analyses verified that
E-PGLS was capable of discerning patterns of structured intraspe-
cific variation, and interrogating differences in those patterns across
species while accounting for phylogenetic non-independence (i.e.
phylogenetically comparing microevolutionary trends across taxa).
These results were consistent when using other types of X variables,
such as a covariate rather than a grouping factor (see Supporting
Information).

4 | EMPIRICAL EXAMPLE: SEXUAL
DIMORPHISM IN PUPFISHES

To illustrate the utility of E-PGLS on empirical data, we deployed
the approach to interrogate evolutionary patterns of sexual di-
morphism in body shape in pupfishes (Cyprinodon). Our data were
part of a larger study investigating phenotypic diversification in
the genus Cyprinodon. Briefly, from museum collections we ob-
tained a total 969 individuals representing both males and females
from each of seven species. An average of u = 69 individuals for
each Species x Sex combination were measured (range: 35 — 122).
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FIGURE 2 Results from stochastic sampling experiments of multivariate phenotypic data containing structured patterns of intraspecific
variation (with balanced data and n; = 4) that differed across species and were thus species-specific. (a) Plot of rejection rates for the
intraspecific group effect (FGp) and the species-specific intraspecific group effect (FSXGp)' Rejection rates represent type | error when

input signal=0, and statistical power when input signal >0. Empirical sampling distributions for F-statistics obtained via RRPP for 1000
simulations representing (b) intraspecific group effects (Fg,), and (c) species-specific intraspecific group effects (Fg,g,)-
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From each individual the locations of 12 landmarks and 74 sem-
ilandmarks were then digitized (Figure 3a), and phenotypic data
(body shape) were characterized using geometric morphomet-
ric methods (Adams et al., 2013; Bookstein, 1991; Mittercecker
& Scheefer, 2022). Here, a generalized Procrustes analysis (Rohlf
& Slice, 1990) with minimum bending energy sliding of semiland-
marks (Bookstein, 1997) was performed with 10 sliding iterations
to eliminate non-shape variation (Figure 3a), and the first 40 PCs,
which together represented 99.4% of the total shape variation,
were treated as a set of shape variables for all subsequent statisti-
cal analyses (see Supporting Information for additional details).
Next, a fossil-calibrated molecular phylogeny was obtained from
fishtree (Chang et al., 2019; Rabosky et al., 2018), from which we gen-
erated an expanded phylogenetic covariance matrix (Q,) for the 969
individuals. We then compared patterns of sexual dimorphism across
species conditioned on the phylogeny (under Brownian motion) using
the E-PGLS model: Z=X;,Bq, +XexBsex + Xpisex Bspisex + XpopBpop + Exr(0.0,)
where species (X,), sex (X,), and their interaction (X,;..,) were the
primary model effects. Because shape variation among populations

within species was prevalent, population (X, ) was also included in the

pop
model. The likelihood ratio statistic was used for calculation of effect

sizes and p-values (see Supporting Information for details). To further
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interrogate within-species patterns of sexual dimorphism (SD) across
species a phylogenetically-informed trajectory analysis was performed
(Adams & Collyer, 2009; Collyer & Adams, 2013), where multivariate
phenotypic vectors representing patterns of sexual dimorphism within
each species were characterized, and the degree of SD (magnitude) and
direction of SD in morphospace were statistically compared in a phy-
logenetic context using RRPP. All analyses were performed using the
R-packages geomorph 4.0.8 (Adams et al., 2024; Baken et al., 2021) and
RRPP 2.0.3 (Collyer & Adams, 2018, 2024), which incorporate sparse-
matrix algorithms to assure fast computational results.

4.1 | Results

Our analyses revealed that (1) species variation was significant,
though with a weak effect size, and perhaps exceeded what would
be expected with a Brownian motion model of evolutionary diver-
gence (although not accounting for phylogeny would produce a
larger species effect; see Supporting Information); and (2) within-
species patterns of sexual dimorphism were not concordant among
species, as indicated by a strong Species x Sex interaction (Table 1).

Across the phylogeny there was considerable evolutionary lability

—C. rubrofluviatilis |
L——C. pecosensis :I
. tularosa |:|
. variegatus | |
—C. bifasciatus :
—C. nevadensis | |
——C. macularius I:I
0 s s 4 2 o : : . : : , ‘
0.000 0005 0.010 0.015 0.020 0.025 0.030

SD magnitude

C. variegatus

Female Male

FIGURE 3 Results of comparisons of multivariate phenotypic vectors of sexual dimorphism in Cyprinodon pupfish. (a) One example of
landmarks and Bézier curves from which semilandmarks were sampled, plus the aligned coordinates for the entire data set, representing
shape variation. (b) Time-calibrated phylogeny for the seven species. Horizontal bars represent the magnitude of sexual dimorphism
displayed by each species. (c) PC plot of shape variation. Evolutionary trajectories of sexual dimorphism for all species are superimposed in
the plot. (d) Thin-plate spline deformation grids describing shape differences between males and females in C. nevadensis and C. variegatus
(shape differences displayed at 2x magnification to facilitate visual interpretation of observed patterns).
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in the magnitude of sexual dimorphism (Figure 3b), with some spe-
cies displaying no detectable levels of sexual dimorphism in body
shape (C. bifasciatus, C. pecosensis, C. tularosa), while other species
exhibited large and significant patterns of sexual dimorphism (C.
nevadensis: Z = 3.77, p =0.001; C. variegatus: Z = 3.42, p = 0.001,
C. rubrofluviatilis: Z = 2.60; p =0.006). Analysis of evolutionary
trajectories further revealed that the mode of within-species pat-
terns differed among taxa. Notably, the species exhibiting the
largest levels of sexual dimorphism did so in opposing directions
in morphospace (Figure 3c). On one hand, the sexual shape di-
morphism in C. nevadensis and C. rubrofluviatilis was characterized
as a contrast between relatively deeper bodied males and more
slender females (Figure 3d). Such patterns have previously been
observed in Cyprinodon (Collyer et al., 2005, 2007, 2015), and may
indicate selection for deeper, more laterally compressed body
shapes associated with the defence of breeding territories (Collyer
et al., 2015). By contrast, sexual dimorphism in C. variegatus dis-
played the reverse trend, where females were relatively deeper
bodied and males exhibited a more slender phenotype (Figure 3d).
Such patterns may indicate predator-mediated selection, where
the presence of predators generates selection on males for en-
hanced predator avoidance, and thus a more streamlined body
form (Collyer et al., 2015; Langerhans et al., 2004; Vinterstare
et al., 2022). Finally, the variation observed in sexual dimorphism
across the phylogeny (Figure 3c) suggests the hypothesis that mul-
tiple selection factors, stemming from local environmental condi-
tions, and distinct predatory influences, interact with one another,
and concomitantly affect male and female body shapes, resulting
in dynamic evolutionary shifts in the magnitude and direction of
sexual dimorphism across species. Interestingly, C. variegatus is
a coastal species with a distribution spanning the Atlantic coast
and Gulf of Mexico in North America. All other species in this
study have small, limited, inland distributions in North America.
Diversification of inland species is believed to have followed vi-
cariance after Pleistocene formations of large, pluvial lakes that
connected with the Gulf of Mexico, allowing colonization by C.
variegatus-like ancestors (Echelle et al., 2005). The results here
suggest that vicariance in non-marine environments could spur an
evolutionary reversing of the typical marine sexual dimorphism in

body shape in Cyprinodon. Overall, our analyses provided strong

TABLE 1 MANOVA table of variance components from E-PGLS.

Wilks LR z p-value
Species 0.648 420.769 2.221 0.020
Sex 0.927 73.864 3.132 0.002
Population 0.049 2912.715 22.501 0.001
Species:Sex 0.540 597.515 9.656 0.001
Full.Model 0.016 4014.514 4.062 0.001

Note: Multivariate dispersion is summarized using the likelihood ratio
statistic (LR), which is a transformation of the Wilks' A statistic. All
variance components are obtained while conditioning the individual-
level data on the phylogeny (via Q,), as per Equations (1) and (2).

evidence that evolutionary trends in sexual dimorphism were
species-specific in Cyprinodon and demonstrated that E-PGLS was
capable of revealing differences in intraspecific trends across the

tree of life, thereby yielding new macroevolutionary insights.

5 | DISCUSSION

Evolutionary biologists routinely describe phenotypic trends
across species using phylogenetic comparative methods (PCMs),
which condition the analysis on the phylogeny to account for the
evolutionary non-independence among taxa (Felsenstein, 1985;
Harmon, 2019; Harvey & Pagel, 1991; Martins & Hansen, 1997;
O'Meara, 2012). However, while these approaches afford empiri-
cists the ability to decipher macroevolutionary trends across species
means, or across species variances (e.g. Gaboriau et al., 2020, 2024;
Kostikova et al., 2016), it has not been possible to compare within-
species (microevolutionary) patterns across species in an analogous
phylogenetic context. In this article, we developed an extended
phylogenetic generalized least squares (E-PGLS) procedure for char-
acterizing within-species patterns of phenotypic variation, and for
comparing these patterns among species while accounting for their
phylogenetic non-independence. The approach utilizes a hierarchi-
cal linear model, permutation procedures, and an expanded phyloge-
netic covariance matrix (Q,) to enable the analysis of individual-level
patterns across the tree of life. In so doing, E-PGLS furthers the ca-
pabilities of phylogenetic comparative analyses in several important
evolutionary arenas.

E-PGLS facilitates the characterization of macroevolutionary
trends in univariate, multivariate, or high-dimensional phenotypic
traits, while properly accounting for variation among multiple
individuals within species. Previous approaches that incorpo-
rate intraspecific variation in phylogenetic comparative analyses
were largely developed considering single-valued (univariate)
phenotypes (e.g. Hansen & Bartoszek, 2012; Ives et al., 2007,
Kostikova et al., 2016; Revell & Reynolds, 2012; Villemereuil &
Nakagawa, 2014), though some explicitly considered multivari-
ate phenotypic data (Felsenstein, 2008). While most could be ex-
tended (in theory) to the multivariate case for estimating model
coefficients, statistical evaluation of those models using para-
metric techniques based on maximum likelihood (or some variant)
would be limited to those cases where N > > p. The reason is that
for cases where the data are rank-deficient (because of linear de-
pendencies among phenotypic variables or where p > N), statistical
summaries cannot be completed without some form of covariance
regularization or dimension reduction, as obtaining the likelihood
requires both the determinant and the inverse of the p x p trait
covariance matrix, and neither can be computed (Adams, 2014b;
Adams & Collyer, 2018a, 2018b, 2019b). Additionally, even when
such adjustments to the data are made, as with other PCMs evalu-
ated parametrically, their type | error rates will still be elevated as
the number of trait dimensions (p) increases (Adams, 2014b; Adams
& Collyer, 2018a). This limitation also precludes the parametric
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evaluation of high-dimensional data (where p > > N), which are
increasingly used in evolutionary biology. By contrast, E-PGLS
does not suffer these restrictions, as model evaluation is based
on summary statistics that are robust to these issues, and empiri-
cal sampling distributions are obtained using permutation (RRPP)
rather than integrating parametric probability density functions,
only for cases that have more observations than variables. Thus,
E-PGLS is capable of extending comparative analyses that incor-
porate within-species variation into the realm of high-dimensional
multivariate phenotypes.

One important consideration when conducting macroevolu-
tionary comparisons of microevolutionary trends is sampling ef-
fort. Clearly, such an analysis requires that multiple individuals per
species are quantified so that within-species trends are adequately
characterized. Therefore, when possible, it is paramount that em-
piricists maximize within-species sampling effort, so that a suffi-
cient number of individuals per species is examined. However, this
can sometimes be problematic, as sampling limitations due to lack
of specimens from museum collections, or uneven field sampling
across species, can result in imbalanced datasets. Fortunately, our
simulation results revealed that E-PGLS was capable of detecting
differences among within-species trends when they were present,
even at low sample sizes and with imbalanced data. Predictably,
our simulations revealed that as the number of species sampled
increased, or as the within-species sample size increased, statisti-
cal power to detect known patterns also increased. Likewise, bal-
anced data exhibited slightly higher power than imbalanced data
(see Supporting Information). However, E-PGLS retained solid
performance even at sub-optimal sampling levels. Thus, while in
an ideal world researchers should strive to maximize the number
of individuals measured per species, attain balanced data between
species (i.e. the same n; per species), and include as many species
as is possible, our work has shown that E-PGLS is capable of char-
acterizing and interrogating biological patterns with high statisti-
cal power, even when intraspecific sample sizes are imbalanced
and low.

With E-PGLS, empiricists may compare within-species pat-
terns across species while taking into consideration their lack of
independence due to phylogenetic relatedness. One interpreta-
tion of this approach is that E-PGLS provides a means of com-
paring microevolutionary patterns across the phylogeny. Viewed
from this perspective, one can conceptualize the within-species
(microevolutionary) pattern as a ‘trait’, and consider its evolution-
ary change through time. Indeed, our macroevolutionary inter-
rogation of the pupfish dataset revealed that patterns of sexual
dimorphism within species were not constant, but rather evolved
considerably across the phylogeny. While our focus with that
example was to determine how patterns of sexual dimorphism
differed across taxa, other evolutionary investigations could be
envisioned. For instance, because species share common ances-
try, one might expect that closely related species display similar
within-species patterns. In this case, within-species (microevo-
lutionary) trends would appear clumped on the phylogeny, and
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may thus exhibit phylogenetic signal (sensu Blomberg et al., 2003;
Collyer et al., 2022). Conceptually, one could envision a formal
test of phylogenetic signal of these patterns, provided the within-
species trend for each species could be adequately characterized
by an appropriate summary measure (i.e. an effect size, see Adams
& Collyer, 2016, 2019a). Additionally, E-PGLS could serve as a
means of revealing such patterns, if for instance, groups of closely
related species were found to differ in their microevolutionary
patterns from other species on the phylogeny. As such, E-PGLS
opens the door for further studies that may reveal not only how
patterns of within-species variation differs among species and
clades, but why such patterns evolve.

Fundamentally, E-PGLS has two primary purposes. First, it en-
ables the implementation of phylogenetic least-squares estima-
tion when more than one individual per species is found in the
dataset. Second, E-PGLS facilitates the comparison of within-
species patterns across species, while accounting for among-
species variation, as well as accounting for the phylogenetic
non-independence of those species. For both scenarios, it is im-
perative that within-species variation can be quantified and po-
tentially assessed despite variation among species. With respect
to the former, E-PGLS provides a means of evaluating comparative
trends across species while accounting for variation among indi-
viduals within species. Here, variation among individuals is treated
as random (nonstructured) measurement error around the mean
phenotype. Our simulation results revealed that in such cases, es-
timates of evolutionary trait covariance obtained from E-PGLS are
comparable with those obtained from existing approaches that
incorporate intraspecific variation (Felsenstein, 2008).* Thus, E-
PGLS is equally appropriate for the analysis of such data, and may
be used to accommodate multiple individuals per species in a phy-
logenetic comparative analysis whose focus is on macroevolua-
tionary trends across the tree of life.

With respect to the latter, when within-species variation is struc-
tured, E-PGLS enables the comparison of within-species (microevo-
lutionary) trends across taxa, and does so while accounting for their
phylogenetic non-independence. Prior approaches thatincorporated
intraspecific variation in PCMs (e.g. Felsenstein, 2008; Gaboriau
et al., 2020, 2024; Ives et al., 2007; Revell & Reynolds, 2012) did not
treat such variation as structured, and were thus incapable of de-
termining whether microevolutionary trends within species differed
across species or across the phylogeny. By contrast, our findings
demonstrate that E-PGLS is more flexible, and can not only evalu-
ate comparative trends while incorporating intraspecific variation,
but can also interrogate evolutionary scenarios where structured
intraspecific variation may be modelled and compared among spe-
cies. This latter capability of E-PGLS enables biologists to determine
whether microevolutionary within-species patterns change across
the phylogeny, or whether groups of taxa display similar within-

species trends; all while taking phylogenetic non-independence into

!Note that treating structured variation as random variation has no effect on the
performance of prior approaches (results not shown).
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consideration. Thus when used in this manner, E-PGLS is the inter-
rogation of microevolutionary data sampled within species with a
generalized least-squares method of estimation based on related-
ness defined at the species level. This novel application opens the
door to evaluating how microevolutionary patterns evolve at mac-
roevolutionary scales. As such, E-PGLS provides the ability to de-
cipher complex macroevolutionary dynamics of microevolutionary
trends, and discern how those trends evolve across the tree of life:
something that is inaccessible via standard phylogenetic compara-
tive approaches. This represents an important advance in phyloge-
netic comparative methods: the ability to compare within-species
trends across species while simultaneously accounting for their non-

independence due to shared evolutionary history.
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