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Abstract
1.	 Evolutionary biologists characterize macroevolutionary trends of phenotypic 

change across the tree of life using phylogenetic comparative methods. However, 
within-species variation can complicate such investigations. For this reason, 
procedures for incorporating nonstructured (random) intraspecific variation have 
been developed.

2.	 Likewise, evolutionary biologists seek to understand microevolutionary patterns of 
phenotypic variation within species, such as sex-specific differences or allometric 
trends. Additionally, there is a desire to compare such within-species patterns across 
taxa, but current analytical approaches cannot be used to interrogate within-species 
patterns while simultaneously accounting for phylogenetic non-independence. 
Consequently, deciphering how intraspecific trends evolve remains a challenge.

3.	 Here we introduce an extended phylogenetic generalized least squares (E-PGLS) 
procedure which facilitates comparisons of within-species patterns across species 
while simultaneously accounting for phylogenetic non-independence.

4.	 Our method uses an expanded phylogenetic covariance matrix, a hierarchical 
linear model, and permutation methods to obtain empirical sampling distributions 
and effect sizes for model effects that can evaluate differences in intraspecific 
trends across species for both univariate and multivariate data, while conditioning 
them on the phylogeny.

5.	 The method has appropriate statistical properties for both balanced and imbalanced 
data. Additionally, the procedure obtains evolutionary covariance estimates that 
reflect those from existing approaches for nonstructured intraspecific variation. 
Importantly, E-PGLS can detect differences in structured (i.e. microevolutionary) 
intraspecific patterns across species when such trends are present. Thus, E-PGLS 
extends the reach of phylogenetic comparative methods into the intraspecific 
comparative realm, by providing the ability to compare within-species trends 
across species while simultaneously accounting for shared evolutionary history.
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1  |  INTRODUC TION

Deciphering patterns of phenotypic variation is a mainstay of evo-
lutionary research, yet the analysis of phenotypic data remains 
distinctly different enterprises between microevolutionary and 
macroevolutionary studies. At contemporary timescales, microevo-
lutionary investigations strive to identify the relationship between 
patterns of phenotypic variation across individuals or populations, 
and the environmental factors that underlie selection and the gen-
eration of phenotypic change. These studies leverage phenotypic 
information from many individuals (typically hundreds or more), and 
across multiple populations, to elucidate the ecological factors that 
associate with patterns of phenotypic diversity within species (e.g. 
Beausoleil et al., 2023; Collyer et al., 2015; Reyes-Puig et al., 2023; 
Stroud et  al.,  2023; Tejero-Cicuéndez et  al.,  2023). In contrast to 
within-species studies, macroevolutionary studies utilize a phyloge-
netic perspective to examine trait associations across species and in 
light of evolutionary history. Here, phylogenetically informed statis-
tical procedures are leveraged to evaluate trait associations across 
species while accounting for their phylogenetic non-independence 
(Felsenstein, 1985; Harmon, 2019; Harvey & Pagel, 1991; Martins 
& Hansen, 1997; O'Meara, 2012). As with microevolutionary analy-
ses, selective forces are thought to play an important role in shap-
ing phenotypic diversification across taxa and clades, as well (Burns 
et al., 2024; Hunt et al., 2023; Sidlauskas, 2008). However, while it is 
generally thought that phenotypic patterns resulting from contem-
porary processes may ‘scale up’ to macroevolutionary patterns found 
across species and clades, evaluating this prediction is challenging, 
as it requires the ability to interrogate microevolutionary patterns 
in a phylogenetic context (i.e. account for the non-independence 
among species when evaluating within-species trends).

In macroevolutionary studies, phylogenetic comparative meth-
ods (PCMs) are a set of statistical tools that enable biologists to 
condition the data on the phylogeny under a particular model of 
evolutionary change (Brownian motion, Ornstein–Uhlenbeck, etc.). 
Patterns of covariation between traits may then be evaluated across 
species while accounting for the evolutionary relationships among 
them (Felsenstein,  1985; Harmon,  2019; Harvey & Pagel,  1991; 
Martins & Hansen, 1997; O'Meara, 2012). Since their advent in the 
late 20th century, the development of PCMs has progressed at a rapid 
pace, resulting in myriad analytical tools that enable evolutionary bi-
ologists to evaluate a wide array of biological hypotheses describing 
how ecological and evolutionary forces shape patterns of pheno-
typic diversification (Adams,  2014a, 2014b; Beaulieu et  al.,  2012; 
Blomberg et  al.,  2003; Butler & King,  2004; Clavel et  al.,  2015; 
Collyer et al., 2022; Gaboriau et al., 2024; Khabbazian et al., 2016; 
Mitov et  al.,  2019; O'Meara et  al.,  2006; Revell & Harmon,  2008; 
Uyeda & Harmon, 2014).

Phylogenetic comparative analyses typically use species means 
as trait data, and thus implicitly assume that intraspecific variation 
is negligible relative to interspecific variation (Felsenstein,  2008; 
Garamszegi,  2014; Ives et  al.,  2007). This is not always the case. 
Additionally, because species means are obtained from finite 

samples of measured individuals, estimation error will be present 
(Felsenstein,  2008; Ives et  al.,  2007; Lynch,  1991). Together, this 
uncertainty can result in inaccuracy during PCM analyses, which 
can have a profound effect on biological inferences. For example, 
within-species variation can instigate bias in parameter estimates 
(Felsenstein, 2008; Ives et al., 2007), can generate elevated type I 
error rates for hypothesis testing procedures (Felsenstein,  2008; 
Harmon & Losos, 2005), can result in low statistical power of such 
tests (Harmon & Losos, 2005) and can cause model misspecification 
when comparing the fit of alternative evolutionary models to pheno-
typic data (Silvestro et al., 2015). To mitigate these effects, several 
procedures have been developed that incorporate intraspecific vari-
ation into the PCM analytical pipeline (Felsenstein, 2008; Gaboriau 
et al., 2020; Hadfield & Nakagawa, 2010; Hansen & Bartoszek, 2012; 
Ives et  al.,  2007; Kostikova et  al.,  2016; Revell & Reynolds,  2012; 
Villemereuil & Nakagawa, 2014). In general, these procedures con-
sider the totality of within-species variation as measurement error, 
which is represented as nonstructured (random) sampling error 
around the mean phenotype. Macroevolutionary trends across spe-
cies may be evaluated while taking into consideration both within-
species variation, as well as the phylogenetic non-independence 
among taxa. Importantly, the variation among sampled individuals, 
populations or other units within species all contribute to the over-
all within-species variation, but without regard to the underlying 
sources that might influence that variation.

Nonetheless, intraspecific variation is often structured in biolog-
ically meaningful ways that convey additional information that em-
piricists wish to investigate, particularly at microevolutionary scales. 
For instance, differences between the sexes (i.e. sexual dimorphism) 
or phenotypic differences that vary with body size (e.g. allometric 
trends) represent structured patterns of intraspecific variation and 
are frequently of interest to investigate and compare among taxa 
(Juarez & Adams, 2022; Reyes-Puig et al., 2023; Tejero-Cicuéndez 
et al., 2023). Clearly, when comparing such patterns across species, 
one must also account for their phylogenetic non-independence, 
but current analytical approaches cannot interrogate and compare 
microevolutionary trends sampled within species, while simultane-
ously accounting for phylogenetic non-independence based on re-
latedness defined at the species level. Thus at present, we lack tools 
that are capable of bridging this particular microevolutionary—mac-
roevolutionary divide.

In this work, we introduce a novel phylogenetic comparative 
method for comparing within-species patterns among species while 
accounting for their phylogenetic non-independence. Our approach 
may be used to evaluate trends in univariate or multivariate phe-
notypic data, and extends phylogenetic generalized least squares 
procedures (E-PGLS) by fitting individual-level data in a hierarchi-
cal linear model while conditioning on an expanded phylogenetic 
covariance matrix. Permutation procedures are developed which 
generate empirical sampling distributions and effect sizes for model 
effects, allowing the statistical evaluation of both species-level pat-
terns and for comparing within-species trends among species across 
the tree of life. As demonstrated below, the E-PGLS procedure 
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2236  |    ADAMS and COLLYER

displays appropriate statistical properties, with acceptable type I 
error and high statistical power. Additionally, when intraspecific 
variation is nonstructured (random), E-PGLS obtains evolutionary 
covariance estimates that are comparable to those found from exist-
ing approaches (Felsenstein, 2008). However, a unique contribution 
of our approach is that when within-species variation is structured, 
E-PGLS is capable of detecting differences in intraspecific patterns 
across taxa when such trends are present. Thus, E-PGLS facilitates 
the comparison of within-species (microevolutionary) patterns 
across species while accounting for among-species variation, as well 
as the phylogenetic non-independence of those species. As such, 
E-PGLS is capable of revealing macroevolutionary insights regarding 
the evolution of intraspecific phenotypic trends in a manner that is 
currently beyond the reach of standard PCMs.

2  |  CONCEPTUAL DE VELOPMENT

2.1  |  Model construction

E-PGLS combines a hierarchical linear model and an expanded phy-
logenetic covariance matrix to interrogate variation in one or more 
phenotypic traits while conditioning the individual-level data on the 
phylogeny. Let n represent the total number of individuals sampled 
across N species, with ni individuals sampled for the ith species, such 
that 

∑N

i=1
ni = n. It is not assumed that species have the same ni . As 

shown below, the approach may be used with imbalanced data (which 
occurs frequently due to sampling limitations when utilizing museum 
collections or field samples). Phenotypic values, Z = f(Y), comprise an 
n × p matrix for n individuals, with p measured traits per individual. Z 
may represent mean-centred data (Y − Y), or a set of transformed vari-
ables, such as Procrustes-aligned coordinates representing geometric 
morphometric shape data (Adams et al., 2013; Rohlf & Slice, 1990). 
Next, an n × (N + k) linear model design matrix, X can be constructed 
that describes both species values and within-species covariates or 
sub-species factors. X is a partitioned matrix, that is X = XS ∣ XX, with 
XS containing species classifiers and XX corresponding to factors (e.g. 
sex, population, ecotype) or covariates (e.g. size, performance) meas-
ured at the individual (within-species) level. The hierarchical linear 
model describing patterns of phenotypic variation is then defined as:

where XS is an n × N species design matrix of dummy variables (0s 
and 1s), whose N columns designate the species to which each in-
dividual belongs, and XX is an n × k design matrix containing one or 
more explanatory variables. Model coefficients are found in the N × p 
and k × p matrices B̂X and B̂S respectively, and E is an n × p matrix of  
residual error, distributed as: E ∼ ℳ

(
0,Ωn

)
. Here, E follows a matrix 

normal distribution (a generalization of a multivariate normal distribu-
tion), with expected covariances that express the correlations among 
species as a result of their shared phylogenetic history (Blomberg 
et al., 2012; Garland & Ives, 2000; Grafen, 1989).

Coefficients in Equation 1 are estimated jointly, not iteratively. 
The equation could be written as, Z = XB̂ + E, recognizing that 
X =

(
XS|XX

)
 and B̂ =

(
B̂S

B̂X

)
. Equation  1 conveniently demonstrates 

that coefficients and estimates from them can be separated into 
species and within-species effects. However, this should not imply 
that species effects are estimated first and within-species effects 
second, in a sequence. Rather, the linear model design matrix and 
matrix of coefficients are concatenated from the submatrices shown 
separately in Equation 1.

In standard PGLS implementations that utilize one individual 
per species (e.g. the species mean), phylogenetic correlations are 
expressed in Ω, which is an N × N phylogenetic covariance matrix ob-
tained from the phylogeny under a particular model of evolutionary 
change (Brownian motion, Ornstein-Uhlenbeck, etc.). The residual 
error of E-PGLS follows an analogous construction, but where Ωn 
is an n × n expanded phylogenetic covariance matrix, describing the 
expected covariation among individuals across species due to phy-
logenetic non-independence. This matrix is found by pre- and post-
multiplying the species-level phylogenetic covariance matrix Ω by XS:

where XS is the species design matrix defined above. As with standard 
implementations of PGLS, Ω in Equation 2 may be obtained under a 
Brownian motion model, or using some other model of evolutionary 
change, such as an Ornstein-Uhlenbeck model. Thus, Ωn describes 
the evolutionary covariation among individuals as is expected under 
the specified model of evolutionary divergence found in Ω (additional 
scaling options for Ωn are described in the Supporting Information). 
Using Equation 2, individuals sampled from the same species display 
the same expected covariances when compared to individuals from 
other species. Note that Equation 2 provides a mathematically com-
pact means of obtaining the expanded phylogenetic covariance matrix 
in López-Fernández et al. (2014).

An important attribute of E-PGLS is the ability to compare 
within-species (microevolutionary) patterns across taxa while ac-
counting for phylogenetic non-independence. To accomplish this, 
species-specific within-species patterns (cross-species effects) 
are modelled by including interactions between model main ef-
fects and the species design matrix (e.g. XCX

= XX × XS). Note that 
if XX contains more than one independent variable, cross-species 
trends could be considered for multiple factors or covariates in XX  . 
Incorporating cross-species trends in Equation 1 results in the full 
E-PGLS hierarchical model:

In general, these three sets of coefficients—species (B̂S), full-clade 
association of a trait with an independent variable (B̂X) and cross-
species comparisons (B̂CX

)—should allow an expansion of hypothesis 
tests compared to standard PGLS (which provides B̂X, only.) First, it 
could be possible to test for a species effect (based on B̂S) because of 
replicated observations within species. Second, it would be possible 

(1)Z = XSB̂S + XX B̂X + E

(2)Ωn = XSΩX
T

S

(3)Z = XSB̂S + XX B̂X + XCX
B̂CX

+ E.
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    |  2237ADAMS and COLLYER

to test for heterogeneity of microevolutionary patterns (B̂CX
) and pos-

sibly infer the association of microevolutionary patterns with respect 
to macroevolutionary events (e.g. subclade distinction of microevolu-
tionary relationships). Hypothesis tests first require, however, reliable 
estimates of micro- and macroevolutionary parameters.

2.2  |  Parameter estimation

Once the components of the linear model have been constructed, 
the data are conditioned on the phylogeny using phylogenetic 
transformation (Adams,  2014b; Adams & Collyer,  2015, 2018b, 
2022; Garland & Ives, 2000), and model parameters are obtained. 
Phylogenetic transformation is an implementation of the well-
known statistical transformation that reformulates generalized 
least squares (GLS) problems to ordinary least squares (OLS) prob-
lems (see Johnston & DiNardo, 1997; Judge et  al., 1985; Kariya & 
Kurata, 2004; Rencher, 2000). Following Garland and Ives  (2000), 
the phylogenetic transformation matrix is found as,

Here, U and Λ are matrices of eigenvectors and eigenvalues of Ωn.  
Note that Ωn is not of full rank, because its rows and columns are 
replicated for each ni within each species. Thus, the number of ei-
genvectors and eigenvalues used in Equation 4 is restricted to the 
rank of Ωn. Additionally, because Ωn contains many zero elements, 
sparse-matrix methods and enhanced analytical algorithms (linear 
model checkers, sensu Baken et  al.,  2021) can be used to increase 
computational efficiency.

Using P, the data matrix is conditioned on the phylogeny via ma-
trix projection (i.e. phylogenetic transformation): Z̃ = PZ. Next, the 
model design matrices are concatenated (i.e. Xtot = XS ∣ XX ∣ XCX

), and 
the model design matrix is also conditioned on the phylogeny via 
matrix projection: X̃tot = PXtot. Model parameters are then obtained 
using OLS procedures:

The linear model design matrix and coefficients in Equation  5 
represent a condensed nomenclature for concatenated matrices, 
which are used for joint estimation of species, within-species, and 
cross-species coefficients and effects. The partitioning of matrices 
can be illustrated as

and

B̂S represents coefficients (parameter estimates) that describes 
macroevolutionary differences among species mean phenotypes, 
while B̂CX

 describe differences in species-specific (i.e. microevolu-
tionary) trends. On the other hand, B̂X can represent either micro-
evolutionary or macroevolutionary patterns, depending upon the 
study design. For example, coefficients of ̂BX representing covariates 
in XX that segregate across species encode for patterns that differ 
among species, and thus describe macroevolutionary trends across 
the phylogeny. By contrast, coefficients of B̂X representing factors 
in XX that assign individuals within species to different groups (e.g. 
population or sex) describe microevolutionary trends within spe-
cies. Together, the set of coefficients in B̂tot are used in combination 
with the set of model design matrices in Xtot to estimate the vari-
ance components of the phylogenetic linear model, and to conduct 
permutation-based hypothesis testing procedures that evaluate 
model terms statistically.

2.3  |  Variance components

E-PGLS requires that within-species variation is taken into considera-
tion while evaluating other effects in the model. This mathematical 
requirement dictates the manner in which sums of squares and cross-
products (SSCP) matrices and variance components are calculated.

For the species effect, E-PGLS uses marginal (type III) sums of 
squares, which estimates the SSCP between a model containing all 
terms and a model lacking the species term. Here, the full and re-
duced models are found as XF = XS ∣ XX ∣ XCX

 and XR = X0 ∣ XX ∣ XCX
 , 

which differ only by species parameters (X0 is a vector of 1s: the 
“intercept” model). Model parameters are then estimated as above, 
and the difference in estimations between models is

From this the SSCP for the species effect while holding constant 
all other effects in the model is found as

The variances and covariances associated with the species effect 
is then found by dividing SS by N − 1.

For all remaining effects in the model, E-PGLS uses conditional 
(type II) sums of squares to obtain variance components. Here, intra-
specific variation is restricted within species blocks, ensuring that 
the other model effects are not confounded by inter-species effects. 
This is accomplished by comparing full and reduced models for the 
effect of interest, but still containing the species effect, XS. For in-
stance, the difference between fitted values for X can be found as

(4)P =
(
UΛ−1∕2

U
T

)−1

.

(5)B̂tot =
(
X̃
t

tot
X̃tot

)−1

X̃
T

tot
Z̃

Xtot =
(
XS|XX |XCX

)
,

B̂tot =

⎛
⎜⎜⎜⎜⎜⎝

B̂S

B̂X

B̂CX

⎞
⎟⎟⎟⎟⎟⎠

.

(6)

ΔẐS = ẐF − ẐR=XF B̂F −XRB̂R

=
�
XS�XX �XCX

�
⎛
⎜⎜⎜⎜⎜⎝

B̂S

B̂X

B̂CX

⎞
⎟⎟⎟⎟⎟⎠F

−
�
X0�XX �XCX

�
⎛
⎜⎜⎜⎜⎜⎝

B̂0

B̂X

B̂CX

⎞
⎟⎟⎟⎟⎟⎠R

=
�
XSB̂s,F +XX B̂X ,F +XCX

B̂CX ,F

�
−
�
X0B̂0,R+XX B̂X ,R+XCX

B̂CX ,R

�
.

(7)SS =
(
ẐF − ẐR

)
P
T
P

(
ẐF − ẐR

)
=
(
ẐF − ẐR

)T

Ω−1
n

(
ẐF − ẐR

)
.
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2238  |    ADAMS and COLLYER

This ensures that the effect of X is conditioned on the estimation of 
species means, which are also conditioned on the non-independence 
of those means because of phylogenetic relatedness. SSCP matrices 
for each model effect are then obtained in a manner analogous to 
Equation 7, except that the reduced and full models both contain XS.

Likewise, the cross-species XCX
 SSCP matrix is estimated based 

on a difference between fitted values from the previous full model, 
now the reduced model, and a full model containing XCX

,

Type II SSCP estimation means that for multiple cross-species 
comparisons, effects are conditioned on phylogenetically adjusted 
species means and the common trends of the multiple variables.

Finally, the residuals of the model are obtained by contrasting 
the data and fitted values of the E-PGLS model containing all terms,

The residual SSCP, SResiduals = (PE)
T
PE = E

T
P
T
PE = E

TΩ−1
n
E, is 

then calculated as in Equation  7. Additional details of the E-PGLS 
procedure may be found in the Supporting Information.

2.4  |  Inferential statistics and permutation 
procedures

To evaluate model effects, E-PGLS uses a combination of robust sta-
tistical summary measures and the randomization of residuals in a 
permutation procedure (RRPP: Collyer et al., 2015, 2022; Adams & 
Collyer, 2018b, 2022). Generally, linear model summary statistics are 
found from SSCP matrices for various terms in the model relative 
to the residual covariance matrix, Σ̂Residuals = (n−1)−1SResiduals. This 
forms the basis of inferential tests. Using this approach, the residual 
SSCP may be leveraged to obtain MANOVA statistics based on the 
Eigen decomposition of a matrix product that generalizes the ratio of 
term SSCP to residual SSCP,

Note that this decomposition is often necessary, as the data (Z) 
may be rank-deficient; in which case, the data are first subjected to 
a principal components analysis, and all calculations above are based 
on the set of non-trivial dimensions (i.e. those whose 𝜆 > 0). From 
Equation  11, MANOVA statistics (e.g. Roy's maximum root (�max), 
Wilks' Λ, etc.) may then be obtained as a summary of multivariate 
dispersion (for additional information see Supporting Information).

Additionally, one may obtain a series of multivariate test 
statistics using likelihood. Here, the determinant of UΛUT (i.e. 
det

(
S
−1
Residuals

STerm

)
) is a ratio of determinants. This value is equiva-

lent to a likelihood ratio and may be obtained for each term in the 
model. Then, a permutation test evaluating these values is commen-
surate with a non-parametric likelihood ratio test (for additional in-
formation see Supporting Information).

Alternatively, an F-statistic can be calculated based on the traces 
of the SSCPs, which therefore does not require matrix inversion. 
Here the summary statistic is calculated as

where tr represents the trace of the matrix (i.e. the sum of its diago-
nal elements), and STerm and SResiduals are the SSCP matrices as above. 
Note that for univariate data, Equation 12 is the standard F-statistic, 
though it may be used for data of any dimension, including those 
containing singular dimensions (e.g. when p > N: see Adams, 2014b; 
Adams & Collyer,  2022). For this reason, F-statistics are commonly 
obtained in this manner for high-dimensional data (e.g. Anderson 
& Robinson,  2001; Goodall,  1991; Klingenberg & McIntyre,  1998). 
However, unlike the MANOVA statistics derived from Equation  11, 
this F-statistic does not incorporate the covariances among variables 
in its calculation.

For any of these summary statistics, permutation procedures 
are then used to generate empirical sampling distributions. 
Here, residuals from the reduced model for each model effect 
are permuted, as they represent the appropriate exchangeable 
units for the RRPP procedure (for justification see Supporting 
Information, and also Collyer et  al.,  2015, 2022; Adams & 
Collyer, 2018b, 2022). In addition, for all model effects except 
XS, RRPP is restricted to within species so that intraspecific ef-
fects are not confounded by interspecific effects (for details, 
see Supporting Information).

Finally, effect sizes may be calculated for each term in the model 
to provide a means of evaluating the strength of signal of each effect,

where � and � are the mean and standard deviation of the normal-
ized empirical sampling distribution of the test statistic (e.g. � = f(F)), 
respectively.

3  |  SIMUL ATION METHODS AND RESULTS

To verify the performance of E-PGLS, we used a series of stochastic 
sampling experiments to examine its behaviour under various condi-
tions. Below we report on the two primary simulation experiments. 
Additional simulations under a wider set of conditions may be found 
in the Supporting Information.

(8)
ΔẐX = ẐF − ẐR=XF B̂F −XRB̂R

=
(
XSB̂S,F +XX B̂X ,F

)
−
(
XSB̂S,R

)
.

(9)
ΔẐCX

= ẐF − ẐR=XF B̂F −XRB̂R

=
(
XSB̂S,F +XX B̂X ,F +XCx

B̂CX ,F

)
−
(
XSB̂S,R+XX B̂X ,R

)
.

(10)
E=Z− ẐF =Z−XF B̂F

=Z−
(
XSB̂S,F +XX B̂X ,F +XCx

B̂CX ,F

)
.

(11)UΛUT = S
−1
Residuals

STerm.

(12)F =
tr
(
STerm

)
∕dfTerm

tr
(
SResiduals
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3.1  |  PGLS with nonstructured (random) 
intraspecific variation

First, when intraspecific variation is nonstructured, it may be treated 
as random sampling error around the mean phenotype. Thus, under 
these conditions, we would expect that E-PGLS should perform simi-
larly to existing methods that can incorporate within-species varia-
tion (e.g. Felsenstein, 2008; Ives et al., 2007). To verify whether this 
was the case, we conducted a series of stochastic sampling experi-
ments. Our design was as follows: phenotypic values were simulated 
on a phylogeny under Brownian motion (BM) with a known covaria-
tion between traits, and individuals within species were generated 
by adding nonstructured (random) variation to the mean phenotypic 
values for that species. We then estimated the evolutionary covaria-
tion between traits using species means, within-species independent 
contrasts (Felsenstein, 2008) and E-PGLS.

To implement this test, we simulated 1000 pure birth phylog-
enies for N = 100 species. Two phenotypic traits were simulated on 
each phylogeny under Brownian motion (BM), using an input covari-
ance matrix (Σ) whose trait covariance was � = 0.4. For each dataset, 
a random number of individuals (ni = 1 → 10) was selected for each 
species, and phenotypic values for each individual were generated 
by adding nonstructured (random) variation to the mean phenotypic 
values for that species (Ynij

= YNi
+ E (0,0.2)). This procedure generated 

nonstructured intraspecific variation among individuals within species 
in a manner similar to the simulations performed by Felsenstein (2008). 
For each dataset, we then estimated the covariation between the 
two traits using E-PGLS, within-species independent contrasts 
(Felsenstein, 2008), and using species means. Computer code and ad-
ditional details are found in the Supporting Information.

3.1.1  |  Results

Our analyses revealed that when intraspecific variation was 
nonstructured (random), estimates of covariation between traits 

obtained from E-PGLS and from within-species contrasts closely 
matched the input value, and displayed considerably less variation 
across datasets as compared with estimates obtained using species 
means (Figure 1). Additionally, across simulations there was a very 
strong correlation between estimates from E-PGLS with those 
from within-species contrasts (r = 0.94). Thus, when intraspecific 
variation was nonstructured, we verified that E-PGLS provided 
estimates of evolutionary trait covariation commensurate with those 
obtained using prior PCMs that incorporate within-species variation 
as random error into the analysis (Felsenstein, 2008).

3.2  |  Comparing within-species patterns: 
Structured intraspecific variation

One important advance that E-PGLS enables is the ability to com-
pare within-species (i.e. microevolutionary) patterns across species, 
while simultaneously conditioning this analysis on the phylogeny. 
Accomplishing this amounts to an evaluation of structured patterns 
of intraspecific variation, where those patterns may differ across 
species. In this section, we evaluated whether E-PGLS was capable 
of detecting differences in structured patterns of within-species var-
iation across the phylogeny. To verify this, we performed stochastic 
sampling experiments similar to those described above but where 
the multivariate phenotypes also contained structured intraspecific 
variation. The structured intraspecific variation represented phe-
notypic differences between groups of individuals within species, 
as may be found between sexes, localities or other biological fac-
tors of interest. Additionally, structured variation was simulated to 
be species-specific, where some species displayed within-species 
patterns while others did not. Simulations were also performed 
where the degree of structured intraspecific variation differed in 
its intensity across simulations. We then used E-PGLS to evaluate 
phenotypic variation attributed to potential effects via the model, 
Z = XSB̂S + XX B̂X + XGpB̂Gp + XCGp

B̂CGp
+ E, where the subscript, Gp re-

fers to a grouping factor with two levels.

F I G U R E  1  Histogram of evolutionary 
covariance estimates for 1000 simulated 
datasets. Estimates of evolutionary 
covariance were obtained using (1) species 
means, (2) within-species independent 
contrasts and (3) E-PGLS. Inset is a dot 
plot between estimates from within-
species independent contrasts and 
E-PGLS for all 1000 datasets.
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2240  |    ADAMS and COLLYER

To implement this test, we first simulated 1000 pure birth 
phylogenies for N = 100 species. Three phenotypic traits (Y(1,2) 
and X1 ) were simulated on each phylogeny under Brownian mo-
tion (BM), using an input covariance matrix (Σ) with all trait co-
variances set to � = 0.5. For each dataset, ni = 4 individuals per 
species were generated (i.e. balanced within-species sampling), 
and individuals within species were randomly assigned to one 
of two groups. Additional simulations were also conducted with 
ni = 10 individuals per species, as well scenarios where the num-
ber of individuals within species was imbalanced (ni = 2,4,6,8 or 
10 individuals per species). These simulations were performed to 
evaluate the effect of varying levels of within-species sampling 
on the approach (see Supporting Information). For each simula-
tion, phenotypic values for individuals were obtained by adding 
multivariate normal variation  (0,Σ) to the mean phenotypic val-
ues for that species (following Felsenstein, 2008). Group-specific 
differences were then incorporated into Y by adding XGp�XGp

 to all 
individuals. Here, XGp was a design matrix of 0s and 1s indicat-
ing group association for all individuals. For half of the species 
(randomly selected), we set the values of XGp to zero, so that no 
group-specific variation was added to these species. �XGp

 then 
modelled the strength of structured within-species group dif-
ferences for a given simulation and varied progressively across 
simulations as �XGp

= (0.0,0.2,0.4,0.6,0.8,1.0), the choice of which 
depended on conditions for that stochastic sampling experiment. 
When combined, XGp�XGp

 generated no structured patterns of 
intraspecific variation (when �XGp

= 0.0), or increasing levels of 
structured patterns of intraspecific variation (when 𝛽XGp

> 0.0). 
This enabled the evaluation of type I error and statistical power 
respectively. Empirical sampling distributions for these effects 
were also scrutinized, and compared to parametric distributions 
(theoretical density functions). Finally, additional simulations 
were performed under a wider set of conditions and using other 
types of X variables, such as a covariate rather than a grouping 
factor (see Supporting Information). Computer code and addi-
tional details are found in the Supporting Information.

3.2.1  |  Results

Our analyses revealed that E-PGLS was capable of detecting pat-
terns of structured variation, and did so with increasing power 
when stronger within-species patterns were present (Figure  2a). 
The method also had appropriate type I error when no structured 
variation was included. Additionally, E-PGLS detected cross-species 
trend differences, again with appropriate type I error rates and 
high power (Figure  2a). Unsurprisingly, statistical power increased 
with an increasing number of species (results not shown), and with 
greater within-species sampling (ni) and with balanced data; though 
statistical power was acceptable under all scenarios examined (see 
Supporting Information). Finally, empirical sampling distributions 
for model effects closely matched the parametric F-distributions 
(Figure 2b,c), indicating that significance levels obtained from these 
distributions were appropriate. Overall, these analyses verified that 
E-PGLS was capable of discerning patterns of structured intraspe-
cific variation, and interrogating differences in those patterns across 
species while accounting for phylogenetic non-independence (i.e. 
phylogenetically comparing microevolutionary trends across taxa). 
These results were consistent when using other types of X variables, 
such as a covariate rather than a grouping factor (see Supporting 
Information).

4  |  EMPIRIC AL E X AMPLE: SE XUAL 
DIMORPHISM IN PUPFISHES

To illustrate the utility of E-PGLS on empirical data, we deployed 
the approach to interrogate evolutionary patterns of sexual di-
morphism in body shape in pupfishes (Cyprinodon). Our data were 
part of a larger study investigating phenotypic diversification in 
the genus Cyprinodon. Briefly, from museum collections we ob-
tained a total 969 individuals representing both males and females 
from each of seven species. An average of � = 69 individuals for 
each Species × Sex combination were measured (range: 35 − 122). 

F I G U R E  2  Results from stochastic sampling experiments of multivariate phenotypic data containing structured patterns of intraspecific 
variation (with balanced data and ni = 4) that differed across species and were thus species-specific. (a) Plot of rejection rates for the 
intraspecific group effect (FGp) and the species-specific intraspecific group effect (FS×Gp). Rejection rates represent type I error when 
input signal = 0, and statistical power when input signal >0. Empirical sampling distributions for F-statistics obtained via RRPP for 1000 
simulations representing (b) intraspecific group effects (FGp), and (c) species-specific intraspecific group effects (FS×Gp ).
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    |  2241ADAMS and COLLYER

From each individual the locations of 12 landmarks and 74 sem-
ilandmarks were then digitized (Figure  3a), and phenotypic data 
(body shape) were characterized using geometric morphomet-
ric methods (Adams et  al.,  2013; Bookstein,  1991; Mitterœcker 
& Schæfer,  2022). Here, a generalized Procrustes analysis (Rohlf 
& Slice, 1990) with minimum bending energy sliding of semiland-
marks (Bookstein, 1997) was performed with 10 sliding iterations 
to eliminate non-shape variation (Figure 3a), and the first 40 PCs, 
which together represented 99.4% of the total shape variation, 
were treated as a set of shape variables for all subsequent statisti-
cal analyses (see Supporting Information for additional details).

Next, a fossil-calibrated molecular phylogeny was obtained from 
fishtree (Chang et al., 2019; Rabosky et al., 2018), from which we gen-
erated an expanded phylogenetic covariance matrix (Ωn) for the 969 
individuals. We then compared patterns of sexual dimorphism across 
species conditioned on the phylogeny (under Brownian motion) using 
the E-PGLS model: Z=XspBsp+XsexBsex+Xsp:sexBsp:sex+XpopBpop+E (0,Ωn), 
where species (Xsp), sex (Xsex), and their interaction (Xsp:sex) were the 
primary model effects. Because shape variation among populations 
within species was prevalent, population (Xpop) was also included in the 
model. The likelihood ratio statistic was used for calculation of effect 
sizes and p-values (see Supporting Information for details). To further 

interrogate within-species patterns of sexual dimorphism (SD) across 
species a phylogenetically-informed trajectory analysis was performed 
(Adams & Collyer, 2009; Collyer & Adams, 2013), where multivariate 
phenotypic vectors representing patterns of sexual dimorphism within 
each species were characterized, and the degree of SD (magnitude) and 
direction of SD in morphospace were statistically compared in a phy-
logenetic context using RRPP. All analyses were performed using the 
R-packages geomorph 4.0.8 (Adams et al., 2024; Baken et al., 2021) and 
RRPP 2.0.3 (Collyer & Adams, 2018, 2024), which incorporate sparse-
matrix algorithms to assure fast computational results.

4.1  |  Results

Our analyses revealed that (1) species variation was significant, 
though with a weak effect size, and perhaps exceeded what would 
be expected with a Brownian motion model of evolutionary diver-
gence (although not accounting for phylogeny would produce a 
larger species effect; see Supporting Information); and (2) within-
species patterns of sexual dimorphism were not concordant among 
species, as indicated by a strong Species × Sex interaction (Table 1). 
Across the phylogeny there was considerable evolutionary lability 

F I G U R E  3  Results of comparisons of multivariate phenotypic vectors of sexual dimorphism in Cyprinodon pupfish. (a) One example of 
landmarks and Bézier curves from which semilandmarks were sampled, plus the aligned coordinates for the entire data set, representing 
shape variation. (b) Time-calibrated phylogeny for the seven species. Horizontal bars represent the magnitude of sexual dimorphism 
displayed by each species. (c) PC plot of shape variation. Evolutionary trajectories of sexual dimorphism for all species are superimposed in 
the plot. (d) Thin-plate spline deformation grids describing shape differences between males and females in C. nevadensis and C. variegatus 
(shape differences displayed at 2× magnification to facilitate visual interpretation of observed patterns).
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2242  |    ADAMS and COLLYER

in the magnitude of sexual dimorphism (Figure 3b), with some spe-
cies displaying no detectable levels of sexual dimorphism in body 
shape (C. bifasciatus, C. pecosensis, C. tularosa), while other species 
exhibited large and significant patterns of sexual dimorphism (C. 
nevadensis: Z = 3.77, p = 0.001; C. variegatus: Z = 3.42, p = 0.001;  
C. rubrofluviatilis: Z = 2.60; p = 0.006). Analysis of evolutionary 
trajectories further revealed that the mode of within-species pat-
terns differed among taxa. Notably, the species exhibiting the 
largest levels of sexual dimorphism did so in opposing directions 
in morphospace (Figure  3c). On one hand, the sexual shape di-
morphism in C. nevadensis and C. rubrofluviatilis was characterized 
as a contrast between relatively deeper bodied males and more 
slender females (Figure 3d). Such patterns have previously been 
observed in Cyprinodon (Collyer et al., 2005, 2007, 2015), and may 
indicate selection for deeper, more laterally compressed body 
shapes associated with the defence of breeding territories (Collyer 
et al., 2015). By contrast, sexual dimorphism in C. variegatus dis-
played the reverse trend, where females were relatively deeper 
bodied and males exhibited a more slender phenotype (Figure 3d). 
Such patterns may indicate predator-mediated selection, where 
the presence of predators generates selection on males for en-
hanced predator avoidance, and thus a more streamlined body 
form (Collyer et  al.,  2015; Langerhans et  al.,  2004; Vinterstare 
et al., 2022). Finally, the variation observed in sexual dimorphism 
across the phylogeny (Figure 3c) suggests the hypothesis that mul-
tiple selection factors, stemming from local environmental condi-
tions, and distinct predatory influences, interact with one another, 
and concomitantly affect male and female body shapes, resulting 
in dynamic evolutionary shifts in the magnitude and direction of 
sexual dimorphism across species. Interestingly, C. variegatus is 
a coastal species with a distribution spanning the Atlantic coast 
and Gulf of Mexico in North America. All other species in this 
study have small, limited, inland distributions in North America. 
Diversification of inland species is believed to have followed vi-
cariance after Pleistocene formations of large, pluvial lakes that 
connected with the Gulf of Mexico, allowing colonization by C. 
variegatus-like ancestors (Echelle et  al.,  2005). The results here 
suggest that vicariance in non-marine environments could spur an 
evolutionary reversing of the typical marine sexual dimorphism in 
body shape in Cyprinodon. Overall, our analyses provided strong 

evidence that evolutionary trends in sexual dimorphism were 
species-specific in Cyprinodon and demonstrated that E-PGLS was 
capable of revealing differences in intraspecific trends across the 
tree of life, thereby yielding new macroevolutionary insights.

5  |  DISCUSSION

Evolutionary biologists routinely describe phenotypic trends 
across species using phylogenetic comparative methods (PCMs), 
which condition the analysis on the phylogeny to account for the 
evolutionary non-independence among taxa (Felsenstein,  1985; 
Harmon,  2019; Harvey & Pagel,  1991; Martins & Hansen,  1997; 
O'Meara,  2012). However, while these approaches afford empiri-
cists the ability to decipher macroevolutionary trends across species 
means, or across species variances (e.g. Gaboriau et al., 2020, 2024; 
Kostikova et al., 2016), it has not been possible to compare within-
species (microevolutionary) patterns across species in an analogous 
phylogenetic context. In this article, we developed an extended 
phylogenetic generalized least squares (E-PGLS) procedure for char-
acterizing within-species patterns of phenotypic variation, and for 
comparing these patterns among species while accounting for their 
phylogenetic non-independence. The approach utilizes a hierarchi-
cal linear model, permutation procedures, and an expanded phyloge-
netic covariance matrix (Ωn) to enable the analysis of individual-level 
patterns across the tree of life. In so doing, E-PGLS furthers the ca-
pabilities of phylogenetic comparative analyses in several important 
evolutionary arenas.

E-PGLS facilitates the characterization of macroevolutionary 
trends in univariate, multivariate, or high-dimensional phenotypic 
traits, while properly accounting for variation among multiple 
individuals within species. Previous approaches that incorpo-
rate intraspecific variation in phylogenetic comparative analyses 
were largely developed considering single-valued (univariate) 
phenotypes (e.g. Hansen & Bartoszek,  2012; Ives et  al.,  2007; 
Kostikova et  al.,  2016; Revell & Reynolds,  2012; Villemereuil & 
Nakagawa,  2014), though some explicitly considered multivari-
ate phenotypic data (Felsenstein, 2008). While most could be ex-
tended (in theory) to the multivariate case for estimating model 
coefficients, statistical evaluation of those models using para-
metric techniques based on maximum likelihood (or some variant) 
would be limited to those cases where N > > p. The reason is that 
for cases where the data are rank-deficient (because of linear de-
pendencies among phenotypic variables or where p > N), statistical 
summaries cannot be completed without some form of covariance 
regularization or dimension reduction, as obtaining the likelihood 
requires both the determinant and the inverse of the p × p trait 
covariance matrix, and neither can be computed (Adams, 2014b; 
Adams & Collyer, 2018a, 2018b, 2019b). Additionally, even when 
such adjustments to the data are made, as with other PCMs evalu-
ated parametrically, their type I error rates will still be elevated as 
the number of trait dimensions (p) increases (Adams, 2014b; Adams 
& Collyer,  2018a). This limitation also precludes the parametric 

TA B L E  1  MANOVA table of variance components from E-PGLS.

Wilks LR Z p-value

Species 0.648 420.769 2.221 0.020

Sex 0.927 73.864 3.132 0.002

Population 0.049 2912.715 22.501 0.001

Species:Sex 0.540 597.515 9.656 0.001

Full.Model 0.016 4014.514 4.062 0.001

Note: Multivariate dispersion is summarized using the likelihood ratio 
statistic (LR), which is a transformation of the Wilks' Λ statistic. All 
variance components are obtained while conditioning the individual-
level data on the phylogeny (via Ωn), as per Equations (1) and (2).
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    |  2243ADAMS and COLLYER

evaluation of high-dimensional data (where p > > N), which are 
increasingly used in evolutionary biology. By contrast, E-PGLS 
does not suffer these restrictions, as model evaluation is based 
on summary statistics that are robust to these issues, and empiri-
cal sampling distributions are obtained using permutation (RRPP) 
rather than integrating parametric probability density functions, 
only for cases that have more observations than variables. Thus, 
E-PGLS is capable of extending comparative analyses that incor-
porate within-species variation into the realm of high-dimensional 
multivariate phenotypes.

One important consideration when conducting macroevolu-
tionary comparisons of microevolutionary trends is sampling ef-
fort. Clearly, such an analysis requires that multiple individuals per 
species are quantified so that within-species trends are adequately 
characterized. Therefore, when possible, it is paramount that em-
piricists maximize within-species sampling effort, so that a suffi-
cient number of individuals per species is examined. However, this 
can sometimes be problematic, as sampling limitations due to lack 
of specimens from museum collections, or uneven field sampling 
across species, can result in imbalanced datasets. Fortunately, our 
simulation results revealed that E-PGLS was capable of detecting 
differences among within-species trends when they were present, 
even at low sample sizes and with imbalanced data. Predictably, 
our simulations revealed that as the number of species sampled 
increased, or as the within-species sample size increased, statisti-
cal power to detect known patterns also increased. Likewise, bal-
anced data exhibited slightly higher power than imbalanced data 
(see Supporting Information). However, E-PGLS retained solid 
performance even at sub-optimal sampling levels. Thus, while in 
an ideal world researchers should strive to maximize the number 
of individuals measured per species, attain balanced data between 
species (i.e. the same ni per species), and include as many species 
as is possible, our work has shown that E-PGLS is capable of char-
acterizing and interrogating biological patterns with high statisti-
cal power, even when intraspecific sample sizes are imbalanced 
and low.

With E-PGLS, empiricists may compare within-species pat-
terns across species while taking into consideration their lack of 
independence due to phylogenetic relatedness. One interpreta-
tion of this approach is that E-PGLS provides a means of com-
paring microevolutionary patterns across the phylogeny. Viewed 
from this perspective, one can conceptualize the within-species 
(microevolutionary) pattern as a ‘trait’, and consider its evolution-
ary change through time. Indeed, our macroevolutionary inter-
rogation of the pupfish dataset revealed that patterns of sexual 
dimorphism within species were not constant, but rather evolved 
considerably across the phylogeny. While our focus with that 
example was to determine how patterns of sexual dimorphism 
differed across taxa, other evolutionary investigations could be 
envisioned. For instance, because species share common ances-
try, one might expect that closely related species display similar 
within-species patterns. In this case, within-species (microevo-
lutionary) trends would appear clumped on the phylogeny, and 

may thus exhibit phylogenetic signal (sensu Blomberg et al., 2003; 
Collyer et  al.,  2022). Conceptually, one could envision a formal 
test of phylogenetic signal of these patterns, provided the within-
species trend for each species could be adequately characterized 
by an appropriate summary measure (i.e. an effect size, see Adams 
& Collyer,  2016, 2019a). Additionally, E-PGLS could serve as a 
means of revealing such patterns, if for instance, groups of closely 
related species were found to differ in their microevolutionary 
patterns from other species on the phylogeny. As such, E-PGLS 
opens the door for further studies that may reveal not only how 
patterns of within-species variation differs among species and 
clades, but why such patterns evolve.

Fundamentally, E-PGLS has two primary purposes. First, it en-
ables the implementation of phylogenetic least-squares estima-
tion when more than one individual per species is found in the 
dataset. Second, E-PGLS facilitates the comparison of within-
species patterns across species, while accounting for among-
species variation, as well as accounting for the phylogenetic 
non-independence of those species. For both scenarios, it is im-
perative that within-species variation can be quantified and po-
tentially assessed despite variation among species. With respect 
to the former, E-PGLS provides a means of evaluating comparative 
trends across species while accounting for variation among indi-
viduals within species. Here, variation among individuals is treated 
as random (nonstructured) measurement error around the mean 
phenotype. Our simulation results revealed that in such cases, es-
timates of evolutionary trait covariance obtained from E-PGLS are 
comparable with those obtained from existing approaches that 
incorporate intraspecific variation (Felsenstein,  2008).1 Thus, E-
PGLS is equally appropriate for the analysis of such data, and may 
be used to accommodate multiple individuals per species in a phy-
logenetic comparative analysis whose focus is on macroevolua-
tionary trends across the tree of life.

With respect to the latter, when within-species variation is struc-
tured, E-PGLS enables the comparison of within-species (microevo-
lutionary) trends across taxa, and does so while accounting for their 
phylogenetic non-independence. Prior approaches that incorporated 
intraspecific variation in PCMs (e.g. Felsenstein,  2008; Gaboriau 
et al., 2020, 2024; Ives et al., 2007; Revell & Reynolds, 2012) did not 
treat such variation as structured, and were thus incapable of de-
termining whether microevolutionary trends within species differed 
across species or across the phylogeny. By contrast, our findings 
demonstrate that E-PGLS is more flexible, and can not only evalu-
ate comparative trends while incorporating intraspecific variation, 
but can also interrogate evolutionary scenarios where structured 
intraspecific variation may be modelled and compared among spe-
cies. This latter capability of E-PGLS enables biologists to determine 
whether microevolutionary within-species patterns change across 
the phylogeny, or whether groups of taxa display similar within-
species trends; all while taking phylogenetic non-independence into 

 1Note that treating structured variation as random variation has no effect on the 
performance of prior approaches (results not shown).
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2244  |    ADAMS and COLLYER

consideration. Thus when used in this manner, E-PGLS is the inter-
rogation of microevolutionary data sampled within species with a 
generalized least-squares method of estimation based on related-
ness defined at the species level. This novel application opens the 
door to evaluating how microevolutionary patterns evolve at mac-
roevolutionary scales. As such, E-PGLS provides the ability to de-
cipher complex macroevolutionary dynamics of microevolutionary 
trends, and discern how those trends evolve across the tree of life: 
something that is inaccessible via standard phylogenetic compara-
tive approaches. This represents an important advance in phyloge-
netic comparative methods: the ability to compare within-species 
trends across species while simultaneously accounting for their non-
independence due to shared evolutionary history.
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