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Abstract

We use a multilevel perceptron (MLP) neural network to obtain photometry of saturated stars in the All-Sky
Automated Survey for Supernovae (ASAS-SN). The MLP can obtain fairly unbiased photometry for stars from
g; 4 to 14 mag, particularly compared to the dispersion (15%–85% 1σ range around the median) of 0.12 mag for
saturated (g< 11.5 mag) stars. More importantly, the light curve of a nonvariable saturated star has a median
dispersion of only 0.037 mag. The MLP light curves are, in many cases, spectacularly better than those provided by
the standard ASAS-SN pipelines. While the network was trained on g-band data from only one of ASAS-SN’s 20
cameras, initial experiments suggest that it can be used for any camera and the older ASAS-SN V-band data as
well. The dominant problems seem to be associated with correctable issues in the ASAS-SN data reduction
pipeline for saturated stars more than the MLP itself. The method is publicly available as a light-curve option on
ASAS-SN Sky Patrol v1.0.

Unified Astronomy Thesaurus concepts: CCD photometry (208); Time domain astronomy (2109); Algol variable
stars (24); Computational methods (1965)

1. Introduction

Projects such as the All-Sky Automated Survey for Super-
novae (ASAS-SN; Shappee et al. 2014; Kochanek et al. 2017;
Hart et al. 2023), the Asteroid Terrestrial-impact Last Alert
System (ATLAS; Tonry et al. 2018b), and the Zwicky
Transient Facility (ZTF; Bellm et al. 2019) currently monitor
all (ASAS-SN and ATLAS) or large fractions (ZTF) of the
visible sky and provide public access to their data. For ASAS-
SN, this consists of its catalog of variable stars (Jayasinghe
et al. 2019), ASAS-SN Sky Patrol (Kochanek et al. 2017),
which will provide an uncensored light curve for any user-
requested sky coordinate, and ASAS-SN Sky Patrol v2.0 (SP2;
Hart et al. 2023), which provides continuously updated light
curves of roughly 100 million sources from asteroids to stars
and quasars. In the near future, the Vera Rubin Observatory
(e.g., Ivezić et al. 2019) will provide ZTF-like coverage and
cadence for far fainter sources.

Professional astronomy has lost, however, the ability to
monitor the bright sky—the need for both funding and efficient
operations drive projects toward fainter and more numerous
sources. Yet these very bright sources are the ones which will
have the best stellar spectroscopic observations from projects
like the Sloan Digital Sky Survey (SDSS)/APOGEE (e.g.,
Abdurro’uf et al. 2022) or Gaia (e.g., Gaia Collaboration et al.
2023) including either indications of binarity or full orbital
solutions.

The problem is that charge coupled device detectors have a
finite dynamic range above which a pixel is saturated. A typical
dark time ASAS-SN image has a sky background of ∼200
counts and saturates at ∼60,000 counts. The point-spread
function (PSF) has an FWHM of roughly 2 pixels (Shappee
et al. 2014; Kochanek et al. 2017), leading to a point-source

dynamic range of roughly 7 mag from g∼ 11.5 to g∼

18.5 mag. This leaves some ∼106 stars that are saturated in
ASAS-SN observations. The excess charge of the saturated
pixels then bleeds into pixels along the read direction of the
detector.
ASAS-SN inherited from the original All-Sky Automated

Survey (ASAS; Pojmanski 2002) one method of trying to
obtain photometry of saturated stars. The pipeline tries to
identify the flux in the bleed trails of the saturated stars and
then adds a Gaussian with that flux at the star’s location. The
bleed trails are then replaced by linear interpolation of the
adjacent, unsaturated pixels. This approach has also been
applied to Swift/UVOT data by Page et al. (2013). As shown
by some of the examples in Kochanek et al. (2017), this
procedure frequently works surprisingly well. An alternative
approach is to model the unsaturated wings of the PSF (e.g., Su
et al. 2022; Zhou et al. 2023).
Here, we experiment with a new approach, namely, training

a multilevel perceptron (MLP) neural network to do photo-
metry of saturated stars. Convolutional neural networks
(CNNs) have been used successfully for a range of astronom-
ical problems, such as star–galaxy classification (Kim &
Brunner 2017), transient classification (Qu et al. 2022), and
photometric redshifts (Pasquet et al. 2019). There have been
some applications of CNNs to photometry (Yang et al. 2023;
Yuan et al. 2023) but not to the specific problem of saturated
star photometry. Our data consists of small, nonrectangular
images centered on each target star, and the relevance of each
input pixel is highly dependent on its position, so an MLP
seemed a better choice for this purpose than a CNN. The theory
is that a network can simply learn the sensor-specific behavior
for stars of different levels of saturation and then predict the
true brightness. In Section 2 we describe the construction of the
training set, and in Section 3 we describe the model and the
training process. We present the results in Section 4 with
comparisons to the results produced with aperture photometry
on subtracted images by ASAS-SN SP2 (Hart et al. 2023). We
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discuss the results, known problems, potential solutions, and
possible future improvements in Section 5.

2. Training Data

We selected stars from Gaia Data Release 3 (DR3; Gaia
Collaboration et al. 2016, 2023) that were observed by the “bi”
camera of the ASAS-SN Bohdan Paczynski mount at CTIO in
Chile. We selected a random 40,000 nonvariable stars (based
on Gaia DR3, Eyer et al. 2023) over the sky per 1 mag wide bin
starting at G= 2 mag. This provides a training set roughly
uniformly distributed in magnitude. Obviously, the very
brightest bins have fewer than 40,000 stars and so we were
simply including all available stars. We kept stars observed by
bi, with defined G, BP, and RP magnitudes.

Each target then has hundreds of epochs of ASAS-SN
observations, so we randomly selected ∼4 images per target
and extracted a 21 pixel square “postage stamp” image of the
target. We used single exposures interpolated to the astrometric
frame of the reference image. Only images flagged as having
been taken in good conditions were used and the postage stamp
edges had to be at least 50 pixels from the detector edges. We
generated ∼332,000 postage stamps spanning G= 3 to
15 mag.

We predict the g-band magnitudes from the Gaia DR3
magnitudes because the Gaia magnitudes homogeneously span
the full range we consider. We first applied the Gaia EDR3
saturation corrections from Riello et al. (2021; these affect
G< 8 for G, G< 3.94 for BP, and RP< 3.45 for RP) and
estimate the g-band magnitude from the corrected G, BP, and
BP magnitudes following Riello et al. (2021). The reported
scatter for these estimates is 0.075 mag. We then convert to the
estimated counts in an image using the zero-point Z of the
ASAS-SN reference image and the mean transparency correc-
tion t between fluxes on the reference image and the target
image determined by ISIS (Alard & Lupton 1998; Alard 2000)
as part of the standard ASAS-SN image subtractions (the
values in sum_kernel). This gives predicted counts of

N g Z tlog 0.4 log . 1s = - - -( ) ( )

The ASAS-SN PSF has an FWHM of roughly 16″. At this
resolution, the flux in any ASAS-SN photometric aperture can
be a blend of the fluxes from multiple stars. This is not
important for the brightest stars, but becomes increasingly
important for fainter stars, particularly at lower Galactic
latitudes. To mitigate this, we found all G< 20 mag Gaia
DR3 stars within 1′ of each target star. We computed a G-band
flux correction fc factor to go from the flux of the target star to
the total flux of all stars within 8″. Assuming that the network
will “learn” about background subtraction, we need to correct
this contaminating flux for the median stellar background flux
contribution, bc, to the signal region. Hence, we rescale the
prediction for the number of counts as

N N f b1 . 2s s c c + -( ) ( )

When we added bias subtraction to the ASAS-SN pipelines,
we started to damage the cores of the images of saturated stars,
a problem that remains to be fixed. Such stars are identifiable
by the presence of pixels that are exactly unity because the final
consequence of the problem is that the modified ASAS pipeline
declares them to be bad pixels and resets them to unity. Postage
stamps with more than four such pixels are rejected for training
and validation.

3. Methods

In our data set, the target star never covered more than a few
pixels in any direction, even at the highest brightness levels. As
a preprocessing step, we reduced the analyzed region of each
postage stamp to a 5 pixel radius circle around the center. This
is to help focus the model training on the relevant region and to
give less context for a model to memorize. A sampling of the
brightest stars found that a 5 pixel radius would capture most
visible detail with a ∼1–2 pixel margin, as shown in Figure 1.
As an easy way to expand the training set, we also considered

reflections of the postage stamps, adding three new postage
stamps flipped horizontally, vertically, or both. This grows the
training set from ∼332,000 stamps to ∼1.33 million stamps. To
the extent that the ASAS-SN PSF is not circularly symmetric,
this is like moving the postage stamp to the corresponding
reflection of its position on the detector. We expected this to be a
safe way of trivially multiplying the training set. We tracked the
results for both the original and permuted orientations and were
unable to find significant differences in the results.
Neural networks operate on the data turned into “tensor data,”

which is simply a one-dimensional array. We can also append
metadata to the end of the training data, where we experimented
with adding the reference image zero-point Z and the estimated
sky brightness of the individual image S. We discuss other
possible metadata that could be used in the discussion.
The overall training set is then divided into training (60%),

testing (20%), and validation sets (20%). We were concerned
about the potential for the network to memorize the expected
properties of a particular star based on the pattern of
surrounding background stars. To make sure this was not an
issue while validating the results, all images of a particular star
were placed in the same subset.

4. Results

We carried out our analysis using PyTorch (Paszke et al.
2019), optimizing the mean squared error (MSE) loss function

Figure 1. A log-scale image of the postage stamp of a 99.9th percentile bright
star with a red contour drawn to show which pixels are used in our model.
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between the input estimate of Nlog s and the output estimate

from the network. We began by experimenting with different

MLP architectures. We started with two to four smaller 64-

wide layers, but found that increasing the width led to faster

convergence. We ultimately settled on 256-wide layers as

increasing past this led to minimal improvements. The final

architecture is shown in Figure 2.
After selecting the architecture, we evaluated PyTorch’s

Adam, AdamW, Adadelta, Adagrad, Adamax, RMSProp, and

stochastic gradient descent optimizers. We trained each model

to 150 epochs with each optimizer multiple times. The Adam

optimizer had the lowest losses, with AdamW coming second.

The other optimizers were less reliable for this task, with some

never converging. We used the Adam optimizer of Kingma &

Ba (2014) for our final models, with a learning rate of 0.0001

and a batch size of 128. We trained 24 models using this

architecture including the hyperparameters in the training and

selected the one with the best MSE for the validation data.
The performance of the fiducial MLP model for the

verification data set is shown in Figure 3. The results show

little bias over 10 mag (a factor of 104 in flux) from g; 4 mag

to g= 14.5 mag. The median difference is −0.004 mag, with a

clear bias appearing only for the brightest and faintest stars.

The magnitude differences encompassing 68% and 95% of the

stars are 0.12 and 0.34 mag, respectively, and the rms

dispersion is 0.168 mag.
We also considered several possible elaborations. First, we

considered whether ensemble results would perform better than

the best model. For example, if we defined the ensemble model

as the average of the results from the four individual models

with the lowest MSE values, the rms residual did not improve.

Second, we tried averaging the results for the input image and

its three permutations, but again found no significant improve-

ment. As noted earlier, many saturated stars have pixels reset to

unity due to some unanticipated consequences of adding

overscan corrections to the pipeline. We built an independent

network trained only on objects with at least one pixel set to

unity to see if this would do better than simply mixing the two

populations. This model had an rms residual of 0.360 mag, far

worse than the general analysis. We believe the small size of

Figure 2. Final Model Architecture.

Figure 3. The differences between the input (gin) and output (gout) magnitudes for the verification stars. The red curves show the median (solid), 68% (dashed), and
95% (dotted) ranges of the differences in bins of 0.25 mag. A horizontal cyan line is included where the difference is zero.
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the resulting training set likely drives this. From this point on,

we focus on our fiducial MLP model.
We looked for correlations of the residuals with distance

from the detector center and Galactic latitude. We examined the

distance from the center because a source of a given flux

produces ∼50% fewer counts in the extreme corners of the

detectors compared to the center due to vignetting. We

examined the Galactic latitude because the stellar density

increases rapidly for lower absolute latitudes, so the results

depend more on correctly accounting for crowding by other

sources under the ASAS-SN PSF. We found no significant

correlation of the residuals of both the saturated and

unsaturated stars with either the detector location or Galactic

latitude.
Figure 3 is not really a test of our primary goal, which is to

produce improved light curves rather than improved absolute

photometry over the current ASAS-SN pipelines as implemen-

ted in SP2 (Hart et al. 2023). ASAS-SN epochs are generally

comprised of three 90 s exposures. SP2 does aperture

photometry on the coadded, subtracted images obtained for

each epoch and then adds the flux of the source in the reference

image. The MLP analyzes individual images since we are

limited by systematic problems not photon statistics for the

saturated stars. For the final MLP light curves we used

the median of the results for the individual epoch images (the

average if only two images, and the value if there is just one

image). This procedure noticeably reduces the light-curve

dispersions.

To test the performance on light curves, we randomly selected
1000 (Gaia) nonvarying sources uniformly in magnitude over
8< g< 14.5 mag and extracted their light curves using both the
fiducial MLP model and SP2. We again limited the analysis to
good images and kept only images analyzed by both pipelines.
Figure 4 compares the dispersions of the MLP and SP2 light
curves with at least 50 points as a function of magnitude. The
dispersions are defined by one-half of the 15%–85% (1σ) range
about the light-curve median. The standard pipeline has obvious
problems for saturated (g< 11.5) images, with a large jump in
the scatter from a median of 0.016 mag for g> 11.5 to a median
of 0.22 mag for brighter sources. The band of sources with
scatters above 1 mag are the ones most badly affected by the
effects of the bias subtraction problem. The performance of the
MLP is fairly uniform with a median scatter of 0.037 mag for the
brighter sources and 0.048 mag for the fainter sources. A few of
the high scatter outliers are high proper motion stars, but most
are cases where the bleed trail correction algorithm has put the
flux from the bleed trail in the wrong location. An obvious issue
for future work is to explore why the MLP has 3 times the scatter
of the standard pipeline for the unsaturated stars. Figure 5 shows
eight examples of these MLP light curves. They were selected to
have 15%–85% (1σ) ranges about their medians of <0.053 mag,
which is true for 85% of the saturated stars (see Figure 4), but
were otherwise just chosen to be the closest star to 8.0, 8.5,...,
11.5 mag.
Figures 6, 7, 8, and 9 compare the MLP light curves of Miras,

Cepheids, and eclipsing binaries to those from SP2. These
variables were not selected to make the MLP results look good,

Figure 4. The light-curve dispersions of approximately 103 nonvariable sources as a function of g magnitude analyzed using the current SP2 pipeline (black triangles)
or by the neural network (red squares). The dispersion is defined as one-half of the 15%–85% (1σ) range of the residuals about the median. The saturated (unsaturated)
magnitude range is to the left (right) of the vertical line.
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but simply to have interesting magnitudes and amplitudes for
illustrating results. The Miras illustrate the ability of the MLP
analysis to smoothly track the brightness of variable stars from
well below the saturation limit near g; 11.25 mag to
significantly above it. While the SP2 light curves are frequently
good, they start to produce significant outliers at the brightest
magnitudes, particularly for XOct. The examples of classical
Cepheids include the extremely bright ℓCar, the still naked eye
visible W Sgr, and the slightly fainter R Cru. The MLP ℓCar
light curves are producing significant numbers of outliers near
peak, while the SP2 light curves struggle near minimum. The
W Sgr and R Cru light curves have significant numbers of faint
outliers, but the MLP produces generally smoother light curves if
we ignore the outliers. The MLP magnitudes are also closer to
the g magnitudes predicted from the Gaia mean magnitudes.
Note that since they are mean magnitudes, they should be
relatively immune to any variability. The SP2 light curves are
significantly fainter than the predictions and are shifted brighter
by ∼1 mag in order to use the same magnitude ranges for both
the MLP and SP2 light curves.

The driver of these problems for the bright Cepheids are two
failure modes in the pipeline saturated star correction. One
failure mode is to place the flux from the bleed trails at the
wrong location, usually a relatively bright (but not nearly as
bright) star lying nearby on the bleed trail. The second, which
we do not understand, but appears to be the dominant failure
for W Sgr, is to have not placed the missing flux anywhere. The
saturated target appears to have been treated as part of the bleed
trail and filled in by interpolation across the estimated trail.

The eclipsing binary comparisons provide the most dramatic
illustration of the improvements from the MLP approach—the
eclipses are clearly visible in the MLP light curves and
essentially invisible in the SP2 light curves. Even CYHyi, with
its fairly high amplitude and continuous variability with phase,
has a barely discernible variability pattern in the SP2 light
curve. The shallow eclipses of del Cir and KV Lup are clear for
the MLP light curves, as are the very narrow eclipses of
TZMen and VY Ret. The mean MLP magnitudes are close to
the predicted means, while the SP2 means are again
significantly fainter than predicted. There are outliers in the
MLP light curves, but most could probably be eliminated with
some variant of sigma clipping.
The MLP was trained using data from only a single camera

(bi on the Paczynski mount), while ASAS-SN is presently
comprised of 20 cameras. ASAS-SN also initially used V band,
while the training data were all g-band photometry. As an
experiment, we simply analyzed the data from all cameras and
both filters for the stars in Figures 6, 7, 8, and 9. We
“intercalibrated” the data from all the sources using a damped
random walk (DRW) Gaussian process for interpolation and
solving for the best light-curve means for the individual
cameras and filters (these are a form of the “linear parameters”
discussed in Kozłowski et al. 2010 for DRW models of quasar
light curves). We found we could reduce the effects of faint
outliers by dropping the faintest 10% of the light curves. Each
light curve was then offset by the difference between the
median light-curve mean and the mean for the individual
camera and filter. This does assume that the variability

Figure 5. Light curves of the stars in Figure 4 closest to g = 8 mag to 11.5 mag in steps of 0.5 mag. They were also required to have 68% distribution widths less than
0.053 mag—85% of g < 11.5 mag stars have smaller dispersions. The horizontal lines are the Gaia-estimated g magnitudes. The number gives the dispersion
estimated from the 15%–85% (1σ) range of the points about their median.
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Figure 6. Light curves of Mira variables from the MLP analysis (left) and SP2 (right). While the saturated star corrections of the ASAS-SN pipeline produce
surprisingly good results in many cases, the MLP pipeline results are smoother and have fewer outliers like the ones prominently seen for the SP2 light curve of X Oct.
X Oct is also the example which is most saturated at peak brightness. The vertical scales are the same for both the MLP and SP2 light curves.

Figure 7. Light curves of very saturated Cepheid variables from the MLP analysis (left) and SP2 (right). The SP2 light curves are shifted to brighter magnitudes by the
amount next to the variable name. The red points lying in a line along the bottom are outliers fainter than the minimum magnitudes of the panels. The horizontal red line is
the g magnitude predicted from the mean Gaia magnitudes, which should be relatively close to the true mean magnitude. Both pipelines produce many faint outliers for
W Sgr and R Cru, but the MLP light curves are arguably cleaner except for ℓ Car at peak. The vertical scales are the same for both the MLP and SP2 light curves.
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amplitudes and light-curve shapes are identical for the two
filters, but it also the most extreme test for seeing how crucial it
will be to individually train by camera and filter.

Figures 10 and 11 show the results. They are generally very
good, suggesting that the current network can simply be
applied generally and that we could train one MLP using data
from all cameras and filters. There are outliers such as those
seen for X Oct, and all the data are struggling with the bright
Cepheids from Figure 10. The biggest failure is for R Cru,
where the huge number of outliers has confused the
intercalibration procedure. This is seen to a lesser extent for
W Sgr, where too few faint outliers were rejected for the good
parts of the light curves to be perfectly lined up. But for R Cae,
S Tuc, and the eclipsing binaries in Figure 11, the results are
extremely good.

5. Conclusions and Future Work

We developed an MLP neural network for the accurate
photometry of saturated stars. The network was trained using
predictions for the counts produced by the target star in a
sample of ∼332,000 postage stamp images of stars roughly
uniformly spread in magnitude from g∼ 3 to 15 mag. For the
verification sample, the median magnitude differences are well
within the 68% scatter of the differences (0.12 mag) except for
the very brightest and faintest stars (see Figure 3). More
importantly, the typical scatter in the light curve of a saturated
star is only 0.037 mag (half the 15th–85th percentile range
about the mean) compared to 0.22 mag for the SP2 light curves
(see Figure 4). The MLP light curves of many bright variable

stars are dramatically better than their SP2 light curves (see
Figures 6–9) although the performance can sometimes be poor,
as illustrated by the naked eye Cepheids in Figure 7 (see
below). Although the network was trained using data from only

one camera, it appears to work equally well when tested using
data from all cameras and both V- and g-band data when
combined using a Gaussian process to intercalibrate the light-
curve means (see Figures 10 and 11). For some systems, this

calibration procedure and/or outlier rejection would have to be
done more carefully, but the results are otherwise very
encouraging.
We analyzed the reduced ASAS-SN images interpolated to

the frame of the reference image. Using the interpolated images
meant that the pixel location of the target stars was fixed and
could be accurately determined from the well-verified astro-
metry of the reference images (2″ errors relative to Tycho stars
at worst, compared to a 16″ FWHM). We do not see any

evidence that the interpolation causes problems.
Using the as-reduced images creates the problems seen for

the bright Cepheids because of two issues. The first is that an

interplay between adding bias corrections and the inheritance
from the ASAS pipeline of reading only integer fits files can
lead to damaging saturated images because of integer over-
flows. This manifests as pixels in the star being flagged as bad
and given a pixel value of unity. This obviously causes severe

problems for the standard aperture photometry pipeline. The
MLP pipeline largely manages to correctly interpret the flagged
pixels and recover a good estimate of the true flux. While we
understand the origin of the problem, a fix is not trivial and has

Figure 8. Light curves of eclipsing binaries from the MLP analysis (left) and SP2 (right). The SP2 light curves are shifted to brighter magnitudes by the amount next
to the variable name. The bright magnitude limit is the same for the MLP and SP2 panels, but the magnitude range is generally much larger for the SP2 panels. The red
points lying in a line along the bottom are outliers fainter than the minimum magnitudes of the panels. The horizontal red line is the g magnitude predicted from the
mean Gaia magnitudes.
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Figure 9. Light curves of eclipsing binaries from the MLP analysis (left) and SSP2 (right). The SP2 light curves are shifted to brighter magnitudes by the amount next
to the variable name. The bright magnitude limit is the same for the MLP and SP2 panels, but the magnitude range is generally much larger for the SP2 panels. The red
points lying in a line along the bottom are outliers fainter than the minimum magnitudes of the panels. The horizontal red line is the g magnitude predicted from the
mean Gaia magnitudes. VY Ret has a highly eccentric orbit leading to the asymmetric eclipse phases.

Figure 10. MLP light curves of the Miras and Cepheids from Figures 6 and 7 (black squares) as compared to their MLP light curves using both V- and g-band data
from all the ASAS-SN cameras observing each star. Outliers are marked at the bottom in red.
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yet to be implemented. We believe the performance of an MLP
retrained after the problem is fixed should be improved.

The second problem comes from mistakes made by the
saturated star corrections inherited from the ASAS pipeline. As
noted earlier, the pipeline tries to collect the flux from the bleed
trail and add it as a Gaussian at the location of the saturated star
with the FWHM of the data. This generally works very well,
but the flux is sometimes assigned to the wrong location and
sometimes seems not to be assigned to any location. We see
this problem here for the very brightest examples we show
(Figures 7, 10, and 11). Determining the origin of these
problems in the pipeline is beyond our present scope.

We suspect that our approach would have worked well and
avoided this problem using data without these attempts to
correct saturated stars. Testing this is, however, an involved
process. The original raw images are available, but they would
have to be reprocessed without the saturated star corrections (or
at least the postage stamp images needed for each star would
have to be reprocessed). The pixel positions of stars would also
now vary from image to image, so we would need to be fully
confident of the astrometry of the individual images. Checking
this astrometry has not been a priority because all the current
ASAS-SN results depend only on the astrometry of the
reference image for a field and not on the astrometry of the
individual images.

One likely area where our results could be improved is in the
estimation of the predicted counts for the training set. As a
reminder, we predicted SDSS g magnitudes from Gaia DR3
magnitudes, converted them to counts using the zero-point of
the ASAS-SN reference image and the image subtraction
estimate of the transparency difference between the images

defining the zero-point and the current image, and attempted to
correct for the flux from other stars within the large ASAS-SN
PSF. The Riello et al. (2021) transformation from Gaia
magnitudes to g band is not great, with a reported scatter of
0.075 mag. This is, however, not large enough to be a major
contributor to the scatter seen for the verification data.
Nonetheless, it might be better to have used ATLAS REFCAT
(Tonry et al. 2018a) since it was built in part to systematically
estimate g-band magnitudes.
The crowding corrections were computed based only on the

Gaia G-band magnitudes, and they should probably have been
based on the estimated g-band magnitudes. The thought was
that these corrections should mostly be small, so the modest
fractional errors in them would not be important. Retro-
spectively, this may be need to be treated more carefully for the
nonsaturated stars. There might also be issues from the
interplay between the estimated crowding corrections and the
size and geometry of the postage stamp images (Figure 1). For
the saturated stars, which are the primary target of the project,
this is less of an issue simply because the stars are so bright and
the standard pipeline performs so poorly. Moreover, the scatter
seen for the unsaturated stars in the verification data does not
depend on Galactic latitude, which suggests that problems with
confusion cannot be a dominant driver of the scatter.
If a primary driver of the scatter was simply the accuracy of

the conversion from estimated counts to magnitudes driven by
zero-point and transparency errors, then we would expect the
fluctuations in the light curves of constant sources lying in the
same field to be correlated. If so, this would then lead to a
natural approach to improving the image calibrations by using
the correlated variability to estimate an image calibration

Figure 11.MLP light curves of the eclipsing binaries from Figures 8 and 9 (black squares) as compared to their light curves using both V- and g-band data from all the
ASAS-SN cameras observing each star. Outliers are marked at the bottom in red.
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correction. We inspected this question for the trial light curves
of nonvarying sources lying in the same field and found,
unfortunately, no obvious correlations.

The most important issues to be addressed are the problems
created by the ASAS-SN pipeline, fixing the damage done to
the images of saturated stars, and either understanding the
failures of the saturated star corrections or switching to using
images without the corrections. We need to more extensively
test how well the MLP works on multiple cameras to determine
if we can simply train a single MLP for all cameras, perhaps
with the camera identification as an additional item of
metadata.

This method is now available as an option on ASAS-SN Sky
Patrol v1.0 (Kochanek et al. 2017) as the “Saturated Stars
(Machine Learning)” photometry option.4 As should be clear
from the examples, the results become less predictable for stars
approaching naked eye visibility and brighter. The present
method supplies no magnitude uncertainties, so these are
simply reported as the typical scatter seen in Figure 4. Better
error estimates of the relative errors can be derived from the
light curves, but this requires some information on the nature of
any variability (e.g., periodic or nonperiodic), making it
difficult to estimate automatically. We anticipate that the
machine learning results will steadily improve, particularly
once the reduction pipeline problems for saturated stars are
corrected. It is also considerably faster than the most equivalent
mode of Sky Patrol v1.0 (“Aperture Photometry”), which takes
roughly 5 times longer to produce the light curves shown in
Figures 6–9.
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