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Abstract.—Due to the hierarchical structure of the tree of life, closely related species often resemble each other more than
distantly related species; a pattern termed phylogenetic signal. Numerous univariate statistics have been proposed as mea‑
sures of phylogenetic signal for single phenotypic traits, but the study of phylogenetic signal for multivariate data, as is
common inmodern biology, remains challenging. Here, we introduce a newmethod to explore phylogenetic signal inmul‑
tivariate phenotypes. Our approach decomposes the data into linear combinationswithmaximal (orminimal) phylogenetic
signal, as measured by Blomberg’s 𝐾. The loading vectors of these phylogenetic components or 𝐾‑components can be bio‑
logically interpreted, and scatterplots of the scores can be used as a low‑dimensional ordination of the data that maximally
(or minimally) preserves phylogenetic signal. We present algebraic and statistical properties, along with 2 new summary
statistics, 𝐾𝐴 and 𝐾𝐺, of phylogenetic signal in multivariate data. Simulation studies showed that 𝐾𝐴 and 𝐾𝐺 have higher
statistical power than the previously suggested statistic 𝐾𝑚𝑢𝑙𝑡, especially if phylogenetic signal is low or concentrated in
a few trait dimensions. In 2 empirical applications to vertebrate cranial shape (crocodyliforms and papionins), we found
statistically significant phylogenetic signal concentrated in a few trait dimensions. The finding that phylogenetic signal
can be highly variable across the dimensions of multivariate phenotypes has important implications for current maximum
likelihood approaches to phylogenetic signal in multivariate data. [Cranial shape; multivariate evolution; phylogenetic
generalized least squares; phylogeny; relative eigenanalysis.]

Phylogenetic signal describes the tendency of closely
related species to resemble each other more so than
distantly related species. Numerous statistical mea‑
sures have been proposed as summaries of phyloge‑
netic signal (e.g., Gittleman and Kot, 1990; Pagel, 1999;
Freckleton et al., 2002; Blomberg et al., 2003; Felsen‑
stein, 2004; Revell et al., 2008; Collyer et al., 2022),
with most being developed for single (univariate) traits.
However, biological phenotypes are highly multivari‑
ate, and evolutionary biologists are increasingly turn‑
ing their gaze towards understanding the evolution of
these multivariate traits (summarized in: Adams and
Collyer, 2018a, 2019; Collyer and Adams, 2021). Unfor‑
tunately, for many multivariate datasets, such as those
found in modern morphometrics, univariate measures
of phylogenetic signal applied to each measured trait
separately are inappropriate because biological inter‑
pretations are typically based on linear combinations of
a large number of variables. Single variables often are
not meaningful per se. Similarly, the application of uni‑
variate measures of phylogenetic signal to the ordinary
principal components (PCs) of the variables is ineffec‑
tive as the PCs just maximize phenotypic variation, not
necessarily phylogenetic signal.
Because of this disconnect, a generalization of one

measure was proposed (termed 𝐾mult) that provides

an overall estimate of the degree of phylogenetic sig‑
nal observed in multivariate datasets (Adams, 2014).
A survey of the empirical literature (Adams and Col‑
lyer, 2019) revealed that a large majority of multivariate
datasets scrutinized with 𝐾mult displayed significant
levels of phylogenetic signal. However, most studies
also yielded a 𝐾mult < 1, implying that the data con‑
tained less phylogenetic signal than expected under
Brownian motion. Many empirists had interpreted this
result as revealing “significant, but weak” phylogenetic
signal. But an alternative possibility, noted by Adams
and Collyer (2019), was that phylogenetic signal may
be concentrated in one or a few trait dimensions. They
argued that in such cases, 𝐾mult would reveal signifi‑
cant phylogenetic signal (as compared with a random
association of phenotypic data to the tips of the phy‑
logeny), but less phylogenetic signal than expected if all
trait dimensions evolvedunder Brownianmotion. Com‑
puter simulations confirmed this supposition (Adams
and Collyer, 2019), thereby revealing that 𝐾mult was ca‑
pable of identifying the presence of phylogenetic signal
in multivariate data, but not whether this signal was
concentrated in one or a few dimensions.
To determine whether different trait dimensions dis‑

play differing levels of phylogenetic signal, a first step
in a multivariate setting may thus be to extract features
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(linear combinations) with maximal phylogenetic sig‑
nal. With a similar aim, Collyer and Adams (2021)
presented an approach that aligns multivariate pheno‑
typic data with phylogenetic signal, but this approach
does not directly maximize any of the standard mea‑
sures of phylogenetic signal. Here, we present a new
method to explore phylogenetic signal in multivariate
phenotypes. The key idea is to decompose the data into
linear combinations with maximal (or minimal) phylo‑
genetic signal, as measured by Blomberg’s 𝐾. Similar
to PCs, the loading vectors of these “phylogenetic com‑
ponents” or “𝐾‑components” can be biologically inter‑
preted, and scatterplots of the scores can be used as a
low‑dimensional ordination of the data that maximally
(or minimally) preserves the phylogenetic signal. We
refer to this approach as 𝐾‑component analysis (KCA).

Extending Blomberg’s 𝐾.—Blomberg’s 𝐾 is a common
statistic to quantify phylogenetic signal (Blomberg et al.,
2003). It is based on the ratio of the sum of squares
of the observed tip data (SSobs) divided by the sum
of squares of these data after correcting for their ex‑
pected dependences under a given model of evolution,
usually a Brownian motion model (SScor). This latter
quantity is computed by phylogenetic generalized least
squares (PGLS) using a variance–covariance matrix de‑
rived from the candidate tree. The notion underlying
the approach is that if the phenotypic distances between
species resemble the phylogenetic distances (and in this
sense show a strong phylogenetic signal), correcting for
phylogenetic relatedness removes a large part of the in‑
terspecific trait variance, which leads to a large 𝐾 statis‑
tic. In the case of no phylogenetic signal, this correction
removes little variance, leading to a small 𝐾. The ratio
is a dimensionless quantity but it is influenced by the
structure of the tree. Tomake it compareble across stud‑
ies, it is usually divided by its expectation under the
given evolutionary model:

𝐾 = SSobs/SScor
𝐸(SSobs/SScor)

. (1)

Standardized this way, 𝐾 < 1 implies that relatives re‑
semble each other less than expected under the given
evolutionary model along the candidate tree, for exam‑
ple, due to adaptive evolution (homoplasy). 𝐾 > 1 im‑
plies that close relatives are more similar than expected.
Let the 𝑛 × 1 vector x contain a measured trait for 𝑛

species, andwriteΩ for the 𝑛×𝑛 phylogenetic variance–
covariance matrix. Under a Brownian motion model
of evolution, the diagonal elements of Ω contain the
phylogenetic distances from each tip to the root of
the phylogeny, and the off‑diagonal elements contain
the phylogenetic distances from the root of the tree
to the most recent common ancestor for each pair of
species (this matrix of the Brownian motion model is
usually denoted byC; Martins and Hansen, 1997; Rohlf,
2001). In principle, Ω can also be the expected covari‑
ance matrix under a different, non‑Brownian model of

evolution, or the phylogenetic covariances can be down‑
scaled by Pagel’s 𝜆 if appropriate (Pagel, 1999, see also
the Supplementary Materials). The residuals of a vari‑
able from the phylogenetic mean are then equal to

x∗ = x − 1[(1𝑇Ω−11)−11𝑇Ω−1x]𝑇 , (2)

and

SScor = x𝑇
∗ Ω−1x∗. (3)

The superscript 𝑇 represents the transpose operator.
Blomberg et al. (2003) proposed two different ways of

calculating the observed sum of squares (SSobs): as devi‑
ations from the phylogenetically corrected mean, x𝑇

∗ x∗,
and as the ordinary sum of squares around the mean,
(x − ̄𝑥)𝑇(x − ̄𝑥). Even though most authors have used
the first choice for calculating Blomberg’s 𝐾, it seems
more consistent to us to use the ordinary least squares
mean for calculating the observed SS when contrasting
them with the PGLS sum of squares. The ratio of OLS
to PGLS sum of squares also simplifies the permutation
approach (see below) and the likelihood function (as
shown in the Supplementary Materials). Accordingly,
we will use the OLS sum of squares in the following no‑
tation, but both options can be used for the presented
approaches. Numerically, they are very similar for most
applications, and they are identical for a balanced phy‑
logenetic tree. To ease notation, we will write x for the
OLS mean centered variable (implying that x𝑇1 = 0)
and x∗ for the PGLS centered variable. Blomberg’s 𝐾 is
then given by:

𝐾 = SSobs/SScor
E(SSobs/SScor)

= x𝑇x/x𝑇
∗ Ω−1x∗/𝜖, (4)

where

𝜖 = (trΩ − (1𝑇Ω−11)𝑛−1)(𝑛 − 1)−1 (5)

standardizes the observed SSobs/SScor ratio by the ex‑
pected ratio under a Brownianmotionmodel (Blomberg
et al., 2003; Adams, 2014).
For multivariate data, consider the OLS mean

centered 𝑛 × 𝑝 data matrix X and the matrix
of residuals from the phylogenetic mean vector
X∗ = X− 1[(1𝑇Ω−11)−11𝑇Ω−1X]𝑇 . The univariate SSobs
then translates into a 𝑝 × 𝑝 matrix of sum of squares and
cross‑products (SSCPobs), X𝑇X, and an SSCPcor matrix
of the phylogenetically corrected data, X𝑇

∗ Ω−1X∗. As a
multivariate extension of 𝐾, Adams (2014) proposed the
ratio of the traces of these two matrices:

𝐾mult = tr(SSCPobs)
tr(SSCPcor)

𝜖−1

= tr(X𝑇X)
tr(X𝑇

∗ Ω−1X∗)
𝜖−1. (6)
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Following Blomberg et al. (2003), Adams (2014) used
residuals from the phylogenetic mean to calculate
SSCPobs, but for consistency we use the OLS estimate
for SSCPobs here (For 𝐾mult, the use of OLS or PGLS
results in slightly different but highly rank‑correlated
values; see SupplementaryMaterial.) Moreover, Adams
expressed 𝐾mult in terms of Euclidean distances, but
the formulation presented here is numerically identical
with the original.𝐾mult can be a useful summary statistic
if all variables show a similar magnitude of phyloge‑
netic signal. However, if the measured variables com‑
prise features with different phylogenetic signals, it can
be important to disentangle these signals by first iden‑
tifying the phenotypic features that carry these diverse
signals.
For such an exploratory approach, construct the 𝑝 × 𝑝

phylogenetic signal matrix

K = SSCP−1
cor SSCPobs E(SSCP−1

cor SSCPobs)−1.

Here, we assume that X is of full rank and SSCPcor is in‑
vertible (but see “Numerical Properties” section). Under
the simplest model, independent Brownian motion of
every variable, the expectation is just an identity matrix
multiplied by 𝜖 (Equation (5)):

E(SSCP−1
cor SSCPobs) = 𝜖 I.

In this simple case, multiplying with the inverse of 𝜖 I is
the same as element‑wise division by 𝜖. Hence, we can
write

K = SSCP−1
cor SSCPobs 𝜖−1 (7)

= (X𝑇
∗ Ω−1X∗)−1X𝑇X 𝜖−1.

Decompose K into

K = EΔE−1, (8)

where E is amatrix of eigenvectors andΔ a diagonalma‑
trix of eigenvalues. Technically, this is a relative eigen‑
analysis of SSCPobs with respect to SSCPcor (Flury, 1985;
Bookstein and Mitteroecker, 2014; Le Maitre and Mit‑
teroecker, 2019). The first eigenvector, e1, corresponds
to the linear combination, or direction in data space,
with maximal 𝐾, which is equal to 𝛿1. We term this vec‑
tor the first phylogenetic component, or more specifi‑
cally, the first 𝐾‑component . The second eigenvector,
e2, has the second highest 𝐾, and so forth. The elements
of these eigenvectors can be interpreted as the loadings
of the measured variables on the linear combinations
with maximal phylogenetic signal. Phrased differently,
these are the linear combinations that are most affected
by phylogenetic correction and in this sense carry the
highest phylogenetic signal.

Scores along these dimensions can be computed for
the observed data s𝑖 = Xe𝑖 as well as for the phyloge‑
netically corrected data t𝑖 = Ω−1/2X∗e𝑖, where

𝐾𝑖 =
s𝑇

𝑖 s𝑖

t𝑇𝑖 t𝑖
(9)

=
e𝑇

𝑖 X
𝑇Xe𝑖

e𝑇
𝑖 X

𝑇
∗ Ω−1X∗e𝑖

= 𝛿𝑖

and 𝐾1 ≥ 𝐾2 ≥ … ≥ 𝐾𝑝. As K usually is not symmetric,
the eigenvectors e𝑖 usually are not orthogonal, but the
scores are mutually uncorrelated both for the observed
data and for the corrected data: cor(s𝑖, s𝑗) = cor(t𝑖, t𝑗)
= 0 for all 𝑖 ≠ 𝑗.
Scatterplots of the scores serve as ordinations of the

data that maximize or minimize phylogenetic signal.
Specifically, a plot of s1 versus s2 represents variation
with the strongest phylogenetic signal, whereas a plot of
s𝑝 versus s𝑝−1 represents variation with the least phylo‑
genetic signal. Accordingly, t1 and t2 represent variation
in the components with strongest phylogenetic after that
signal has been removed. Contrasting the plots of s1 ver‑
sus s2 and of t1 versus t2 may be useful to gauge the
effect of phylogenetic correction for further analyses.
Similar to phylogenetically aligned component analysis
(PACA; Collyer and Adams, 2021), these scatterplots
of the KCA present phenotypic variation in relation to
phylogenetic signal, though our approach specifically
maximizes Blomberg’s 𝐾.

Numerical Properties.—As is typical for multivariate
methods that maximize a certain statistic, the maximal
variance ratios, 𝐾𝑖, tend to increase with 𝑝/𝑛 (e.g., Mit‑
teroecker and Bookstein, 2011; Bookstein, 2017). Intu‑
itively, this is because with increasing 𝑝/𝑛 random noise
accumulates andmay accidentally lead to large variance
ratios. But the corresponding linear combinations typi‑
cally are biologically meaningless and have unreliable
out‑of‑sample properties, similar to a strongly overfit‑
ted linear model. If X is not of full rank, for example,
because 𝑝 ≥ 𝑛, the matrix K cannot be computed at all
because SSCPcor is not invertible. In our experience, a re‑
liable interpretation requires that the number of species
exceeds the number of variables by at least 4–5 times. In
geometricmorphometrics and other highlymultivariate
fields, where the number of variables often exceeds the
number of cases, this may require dimension reduction
or matrix regularization.
One simple way of dimension reduction is to decom‑

pose X𝑇X = VΘV𝑇 , so that Z = XV1…𝑘 are the first 𝑘
PC scores of X. The matrix K in Equation (7) and its
eigenvectors E can be computed based on Z instead of
X. For interpreting the loadings of the 𝐾‑components in
terms of the original variables, the eigenvectors E then
need to be transformed back as V1…𝑘E. The scores can
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be computed as XV1…𝑘E = ZE. If 𝑘 is set to the rank of
X∗, this approach is equal to using the Moore–Penrose
pseudoinverse of SSCPcor instead of the regular matrix
inverse in Equation (7). In most applications, however,
𝑘 ≪ rank(X). PCA proved to be useful in morphomet‑
rics because of the highly correlated measurements and
the possibility to inspect the components used for fur‑
ther analysis (e.g., Mitteroecker and Schaefer, 2022), but
dimension reduction can modify the phylogenetic sig‑
nal to some degree. For multivariate data with a strong
phylogenetic structure, the first PCs likely contrast the
taxa on either side of the deepest nodes, whereas more
recent divergence might be reflected in later PCs. Dis‑
carding these later PCs can thus inflate the existing
phylogenetic signal (Polly et al., 2013). Similarly, omit‑
ting PCs with little or no phylogenetic signal reduces
the anisotropy of the signal (see below). Choosing the
number of PCs for phylogenetic analysis thus requires
careful consideration and repeating the analysis with a
range of PCs. In our experience, a large part of the phy‑
logenetic signal is captured by the first few PCs. Further
increasing the number of PCs for calculating K leads to
a range of PCs for which the eigenvectors are relatively
consistent. Above this range, the results become noisy
and uninterpretable, indicating too high a 𝑝/𝑛‑ratio. De‑
pending on the data structure and biological context,
other methods of dimension reduction, such as PACA
(Collyer and Adams, 2021), intrinsic relative warps or
partial warps (Bookstein, 2015;Mitteroecker et al., 2020),
can be slightly more effective than ordinary PCA, but
we found that after the first few components captured
the phylogenetic signal, they all performed similarly
(see “Empirical Examples” section). Clearly, phyloge‑
netic PCA (Revell, 2009; Polly et al., 2013) should not be
used for dimension reduction in this context as it aims
to reduce rather than concentrate phylogenetic signal.
Because the eigenvalues ofK generally become larger

and more anisotropic with 𝑝/𝑛 (see Supplementary
Table S1), the absolute values of 𝐾𝑖 should not be in‑
terpreted. Therefore, the correction by 𝑒 can also be
omitted. The main aim of our approach is to iden‑
tify linear combinations of the measured variables that
carry maximal or minimal phylogenetic signal. Hence,
most interesting will be the eigenvectors of K (the 𝐾‑
components), which contain the loadings of the linear
combinations. Nonetheless, a “scree plot” of the eigen‑
values can be helpful to gauge which and how many
𝐾‑components carry most of the phylogenetic signal.

Summary Metrics.—As a scalar summary metric of mul‑
tivariate phylogenetic signal, Adams (2014) proposed
𝐾mult, the ratio of the traces of the SSCPobs and SSCPcor
matrices (Equation (6)). An alternative metric, 𝐾𝐴, is
given by the arithmetic mean of the eigenvalues of K,
which is equal to the trace of K divided by 𝑝:

𝐾𝐴 = 1
𝑝

𝑝
∑
𝑖=1

𝛿𝑖 = 1
𝑝 tr(K). (10)

The product of the eigenvalues is equal to the ratio of
the generalized variances of the observed data and the
phylogenetically corrected data:

∏ 𝛿𝑖 = det(X𝑇X)
det(X𝑇

∗ Ω−1X∗)
= det(K). (11)

This gives rise to another metric, the geometric mean of
the eigenvalues of K:

𝐾𝐺 = (
𝑝

∏
𝑖=1

𝛿𝑖)
1/𝑝

= det(K)1/𝑝.

Under the hypothesis of equal phylogenetic signal for
all dimensions, SSCPobs = 𝑘 SSCPcor, the two SSCP ma‑
trices are proportional and𝐾mult = 𝐾𝐴 = 𝐾𝐺 = 𝑘 . In this
situation, all 3 indices lead to the same estimate of the
“global” phylogenetic signal. In the presence of multi‑
variate normal noise, the maximum likelihood estimate
is

̂𝑘 = tr(K)/𝑝 = 𝐾𝐴 (12)

(see Mardia et al., 1979; Bookstein and Mitteroecker,
2014). However, the 3 metrics differ when heterogenous
phylogenetic signal is present across trait dimensions
and 𝐾𝐴 > 𝐾𝐺. The ratio 𝐾𝐴/𝐾𝐺 thus serves as a mea‑
sure of the heterogeneity of phylogenetic signal across
trait dimensions (see below). In contrast to 𝐾𝐴 and
𝐾𝐺, the calculation of 𝐾mult does not require dimension
reduction as it does not involve a matrix inverse.
Like the univariate 𝐾, the eigenvalues of K are affine

invariant (Bookstein and Mitteroecker, 2014). That is,
they remain unchanged when rescaling the variables
separately or jointly (linear scaling or shearing of the
data space, respectively). Thus, 𝐾𝐴 and 𝐾𝐺 are also
affine invariant, which includes rotation invariance. By
contrast, 𝐾mult is not affine invariant, only rotation in‑
variant (Adams and Collyer, 2018a), which implies that
the statistics are the same whether computed from the
original variables or from an orthogonal rotation of
them (e.g., the full set of PCs). For geometric morpho‑
metric data, this furthermeans that the orientation of the
Procrustes‑aligned landmark configurations does not
influence the statistics. The affine invariance of 𝐾𝐴 and
𝐾𝐺 additionally implies that the variables do not need
to have the same units, nor do the variables need to
be geometrically independent. This can be important in
traditional morphometrics and other fields where the
variables have different units. Moreover, when based
on the leading PCs of the variables, the eigenvalues of
K are also approximately invariant to changes in the re‑
dundancy of variables. This can be important in geomet‑
ric morphometrics, where the number and spacing of
landmarks and especially of semilandmarks often is ar‑
bitrary (Huttegger andMitteroecker, 2011; Mitteroecker
and Schaefer, 2022). For these reasons, 𝐾𝐴 and 𝐾𝐺 tend
to display greater statistical power for recognizing phy‑
logenetic signal than 𝐾mult (see below).
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Statistical Inference.—Similar to othermultivariate meth‑
ods, significance tests of phylogenetic signal for single
𝐾‑components are inappropriate because the 𝐾‑values
are maximized and depend on 𝑝/𝑛. Due to this prop‑
erty, bootstrap distributions of 𝐾‑values are also bi‑
ased. Bootstrap samples contain only a subset of the
cases from the original sample, and the effective 𝑝/𝑛‑
ratio thus is larger in the bootstrap samples than in the
original sample. Instead, the eigenvalues can be com‑
pared against a permutation distribution. Under the
null hypothesis of phylogenetic independence (i.e., a
random association of phenotypic values to the phy‑
logeny; Blomberg et al., 2003), phenotypic residuals can
be randomly permuted while leaving the phylogeny
unchanged, resulting in a distribution that preserves
both first‑ and second‑moment exchangeability (sensu
Commenges, 2003; Adams and Collyer, 2018b, 2022).
To test the multivariate null hypothesis of complete

phylogenetic independence, any of the 3 summary met‑
rics of phylogenetic signal described above, 𝐾𝑚𝑢𝑙𝑡, 𝐾𝐴,
or 𝐾𝐺 , can be compared against its permutation dis‑
tribution. Computing SSCPobs from the OLS centered
residuals (as suggested in Equation (7)) simplifies the
permutation tests because SSCPobs is invariant to the
permutation of X and does not need to be recomputed.
The permutation test of 𝐾𝑚𝑢𝑙𝑡 then reduces to the per‑
mutation of tr(SSCPcor) and that of 𝐾𝐺 to det(SSCPcor).
After rejecting the null hypothesis of complete phylo‑
genetic independence, the linear combinations of the
variables that carry this signal can be explored by the
leading 𝐾‑components (the first eigenvectors of K).
For complex anatomical structures, phylogenetic sig‑

nal is likely to vary across traits because adaptation, ge‑
netic drift, and developmental constraints differentially
affect different traits. Nonetheless, the H0 of completely
uniform phylogenetic signal can also be tested formally.
This H0 implies that SSCPobs = 𝑘 SSCPcor, that is, the 2
matrices are proportional, and that all eigenvalues of K
are equal:

H0 ∶ 𝛿1 = 𝛿2 = … = 𝛿𝑝. (13)

Note that the H0 can also reflect Ω = 𝑑I, which corre‑
sponds to a star phylogeny and a Pagel’s 𝜆 of 0. The
ratio of arithmetic to geometric means of eigenvalues,
𝐾𝐴/𝐾𝐺, is 1 under the H0 and increases with increasing
anisotropy of phylogenetic signal. This ratio thus serves
as a statistic to test the H0 of completely uniform sig‑
nal (cf. Mardia et al., 1979; Le Maitre and Mitteroecker,
2019). As 𝐾𝐴/𝐾𝐺 is invariant to 𝑘, its permutation dis‑
tribution can also be inferred from the permutation of
cases against the phylogeny. However, in a series of
simulation studies and empirical examples (see below
and Supplementary Materials), we found that this test
requires 𝑛 ≫ 𝑝 and that it can be incompatible with
dimension reduction. If reducing data to the dimen‑
sions that collectively contain the phylogenetic signal,
the anisotropy of the signal is necessarily lower as if
dimensions with little or no phylogenetic signal were

included. Conversely, if all variables indeed had equal
phylogenetic signal, PCA concentrates part of this sig‑
nal in the leading dimensions. Assessing only these
dimensions can incorrectly suggest the presence of “sig‑
nificant” anisotropy of the signal. For these reasons, we
recommend to use this test of uniform phylogenetic sig‑
nal only for small numbers of measured traits and large
sample sizes, without the use of dimension reduction.
Instead of the actual test statistics, Collyer et al. (2015,

2022) suggested expressing these statistics as𝑍‑scores of
their (normalized) permutation distribution:

𝑍 = 𝜃𝑜𝑏𝑠 − 𝜇𝜃
𝜎𝜃

, (14)

where 𝜃𝑜𝑏𝑠 is the test statistic for the observed data (e.g.,
𝐾𝐺), and𝜇 and 𝜎 are themean and standard deviation of
the normalized permutation distribution, respectively.
These scores can be used to compare the ability to detect
phylogenetic signal (i.e., the relative statistical power)
across the 3 statistics, 𝐾𝑚𝑢𝑙𝑡, 𝐾𝐴, and 𝐾𝐺.
As an alternative to hypothesis tests, one can use a

cross‑validation approach to gauge the efficacy of the
𝐾‑components to represent phylogenetic signal. For in‑
stance, the fraction of taxa correctly classified into larger
clades based on the first few 𝐾‑components can be
computed from leave‑one‑out or 𝑘‑fold cross‑validation.
This way, also the optimal number PCs for calculating
K can be evaluated.

Simulation Examples
We performed a series of stochastic sampling exper‑

iments to demonstrate the ability of these approaches
to detect patterns of multivariate phylogenetic signal
under varying conditions. Our simulation design was
similar to that of Adams and Collyer (2019), where phe‑
notypic data were simulated such that the various trait
dimensions contained differing levels of phylogenetic
signal.
For the first simulation, we generated a pure‑birth

phylogeny for 𝑛 = 60 species, and for all species we sim‑
ulated multivariate phenotypes containing 𝑝 = 5 trait
dimensions under a Brownian motion model of evolu‑
tion. This procedure was equivalent to drawing 𝑛 = 60
phenotypic values from a multivariate normal distribu‑
tion as: Y𝐵𝑀 ∼ 𝒩(0, Ω𝑛), where Ω𝑛 was the phyloge‑
netic covariance matrix. Next, we generated a second
multivariate dataset independent of the phylogeny (i.e.,
independent random noise), by drawing phenotypes
containing 𝑃 = 5 trait dimensions from a multivariate
normal distribution as: Y𝑅 ∼ 𝒩(0, I𝑛). From these 2 ini‑
tial datasets, we generated 4 datasets containing varying
levels of phylogenetic signal:
1) Y𝐻 = Y𝐵𝑀 (high phylogenetic signal). Here, all 5
traits contained phylogenetic signal at levels expected
under Brownian motion.
2) Y𝑀 = (Y𝐵𝑀 + Y𝑅)/2 (medium phylogenetic signal).
Here, all 5 traits contained similar levels of phylogenetic
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signal, but at half of whatwas expected under Brownian
motion.
3)Y𝐿 = (Y𝐵𝑀 +2Y𝑅)/3 (low phylogenetic signal). Here,
all 5 traits contained similar levels of phylogenetic sig‑
nal, but at a third of what was expected under Brownian
motion.
4)Y𝐶 = [ Y𝐵𝑀[1 ∶ 2] Y𝑅[3 ∶ 5] ] (concentrated phylo‑
genetic signal). Here, the first 2 traits contained phyloge‑
netic signal as expected under Brownian motion, while
the remaining 3 traits contained random noise.
For each dataset we calculated the phylogenetic sig‑

nal matrix, K (Equation (7)), and obtained the set of
eigenvalues, 𝛿1 … 𝛿5. We then calculated 95% intervals
of the permutation distributions for these eigenvalues
based on 1000 random permutations. The expectation
was that the eigenvalues from our procedure would
reflect the magnitude of phylogenetic signal across sim‑
ulation conditions, that is, 𝛿𝐻 > 𝛿𝑀 > 𝛿𝐿. Addition‑
ally, we expected that the distribution of eigenvalues
from the dataset containing concentrated phylogenetic
signal (Y𝐶) would differ from the distribution of eigen‑
values from the remaining datasets. As a measure of the
anisotropy of phylogenetic signal, we expect 𝐾𝐴/𝐾𝐺 to
be similar in datasets 1–3 and higher in dataset 4.
The second simulation was identical in design to

the first simulation, except that the procedure was re‑
peated 1000 times (i.e., 1000 datasets were simulated as
above). From all these datasets we claculated the sum‑
mary statistics 𝐾𝑚𝑢𝑙𝑡, 𝐾𝐴, 𝐾𝐺 (Equation (6), Equation
(10), Equation (11)) and their corresponding 𝑍‑scores
(Equation (14)). The statistical power of the 3 statistics
was estimated as the fraction of significant results at
𝑃 < 0.05.
Finally, as high‑dimensional datasets often contain

more variables than observations (𝑃 > 𝑛), we repeated
the above simulations with 𝑃 = 100 and 𝑛 = 60 and
a dimension reduction step. Details are found in the
Supplementary Materials. All simulations were per‑
formed in R, using routines written by the authors
(available in the Supplementary Materials).

Simulation Results.—The first simulation demonstrated
that the eigenvalues ofK correctly captured known lev‑
els of phylogenetic signal in the data. The eigenvalues
for the dataset containing high levels of phylogenetic
signal were larger (Fig. 1A) than those for the datasets
containing medium (Fig. 1B) and low levels of phylo‑
genetic signal (Fig. 1C), respectively. Additionally, as
levels of phylogenetic signal in the data decreased, the
observed eigenvalues approached (or overlapped) with
the 95% confidence intervals of the permutation distri‑
bution. This implies that statistical tests based on these
eigenvalues would follow in rank‑order with known in‑
put levels of phylogenetic signal, as expected. Finally,
for dataset 4, where the phylogenetic signal was concen‑
trated in 2 trait dimensions, the first 2 eigenvalues were
considerably larger than the remaining eigenvalues,
which fell within the permutation distribution (Fig. 1D).
Accordingly, 𝐾𝐴/𝐾𝐺 was much larger in dataset

4 (𝐾𝐴/𝐾𝐺 = 2.355) than in the first 3 datasets (1.216,
1.423, 1.381). Note that 𝐾𝐴/𝐾𝐺 = 1 for exactly equal
eigenvalues and increases with increasing heterogene‑
ity of eigenvalues. The permutation test of 𝐾𝐴/𝐾𝐺 was
only significant for dataset 4 (𝑃 < 0.001).
Results from the second simulation revealed that 𝑍‑

scores for 3 summary test measures corresponded well
with input levels of phylogenetic signal, with the high‑
est 𝑍‑scores obtained for datasets with high levels of
phylogenetic signal, and the lowest 𝑍‑scores obtained
for datasets with low levels of phylogenetic signal
(Fig. 2A–C). For all 4 simulations, 𝐾𝐴 tended to have
the highest 𝑍‑scores and 𝐾𝑚𝑢𝑙𝑡 the lowest, reflecting the
maximum likelihood property of 𝐾𝐴 as the scaling fac‑
tor between SSCPobs and SSCPcor under 𝐻0 (see Equa‑
tion (12)). Moreover, the permutation distribution for
𝐾𝑚𝑢𝑙𝑡 was more leptokurtic and right‑skewed than for
the other 2 statistics.
The difference between statistics was particularly

prominent when phylogenetic signal was concentrated
in 2 dimensions (dataset 4; Fig. 2D). Here, the distribu‑
tion of 𝑍‑scores for 𝐾𝑚𝑢𝑙𝑡 was similar to its distribution
for uniformly low phylogenetic signal, reflecting the
difficulty of interpreting “significant, but weak” phylo‑
genetic signal from 𝐾𝑚𝑢𝑙𝑡. Conversely, for 𝐾𝐴 the dis‑
tribution was in‑between that of uniformly high and
medium phylogenetic signal. These trends were con‑
sistent with the summaries of statistical power, show‑
ing that 𝐾𝐴 and 𝐾𝐺 attained higher power as compared
with 𝐾𝑚𝑢𝑙𝑡 (Table 1), particularly for uniformly low and
concentrated phylogenetic signal (datasets 3 and 4).
Finally, the simulations using high‑dimensional data

(𝑃 > 𝑛) and dimension reduction obtained results that
mirrored those presented above. The eigenvalues of K
correctly captured known levels of phylogenetic signal
in the data. Likewise, when phylogenetic signal was
concentrated, 𝐾𝐴 and 𝐾𝐺 were better capable of iden‑
tifying this signal than was 𝐾𝑚𝑢𝑙𝑡. But in contrast to the
simulations above, 𝐾𝐴/𝐾𝐺 was similarly large and sig‑
nificant for all four datasets, showing the inappropriate‑
ness of this test for 𝑝 > 𝑛 (see Supplementary Materials
for details).

Empirical Example 1: Crocodyliform Skull Shape
To illustrate the utility of our approach on empir‑

ical data we present 2 worked examples. The first
one investigates the evolution of skull morphology in
43 species of modern and fossil crocodyliforms (24
extant taxa and 19 fossil lineages; Fig. 3). The data
were originally from Felice et al. (2021) and are avail‑
able at github.com/rnfelice/Croc_Skulls. On 3D scans
of 428 skulls, a total of 1364 3D landmarks and semi‑
landmarks were placed on the right side and along
the midline of each scan. Semilandmarks were slid
in order to minimize the bending energy of each
configuration to the mean shape (Bookstein, 1997;
Gunz and Mitteroecker, 2013). All configurations were
then superimposed by Generalized Procrustes Analysis
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FIGURE 1. Results from a single simulation run of multivariate data (𝑝 = 5 trait dimensions) for 60 species related by a pure‑birth phylogeny.
Each panel displays the observed eigenvalues obtained from the multivariate phylogenetic signal matrix, K, as well as the 95% intervals of the
permutation distributions. (a) Dataset containing uniformly high phylogenetic signal, (b) medium phylogenetic signal, (c) low phylogenetic
signal, and (d) phylogenetic signal concentrated in only 2 dimensions.

(Rohlf and Slice, 1990). Finally, specimenswerematched
to several time‑calibrated phylogenies for subsequent
macroevolutionary analyses (for details see Felice et al.,
2021).
The original study evaluated morphological evolu‑

tion in the group using an extensive array of phyloge‑
netic comparative analyses and modeling approaches.
Among those analyses, an evaluation of phylogenetic
signal obtained a value of 𝐾𝑚𝑢𝑙𝑡 = 0.06 (for the phy‑
logeny in Figure 3), and permutation tests revealed that
this value was significantly greater than under the hy‑
pothesis of complete phylogenetic independence. Felice
et al. (2021) interpreted this result as “significant, but
weak” phylogenetic signal. However, because such pat‑
terns can also be obtained when phylogenetic signal is
concentrated in one or a few trait dimensions, it is of
interest to interrogate the data using KCA.
As the number of variables for this example (𝑃 =

3873) was orders of magnitude greater than the number
of species (𝑛 = 43), dimension reduction was required.
For this we used the first 20 PCs, which collectively ex‑
plained nearly 97% of the total variation in shape. Ad‑
ditionally, and for comparison, we also used the first

20 PACs (Collyer and Adams, 2021). We then evaluated
patterns of phylogenetic signal using the procedures
described above, with 100,000 permutations used for
the significance tests. All statistical analyses were per‑
formed in R, using the packages RRPP 2.0.0 (Adams
and Collyer, 2018b; Collyer and Adams, 2024), geo‑
morph 4.0.5 (Baken et al., 2021), and routines written by
the authors (available as functions in newer versions of
geomorph).

Results.—Our reanalysis of the data using 20 PCs re‑
vealed significant phylogenetic signal for all metrics
(𝐾𝑚𝑢𝑙𝑡 = 0.069; 𝑃𝐾𝑚𝑢𝑙𝑡

< 0.001; 𝐾𝐴 = 0.264; 𝑃𝐾𝐴
< 0.001;

𝐾𝐺 = 0.074; 𝑃𝐾𝐺
< 0.0001). Consistent with our sim‑

ulation studies, 𝑍‑scores for the 3 metrics indicated the
strongest signal for 𝐾𝐴 and 𝐾𝐺 (𝑍𝐾𝑚𝑢𝑙𝑡

= 3.091; 𝑍𝐾𝐴
=

5.454; 𝑍𝐾𝐺
= 6.046).

The first PCs of the shape coordinates (69% of total
variance) already revealed clusters of species by clade
(Fig. 4a), but the phylogenetic signal was much clearer
in the first two 𝐾‑components (Fig. 4b). These are the
scores with maximal 𝐾‑value (s𝑖 in Equation (9)). Visu‑
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FIGURE 2. Summary test measures for 1000 simulated datasets containing differing levels of phylogenetic signal. (a) Violin plots of the 𝑍‑
scores for datasets containing high phylogenetic signal, (b) medium phylogenetic signal, (c) low phylogenetic signal, (d) and phylogenetic
signal concentrated in 2 dimensions.

alizing the eigenvalues of the Kmatrix indeed revealed
the presence of concentrated phylogenetic signal, as the
first several eigenvalues fell well outside of the 95% con‑
fidence limits of the permutation distribution (Fig. 4b,c).
Therewas a precipitous decline across eigenvalues,with
the first eigenvalue displaying 50%greater phylogenetic
signal than the second, and a similar drop off to the
third. Further, the higher eigenvalues of this distribu‑
tion were much more similar to what was expected via
permutation, corroborating that the phylogenetic signal
in the dataset was largely concentrated in the first 𝐾‑
components. Results using the first 20 PACs dimensions
were very similar (see Supplementary Materials). Thus,
our re‑analysis of the crocodyliformdataset suggests the
presence of strong and concentrated phylogenetic sig‑
nal in skull shape, rather than a “significant, but weak”
signal.

Empirical Example 2: Papionin Cranial Shape
Our second example explores phylogenetic signal in

the cranial shape of papionins and provides a more
in‑depth inspection and interpretation of components.

TABLE 1. Statistical power of the 3 summary statistics for the 1000
simulated datasets containing various levels of phylogenetic signal.

Phy. Signal 𝐾𝐴 𝐾𝐺 𝐾𝑚𝑢𝑙𝑡

High 1.000 1.000 1.000
Medium 1.000 1.000 0.926
Low 0.913 0.847 0.570
Concentrated 1.000 0.998 0.808

Our data are from Grunstra et al. (2021) and represent
the average midsagittal cranial shape of 16 different
papionin species as well as 2 nonpapionin Old World
monkey taxa, Cercopithecus mitis and Colobus guereza,
which belong to the sister taxon of the papionini (the
cercopithecini) and the sister taxon to the cercopitheci‑
nae (the colobinae), respectively (Fig. 5a). Only adult
females were sampled in order to minimize ontoge‑
netic variation and sexual dimorphism. A total of 28
anatomical landmarks and 42 sliding landmarks were
measured on 3D‑computed tomography scans by Sil‑
vester Bartsch and Nicole Grunstra (Fig. 5b; landmark
data are available at doi.org/10.5061/dryad.zkh189373).
The semilandmarks were slid in order to minimize the
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Alligator mississippiensis
Alligator sinensis

Anatosuchus minor
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Araripesuchus wegeneri
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Caiman crocodilus
Caiman latirostris

Caiman yacare

Caipirasuchus stenognathus

Cricosaurus

Crocodylus acutus

Crocodylus affinis

Crocodylus intermedius

Crocodylus johnstoni
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Crocodylus moreletii

Crocodylus niloticus
Crocodylus novaeguineae

Crocodylus palustris

Crocodylus porosus
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Crocodylus rhombifer

Crocodylus siamensis

Gavialis gangeticus

Kaprosuchus saharicus

Leidyosuchus canadensis

Mariliasuchus amarali

Mecistops cataphractus

Melanosuchus niger

Osteolaemus tetraspis

Paleosuchus palpebrosus
Paleosuchus trigonatus

Pelagosaurus typus

Pholidosaurus sp

Procaimanoidea utahensis

Prodiplocynodon langi

Purussaurus neivensis

Sarcosuchus imperator

Simosuchus clarki

Stangerochampsa mccabei

Tomistoma schlegelii

Voay robustus

Alligatoroidea 

Notosuchia
Crocodylidae
Gavialidae
Thalattosuchia

Mahajangasuchidae
Pholidosauridae
Planocraniidae

Tomistoma

FIGURE 3. Time‑calibrated phylogeny of fossil and extant crocodyliforms. Major clades (following Felice et al., 2021) along with landmark
data for several representative specimens are displayed (color scheme of landmarks designate distinct cranial regions, as based on the original
publication).

bending energy of each configuration to themean shape
(Bookstein, 1997; Gunz and Mitteroecker, 2013), and
then all the configurations were superimposed by Gen‑
eralized Procrustes Analysis (Rohlf and Slice, 1990).
KCA was based on the first 5 PCs, but the analyses
were repeated with different numbers of PCs. One hun‑
dred thousand permutations were used for the signif‑
icance tests, and the phylogeny was rescaled to unit
depth (see Supplementary Material). Analyses were
performed in Wolfram Mathematica 12.3 using func‑
tions written by Philipp Gunz and PhilippMitteroecker.
Phylomorphospace plots were computed using Mathe‑
matica code by David Polly (2022).

Results.—Despite the small sample, all 3 metrics re‑
vealed a significant phylogenetic signal in the data
(𝐾𝑚𝑢𝑙𝑡 = 0.166; 𝑃𝐾𝑚𝑢𝑙𝑡

= 0.0279; 𝐾𝐴 = 0.493; 𝑃𝐾𝐴
=

0.0016; 𝐾𝐺 = 0.437; 𝑃𝐾𝐺
= 0.0002). As in the simula‑

tion studies and the previous example, 𝑍‑scores for the
3 metrics indicated the strongest signal for 𝐾𝐴 and 𝐾𝐺
(𝑍𝐾𝑚𝑢𝑙𝑡

= 1.793; 𝑍𝐾𝐴
= 2.868; 𝑍𝐾𝐺

= 3.298). Levels of
overall phylogenetic signal were less than expected un‑
der a Brownian motion model of evolution (i.e., 𝐾𝑚𝑢𝑙𝑡 <
1), which may indicate the presence of concentrated
phylogenetic signal. Also, the first 2 PCs of the shape
coordinates (accounting for 67% of total variance) did
not represent phylogenetic relationships well (Fig. 6).

The K matrix derived from the first 5 PCs (87% of
total variance) had eigenvalues (𝐾‑values) of: 0.8007,
0.6463, 0.5074, 0.3211, and 0.1889. Hence, the first K‑
component showed approximately 4 times as much
phylogenetic signal than the last component. The ob‑
served 𝐾‑value profile fell at the limit of the permuta‑
tion distribution (Fig. 7a), reflecting the significant over‑
all phylogenetic signal, but the decline of the observed
eigenvalues was comparable to that of the permutation
distribution. Even though the first component showed
the highest eigenvalue, the eigenvalues of the second
and third components, not the first, deviated most
clearly from the permutation distribution, which seems
counter‑intuitive at first glance. However, because of
the 2 outgroups (deep branches for common ances‑
tors) and 2 distinct clades within the phylogenetic tree,
one would expect a high frequency of random permu‑
tations of taxa that result in the maintained separa‑
tion of distantly‑related taxa into different clades, by
chance. Examination of the permutations that yielded
the largest eigenvalues suggested this was the case. The
second and third components likely were more associ‑
ated with within‑clade phylogenetic signal.
Scores along the 𝐾‑components (Fig. 7b,c) showed

that the phylogenetic relationships among the taxa
were much more clearly represented by the first two
components (the components with maximal 𝐾) as
compared with the last 2 components (with mini‑
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FIGURE 4. (a) First two PCs of crocodyliform skull shape. The landmark configurations of representative specimens are displayed in their
approximate position in PC space. The species’ phylogeny is projected into this space to facilitate interpretation (ancestral shapes were esti‑
mated by PGLS and a Brownian motion model of evolution). (b) First two 𝐾‑components of crocodyliform skull shape. These are the linear
combinations of the shape coordinates with maximal phylogenetic signal. (c) Eigenvalues of K for the crocodyliform data (black line) repre‑
senting the relative strength of phylogenetic signal for each 𝐾‑component. The red polygon represents the 95% interval from 1000 random
permutations. A colour version of this figure appears in the online version of this article.

mal 𝐾) and also better than by the ordinary PCs in
Figure 6b. Note that these are the scores for the ob‑
served data (s𝑖 in Equation (9)). The first pair of scores
for the phylogenetically corrected data (t𝑖) showed
no phylogenetic structure any more (Supplementary
Fig. S1) and thus differ clearly from the scores in
Figure 7. By contrast, the last pair of scores are rel‑
atively similar for the observed data and also for

the phylogenetically corrected data, indicating that
our data indeed contained phylogenetic signal and
that this signal was concentrated in the first two 𝐾‑
components. Despite the relatively small number of
taxa, the eigenvectors were stable for the range of 5–9
PCs. With a larger number of PCs, the results became
increasingly noisy and overfitted (see Supplementary
Fig. S2).
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FIGURE 5. (a) Molecular phylogeny of the 16 papionin taxa (blue) and the 2 outgroup Old World monkey taxa (black), based on several
mitochondrial, Y‑chromosomal, and autosomal markers (Arnold et al., 2010). Approximate divergence times are given in million years. (b)
Landmark scheme shown for a Macaca fuscata specimen. The different cranial bones are shown in different colors. The 28 anatomical land‑
marks are shown in gray and the 42 sliding landmarks in black (modified from Grunstra et al., 2021). A colour version of this figure appears in
the online version of this article.

FIGURE 6. (a) Scree plot of the papionin cranial shape data, showing the fraction of variance for each PC. (b) The first two PC scores along
with a phylogenetic tree projected in this PC space (ancestral shapes were estimated by PGLS and a Brownian motion model of evolution).

The shape patterns corresponding to the loadings of
the 𝐾‑components can be visualized just like standard
PCs by adding a multiple of the loading vectors (here
±0.5) to a reference shape (here the overall mean shape;
Fig. 8). The first 2 components with maximal phylo‑
genetic signal mainly represented variation in the po‑
sition of the sutures in the anterior cranial base, the
naso‑frontal complex, and the cranial vault, along with
variation in the size of the supraorbital torus. The 2
components with minimal phylogenetic signal repre‑
sented variation in the orientation of the cranial base
and overall facial and neurocranial form. These results
mirror the findings of Grunstra et al. (2021), show‑
ing that phylogenetic signal is more clearly present in
small‑scale shape features and structural “details,” such
as the sutural patterns, that are likely of little func‑
tional relevance. Thus hidden from selection, these fea‑
tures are largely subject to evolutionary drift and better

reflect phylogenetic history than more functionally rel‑
evant, often large‑scale features such as overall cranial
form.

Discussion
Due to the hierarchical structure of the tree of life, it is

typically expected that more closely related species re‑
semble each other more than distantly related species; a
pattern termed phylogenetic signal. While phylogenetic
signal is commonly observed in univariate traits, eval‑
uating whether multivariate phenotypes display sim‑
ilar macroevolutionary trends is challenging because
different trait dimensions may display differing de‑
grees of phylogenetic signal. Here, we introduced a new
approach for evaluating phylogenetic signal that is ca‑
pable to exploring how, and to what extent, phyloge‑
netic signal is concentrated in one or a few dimensions.
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FIGURE 7. (a) Eigenvalues of the K matrix for the papionin data (thick black line), representing the relative strength of phylogenetic signal
for every 𝐾‑component. There are only 5 eigenvalues as the computation of K was based on the fist 5 PCs of the shape data only. The thin red
lines represent the eigenvalue profiles of 1000 random permutations, and the dashed lines their 95% intervals. (b) Scores of the 18 taxa along
the two 𝐾‑components with maximal phylogenetic signal and (c) the two 𝐾‑components with minimal phylogenetic signal. The phylogenetic
structure (as shown by the projected tree) is much better represented by the first 2 components as compared with the last 2 components and
also with the ordinary PCs in Figure 6. A colour version of this figure appears in the online version of this article.

The approach estimates a series of components—the 𝐾‑
components—that describe decreasing levels of phylo‑
genetic signal via linear combinations of the original
variables, based on an eigenanalysis of the phyloge‑
netic signal matrix, K (a multivariate generalization of
Blomberg’s K).
The loadings of the 𝐾‑components can be biologically

interpreted (in our examples as anatomical shape de‑
formations; Fig. 8), and scores along the components
serve as an ordination of the measured data that max‑
imally or minimally carries phylogenetic signal (first
and last 𝐾‑components, respectively; cf. Figs. 4 and 7).
The 𝐾‑component scores can also be used as variables
for further analysis, for example, in functional and eco‑
logical analyses, if one wishes to focus on trait dimen‑
sions with different phylogenetic signal (e.g., to assess

adaptive speciation versus parallel evolution). How‑
ever, in contrast to PCs, the 𝐾‑components are not or‑
thogonal (but uncorrelated) and the scores thus do not
preserve the Euclidean geometry of data space (dis‑
tances, angles, total variance) if that has been inter‑
pretable for the raw variables (which is not often the
case; see Mitteroecker and Huttegger, 2009; Huttegger
and Mitteroecker, 2011). For many multivariate statis‑
tics, including Mahalanobis distances, Hotelling’s 𝑇2,
MANOVA, linear and quadratic classification, canoni‑
cal variate analysis, and relative eigenanalysis, the re‑
sults are the same whether computed from PCs or from
𝐾‑components computed from these PCs (because all
these statistics are affine invariant). The same invari‑
ance holds for multiple regressions and derived statis‑
tics if the components serve as independent variables.
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FIGURE 8. Visualization of the shape patterns corresponding to the 2 components with maximal phylogenetic signal (components 1 and 2)
and the 2 components with minimal phylogenetic signal (components 4 and 5).

As dependent variables, regression results are affine
equivariant, that is, they scale accordingly.
Our approach resolves why some multivariate

datasets yield significant phylogenetic signal, but at
much levels lower than those expected under Brow‑
nian motion. Many prior studies have attributed this
paradoxical result as representing “significant, but
weak” phylogenetic signal (discussed in Adams and
Collyer, 2019; Collyer and Adams, 2021), implying that
levels of phylogenetic signal are low and relatively uni‑
form across trait dimensions. Whereas previous ap‑
proaches (e.g., 𝐾𝑚𝑢𝑙𝑡) were incapable of discerning such
a pattern, our procedure can show whether the eigen‑
values ofK are indeed relatively uniform, thereby iden‑
tifying weak, but consistent phylogenetic signal (e.g.,
Fig. 1c), or whether phylogenetic signal is concentrated
in a few trait dimensions (e.g., Fig. 1d).
We showed how null hypotheses of complete phylo‑

genetic independence and of uniform phylogenetic sig‑
nal can be tested by a permutation approach, which can
be useful in determining whether levels of phylogenetic
signal within a dataset require biological interpretation.
The permutation procedure also gives rise to 𝑍‑scores
as standardized measures of statistical power for the
test statistics. This way, we could show that 𝐾𝐴 and 𝐾𝐺
have higher power than 𝐾𝑚𝑢𝑙𝑡, both for uniform and
concentrated phylogenetic signal.
One important implication concerns the calculation of

the likelihood describing the fit of multivariate data to
the phylogeny under a particular evolutionary model
(e.g., Brownian motion). This likelihood may also in‑
corporate the degree of phylogenetic signal by scaling
the off‑diagonal elements of Ω by 𝜆 (see Supplemen‑
tary Material). Current multivariate extensions of phy‑
logenetic likelihood are based on Revell and Harmon
(2008), who used a Kronecker tensor product between

the trait covariance matrix and the phylogenetic covari‑
ance matrix to incorporate multiple traits into the likeli‑
hood equation of Felsenstein (1973). This multivariate
formulation uses a single 𝜆 for all 𝑝 trait dimensions,
implying that the degree of phylogenetic signal is uni‑
form across the space. Yet we showed that phyloge‑
netic signal can be concentrated in one or a few trait
dimensions, which has major implications for how one
might best calculate the likelihood describing the fit of
multivariate phenotypes to the phylogeny. Several so‑
lutions can be envisioned (see Supplementary Material
andCollyer et al., 2022), and futurework should explore
the efficacy and evolutionary interpretation of these
implementations.
Many multivariate datasets, including our example

datasets, require dimension reduction prior to KCA be‑
cause stable results require full rank data and a clear
excess of cases over variables. Prior reduction of the data
to a few PCs is effective but involves a somewhat sub‑
jective decision about the number of PCs to include.
When repeating the example analyses with different
numbers of PCs, we found that most of the phyloge‑
netic signal was collectively captured by the first few
PCs. The 𝐾‑components, the resulting ordinations as
well as the 𝑃‑values for the statistics 𝐾𝐴 and 𝐾𝐺 were
stable for a range of included PCs, whereas the mea‑
sure of anisotropy (𝐾𝐴/𝐾𝐺) and its 𝑃‑value showed a
stronger dependence on dimension reduction (mostly
because 𝐾𝐺 is strongly influenced by small eigenval‑
ues).
Finally, our empirical examples revealed statisti‑

cally significant and anisotropic phylogenetic signals
in crocodyliform and papionin cranial shape. Numer‑
ous previous studies tried to identify primate cran‑
iodental traits with strong phylogenetic signal, but
these approaches compared one cranial region or set of
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traits as a whole against others (e.g., Gibbs et al., 2000;
Caumul and Polly, 2005; Harvati and Weaver, 2006;
Lockwood, 2007; Cardini and Elton, 2008; Smith, 2009;
Roseman et al., 2010; von Cramon‑Taubadel, 2011; Rath‑
mann et al., 2023). Our approach, by contrast, allows for
an exploratory search of linear combinations with high
phylogenetic signal of allmeasured traits. As our empir‑
ical findings show, phylogenetic signal may be reflected
by shape features that are distributed across the entire
cranium, such as the relative position of cranial sutures
and other “constructional details”; it is not located in
any specific region. Future work may show whether or
not this is a general pattern in vertebrates. Note that be‑
cause of its affine invariance, KCA can be applied to var‑
ious types and combinations of variables at an interval
scale, not only geometric morphometric data.
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